Lecture 11:

The Fast Fourier Transform

Outline for today

* Definitions
* A few applications of FFTs
* Sequential algorithm

 Parallel 1D F

* Parallel 3D
* Autotuning

-Ts: FFTW

Definition of Discrete Fourier Transform (DFT)

e Leti =+—1 and index matrices and vectors from 0

* The (1D) DFT of an m-element vector v is:
Fxv

where F is an m-by-m matrix defined as:
Flj,k] = @), 0<jk<m-1

and where @ is:
w = e?™/™ = cos(2m/m) + i * sin(2m/m)

* @ is a complex number with whose mt" power @™ = 1 and is
therefore called an mt" root of unity

« Eg,form =4 w=i o*=-1,o°=-i,0*=1

Definition of Discrete Fourier Transform (DFT)

* The 2D DFT of an m-by-m matrix Vis FxV x F

* Do 1D DFT on all the columns independently, then all
the rows

* Higher dimensional DFTs are analogous

Motivation for Fast Fourier Transform (FFT)

* Signal processing

* Image processing

Solving Poisson's Equation nearly optimally
* O(N log N) arithmetic operations, N = #unknowns
* Competitive with multigrid

Fast multiplication of large integers

Using the 1D FFT for filtering

* Signal = sin(7t) + .5 sin(5t) at 128 points
* Noise = random number bounded by .75

 Filter by zeroing out FFT components < .25

signal real(fft(signal)) imag(fft(signal))
1 r 1 50T 50 ‘k
OF 1 0 0
1l 50 |) w

0 0 2 4 6 0 2 4 6
S|gna| + noise real(fft(signal + noise) imag(fft(signal+ noise))
1 501 50
0 0 :WW’M Of
1t . -501 . -50
0 0 2 4 6 0 2 4 6
ﬂltered real(fft(filtered)) imag(fft(filtered))

1 - 50 50 “L
0 | 0 [~] 0

1t { . -50t .—SOW

Using the 2D FFT for image compression

* Image = p r x p_c matrix of values

* Compress by keeping e.g., largest 2.5% of FFT components

* Similar idea used by jpeg

Recall: Poisson's equation arises in many models

3D: 0%u/ox? + 0*u/oy? + 0%u/oz? = f(x,y,z)

2D: 9%u/0x? + 0%u/dy® = f(x,y) f represents the
sources; also need
1D: d?u/dx? = f(x) boundary conditions

* Electrostatic or Gravitational Potential: Potential(position)
* Heat flow: Temperature(position, time)

* Diffusion: Concentration(position, time)

* Fluid flow: Velocity,Pressure,Density(position,time)

* Elasticity: Stress,Strain(position,time)

* Variations of Poisson have variable coefficients

Solving Poisson Equation with FFT (1/2)

* 1D Poisson equation: solve L;x = b where

L, =

’

2
-1

-1
2
-1

-1
2 -1
-1

2
-1

-1
2

N

J

Graph and "stencil"

«@—a o o o o o
-1 2 -1

Solving Poisson Equation with FFT (1/2)

* 1D Poisson equation: solve L;x = b where

L,

’

\

2
-1

-1
2
-1

-1
2
-1

-1

2
-1

N

-1
2

J

Graph and "stencil"

«@—a o o o o o
-1 2 -1

2D Poisson equation: solve L,x = b where

(

4 -1 -1
1 4 -1 -1
1 4 -1
-1 4 -1 1
-1 1 4 -1 -1
-1 1 4 -1
-1 4 -1
-1 1 4 -1
-1 1 4

\

Graph and "5 point stencil"

3D case is analogous (7 point stencil)

Solving 2D Poisson Equation with FFT (2/2)

* Use facts that:
* L, = FDFT is eigenvalue/eigenvector decomposition, where

* F is very similar to FFT (imaginary part)

rii g = (2 V2 ikn
G S \n+1 e P

» D = diagonal matrix of eigenvalues

D(j,j) =2 (1 — CoS (njj: 1))

Solving 2D Poisson Equation with FFT (2/2)

* Use facts that:
* L, = FDFT is eigenvalue/eigenvector decomposition, where

* F is very similar to FFT (imaginary part)
1/2 .
F(j, k) = - - sin Jh
’ n+1 n+1
» D = diagonal matrix of eigenvalues

D(j,j) =2 (1 — Ccos (njj: 1))

* 2D Poisson same as solving L; X + X L; = B where

» X square matrix of unknowns at each grid point, B square too

Solving 2D Poisson Equation with FFT (2/2)

X+ XL, =B
Substitute L; = FDFT into 2D Poisson to get algorithm:

Solving 2D Poisson Equation with FFT (2/2)

X+ XL, =B
Substitute L; = FDFT into 2D Poisson to get algorithm:

1. Perform 2D FFT on RHS B to get B’ = FTBF or B = FB'FT

Get

L.X + XL, =B
(FDFT)X + X(FDFT) = FB'FT
F(D(FTXF) + (FTXF)D)FT = FB'FT
DX'+X'D =B’

Solving 2D Poisson Equation with FFT (2/2)

X+ XL, =B
Substitute L; = FDFT into 2D Poisson to get algorithm:

1. Perform 2D FFT on RHS B to get B’ = FTBF or B = FB'FT

Get
L.X + XL, =B
(FDFT)X + X(FDFT) — FB'FT
F(D(FTXF) + (FTXF)D)FT = FB'FT
DX'"+ X'D = B’

2. Solve DX' + X'D = B' for X': X'(j,k) = B'(j,k)/ (D(,j) + D(k k))

Solving 2D Poisson Equation with FFT (2/2)

X+ XL, =B
Substitute L; = FDFT into 2D Poisson to get algorithm:

1. Perform 2D FFT on RHS B to get B’ = FTBF or B = FB'FT

Get
L.X + XL, =B
(FDFT)X + X(FDFT) — FB'FT
F(D(FTXF) + (FTXF)D)FT = FB'FT
DX'"+ X'D = B’

2. Solve DX' + X'D = B' for X': X'(j,k) = B'(j,k)/ (D(,j) + D(k k))

3. Perform inverse 2D FFT on X' = FTXF to get X = FX'FT

Solving 2D Poisson Equation with FFT (2/2)

X+ XL, =B
Substitute L; = FDFT into 2D Poisson to get algorithm:

1. Perform 2D FFT on RHS B to get B’ = FTBF or B = FB'FT

Get
L.X + XL, =B
(FDFT)X + X(FDFT) — FB'FT
F(D(FTXF) + (FTXF)D)FT = FB'FT
DX'"+ X'D = B’

2. Solve DX' + X'D = B for X': X'(j,k) = B'(,k)/ (D(j,j) + D(k, k))
3. Perform inverse 2D FFT on X' = FTXF to get X = FX'FT

Cost = 2 2D-FFTs (plus n? adds, divisions) = 0(n?logn)

Related Transforms

« Most applications require multiplication by both F and F~1

F(j, k) — e(Znijk/m)

« Multiplying by F and F~1 are essentially the same.
F~1 = complex conjugate(F) / m

* For solving the Poisson equation and various other applications, we use
variations on the FFT

* The sin transform -- imaginary part of F
* The cos transform -- real part of F

 Algorithms are similar, so we will focus on F

Serial Algorithm for the FFT

Compute the FFT (F * v) of an m-element vector v

Fv)[j1 = Yy FG.k) (k)

where V is defined as the polynomial

m-—1

V(x) =),y x< *v(k)

Divide and Conquer FFT

* IV can be evaluated using divide-and-conquer
V) = TPk« v(k)
= v(0) + x?v(2) + x*v(4) + -
+ x(v(1) + x?v(3) + x*v(5) +)
= Veven(x%) + x Vg4 (x?)

V has degree m — 1, so V., and V44 are polynomials of degree m/2 — 1

: — i\ 2 .
We evaluate these at m points: (a)f) for0 < j <m-1

But this is really just m/2 different points, since

(@Urm/D) = (@) « @™2)" = @2 « o™ = (@/)’
So FFT on m points reduced to 2 FFTs on m/2 points
 Divide and conquer!

Divide-and-Conquer FFT (D&C FFT)

FFT (v, w,m) ... assume m is a power of 2
if m = 1 return v[0]
else
Vopen = FFT(v[0:2:m — 2], @?%,m/2)
Voaa = FFT(w[1:2:m —1],®% m/2) precomputed
Byee = [@°, @, ..., @™/271)]

return [Vepen + (@yec * Voaa), Veven — (@pec * Voaa)]

« MATLAB notation: " *" means component-wise multiply.

Cost: T(m) = 2T(m/2) + 0O(m) = O(mlogm) operations.

An lterative Algorithm

* The call tree of the D&C FFT algorithm is a complete binary tree of logm levels
FFT(0,1,2,3,...,15) = FFT(xxxx)
even odd
FFT(0,2,...,14) = FFT(xxx0) FFT(1,3,...,15) = FFT(xxx1)

TN TN

FFT(x000) FFT(x100) FFT(x010) FFT(x110) FFT(x001) FFT(x101) FFT(x011) FFT(x111)

/N /N /N /N /N /N /N N

FFT(0) FFT(8) FFT(4) FFT(12) FFT(2) FFT(10) FFT(6) FFT(14) FFT(1) FFT(9) FFT(5) FFT(13) FFT(3) FFT(11) FFT(7) FFT(15)

» An iterative algorithm that uses loops rather than recursion, does each level in
the tree starting at the bottom

* Algorithm overwrites v[i] by (F*v)[bitreverse(i)]

* Practical algorithms combine recursion (for memory hierarchy) and iteration (to

avoid function call overheadi

Parallel 1D FFT

Data dependencies in a 16-point FFT

* Data dependencies in 1D FFT ““““‘\ /\
* Butterfly pattern 0001

0010

* From Vepen & Wyec * Voaa \\'II‘Y ”Ax‘
0011 Ayy S
0100 ¢ AVAVATA

+ A PRAM algorithm takes o IS ><
0(logm) time o OIIUIIA\\X'
* each step to right is WY v‘

parallel “111 ‘ ’ ’ .
Lo00 LA

X

1001 &0

lﬂl[l "? \\

* What about communication -
cost?)Q(
1100 <
1101 /\
1110

1111 «

* there are logm steps

Block Layout of 1D FF

Block Data Layout of an m=16-point FFT on p=4 Processors
Process or

LU

001

 Using a block layout (m/
p contiguous words per processor)

0010

0011

VWX X XX
1.0

* No communication in last
logm/p steps

W/ AN X

* Significant communication in first
log p steps

I N\// X X

[IIMNNXX/ N >
TN

[#¥] (7] 7] [I I ot I = = = = = = = =

Communication No communication
Required log(m/p) steps

log(p) steps

Cyclic Layout of 1D FFT

Cyclic Data Layout of an m=16-point FFT on p=4 Processors

* Cyclic layout (consecutive S
words map to consecutive o 0000
processors) o001

. . . - 001
e No communication in first

log(m/p) steps
e Communication in last
log(p) steps

0011

0100

t [= = = I = = o I = = o I =
=
=
=
=
-

Communication
Required
log(p) steps

No communication
log(m/p) steps

Parallel Complexity

* m = vector size, p = number of processors
* f = time per flop =1
* o = latency for message

* 3 = time per word in a message

Time(block FFT) = Time(cyclic FFT) =
2 *m *log(m)/p ... perfectly parallel flops

+ log(p) *«a ... 1 message/stage, log p stages
+ (m/p) *log(p) * [... m/p words/message

FFT With "Transpose"

* If we start with a cyclic layout
for first log(m/p) steps, there
IS no communication

* Then transpose the vector for
last log(p) steps

* All communication is in the
transpose

* Note: This example has
log(m/p) = log(p)

* If log(m/p) < log(p) more
phases/layouts will be

needed

* We will assume

log(m/p) > log(p)
for simplicity

Transpose Algorithm for an m=16-point FFT on p=4 Processors

Process or

[[N = = [[] = = (2] [~ = = (7] [~ = =

N,
LN/
N
W
WA

W/ \

L1 ohRRREEE
. 1‘1‘1’1‘1‘1‘1‘;

AN/

et

N SO R

o011

(7]

0100

0101

0110

100

1001

1010

1011

[INXXXX
AW XA
I.\;IA\

1111 &

1100

1101

1110

) [N = = [[o] = = (7] [N = =

0000

o001

0010

o011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

No communication Transpose No communication
log(p) steps

log(m/p) steps

Why is the Communication Step Called a Transpose?

* Analogous to transposing an array

* View as a 2D array of m/p by p

Block Layout Cyvelie Layout
Processor Processor
1] 1 2 3 1] 1 2 3
1] 4 8 12 1] 1 2 3
1 3 9 13 : 3 i 7
2 i 10 14 8 9 10 11
3 7 11 13 12 13 14 13

Parallel Complexity of the FFT with Transpose

e Assume no communication is pipelined (overestimate!)
* Time(transposeFFT) =

2 *m xlog(m)/p same as before
+ -1 * a was log(p) * a
+mx*(p-1)/p**B wasm=x log(p)/p*p

* If communication is pipelined, so we do not pay for p — 1
messages, the second term becomes simply a, rather than

p—1)«a
* This is close to optimal. See LogP paper for details.

* See also following papers
* A. Sahai, "Hiding Communication Costs in Bandwidth Limited FFT"

* R. Nishtala et al, "Optimizing bandwidth limited problems using one-
sided communication"

Sequential Communication Complexity of the FF

* How many words need to be moved between main memory and cache of size
M to do the FFT of size m, where m > M?

 Thm (Hong, Kung, 1981): #words = Q(mlogm /log M)

* Proof follows from each word of data being reusable only log M times

» Attained by transpose algorithm
* Sequential algorithm "simulates" parallel algorithm

. ImaEine we have p = m/M processors, so each processor stores and
works on O (M) words

* Each local comﬁutation phase in parallel FFT replaced by similar phase
working on cache resident data in sequential FFT

* Each communication phase in parallel FFT replaced by reading/writing
data from/to cache in sequential FFT

» Attained by recursive, "cache-oblivious" algorithm

Parallel Communication Complexity of the FF

° Hc%w many words need to be moved between p processors to do the FFT of size
m

° Thm (Aggarwal, Chandra, Snir, 1990):

_ mlogm
wrwords = £ (p 10g(m/p))

° Proof assumes no recomputation

° Holds independent of local memory size (which must exceed m/p)

° Does TransposeFFT attain lower bound?
° Recall assumption: log(m/p) = log(p)
°*So 2 = log(m) /log(m/p) = 1
° So #words = Q(m/p)
° Attained by transpose algorithm

Comment on the 1D Parallel FFT

* The above algorithm leaves data in bit-reversed order
* Some applications can use it this way, like Poisson
* Others require another transpose-like operation

* Other parallel algorithms also exist

A very different 1D FFT is due to Edelman

Based on the Fast Multipole algorithm

Less communication for non-bit-reversed algorithm
Approximates FFT

Higher Dimensional FFTs

e FFTs on 2 or more dimensions are defined as 1D FFTs on vectors in all
dimensions.

e 2D FFT does 1D FFTs on all rows and then all columns

* There are 3 obvious possibilities for the 2D FFT:

* (1) 2D blocked layout for matrix, using parallel 1D FFTs for each
row and column

* (2) Block row layout for matrix, using serial 1D FFTs on rows,
followed by a transpose, then more serial 1D FFTs

* (3) Block row layout for matrix, using serial 1D FFTs on rows,
followed by parallel 1D FFTs on columns

* Option 2 is best, if we overlap communication and computation

* For a 3D FFT the options are similar
» 2 phases done with serial FFTs, followed by a transpose for 3rd
 can overlap communication with 2nd phase in practice

Bisection Bandwidth

FFT requires one (or more) transpose operations:
* Every processor sends 1/p-th of its data to each other one

Bisection Bandwidth limits this performance

* Bisection bandwidth is the bandwidth across the narrowest part of
the network

* Important in global transpose operations, all-to-all, etc.

"Full bisection bandwidth" is expensive
* Fraction of machine cost in the network is increasing
* Fat-tree and full crossbar topologies may be too expensive
* Especially on machines with 100K and more processors
* SMP clusters often limit bandwidth at the node level

Goal: overlap communication and computation

Performing a 3D FFT (1/3)

* NX x NY x NZ elements spread across P processors

* Will Use 1-Dimensional Layout in Z dimension
* Each processor gets NZ / P "planes" of NX x NY elements per plane

Example: P =4

W

*+ 1D Partition

NX

v

< [
< »

NY
Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

Performing a 3D FFT (2/3)

* Perform an FFT in all three dimensions

* With 1D layout, 2 out of the 3 dimensions are local while the last Z
dimension is distributed

Step 1: FFTs on the columns
(all elements local)

Step 2: FFTs on the rows
(all elements local)

Step 3: FFTs in the Z-dimension
\/ (requires communication)

| —

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

Performing the 3D FFT (3/3)

e Can perform Steps 1 and 2 since all the data is
available without communication

* Perform a Global Transpose of the cube
* Allows step 3 to continue

Transpose

>

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

The Transpose

* Each processor has to scatter input domain to other processors
* Every processor divides its portion of the domain into P pieces
* Send each of the P pieces to a different processor

* Three different ways to break it up the messages
1. Packed Slabs (i.e. single packed "All-to-all" in MPI parlance) (3D)
2. Slabs (2D)
3. Pencils (1D)

* Going from approach Packed Slabs to Slabs to Pencils leads to
* An order of magnitude increase in the number of messages
* An order of magnitude decrease in the size of each message

* Why do this? Slabs and Pencils allow overlapping communication and
computation

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

Algorithm 1: Packed Slabs

Example with P=4, NX=NY=NZ=16

——> putto proc 0

1. Perform all row and column FFTs

——> putto proc 1

 data destined to a remote
processor are grouped
together

3. Perform P puts of the data

2. Perform local transpose —

—> put to proc 2

> putto proc 3

Local transpose

- For 5123 grid across 64 processors
Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick - Send 64-1 Messages of 512kB each

Bandwidth Utilization

* Benchmark: NAS FT with 256 processors on Opteron/InfiniBand
» Each processor sends 256-1 messages of 512kBytes

« Global Transpose (i.e. all to all exchange) only achieves 67% of peak
point-to-point bidirectional bandwidth

* Many factors could cause this slowdown
* Network contention
* Number of processors with which each processor communicates

* Can we do better?

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

Algorithm 2: Slabs

* Waiting to send all data in one phase
bunches up communication events

e Algorithm Sketch
plane O
* for each of the NZ/P planes

* Perform all column FFTs

» for each of the P "slabs" ‘
(a slab is NX/P rows)

* Perform FFTs on the rows in the slab ‘

* Initiate 1-sided put of the slab ‘

* Wait for all puts to finish
* Barrier

« Non-blocking RDMA puts allow data =) Start computation
movement to be overlapped with for next plane

computation. « For 5123 grid across 64
* Puts are spaced apart by the amount of Processors
time to perform FFTs on NX/P rows — Send 512-8 messages

of 64kB each
Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

Algorithm 3: Pencils

* Further reduce the granularity of
communication

* Send a row (pencil) as soon as it is ready

* Algorithm Sketch
* For each of the NZ/P planes

* Perform all 16 column FFTs
* For r=0; r<NX/P; r++
* For each slab s in the plane
* Perform FFT on row r of slab s
* Initiate 1-sided put of row r

» Wait for all puts to finish

plane O

WWWWNNNNRPRPRPPRPOOOO

* Barrier .
Start computation
* Large increase in message count for next plane
» Communication events finely diffused _
through computation « For 5123 grid across 64
¢ Maximum amount of overlap processors
 Communication starts early — Send 4096-64

messages of 8kB each

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

Comparison of Algorithms

* Compare 3 algorithms against
original NAS FT

 All versions including
Fortran use FFTW for
local 1D FFTs

.. 2.5 +——— B UPC Packed Slabs
* Largest class that fit in the . UPC Slabs
memory (usually class D) £ 2257 MUPCPendis
c
« All UPC flavors outperform § 2]
original Fortran/MPI e 175 -
implantation by at least 20% 2 s S
e One-sided semantics allow 3 ”
even exchange based 5 S
implementations to g 1 S
improve over MPI “
implementations 075
. > <° <° g <° e
« Overlap algorithms spread & R L s S LN
the messages out, easing R R N A
the bottlenecks < L
* 71.9x speedup in the best & ¥ ¥
case

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

FF

W — Fastest Fourier Transform in the West

e www.fftw.org

Produces FFT implementation optimized for
* Your version of FFT (complex, real,...)
* Your value of n (arbitrary, possibly prime)
* Your architecture
» Very good sequential performance

Won 1999 Wilkinson Prize for Numerical Software

Widely used
 Latest version 3.3.10 includes threads, OpenMP
* Added MPI versions in v3.3
* supports SSE/SSE2

GPL license

http://www.fftw.org/

