
Lecture 11:
The Fast Fourier Transform

Outline for today

• Definitions

• A few applications of FFTs

• Sequential algorithm

• Parallel 1D FFT

• Parallel 3D FFT

• Autotuning FFTs: FFTW

2

Definition of Discrete Fourier Transform (DFT)

• Let 𝑖 = −1 and index matrices and vectors from 0

• The (1D) DFT of an 𝑚-element vector v is:
𝐹 ∗ 𝑣

where 𝐹 is an 𝑚-by-𝑚 matrix defined as:
𝐹 𝑗, 𝑘 = ഥ𝜔(𝑗∗𝑘), 0 ≤ 𝑗, 𝑘 ≤ 𝑚 − 1

and where ഥ𝜔 is:
ഥ𝜔 = 𝑒2𝜋/𝑚 = cos Τ2𝜋 𝑚 + 𝑖 ∗ sin(2𝜋/𝑚)

• ഥ𝜔 is a complex number with whose 𝑚th power ഥ𝜔m = 1 and is
therefore called an 𝑚th root of unity

• E.g., for 𝑚 = 4: ഥ𝜔 = 𝑖, ഥ𝜔2 = −1, ഥ𝜔3 = −i, ഥ𝜔4 = 1

3

Definition of Discrete Fourier Transform (DFT)

• The 2D DFT of an 𝑚-by-𝑚 matrix 𝑉 is 𝐹 ∗ 𝑉 ∗ 𝐹

• Do 1D DFT on all the columns independently, then all
the rows

• Higher dimensional DFTs are analogous

4

Motivation for Fast Fourier Transform (FFT)

• Signal processing

• Image processing

• Solving Poisson's Equation nearly optimally

• O(N log N) arithmetic operations, N = #unknowns

• Competitive with multigrid

• Fast multiplication of large integers

• …

5

Using the 1D FFT for filtering

• Signal = sin(7t) + .5 sin(5t) at 128 points

• Noise = random number bounded by .75

• Filter by zeroing out FFT components < .25

6

signal

filtered
0 2 4 6

0 2 4 6

0 2 4 6

signal + noise real(fft(signal + noise)

real(fft(filtered))

real(fft(signal))

0 2 4 6

0 2 4 6

0 2 4 6

imag(fft(filtered))

imag(fft(signal))

imag(fft(signal+ noise))
0 2 4 6

0 2 4 6

0 2 4 6

1

0

-1

50

0

-50

1

0

-1

1

0

-1

50

0

-50

50

0

-50

50

0

-50

50

0

-50

50

0

-50

Using the 2D FFT for image compression
• Image = p_r x p_c matrix of values

• Compress by keeping e.g., largest 2.5% of FFT components

• Similar idea used by jpeg

7

Recall: Poisson’s equation arises in many models

• Electrostatic or Gravitational Potential: Potential(position)

• Heat flow: Temperature(position, time)

• Diffusion: Concentration(position, time)

• Fluid flow: Velocity,Pressure,Density(position,time)

• Elasticity: Stress,Strain(position,time)

• Variations of Poisson have variable coefficients

3D:

2D:

1D:

f represents the
sources; also need
boundary conditions

8

Τ𝑑2𝑢 𝑑𝑥2 = 𝑓(𝑥)

Τ𝜕2𝑢 𝜕𝑥2 + 𝜕2𝑢/𝜕𝑦2 = 𝑓(𝑥, 𝑦)

Τ𝜕2𝑢 𝜕𝑥2 + 𝜕2𝑢/𝜕𝑦2 + 𝜕2𝑢/𝜕𝑧2 = 𝑓(𝑥, 𝑦, 𝑧)

Solving Poisson Equation with FFT (1/2)
• 1D Poisson equation: solve L1x = b where

2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2

L1 =

2-1 -1

Graph and "stencil"

9

Solving Poisson Equation with FFT (1/2)
• 1D Poisson equation: solve L1x = b where

2 -1

-1 2 -1

-1 2 -1

-1 2 -1

-1 2

L1 =

2-1 -1

Graph and "stencil"

• 2D Poisson equation: solve L2x = b where

4 -1 -1

-1 4 -1 -1

-1 4 -1

-1 4 -1 -1

-1 -1 4 -1 -1

-1 -1 4 -1

-1 4 -1

-1 -1 4 -1

-1 -1 4

L2 =

4

-1

-1

-1

-1

Graph and "5 point stencil"

3D case is analogous (7 point stencil)

10

Solving 2D Poisson Equation with FFT (2/2)

• Use facts that:

• L1 = FDFT is eigenvalue/eigenvector decomposition, where

• F is very similar to FFT (imaginary part)

𝐹 𝑗, 𝑘 =
2

𝑛 + 1

1/2

⋅ sin
𝑗𝑘𝜋

𝑛 + 1

• D = diagonal matrix of eigenvalues

𝐷 𝑗, 𝑗 = 2 1 − cos
𝑗𝜋

𝑛 + 1

11

Solving 2D Poisson Equation with FFT (2/2)

• Use facts that:

• L1 = FDFT is eigenvalue/eigenvector decomposition, where

• F is very similar to FFT (imaginary part)

𝐹 𝑗, 𝑘 =
2

𝑛 + 1

1/2

⋅ sin
𝑗𝑘𝜋

𝑛 + 1

• D = diagonal matrix of eigenvalues

𝐷 𝑗, 𝑗 = 2 1 − cos
𝑗𝜋

𝑛 + 1

• 2D Poisson same as solving L1 X + X L1 = B where

• X square matrix of unknowns at each grid point, B square too

12

Solving 2D Poisson Equation with FFT (2/2)

L1 X + X L1 = B

Substitute 𝐿1 = 𝐹𝐷𝐹𝑇 into 2D Poisson to get algorithm:

13

Solving 2D Poisson Equation with FFT (2/2)

L1 X + X L1 = B

Substitute 𝐿1 = 𝐹𝐷𝐹𝑇 into 2D Poisson to get algorithm:

1. Perform 2D FFT on RHS B to get 𝐵′ = 𝐹𝑇𝐵𝐹 or 𝐵 = 𝐹𝐵′𝐹𝑇

Get

𝐿1𝑋 + 𝑋𝐿1 = 𝐵

𝐹𝐷𝐹𝑇 𝑋 + 𝑋 𝐹𝐷𝐹𝑇 = 𝐹𝐵′𝐹𝑇

𝐹 𝐷 𝐹𝑇𝑋𝐹 + 𝐹𝑇𝑋𝐹 𝐷 𝐹𝑇 = 𝐹𝐵′𝐹𝑇

𝐷𝑋′ + 𝑋′𝐷 = 𝐵′

14

Solving 2D Poisson Equation with FFT (2/2)

L1 X + X L1 = B

Substitute 𝐿1 = 𝐹𝐷𝐹𝑇 into 2D Poisson to get algorithm:

1. Perform 2D FFT on RHS B to get 𝐵′ = 𝐹𝑇𝐵𝐹 or 𝐵 = 𝐹𝐵′𝐹𝑇

Get

𝐿1𝑋 + 𝑋𝐿1 = 𝐵

𝐹𝐷𝐹𝑇 𝑋 + 𝑋 𝐹𝐷𝐹𝑇 = 𝐹𝐵′𝐹𝑇

𝐹 𝐷 𝐹𝑇𝑋𝐹 + 𝐹𝑇𝑋𝐹 𝐷 𝐹𝑇 = 𝐹𝐵′𝐹𝑇

𝐷𝑋′ + 𝑋′𝐷 = 𝐵′

2. Solve 𝐷𝑋′ + 𝑋′𝐷 = 𝐵′ for 𝑋′: 𝑋′(𝑗, 𝑘) = 𝐵′(𝑗, 𝑘)/ (𝐷(𝑗, 𝑗) + 𝐷(𝑘, 𝑘))

15

Solving 2D Poisson Equation with FFT (2/2)

L1 X + X L1 = B

Substitute 𝐿1 = 𝐹𝐷𝐹𝑇 into 2D Poisson to get algorithm:

1. Perform 2D FFT on RHS B to get 𝐵′ = 𝐹𝑇𝐵𝐹 or 𝐵 = 𝐹𝐵′𝐹𝑇

Get

𝐿1𝑋 + 𝑋𝐿1 = 𝐵

𝐹𝐷𝐹𝑇 𝑋 + 𝑋 𝐹𝐷𝐹𝑇 = 𝐹𝐵′𝐹𝑇

𝐹 𝐷 𝐹𝑇𝑋𝐹 + 𝐹𝑇𝑋𝐹 𝐷 𝐹𝑇 = 𝐹𝐵′𝐹𝑇

𝐷𝑋′ + 𝑋′𝐷 = 𝐵′

2. Solve 𝐷𝑋′ + 𝑋′𝐷 = 𝐵′ for 𝑋′: 𝑋′(𝑗, 𝑘) = 𝐵′(𝑗, 𝑘)/ (𝐷(𝑗, 𝑗) + 𝐷(𝑘, 𝑘))

3. Perform inverse 2D FFT on 𝑋′ = 𝐹𝑇𝑋𝐹 to get 𝑋 = 𝐹𝑋′𝐹𝑇

16

Solving 2D Poisson Equation with FFT (2/2)

L1 X + X L1 = B

Substitute 𝐿1 = 𝐹𝐷𝐹𝑇 into 2D Poisson to get algorithm:

1. Perform 2D FFT on RHS B to get 𝐵′ = 𝐹𝑇𝐵𝐹 or 𝐵 = 𝐹𝐵′𝐹𝑇

Get

𝐿1𝑋 + 𝑋𝐿1 = 𝐵

𝐹𝐷𝐹𝑇 𝑋 + 𝑋 𝐹𝐷𝐹𝑇 = 𝐹𝐵′𝐹𝑇

𝐹 𝐷 𝐹𝑇𝑋𝐹 + 𝐹𝑇𝑋𝐹 𝐷 𝐹𝑇 = 𝐹𝐵′𝐹𝑇

𝐷𝑋′ + 𝑋′𝐷 = 𝐵′

2. Solve 𝐷𝑋′ + 𝑋′𝐷 = 𝐵′ for 𝑋′: 𝑋′(𝑗, 𝑘) = 𝐵′(𝑗, 𝑘)/ (𝐷(𝑗, 𝑗) + 𝐷(𝑘, 𝑘))

3. Perform inverse 2D FFT on 𝑋′ = 𝐹𝑇𝑋𝐹 to get 𝑋 = 𝐹𝑋′𝐹𝑇

Cost = 2 2D-FFTs (plus 𝑛2 adds, divisions) = 𝑂(𝑛2 log 𝑛)

17

Related Transforms

• Most applications require multiplication by both 𝐹 and 𝐹−1

𝐹 𝑗, 𝑘 = 𝑒(2𝜋𝑖𝑗𝑘/𝑚)

• Multiplying by 𝐹 and 𝐹−1 are essentially the same.

𝐹−1 = complex_conjugate(𝐹) / 𝑚

• For solving the Poisson equation and various other applications, we use
variations on the FFT

• The sin transform -- imaginary part of 𝐹

• The cos transform -- real part of 𝐹

• Algorithms are similar, so we will focus on 𝐹

18

Serial Algorithm for the FFT

Compute the FFT (𝐹 ∗ 𝑣) of an 𝑚-element vector 𝑣

(𝐹 ∗ 𝑣)[𝑗] = ෌
𝑘=0

𝑚−1
𝐹 𝑗, 𝑘 ∗ 𝑣(𝑘)

= ෌
𝑘=0

𝑚−1
ഥ𝜔(𝑗∗𝑘) ∗ 𝑣(𝑘)

=෍
𝑘=0

𝑚−1

ഥ𝜔𝑗 𝑘
∗ 𝑣(𝑘)

= 𝑉(ഥ𝜔𝑗)

where 𝑉 is defined as the polynomial

𝑉 𝑥 = ෌
𝑘=0

𝑚−1
𝑥𝑘 ∗ 𝑣(𝑘)

19

Divide and Conquer FFT

• 𝑉 can be evaluated using divide-and-conquer

𝑉 𝑥 = σ𝑘=0
𝑚−1 𝑥𝑘 ∗ 𝑣(𝑘)

= 𝑣(0) + 𝑥2𝑣(2) + 𝑥4𝑣(4) + ⋯

+ 𝑥(𝑣(1) + 𝑥2𝑣(3) + 𝑥4𝑣(5) + ⋯)

= 𝑉𝑒𝑣𝑒𝑛 𝑥2 + 𝑥 𝑉𝑜𝑑𝑑(𝑥
2)

• 𝑉 has degree 𝑚 − 1, so 𝑉𝑒𝑣𝑒𝑛 and 𝑉𝑜𝑑𝑑 are polynomials of degree 𝑚/2 − 1

• We evaluate these at 𝑚 points: ഥ𝜔𝑗 2
for 0 ≤ 𝑗 ≤ 𝑚 − 1

• But this is really just 𝑚/2 different points, since

ഥ𝜔(𝑗+𝑚/2) 2
= ഥ𝜔𝑗 ∗ ഥ𝜔𝑚/2 2

= ഥ𝜔2𝑗 ∗ ഥ𝜔𝑚 = ഥ𝜔𝑗 2

• So FFT on 𝑚 points reduced to 2 FFTs on 𝑚/2 points

• Divide and conquer!

20

Divide-and-Conquer FFT (D&C FFT)

FFT 𝑣, ഥ𝜔,𝑚 … assume 𝑚 is a power of 2

if 𝑚 = 1 return 𝑣[0]

else

𝑉𝑒𝑣𝑒𝑛 = FFT(𝑣 0: 2:𝑚 − 2 , ഥ𝜔2, 𝑚/2)

𝑉𝑜𝑑𝑑 = FFT 𝑣 1: 2:𝑚 − 1 , ഥ𝜔2, 𝑚/2

ഥ𝜔𝑣𝑒𝑐 = [ഥ𝜔0, ഥ𝜔1, … , ഥ𝜔(Τ𝑚 2−1)]

return [𝑉𝑒𝑣𝑒𝑛 + ഥ𝜔𝑣𝑒𝑐 .∗ 𝑉𝑜𝑑𝑑 , 𝑉𝑒𝑣𝑒𝑛 − ഥ𝜔𝑣𝑒𝑐 .∗ 𝑉𝑜𝑑𝑑]

• MATLAB notation: ".*" means component-wise multiply.

Cost: 𝑇(𝑚) = 2𝑇(𝑚/2) + 𝑂(𝑚) = 𝑂(𝑚 log𝑚) operations.

precomputed

21

An Iterative Algorithm

• The call tree of the D&C FFT algorithm is a complete binary tree of log𝑚 levels

• An iterative algorithm that uses loops rather than recursion, does each level in
the tree starting at the bottom

• Algorithm overwrites v[i] by (F*v)[bitreverse(i)]

• Practical algorithms combine recursion (for memory hierarchy) and iteration (to
avoid function call overhead)

FFT(0,1,2,3,…,15) = FFT(xxxx)

FFT(1,3,…,15) = FFT(xxx1)FFT(0,2,…,14) = FFT(xxx0)

FFT(xx10) FFT(xx01) FFT(xx11)FFT(xx00)

FFT(x100) FFT(x010) FFT(x110) FFT(x001) FFT(x101) FFT(x011) FFT(x111)FFT(x000)

FFT(0) FFT(8) FFT(4) FFT(12) FFT(2) FFT(10) FFT(6) FFT(14) FFT(1) FFT(9) FFT(5) FFT(13) FFT(3) FFT(11) FFT(7) FFT(15)

even odd

22

Parallel 1D FFT

• Data dependencies in 1D FFT

• Butterfly pattern

• From 𝑉𝑒𝑣𝑒𝑛 ± ഥ𝜔𝑣𝑒𝑐 .∗ 𝑉𝑜𝑑𝑑

• A PRAM algorithm takes
𝑂(log𝑚) time

• each step to right is
parallel

• there are log𝑚 steps

• What about communication
cost?

Data dependencies in a 16-point FFT

23

Block Layout of 1D FFT

• Using a block layout (𝑚/
𝑝 contiguous words per processor)

• No communication in last
log𝑚/𝑝 steps

• Significant communication in first
log 𝑝 steps

Communication

Required

log(p) steps

No communication

log(m/p) steps

Block Data Layout of an m=16-point FFT on p=4 Processors

24

Cyclic Layout of 1D FFT

• Cyclic layout (consecutive
words map to consecutive
processors)

• No communication in first
log(𝑚/𝑝) steps

• Communication in last
log(𝑝) steps

No communication

log(m/p) steps

Communication

Required

log(p) steps

Cyclic Data Layout of an m=16-point FFT on p=4 Processors

25

Parallel Complexity

• m = vector size, p = number of processors

• f = time per flop = 1

• a = latency for message

• b = time per word in a message

• Time(block_FFT) = Time(cyclic_FFT) =

2 ∗ 𝑚 ∗ log(𝑚)/𝑝 … perfectly parallel flops

+ log(𝑝) ∗ 𝛼 ... 1 message/stage, log p stages

+ (𝑚/𝑝) ∗ log(𝑝) ∗ 𝛽 … m/p words/message

26

FFT With "Transpose"

• If we start with a cyclic layout
for first log(m/p) steps, there
is no communication

• Then transpose the vector for
last log(p) steps

• All communication is in the
transpose

• Note: This example has
log(m/p) = log(p)

• If log(m/p) < log(p) more
phases/layouts will be
needed

• We will assume
log(m/p) ≥ log(p)
for simplicity

No communication

log(m/p) steps

No communication

log(p) steps

Transpose

Transpose Algorithm for an m=16-point FFT on p=4 Processors

27

Why is the Communication Step Called a Transpose?

• Analogous to transposing an array

• View as a 2D array of m/p by p

28

Parallel Complexity of the FFT with Transpose

• Assume no communication is pipelined (overestimate!)

• Time(transposeFFT) =

2 ∗ 𝑚 ∗ log(𝑚)/𝑝 same as before

+ (𝑝 − 1) ∗ 𝛼 was log(𝑝) ∗ 𝛼

+ 𝑚 ∗ (𝑝 − 1)/𝑝2 * 𝛽 was 𝑚 ∗ log(𝑝)/𝑝 * 𝛽

• If communication is pipelined, so we do not pay for 𝑝 − 1
messages, the second term becomes simply 𝛼, rather than
(𝑝 − 1) 𝛼

• This is close to optimal. See LogP paper for details.

• See also following papers
• A. Sahai, "Hiding Communication Costs in Bandwidth Limited FFT"

• R. Nishtala et al, "Optimizing bandwidth limited problems using one-
sided communication"

29

Sequential Communication Complexity of the FFT

• How many words need to be moved between main memory and cache of size
𝑀 to do the FFT of size 𝑚, where 𝑚 > 𝑀?

• Thm (Hong, Kung, 1981): #words = (𝑚 log𝑚 / log𝑀)

• Proof follows from each word of data being reusable only log𝑀 times

• Attained by transpose algorithm

• Sequential algorithm "simulates" parallel algorithm

• Imagine we have 𝑝 = 𝑚/𝑀 processors, so each processor stores and
works on 𝑂(𝑀) words

• Each local computation phase in parallel FFT replaced by similar phase
working on cache resident data in sequential FFT

• Each communication phase in parallel FFT replaced by reading/writing
data from/to cache in sequential FFT

• Attained by recursive, "cache-oblivious" algorithm

30

Parallel Communication Complexity of the FFT

° How many words need to be moved between 𝑝 processors to do the FFT of size
𝑚?

° Thm (Aggarwal, Chandra, Snir, 1990):

#words = 
𝑚 log𝑚

𝑝 log Τ𝑚 𝑝

° Proof assumes no recomputation

° Holds independent of local memory size (which must exceed 𝑚/𝑝)

° Does TransposeFFT attain lower bound?

° Recall assumption: log(𝑚/𝑝) ≥ log(𝑝)

° So 2 ≥ log(𝑚) / log(𝑚/𝑝) ≥ 1

° So #words = (𝑚/𝑝)

° Attained by transpose algorithm

31

Comment on the 1D Parallel FFT

• The above algorithm leaves data in bit-reversed order

• Some applications can use it this way, like Poisson

• Others require another transpose-like operation

• Other parallel algorithms also exist

• A very different 1D FFT is due to Edelman

• Based on the Fast Multipole algorithm

• Less communication for non-bit-reversed algorithm

• Approximates FFT

32

Higher Dimensional FFTs

• FFTs on 2 or more dimensions are defined as 1D FFTs on vectors in all
dimensions.

• 2D FFT does 1D FFTs on all rows and then all columns

• There are 3 obvious possibilities for the 2D FFT:

• (1) 2D blocked layout for matrix, using parallel 1D FFTs for each
row and column

• (2) Block row layout for matrix, using serial 1D FFTs on rows,
followed by a transpose, then more serial 1D FFTs

• (3) Block row layout for matrix, using serial 1D FFTs on rows,
followed by parallel 1D FFTs on columns

• Option 2 is best, if we overlap communication and computation

• For a 3D FFT the options are similar

• 2 phases done with serial FFTs, followed by a transpose for 3rd

• can overlap communication with 2nd phase in practice

33

Bisection Bandwidth

• FFT requires one (or more) transpose operations:

• Every processor sends 1/p-th of its data to each other one

• Bisection Bandwidth limits this performance

• Bisection bandwidth is the bandwidth across the narrowest part of
the network

• Important in global transpose operations, all-to-all, etc.

• "Full bisection bandwidth" is expensive

• Fraction of machine cost in the network is increasing

• Fat-tree and full crossbar topologies may be too expensive

• Especially on machines with 100K and more processors

• SMP clusters often limit bandwidth at the node level

• Goal: overlap communication and computation

34

Performing a 3D FFT (1/3)

• NX x NY x NZ elements spread across P processors

• Will Use 1-Dimensional Layout in Z dimension

• Each processor gets NZ / P "planes" of NX x NY elements per plane

1D Partition

NX

NY

Example: P = 4

NZ

p0

p1

p2

p3

NZ/P

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

35

Performing a 3D FFT (2/3)

• Perform an FFT in all three dimensions

• With 1D layout, 2 out of the 3 dimensions are local while the last Z
dimension is distributed

Step 1: FFTs on the columns

(all elements local)

Step 2: FFTs on the rows

(all elements local)

Step 3: FFTs in the Z-dimension

(requires communication)

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

36

Performing the 3D FFT (3/3)

• Can perform Steps 1 and 2 since all the data is
available without communication

• Perform a Global Transpose of the cube
• Allows step 3 to continue

Transpose

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

37

The Transpose

• Each processor has to scatter input domain to other processors

• Every processor divides its portion of the domain into P pieces

• Send each of the P pieces to a different processor

• Three different ways to break it up the messages

1. Packed Slabs (i.e. single packed "All-to-all" in MPI parlance) (3D)

2. Slabs (2D)

3. Pencils (1D)

• Going from approach Packed Slabs to Slabs to Pencils leads to

• An order of magnitude increase in the number of messages

• An order of magnitude decrease in the size of each message

• Why do this? Slabs and Pencils allow overlapping communication and
computation

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

38

Algorithm 1: Packed Slabs

Example with P=4, NX=NY=NZ=16

1. Perform all row and column FFTs

2. Perform local transpose

• data destined to a remote
processor are grouped
together

3. Perform P puts of the data

Local transpose

put to proc 0

put to proc 1

put to proc 2

put to proc 3

• For 5123 grid across 64 processors

– Send 64-1 messages of 512kB each
Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

39

Bandwidth Utilization

• Benchmark: NAS FT with 256 processors on Opteron/InfiniBand

• Each processor sends 256-1 messages of 512kBytes

• Global Transpose (i.e. all to all exchange) only achieves 67% of peak
point-to-point bidirectional bandwidth

• Many factors could cause this slowdown

• Network contention

• Number of processors with which each processor communicates

• Can we do better?

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

40

Algorithm 2: Slabs
• Waiting to send all data in one phase

bunches up communication events

• Algorithm Sketch

• for each of the NZ/P planes
• Perform all column FFTs

• for each of the P "slabs"

(a slab is NX/P rows)

• Perform FFTs on the rows in the slab

• Initiate 1-sided put of the slab

• Wait for all puts to finish

• Barrier

• Non-blocking RDMA puts allow data
movement to be overlapped with
computation.

• Puts are spaced apart by the amount of
time to perform FFTs on NX/P rows

Start computation

for next plane

plane 0

put to proc 0

put to proc 1

put to proc 2

put to proc 3

• For 5123 grid across 64

processors

– Send 512-8 messages

of 64kB each
Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

41

Algorithm 3: Pencils
• Further reduce the granularity of

communication
• Send a row (pencil) as soon as it is ready

• Algorithm Sketch

• For each of the NZ/P planes
• Perform all 16 column FFTs

• For r=0; r<NX/P; r++
• For each slab s in the plane

• Perform FFT on row r of slab s

• Initiate 1-sided put of row r

• Wait for all puts to finish
• Barrier

• Large increase in message count

• Communication events finely diffused
through computation
• Maximum amount of overlap
• Communication starts early

plane 0
0
0
0
0
1
1
1
1
2
2
2
2
3
3
3
3

Start computation

for next plane

• For 5123 grid across 64

processors

– Send 4096-64

messages of 8kB each

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

42

0.75

1

1.25

1.5

1.75

2

2.25

2.5

P4/M
yri

net/
64

O
pte

ro
n/In

fin
iB

and/256

Alp
ha/Ela

n3/256

Alp
ha/Ela

n3/512

It
aniu

m
2/Ela

n4/256

It
aniu

m
2/Ela

n4/512

S
p

e
e
d

u
p

 o
v
e
r
 N

A
S

 F
o

r
tr

a
n

/
M

P
I

UPC Packed Slabs

UPC Slabs

UPC Pencils

Comparison of Algorithms
• Compare 3 algorithms against

original NAS FT
• All versions including

Fortran use FFTW for
local 1D FFTs

• Largest class that fit in the
memory (usually class D)

• All UPC flavors outperform
original Fortran/MPI
implantation by at least 20%
• One-sided semantics allow

even exchange based
implementations to
improve over MPI
implementations

• Overlap algorithms spread
the messages out, easing
the bottlenecks

• ~1.9x speedup in the best
case

u
p
 is

 g
o
o
d

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

43

FFTW – Fastest Fourier Transform in the West

• www.fftw.org

• Produces FFT implementation optimized for

• Your version of FFT (complex, real,…)

• Your value of n (arbitrary, possibly prime)

• Your architecture

• Very good sequential performance

• Won 1999 Wilkinson Prize for Numerical Software

• Widely used

• Latest version 3.3.10 includes threads, OpenMP

• Added MPI versions in v3.3

• supports SSE/SSE2

• GPL license

47

http://www.fftw.org/

