
Exercises 9:
Graph Partitioning



Recap of Lecture

• Graph Partitioning problem

• Overview of heuristics

• Partitioning with Nodal Coordinates

• Ex: In finite element models, node at point in (x,y) or (x,y,z) 
space

• Partitioning without Nodal Coordinates

• Ex: In model of WWW,  nodes are web pages

• Multilevel Acceleration

• BIG IDEA, appears often in scientific computing

• Available Implementations

• Beyond Graph Partitioning: Hypergraphs

• Graph Algorithms for Sparse Direct methods
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Software:
Metis Overview
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Metis
• Both standalone command-line programs and API for C/C++ and Fortran

• Partitions arbitrary graph into k parts using multilevel approaches

• Multilevel recursive bisection or

• Multilevel k-way partitioning*
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*G. Karypis and V. Kumar. Multilevel k-way partitioning 
scheme for irregular graphs. Journal of Parallel and 
Distributed Computing, 48(1):96–129, 1998.



Partitioning Objectives
• objective of the traditional graph partitioning problem is to compute a k-

way partitioning such that the number of edges (or in the case of weighted 
graphs the sum of their weights) that straddle different partitions is 
minimized. 

• commonly referred to as the edge-cut. 

• Recall: when partitioning is used to distribute a graph or a mesh among the 
processors of a parallel computer, the objective of minimizing the edge-cut 
is only an approximation of the true communication cost resulting from the 
partitioning

• communication cost resulting from a k-way partitioning generally depends 
on the following factors: 

• (i) the total communication volume, 

• (ii) the maximum amount of data that any particular processor needs 
to send and receive; and 

• (iii) the number of messages a processor needs to send and receive.

• Metis can be used to minimize both (i) and (iii) and (indirectly) (ii)
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Load Balancing
• Many important types of multi-phase and multiphysics computations 

require that multiple quantities be load balanced simultaneously.

• To handle this, Metis allows not only a single weight per vertex, but a 
vector of m weights per vertex

• the objective of the partitioning routines is to minimize the edge-cut 
subject to the constraints that each one of the m weights is equally 
distributed among the domains

• Ex: first weight corresponds to the amount of computation, second weight 
corresponds to amount of storage 

• partitioning computed will balance both the computation performed in 
each domain as well as the amount of memory that it requires
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Fill-reducing orderings

• Metis provides the ndmetis program and its associated METIS_NodeND
API routine for computing fill-reducing orderings of sparse matrices based 
on the multilevel nested dissection paradigm*
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*G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular 
graphs. SIAM Journal on Scientific Computing, 20(1):359–392, 1999.



Options Array
• Options are set in metis via an "options array", which is passed as a 

parameter to most API routines

• METIS_OPTION_PTYPE: Specifies the partitioning method. 

• METIS_PTYPE_RB Multilevel recursive bisectioning.

• METIS_PTYPE_KWAY Multilevel k-way partitioning

• METIS_OPTION_OBJTYPE Specifies objective type

• METIS_OBJTYPE_CUT Edge-cut minimization.

• METIS_OBJTYPE_VOL Total communication volume minimization

• METIS_OPTION_CTYPE Specifies the matching scheme to be used 
during coarsening

• METIS_OPTION_IPTYPE Determines the algorithm used during 
initial partitioning

• e.g., METIS_IPTYPE_RANDOM, Computes a bisection at random 
followed by a refinement
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Options Array Continued

• METIS_OPTION_RTYPE Determines the algorithm used for refinement

• e.g., METIS_RTYPE_FM, FM-based refinement

• METIS_OPTION_NCUTS Specifies the number of different partitionings
that it will compute. The final partitioning is 
the one that achieves the best edgecut or 
communication volume.

• METIS_OPTION_NSEPS Specifies the number of different separators 
that it will compute at each level of nested 
dissection. The final separator that is used is 
the smallest one.

• METIS_OPTION_NITER Specifies the number of iterations for the 
refinement algorithms at each stage of the 
uncoarsening process.

• METIS_OPTION_UFACTOR Specifies the maximum allowed load imbalance 
among the partitions. A value of x indicates 
that the allowed load imbalance is (1 + x)=1000
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Many other graph and hypergraph partitioners

• Zoltan (/Zoltan2)

• http://www.cs.sandia.gov/Zoltan/Zoltan.html

• Parallel routines for graph and hypergraph partitioning, graph coloring, 
reordering

• Integrated into Trilinos library
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http://www.cs.sandia.gov/Zoltan/Zoltan.html


Matlab Demos
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MeshPart Matlab Routines
• MATLAB MeshPart routines by Gilbert et al.

• Available in ex9.tar on Moodle

• Open MATLAB in directory with files and run 

meshpart_startup

to add needed paths to working directory
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Folder structure
• src

• grid

• util

• vis

• various partitioning methods

• test

• demos
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Basic partitioning routines
• We will experiment with three partitioning routines that we saw in lecture:

• Inertial partitioning

• Geometric partitioning ("random spheres")

• Spectral partitioning

• on a variety of meshes
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Task 1: Basic Grid
Type the following commands:

//Generate 40^2 x 40^2 SPD matrix A corresponding to 5-point stencil on a 
40x40 grid; xy is coordinates of gridpoints

[A,xy] = grid5(40); 

gplotg(A,xy); //plot the graph

[part1,part2] = inertpart(A,xy); //inertial partitioning

gplotpart(A,xy,part1); //view partition

[part1,part2] = geopart(A,xy); //geometric partitioning

gplotpart(A,xy,part1); //view partition

[part1,part2] = specpart(A); //spectral partitioning

gplotpart(A,xy,part1); //view partition
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Task 2: 3D Tetrahedral Mesh
% GRID3DT Generate 3-dimensional tetrahedral finite element mesh.

%   [A,xyz] = GRID3DT(k) returns a k^3-by-k^3 symmetric positive definite

%   matrix A of the k-by-k-by-k grid, with cells divided into tetrahedra,

%   and an array xyz of coordinates for the grid points.

[A, xyz] = grid3dt(10)

Which partitioning method does the best? 

Is there a big difference? Try them. 

(Hint: rotate the figure to see the 3D mesh)

[part1,part2] = inertpart(A,xyz);

gplotpart(A,xyz,part1);

[part1,part2] = geopart(A,xyz);

gplotpart(A,xyz,part1);

[part1,part2] = specpart(A);

gplotpart(A,xyz,part1);
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Task 3: "Badmesh"

[A,xy]=badmesh(100,0);

gplotg(A,xy);

• First ask yourself: what is the minimum 
sized separator?

• Which partitioning method will do the 
best? worst?

[part1,part2] = inertpart(A,xy);

gplotpart(A,xy,part1);

[part1,part2] = geopart(A,xy);

gplotpart(A,xy,part1);

[part1,part2] = specpart(A);

gplotpart(A,xy,part1);
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badmesh(10,0);



"Badmesh"
% BADMESH Mesh that can't be partitioned well with a straight line.

%

%   [A,xy] = badmesh(k,alpha) Generate a k-level mesh (with 4*k points) with

%   no straight-line separator, with alpha<1 the ratio between shell sizes.

%   (alpha defaults to 4/5). alpha=0 means linearly spaced shells.
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Task 4: Partitioning "Cockroach" graph

[A,xy] = cockroach(10);

gplotg(A,xy);

• First ask yourself: What is the minimum separator for 
this graph?

• Which partitioning method will do the best?

[part1,part2] = inertpart(A,xy);

gplotpart(A,xy,part1);

[part1,part2] = geopart(A,xy);

gplotpart(A,xy,part1);

[part1,part2] = specpart(A);

gplotpart(A,xy,part1);
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Guattery and Miller, "On the performance of 
spectral graph partitioning methods," SODA 1995.



"Cockroach graph"
% COCKROACH Planar graph for which spectral partitioning works poorly.

%

%   [A,xy] = cockroach(k) Generate a mesh (with 6*k points) whose best edge

%   separator has size 2, but for which the spectral algorithm gives a

%   separator of size O(k). (From Guattery and Miller, "On the performance

%   of spectral graph partitioning methods," SODA 1995.) Outputs: A is the

%   Laplacian; xy is coordinates for a planar drawing.
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Task 5: Nested Dissection Demo

Run:

meshdemo(4)

Read the text and follow along through the steps of the 
demo
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Task 6: Nested Dissection for random sparse matrix

Read and understand what the following commands are doing. Then try 
them. (Type, e.g., “help specnd” to learn about the specnd function).

A = sprand(100,100,.01)+diag(ones(100,1));

A=A'*A;

figure(); spy(A,3)

figure(); spy(chol(A),3)

nd = specnd(A);

figure(); spy(A(nd,nd),3);

figure(); spy(chol(A(nd,nd)),3);

What do you observe? (pay attention to “nz”, the number of 
nonzeros, given in the figures). 
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Some reading...

Guattery and Miller, "On the performance of spectral graph partitioning 
methods," SODA 1995.

(canonically bad examples)

Gilbert, John R., Gary L. Miller, and Shang-Hua Teng. "Geometric mesh 
partitioning: Implementation and experiments." SIAM Journal on Scientific 
Computing 19.6 (1998): 2091-2110.

(random spheres idea)

Pothen, Alex. "Graph partitioning algorithms with applications to scientific 
computing." Parallel Numerical Algorithms. Springer, Dordrecht, 1997. 323-
368.

(great overview/survey paper)
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