
Exercises 9:
Graph Partitioning

Recap of Lecture

• Graph Partitioning problem

• Overview of heuristics

• Partitioning with Nodal Coordinates

• Ex: In finite element models, node at point in (x,y) or (x,y,z)
space

• Partitioning without Nodal Coordinates

• Ex: In model of WWW, nodes are web pages

• Multilevel Acceleration

• BIG IDEA, appears often in scientific computing

• Available Implementations

• Beyond Graph Partitioning: Hypergraphs

• Graph Algorithms for Sparse Direct methods

2

Software:
Metis Overview

3

Metis
• Both standalone command-line programs and API for C/C++ and Fortran

• Partitions arbitrary graph into k parts using multilevel approaches

• Multilevel recursive bisection or

• Multilevel k-way partitioning*

4

*G. Karypis and V. Kumar. Multilevel k-way partitioning
scheme for irregular graphs. Journal of Parallel and
Distributed Computing, 48(1):96–129, 1998.

Partitioning Objectives
• objective of the traditional graph partitioning problem is to compute a k-

way partitioning such that the number of edges (or in the case of weighted
graphs the sum of their weights) that straddle different partitions is
minimized.

• commonly referred to as the edge-cut.

• Recall: when partitioning is used to distribute a graph or a mesh among the
processors of a parallel computer, the objective of minimizing the edge-cut
is only an approximation of the true communication cost resulting from the
partitioning

• communication cost resulting from a k-way partitioning generally depends
on the following factors:

• (i) the total communication volume,

• (ii) the maximum amount of data that any particular processor needs
to send and receive; and

• (iii) the number of messages a processor needs to send and receive.

• Metis can be used to minimize both (i) and (iii) and (indirectly) (ii)

5

Load Balancing
• Many important types of multi-phase and multiphysics computations

require that multiple quantities be load balanced simultaneously.

• To handle this, Metis allows not only a single weight per vertex, but a
vector of m weights per vertex

• the objective of the partitioning routines is to minimize the edge-cut
subject to the constraints that each one of the m weights is equally
distributed among the domains

• Ex: first weight corresponds to the amount of computation, second weight
corresponds to amount of storage

• partitioning computed will balance both the computation performed in
each domain as well as the amount of memory that it requires

6

Fill-reducing orderings

• Metis provides the ndmetis program and its associated METIS_NodeND
API routine for computing fill-reducing orderings of sparse matrices based
on the multilevel nested dissection paradigm*

7

*G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on Scientific Computing, 20(1):359–392, 1999.

Options Array
• Options are set in metis via an "options array", which is passed as a

parameter to most API routines

• METIS_OPTION_PTYPE: Specifies the partitioning method.

• METIS_PTYPE_RB Multilevel recursive bisectioning.

• METIS_PTYPE_KWAY Multilevel k-way partitioning

• METIS_OPTION_OBJTYPE Specifies objective type

• METIS_OBJTYPE_CUT Edge-cut minimization.

• METIS_OBJTYPE_VOL Total communication volume minimization

• METIS_OPTION_CTYPE Specifies the matching scheme to be used
during coarsening

• METIS_OPTION_IPTYPE Determines the algorithm used during
initial partitioning

• e.g., METIS_IPTYPE_RANDOM, Computes a bisection at random
followed by a refinement

8

Options Array Continued

• METIS_OPTION_RTYPE Determines the algorithm used for refinement

• e.g., METIS_RTYPE_FM, FM-based refinement

• METIS_OPTION_NCUTS Specifies the number of different partitionings
that it will compute. The final partitioning is
the one that achieves the best edgecut or
communication volume.

• METIS_OPTION_NSEPS Specifies the number of different separators
that it will compute at each level of nested
dissection. The final separator that is used is
the smallest one.

• METIS_OPTION_NITER Specifies the number of iterations for the
refinement algorithms at each stage of the
uncoarsening process.

• METIS_OPTION_UFACTOR Specifies the maximum allowed load imbalance
among the partitions. A value of x indicates
that the allowed load imbalance is (1 + x)=1000

9

Many other graph and hypergraph partitioners

• Zoltan (/Zoltan2)

• http://www.cs.sandia.gov/Zoltan/Zoltan.html

• Parallel routines for graph and hypergraph partitioning, graph coloring,
reordering

• Integrated into Trilinos library

11

http://www.cs.sandia.gov/Zoltan/Zoltan.html

Matlab Demos

12

MeshPart Matlab Routines
• MATLAB MeshPart routines by Gilbert et al.

• Available in ex9.tar on Moodle

• Open MATLAB in directory with files and run

meshpart_startup

to add needed paths to working directory

13

Folder structure
• src

• grid

• util

• vis

• various partitioning methods

• test

• demos

14

Basic partitioning routines
• We will experiment with three partitioning routines that we saw in lecture:

• Inertial partitioning

• Geometric partitioning ("random spheres")

• Spectral partitioning

• on a variety of meshes

15

Task 1: Basic Grid
Type the following commands:

//Generate 40^2 x 40^2 SPD matrix A corresponding to 5-point stencil on a
40x40 grid; xy is coordinates of gridpoints

[A,xy] = grid5(40);

gplotg(A,xy); //plot the graph

[part1,part2] = inertpart(A,xy); //inertial partitioning

gplotpart(A,xy,part1); //view partition

[part1,part2] = geopart(A,xy); //geometric partitioning

gplotpart(A,xy,part1); //view partition

[part1,part2] = specpart(A); //spectral partitioning

gplotpart(A,xy,part1); //view partition

16

Task 2: 3D Tetrahedral Mesh
% GRID3DT Generate 3-dimensional tetrahedral finite element mesh.

% [A,xyz] = GRID3DT(k) returns a k^3-by-k^3 symmetric positive definite

% matrix A of the k-by-k-by-k grid, with cells divided into tetrahedra,

% and an array xyz of coordinates for the grid points.

[A, xyz] = grid3dt(10)

Which partitioning method does the best?

Is there a big difference? Try them.

(Hint: rotate the figure to see the 3D mesh)

[part1,part2] = inertpart(A,xyz);

gplotpart(A,xyz,part1);

[part1,part2] = geopart(A,xyz);

gplotpart(A,xyz,part1);

[part1,part2] = specpart(A);

gplotpart(A,xyz,part1);

17

Task 3: "Badmesh"

[A,xy]=badmesh(100,0);

gplotg(A,xy);

• First ask yourself: what is the minimum
sized separator?

• Which partitioning method will do the
best? worst?

[part1,part2] = inertpart(A,xy);

gplotpart(A,xy,part1);

[part1,part2] = geopart(A,xy);

gplotpart(A,xy,part1);

[part1,part2] = specpart(A);

gplotpart(A,xy,part1);

18

badmesh(10,0);

"Badmesh"
% BADMESH Mesh that can't be partitioned well with a straight line.

%

% [A,xy] = badmesh(k,alpha) Generate a k-level mesh (with 4*k points) with

% no straight-line separator, with alpha<1 the ratio between shell sizes.

% (alpha defaults to 4/5). alpha=0 means linearly spaced shells.

19

Task 4: Partitioning "Cockroach" graph

[A,xy] = cockroach(10);

gplotg(A,xy);

• First ask yourself: What is the minimum separator for
this graph?

• Which partitioning method will do the best?

[part1,part2] = inertpart(A,xy);

gplotpart(A,xy,part1);

[part1,part2] = geopart(A,xy);

gplotpart(A,xy,part1);

[part1,part2] = specpart(A);

gplotpart(A,xy,part1);

21

Guattery and Miller, "On the performance of
spectral graph partitioning methods," SODA 1995.

"Cockroach graph"
% COCKROACH Planar graph for which spectral partitioning works poorly.

%

% [A,xy] = cockroach(k) Generate a mesh (with 6*k points) whose best edge

% separator has size 2, but for which the spectral algorithm gives a

% separator of size O(k). (From Guattery and Miller, "On the performance

% of spectral graph partitioning methods," SODA 1995.) Outputs: A is the

% Laplacian; xy is coordinates for a planar drawing.

22

Task 5: Nested Dissection Demo

Run:

meshdemo(4)

Read the text and follow along through the steps of the
demo

23

Task 6: Nested Dissection for random sparse matrix

Read and understand what the following commands are doing. Then try
them. (Type, e.g., “help specnd” to learn about the specnd function).

A = sprand(100,100,.01)+diag(ones(100,1));

A=A'*A;

figure(); spy(A,3)

figure(); spy(chol(A),3)

nd = specnd(A);

figure(); spy(A(nd,nd),3);

figure(); spy(chol(A(nd,nd)),3);

What do you observe? (pay attention to “nz”, the number of
nonzeros, given in the figures).

24

Some reading...

Guattery and Miller, "On the performance of spectral graph partitioning
methods," SODA 1995.

(canonically bad examples)

Gilbert, John R., Gary L. Miller, and Shang-Hua Teng. "Geometric mesh
partitioning: Implementation and experiments." SIAM Journal on Scientific
Computing 19.6 (1998): 2091-2110.

(random spheres idea)

Pothen, Alex. "Graph partitioning algorithms with applications to scientific
computing." Parallel Numerical Algorithms. Springer, Dordrecht, 1997. 323-
368.

(great overview/survey paper)

25

