
Exercises 11:
Hybrid Parallel Programming

MPI+OpenMP



Today

• Review OpenMP and MPI programming

• Create a hybrid MPI+OpenMP program

• Setup:

• Download ex11.tar from Moodle, scp it to the cluster, and unpack the 
tar file

2



Inner Product Program
• Look at serial.c

• This program computes the inner product of two vectors of all 1s

• Takes two command line inputs: len (vector length) and trials (number of 
trials to perform for timing average)

• Uses OpenMP just for timing functions

• Compile and run:

gcc –fopenmp –o serial serial.c

./serial 10000000 1000

3



Task 1: OpenMP parallelization
• Open openmp.c

• Add the appropriate OpenMP pragma to parallelize the inner product 
computation loop

• Compile and run, e.g.,

gcc –fopenmp –o openmp openmp.c

export OMP_NUM_THREADS=4

./openmp 10000000 1000

4



Task 2: MPI parallelization
• Open mpi.c

5



Task 2: MPI Parallelization

6

Process 1

len

Process 2 Process 3 Process 4

mylen

my_a

m
y_b

= mysum

…



Task 2: MPI Parallelization

7

mysum

MPI_Reduce

Process 1

mysum

Process 2

mysum

Process 3

mysum

Process 4

sum



Task 2: MPI parallelization
• Open mpi.c

• Write the code to do the inner product computation

• For-loop to do local computation, followed by collective to get the 
global sum

• Compile and run, e.g.,

module load openmpi

mpicc –o mpi mpi.c

mpirun –n 4 ./mpi 10000000 1000

8



MPI_Reduce syntax

9



MPI on Clusters: “Flat MPI”
• On a cluster of multiprocessors (or multicore processors), we can execute a 

parallel program by having a MPI process executing in each processor (or 
core). 

• It may be the case that multiple MPI processes execute in the same 
multiprocessor (or multicore processor), but still the interactions among 
those processes are based on message passing. 

10



Hybrid Programming: MPI+OpenMP
• Different approach: hybrid program in which only one MPI process executes 

in each multiprocessor (or multicore processor)

• Launch a set of threads equal to the number of processors (or cores) in 
each machine to execute the parallel regions of the program.

11



Hybrid Programming: MPI+OpenMP
• Can combine both strategies and adapt the division between MPI processes 

and threads 

• Want to optimize the use of the available resources

12



Why Hybrid Programming?
• Architecture of parallel machines is overwhelmingly shared-memory 

multicore machines at the node level

• Trends: more cores per CPU, less memory available per core

• Hybrid programming model is a natural fit

13



Why Hybrid Programming?
• Hybrid programming induces less communication among different nodes 

and increases performance of each node without having to increase memory 
requirements. 

• Using pure MPI can have large memory cost

• Memory overhead from MPI itself

• Pure MPI might require replicated data within a CPU/node

• Applications with two levels of parallelism may use MPI processes to exploit 
large grain parallelism, occasionally exchanging messages to synchronize 
information and/or share work, and use threads to exploit medium/small 
grain parallelism by resorting to a shared address space. 

• Applications with constraints that may limit the number of MPI processes 
that can be used may take advantage of OpenMP to exploit the remaining 
computational resources. 

• Applications for which load balancing is hard to achieve with only MPI 
processes may benefit from OpenMP to balance work, by assigning a 
different number of threads to each MPI process as a function of its load

14



Potential Advantages of Hybrid programming

• Avoiding data replication: Since threads can share data within a 
node, if any data needs to be replicated between processes, we can avoid 
this.

• Light-weight : Threads are lightweight and thus you reduce the meta-data 
associated with processes.

• Reduction in number of messages : A single process within a node can 
communicate with other processes, reducing number of messages between 
nodes (and thus reducing pressure on the Network Interface Card). 

• Faster communication : Since threads communicate using shared 
memory, you can avoid using point-to-point MPI communication within a 
node. 

• Whether or not MPI+OpenMP will be faster (or use significantly less 
memory) than pure MPI depends heavily on the application.

15



Hybrid Programming
• The simplest and safe way to combine MPI with OpenMP is to never use 

the MPI calls inside the OpenMP parallel regions. In this case, there is 
no problem with the MPI calls, given that only the master thread is active 
during all MPI communications

16



Task 3: Hybrid Parallelization
• We will just use the basic approach – no calls to MPI within OpenMP 

parallel regions 

17



Task 3: Hybrid Parallelization
• We will just use the basic approach – no calls to MPI within OpenMP 

parallel regions 

• Copy your completed mpi.c file to a new file called hybrid.c

cp mpi.c hybrid.c

• Open the file hybrid.c

• Add OpenMP pragma to parallelize the local inner product 
computation

• Modify the print statement at the end so that you print off the number 
of OpenMP threads in addition to the number of MPI tasks

• Can use a “dummy” parallel region at the beginning to set this, as 
in openmp.c

18



Task 3: Hybrid Parallelization

• Compile and run, e.g.,

mpicc –fopenmp –o hybrid hybrid.c

export OMP_NUM_THREADS=4

mpirun –n 2 ./hybrid 10000000 1000

19



Task 4: Try different setups

• Submit a job to the cluster using 2 nodes

• Look at job.sh; feel free to modify 

• Compare different combinations of MPI processes and threads 

• E.g., 

• 8 MPI processes, 1 thread per process

• 4 MPI processes, 2 threads per process

• 2 MPI processes, 4 threads per process

• 1 MPI process, 8 threads per process

20



Results (On [r41, r42])

21



MPI Thread Safe
• If a program is parallelized so that it has MPI calls inside OpenMP parallel 

regions, then multiple threads can call the same MPI communications and 
at the same time. For this to be possible, it is necessary that the MPI 
implementation be thread safe. 

• Support for this since MPI-2

22



MPI Support for Multithreading

• MPI_Init_thread() initializes the MPI execution environment 
(similarly to MPI_Init()) and defines the support level for 
multithreading: 

• required is the aimed support level 

• provided is the support level provided by the MPI implementation 

• The support level for multithreading can be: 

• MPI_THREAD_SINGLE – no multithreading

• MPI_THREAD_FUNNELED – only the master thread can make MPI 
calls 

• MPI_THREAD_SERIALIZED – all threads can make MPI calls, but 
only one thread at a time can be in such state 

• MPI_THREAD_MULTIPLE – all threads can make simultaneous MPI 
calls without any constraints (MPI is thread safe)

23



MPI_THREAD_FUNNELED
• With support level MPI_THREAD_FUNNELED only the master thread 

can make MPI calls. One way to ensure this is to protect the MPI calls 
with the omp master directive. 

• However, the omp master directive does not define any implicit 
synchronization barrier among all threads in the parallel region (at entrance 
or exit of the omp master directive) in order to protect the MPI call. 

24



MPI_THREAD_SERIALIZED
• With support level MPI_THREAD_SERIALIZED all threads can make 

MPI calls, but only one thread at a time can be in such state. One way to 
ensure this is to protect the MPI calls with the omp single directive that 
allows to define code blocks that should be executed only by one thread. 

• However, the omp single directive does not define an implicit 
synchronization barrier at the entrance of the directive. In order to protect 
the MPI call, it is necessary to set an explicit omp barrier directive at 
entrance of the omp single directive. 

25



MPI_THREAD_MULTIPLE
• With support level MPI_THREAD_MULTIPLE all threads can make 

simultaneous MPI calls without any constraints. Given that the 
implementation is thread safe, there is no need for any additional 
synchronization mechanism among the threads in the parallel region in 
order to protect the MPI calls. 

26



MPI_THREAD_MULTIPLE
• The communication among threads of different MPI processes raises the 

problem of identifying the thread that is involved in the communication (as 
MPI communications only include arguments to identify the ranks of the 
MPI processes). 

• A simple way to solve this problem is to use the tag argument to identify 
the thread involved in the communication. 

27



MPI Shared Memory
• Since MPI-3, MPI includes the “MPI shared memory model”, which allows 

shared memory programming

• An alternative to MPI + OpenMP:

• Distributed/shared memory programming using MPI + MPI

• See, e.g., 
https://software.intel.com/content/dam/develop/external/us/en/document
s/an-introduction-to-mpi-3-597891.pdf

28

https://software.intel.com/content/dam/develop/external/us/en/documents/an-introduction-to-mpi-3-597891.pdf

