L ecture 9:

Graph Partitioning

Outline

* Review definition of Graph Partitioning problem

Overview of heuristics

Partitioning with Nodal Coordinates

* Ex: In finite element models, node at point in (x,y) or (x,y,z)
space

Partitioning without Nodal Coordinates
* Ex: In model of WWW, nodes are web pages

Multilevel Acceleration
* BIG IDEA, appears often in scientific computing

Available Implementations

Beyond Graph Partitioning: Hypergraphs

* Graph algorithms in sparse direct methods

Definition of Graph Partitioning

* Given a graph G = (N,E, Wy, Wg)

« N =nodes (or vertices), 2(2 3(1)

* Wy = node weights 1) 4(3)
« £ =edges 2 5

* W; = edge weights 5 (1)

T / 8 (1)
7(3)

Ex: N = {tasks}, Wy = {task costs}, edge (j, k) in E means task j
sends W(j, k) words to task k
Choose a partition N = N; U N, U---U Np such that

* The sum of the node weights in each N; is "about the same"

* The sum of all edge weights of edges connecting all different pairs
N; and Ny is minimized

6 (2)

Ex: balance the work load, while minimizing communication

Special case of N = N; U N,: Graph Bisection

Definition of Graph Partitioning

* Given a graph G = (N,E, Wy, Wg)
N =nodes (or vertices),
* Wy = node weights
« £ =edges

* W; = edge weights

Ex: N = {tasks}, Wy = {task costs}, edge (j, k) in E means task j
sends W(j, k) words to task k
Choose a partition N = N; U N, U---U Np such that

* The sum of the node weights in each N; is "about the same"

* The sum of all edge weights of edges connecting all different pairs
N; and Ny is minimized (shown in black)

Ex: balance the work load, while minimizing communication

Special case of N = N; U N, : Graph Bisection

Some Applications

* Telephone network design
 Original application, algorithm due to Kernighan
Load Balancing while Minimizing Communication
Sparse Matrix times Vector Multiplication (SpMV)
 Solving PDEs
N ={1,..,n}, (k)€ Eif A(,k) nonzero,
* Wn(j) = #nonzeros in row j, Wgy(j, k) = 1
VLSI Layout
N ={units on chip}, E = {wires}, Wg(j, k) = wire length
Sparse Gaussian Elimination

* Used to reorder rows and columns to increase parallelism, and
to decrease "fill-in"

* Data mining and clustering

Physical Mapping of DNA
* Image Segmentation

Sparse Matrix Vector Multiplication y = y + Ax

Partitioning a Sparse Symmetric Matrix

12345678

* o0 E- E 1

. @ . » : 2

A= ____-_: .| ., i |
oo 1 e |5

e e e | 6

I e e o|8

... declare A_local, A remote(l:num procs), x local, x remote, y local
y local =y local + A local * x_local
for all procs P that need part of x local
send(needed part of x_local, P)
for all procs P owning needed part of x remote
receive(x remote, P)
y local =y local + A remote(P)*x_remote

Cost of Graph Partitioning

Sample Graph Partitionings

* Many possible partitionings
to search

 Just to divide in 2 parts there are:

Pk

n
2

EBTE D

Q Q0 o

possibilities

=
=
&
a
g < < <
g
(=1

Edge Crossings = 10

* Choosing optimal partitioning is NP-complete

* (NP-complete = we can prove it is a hard as other well-known
hard problems in a class Nondeterministic Polynomial time)

* Only known exact algorithms have cost = exponential(n)

* We need good heuristics!

Outline

e Qverview of heuristics

First Heuristic: Repeated Graph Bisection

 To partition N into 2% parts
* bisect graph recursively k times

* Henceforth discuss mostly graph bisection

LA
2 T
m’ﬂ:ﬂhm_ﬂk-%mv

! et R
*Fﬁ' "{I.Pé‘ W

¥] ;‘7"“ #

&L '.'-"I'rn.l

e ,.ia Lﬁ

Edge Separators vs. Vertex Separators

 Edge Separator: Eg (subset of E) separates G if removing E; from E leaves two
approx. equal-sized, disconnected components of N: N; and N,

 Vertex Separator: N (subset of N) separates G if removing N and all incident
edges leaves two approx. equal-sized, disconnected components of N: N; and
N,

G = (N,E),Nodes N and Edges E
E, = green edges or blue edges
N

= red vertices

* Making a N from an E;: pick one endpoint of each edge in E|
* [Ng| < |Eg]

* Making an E; from a N;: pick all edges incident on N
* |E,| < d|Ng| where d is the maximum degree of the graph

* We will find Edge or Vertex Separators, as convenient

Overview of Bisection Heuristics

 Partitioning with Nodal Coordinates
* Each node has x, y, z coordinates = partition space

1

nar

RIS
0.8 SN A T 'ﬁyﬁzgk"

)
|

0Tk
0.6 [e
]
Lo o

0.3

D2

"Rl

AV Vi AT
AT EE IR RN
AN RRFAIAKIL
SRRV

1 1 1
v} 01 02 0.3 04 05 0 [oirg 0.8 ng 1

 Partitioning without Nodal Coordinates
* E.g., Sparse matrix of Web documents
* A(j, k) = # times keyword j appears in URL k
* Multilevel acceleration (BIG IDEA)
» Approximate problem by "coarse graph," do so recursively

Outline

 Partitioning with Nodal Coordinates

* Ex: In finite element models, node at point in (x,y) or (x,y,z)
space

Nodal Coordinates: How Well Can We Do?

* A planar graph can be drawn in plane without edge
crossings

« Ex: m X m grid of m? nodes: 3 vertex separator N, with
IN;| = m = |N|Y2 (see earlier slide for m =5)

* Theorem (Tarjan, Lipton, 1979): If G is planar, 3 N such
that

* N = N;U N, U N, is a partition,
* [Ng| < (8|NDYV?

* Theorem motivates intuition of following algorithms

Nodal Coordinates: Inertial Partitioning

* For a graph in 2D, choose line with half the nodes on one side and half

on the other

* In 3D, choose a plane, but consider 2D for simplicity

e Choose a line L, and then choose a line Lt perpendicular to it, with

half the nodes on either side

1. Choose a line L through the points
L given by a(x —x) + b(y —y) =0,
with a? + b% = 1; (a, b) is unit vector 1 to L
2. Project each point to the line
For each n; = (x;,y;), compute coordinate

Si =—=b(x;j —x)+ a(y; —y) along L
3. Comf)ute thg r]nedia)n !

Let S = median(Sy, ..., Sy) (%, y)

4. Use median to partition the nodes

(a,

L

Let nodes with S; < S be in IV, rest in N,

N

1/

Inertial Partitioning: Choosing L

e Clearly prefer L, L* on left below

* Mathematically, choose L to be a total least squares fit of
the nodes

* Minimize sum of squares of distances to L (green lines
on last slide)

* Equivalent to choosing L as axis of rotation that
minimizes the moment of inertia of nodes (unit
weights) - source of name

Inertial Partitioning: choosing L (continued)

® L

(X, i)

(a, b) is unit vector
perpendicular to L

(x.y)

/ (a’ \
N

2.j (length of j—th green line)2 = ((x] — 32)2 + (yj — '37)2 — (—b(xj — %)+ a(yj —)7))2>
Pythagorean Theorem

2 _ _ =) 2
= azzj(xj—X) +2ab ¥ ;(x; — X)(y; — ¥) + b* Zj(yf_y)
= a’*X1 + 2abX2 + b%X3

X1 X2] lb]

Minimized by choosing
(x,y) = (Zj X, %j yj)/n = center of mass

(a, b) = eigenvector of smallest eigenvalue of X1 X2

Nodal Coordinates: Random Spheres

* Generalize nearest neighbor idea of a planar graph to higher dimensions
* Any graph can fit in 3D without edge crossings
» Capture intuition of planar graphs of being connected to "nearest
neighbors" but in higher than 2 dimensions
* For intuition, consider graph defined by a regular 3D mesh

 An n Xn Xn mesh of [N| =n3 nodes
* Edges to 6 nearest neighbors
 Partition by taking plane parallel to 2 axes

» Cuts n? = |N|?/3 = O(|E|?/3) edges A

* For the general graphs i

* Need a notion of "well-shaped" like mesh

Random Spheres: Well-Shaped Graphs

» Approach due to Miller, Teng, Thurston, Vavasis

e Def: A k-ply neighborhood system in d dimensions is a set
{Dy, ..., D} of closed disks in R? such that no point in R% is strictly
interior to more than k disks

* Def: An (a, k) overlap graph is a graph defined in terms of @ = 1 and
a k-ply neighborhood system {Dy, ..., D,,}: There is a node for each D;,
and an edge from j to i if expanding the radius of the smaller of D;
and D; by > a causes the two disks to overlap

Ex: n Xxn meshis a(1,1) overlap graph
Ex: Any planar graph is (a, k) overlap for
some a, k

2D Mesh is
(1,1) overlap
graph

Generalizing Lipton/Tarjan to Higher Dimensions

* Theorem (Miller, Teng, Thurston, Vavasis, 1993):
Let G = (N, E) be an (a, k) overlap graph in d dimensions with
n = |N|. Then there is a vertex separator N, such that

« N =N;,U N;,U N, and

* N; and N, each has at most n(d + 1)/(d + 2) nodes

* Ny has at most O(ak/4n(@~1/d) nodes

* When d = 2, similar to Lipton/Tarjan

 Algorithm:
 Choose a sphere S in R4
* Edges that S "cuts" form edge separator E;
* Build N from Ej

* Choose S "randomly", so that it satisfies Theorem with high
probability

Stereographic Projection

» Stereographic projection from plane to sphere

* In d = 2, draw line from p to North Pole, projection p’ of p is
where the line and sphere intersect

p = (X.y) p’ =(2x,2y,x? +y2 -1) [(x> + y? + 1)

« Similar in higher dimensions

Choosing a Random Sphere

* Do stereographic projection from R¢ to sphere S in R¢*+1

Find centerpoint of projected points
* Any plane through centerpoint divides points approx. venly
* There is a linear programming algorithm, cheaper heuristics

Conformally map points on sphere
* Rotate points around origin so centerpoint at (0, ...0,7) for some r

. . . . 1-r 1/2 .
 Dilate points (unproject, multiply by (1—+r) , project)

* this maps centerpoint to origin (0,...,0), spreads points around S

Pick a random plane through origin
* Intersection of plane and sphere S is "circle"

Unproject circle
* vyields desired circle C in R4

Create Ng: j belongs to Ny if aD; intersects C

Random Sphere Algorithm (Gilbert)

Finite Element Mesh

AN
i

Random Sphere Algorithm (Gilbert)

Mesh Points in the Plane

Random Sphere Algorithm (Gilbert)

Points Projected onto the Sphere

Random Sphere Algorithm (Gilbert)

Conformally Mapped Projected Points

Random Sphere Algorithm (Gilbert)

Mesh Points in the Plane

1—

nar

]

04

0ZF

o

Q2r

Q4r

Q4

Random Sphere Algorithm (Gilbert)

Partition of the Original Mesh

42 cut edges

Nodal Coordinates: Summary

e Other variations on these algorithms
 Algorithms are efficient
* Rely on graphs having nodes connected
(mostly) to "nearest neighbors" in space
* algorithm does not depend on where
actual edges are!

 Common when graph arises from physical
model

* Ignores edges, but can be used as good
starting guess for subsequent partitioners
that do examine edges

« Can do poorly if graph connectivity is not
spatial:

Outline

 Partitioning without Nodal Coordinates
* Ex: In model of WWW, nodes are web pages

Coordinate-Free: Breadth First Search (BFS)

* Given G = (N,E) and a root node r in N, BFS produces
A subgraph T of G (same nodes, subset of edges)
* T is a tree rooted at r
* Each node assigned a level = distance from r

Level O

Level 1

Level 2

Tree edges —
Horizontal edges —
Inter-level edges —

Partitioning via Breadth First Search

» BFS identifies 3 kinds of edges /rcot

* Tree Edges - part of T
* Horizontal Edges - connect nodes at same level

* Interlevel Edges - connect nodes at adjacent levels

* No edges connect nodes in levels

differing by more than 1 (why?)

* BFS partioning heuristic
« N = N, U N,, where &

* N; = {nodes at level < L}, V
* N, = {nodes at level > L} Vv
* Choose L so |Ny| close to |N,| | Z4

BFS partition of a 2D Mesh

using center as root: N
Ny =levels 0, 1, 2, 3 \/
N, = levels 4, 5, 6

Coordinate-Free: Kernighan/Lin

* Take a initial partition and iteratively improve it
* Kernighan/Lin (1970), cost = O(|N|?) but easy to understand
* Fiduccia/Mattheyses (1982), cost = O(|E|), much better, but more
complicated
* Given G = (N,E,Wg) and a partitioning N = AU B, where |A| = |B]|
* T = cost(4,B) = Y{W(e) where e connects nodes in A and B}
* Find subsets X of A and Y of B with |X| = |Y]
* Consider swapping X and Y if it decreases cost:
*newA=(A-X)UY and newB=(B-Y)U X
* newT = cost(newA , newB) < T = cost(4, B)

* Need to compute newT efficiently for many possible X and Y, choose
smallest (best)

Kernighan/Lin: Preliminary Definitions

T = cost(4,B), newT = cost(newA, newB)

Need an efficient formula for newT; will use
* E(a) =external cost of a inA =¥ {w(a,b)for b in B}
* I(a) = internal cost of ain A= ¥ {w(a,a’) for other a’in A}
* D(a) = cost of a in A = FE(a) — I(a)
* E(b),I(b) and D(b) defined analogously for b in B
Consider swapping X = {a}and Y = {b}
* newA = (A — {a}) U {b},newB = (B — {b}) U {a}

newl =T — (D(a) + D(b) — 2w(a, b)) =T — gain(a,b)
* gain(a, b) measures improvement from swapping a and b

Update formulas
* newD(a') = D(a’) + 2w(a’,a) — 2w(a’,b) fora’in A, a’ # a
* newD(b’) = D(b") + 2w(b’,b) — 2w(b’,a) forb’in B, b’ # b

Kernighan/Lin Algorithm

Compute T = cost(A,B) for initial A, B ... cost = O(|N|?)
Repeat
... One pass greedily computes |N|/2 possible X,Y to swap, picks best
Compute costs D(n) for all nin N ... cost = O(|N|?)
Unmark all nodes in N ... cost = O(|NJ)
While there are unmarked nodes ... IN|/2 iterations
Find an unmarked pair (a,b) maximizing gain(a,b) ... cost = O(|N|?)
Mark a and b (but do not swap them) ... cost = O(1)
Update D(n) for all unmarked n,
as though a and b had been swapped ... cost = O(|NJ)
Endwhile

... At this point we have computed a sequence of pairs
. (al,bl), ..., (ak,bk) and gains gain(1),...., gain(k)
.. where k = |N|/2, numbered in the order in which we marked them

Pick m maximizing Gain = 2k=1tom gain(k) ... cost = O(|NJ)
... Gain is reduction in cost from swapping (al,bl) through (am,bm)
If Gain > 0 then ... it is worth swapping
Update newA = A -{al,...,am } U { bl,...bm } ... cost = O(|NJ)
Update newB = B - { bl,...bm } U { al,...,am } ... cost = O(|NJ)
Update T = T - Gain ... cost = O(1)
endif

Until Gain <=0

Comments on Kernighan/Lin Algorithm

 Most expensive line shown in red, O(|N|?)
* Some gain(k) may be negative, but if later gains are large, then final
gain may be positive
 can escape "local minima" where switching no pair helps
* How many times do we repeat?

* K/L tested on very small graphs (|N| < 360) and got
convergence after 2-4 sweeps

 For random graphs (of theoretical interest) the probability of
convergence in one step appears to drop like 27IN1/30

A summary of improvements over Kernighan/Lin can be found in this
recent survey:

Bulug, A., Meyerhenke, H., Safro, ., Sanders, P., & Schulz, C. (2016).
Recent advances in graph partitioning. In Algorithm Engineering.

Simplified Fiduccia-Mattheyses: Example (1)

Green nodes are in Partl;
black nodes are in Part2.

The initial partition into two
parts is arbitrary. In this
case it cuts 8 edges.

The initial node gains are
shown in green.

Nodes tentatively moved (and cut size after each pair):

none (8);

Simplified Fiduccia-Mattheyses: Example (2)

The node in Partl with
largest gain is g. We
tentatively move it to Part2
and recompute the gains of
its neighbors.

Tentatively moved nodes are
hollow circles. After a node
is tentatively moved its gain
doesn’'t matter any more.

Nodes tentatively moved (and cut size after each pair):

none (8); g,

Simplified Fiduccia-Mattheyses: Example (3)

The node in Part2 with
largest gain is d. We
tentatively move it to Partl
and recompute the gains of
its neighbors.

After this first tentative
swap, the cut size is 4.

Nodes tentatively moved (and cut size after each pair):

none (8); g, d (4);

Simplified Fiduccia-Mattheyses: Example (4)

The unmoved node in Partl
with largest gain is f. We
tentatively move it to Part2
and recompute the gains of
its neighbors.

Nodes tentatively moved (and cut size after each pair):

none (8); g, d (4); f

Simplified Fiduccia-Mattheyses: Example (5)

The unmoved node in Part2
with largest gain is c. We
tentatively move it to Partl
and recompute the gains of
its neighbors.

After this tentative swap,
the cut size is b.

Nodes tentatively moved (and cut size after each pair):

none (8); g, d (4); f, c (5);

Simplified Fiduccia-Mattheyses: Example (6)

The unmoved node in Partl
with largest gain is b. We
tentatively move it to Part2
and recompute the gains of
its neighbors.

Nodes tentatively moved (and cut size after each pair):

none (8); g, d (4); f, c (5); b

Simplified Fiduccia-Mattheyses: Example (7)

There is a tie for largest
gain between the two
unmoved nodes in Part2.
We choose one (say €) and
tentatively move it to Partl.
It has no unmoved neighbors
SO no gains are recomputed.

After this tentative swap the
cut size is 7.

Nodes tentatively moved (and cut size after each pair):

none (8); g, d (4); f, c (5); b, e (7);

Simplified Fiduccia-Mattheyses: Example (8)

The unmoved node in Partl

with the largest gain (the

only one) is a. We

tentatively move it to Part2.

It has no unmoved neighbors

SO no gains are recomputed. e ‘

Nodes tentatively moved (and cut size after each pair):

none (8); g, d (4); f, c (5); b, e (7); a

Simplified Fiduccia-Mattheyses: Example (9)

The unmoved node in Part2
with the largest gain (the
only one) is h. We
tentatively move it to Partl.

The cut size after the final

tentative swap is 8, the € ‘
same as it was before any

tentative moves.

Nodes tentatively moved (and cut size after each pair):

none (8); g, d (4); f, c (5); b, e (7); a, h (8)

Simplified Fiduccia-Mattheyses: Example (10)

After every node has been
tentatively moved, we look
back at the sequence and
see that the smallest cut was
4, after swapping g and d.
We make that swap
permanent and undo all the
later tentative swaps.

This is the end of the first
Improvement step.

Nodes tentatively moved (and cut size after each pair):

none (8); g, d (4); f, c (5); b, e (7); a, h (8)

Simplified Fiduccia-Mattheyses: Example (11)

Now we recompute the gains
and do another improvement a
step starting from the new
size-4 cut. The details are
not shown.

The second improvement

step doesn’'t change the cut ¢
size, so the algorithm ends

with a cut of size 4.

D f

In general, we keep doing
improvement steps as long
as the cut size keeps getting
smaller.

Coordinate-Free: Spectral Bisection

 Based on theory of Fiedler (1970s), popularized by Pothen, Simon,
Liou (1990)

Motivation, by analogy to a vibrating string

Basic definitions

Vibrating string, revisited

Implementation via the Lanczos Algorithm
* To optimize sparse-matrix-vector multiply, we graph partition

* To graph partition, we find an eigenvector of a matrix
associated with the graph

* To find an eigenvector, we do sparse-matrix vector multiply
* No free lunch ...

Motivation for Spectral Bisection

* Vibrating string

Think of G = 1D mesh as masses (nodes) connected by springs
(edges), i.e. a string that can vibrate

Vibrating string has modes of vibration, or harmonics

Label nodes by whether mode - or + to partition into N- and N+

Same idea for other graphs (eg planar graph = trampoline)

Modes of a Vibrating String
Lowest Frequency lambda(1)

Second Frequency lambda(2)

Third Frequency lambda(3)

Basic Definitions

 Definition: The incidence matrix In(G) of a graph G = (N, E) is
an |N| by |E| matrix, with one row for each node and one column
for each edge. If edge e = (i,j) then column e of In(G) is zero
except for the i-th and j-th entries, which are +1 and -1,
respectively.

* Slightly ambiguous definition because multiplying column e of
In(G) by -1 still satisfies the definition, but this won't matter...

* Definition: The Laplacian matrix L(G) of a graph G = (N, E) is an
IN| by |N| symmetric matrix, with one row and column for each
node. It is defined by

* L(G)(i,i) = degree of node i (number of incident edges)
 L(G)(i,j)=-1ifti # jand there is an edge (i,])
* L(G)(i,j) = 0 otherwise

Example of In(G) and L(G) for Simple Meshes

Laplacian Matrix L(G)

Graph G Incidence Matrix In(G)
12 3 4_ 1 : 3 4 s5__
1 |-1 1| 1-1
S S S B 2|11 2|1 2 1
3 1-1 3 -12 -1
1 1-1 4 -1 2 -1
5 L 1] 5 L -1 1
12 3 45 6 7 8 9 1011 12_ 12 3 45678 9 _
1 | -1 1 1| 21 -1
7 5 9 2 1-1 1 2(-13-1 -1
ST 3 1 1 3 102 q
a |5 Ja 4 -1 -1 1 4| 1 3.1 41
6 7 5 -1 1-1 1 5 -1 -1 41 -1
3 1 4 , 3 s 6 1 1 1 6 -1 -1 3 -1
1) 7 -1 -1 7 -1 2-1
8 -1 1-1 8 -1 -13-1
> L 11 s L 1 12 |

Nodes numbered in black
Edges numbered in blue

Properties of Laplacian Matrix

* Theorem 1: Given G, L(G) has the following properties
* L(G) is symmetric.

* This means the eigenvalues of L(G) are real and its
eigenvectors are real and orthogonal.

n(6) x (In(6))" = L(G)
The eigenvalues of L(G) are nonnegative:
c 0 =A<, <<,

The number of connected components of G is equal to the
number of A; equal to O.

Definition: A,(L(G)) is the algebraic connectivity of G
e The magnitude of 1, measures connectivity
* In particular, A, # 0 if and only if G is connected.

Spectral Bisection Algorithm

 Spectral Bisection Algorithm:
e Compute eigenvector v, corresponding to A,(L(G))
* For each node n of G
* if v,(n) < 0 put node n in partition N-
* else put node n in partition N+

* Why does this make sense? Some reasons...

* Theorem 2 (Fiedler, 1975): Let G be connected, and N- and
N+ defined as above. Then N- is connected. If no v,(n) = 0,
then N+ is also connected.

e Recall A,(L(G)) is the algebraic connectivity of G

» Theorem 3 (Fiedler): Let G; = (N, E;) be a subgraph of G =
(N,E), so that G; is "less connected" than G. Then
Ao (L(Gy)) < A,(L(G)), i.e., the algebraic connectivity of Gy is
less than or equal to the algebraic connectivity of G.

Details for Vibrating String Analogy

« Forceonmassj = k[x(j—1)— x(j)] + k[x(G+1) — x(j)]

= —k[—x(—1)+ 2x(j) — x(+1)]
e F=mayields m-x"(j) = —k[—x(G —1)+ 2x(j) — x(+ D] (¥)
* Writing (*) for j = 1,2, ..., nyields

x(1)] [2x(1) — x(2) T x(1)] x(1)]
x(2) —x(1) + 2x(2) — x(3) 2 -1 x(2) x(2)
_@ | _k E — k71 2 N
M= x(T T =xG =D +2x(G) —xG + D| T o —1(x() | x(j)
: : -1 2 : :
| x(n)] I —x(n—1) + 2x(n) | x(n)] [x(n)]

(—-m/k) x"" = Lx

Details for Vibrating String (continued)

» —(m/k)x” = Lx, where x = [x1,%3, ..., xp]"

 Seek solution of form x(t) = sin(at) x,
e Lx, = (m/k)a’xy = Ax,
* For each integer i, get A = 2(1 — cos(im/(n + 1)), Xo =

‘sin(lir/(n + 1))]
sin(2imr/(n + 1))

_sin(nin/(n + 1))

* Thus x; is a sine curve with frequency proportional to i
e Thus a? = 2(k/m)(1 — cos(im/(n + 1)) or a ~ (k/m)Y?mi/(n + 1)

(\
e L =12 -1 not quite Laplacian of 1D mesh,

-1 2 -1 but we can fix that ...

Details for Vibrating String (continued)

* Write down F=ma for "vibrating string" below

* Get Graph Laplacian of 1D mesh

"¥ibrating String"’ for Spectral Bisection

Eigenvectors of L (1D mesh)

Graph Paritlening a Chaln, n=50

1 1 1 1 I 1 1 1 1
' ;
Eigenvector 1 :
(aII ones) n T T : ... —
T S S AU U R SRS SO SRS SOTIS S i
| | | | | | | | |
5 10 15 20 25 a0 35 40 45 50
Eigenvector 2 f
| | | | ; | | | |
5 10 15 20 25 a0 a5 40 45 50
2nd alg]anvacmr
| ! | | _ | | | |
Eigenvector 3 ?
| | | | i | | | |
5 10 15 20 25 a0 35 40 45 50

ard elganvastor

2nd eigenvector of L (planar mesh)

2riginal FE mesh Flot of v2 from abowve

AT,
'#ﬂ.#;‘;}'
1¥iﬁ

-10

10

Plot of v2 head on

-10 0 10

Computing v, and A,of L(G) using Lanczos

 Given any n X n symmetric matrix A (such as L(G)) Lanczos computes a
k X k "approximation" T by doing k matrix-vector products, k <K n

Choose an arbitrary starting vector r

b(0) = |||
j=0
repeat
j=j+1
q(j) = r/b(j —1) ... scale a vector (BLAS1)
r = Aq(j) . matrix vector multiplication, expensive step
r=r—b(j—Dv({j- 1) "axpy", or scalar*vector + vector (BLAS1)
a(]) = v(NTr - dot product (BLAS1), expensive step
r =r — a(jHv(Q) ... "axpy" (BLAS1)
b(]’) = ||r|| ... compute vector norm (BLAS1), expensive step
until convergence ... details omitted

T=(a(1) b())
b(1l) a(2) b(2) O
b(2) a(3) b(3)

O T bk2) a(k-1) b(k-1)

. b(k-1) ak) J

« Approximate A's eigenvalues/vectors using T's

Spectral Bisection: Summary

 Laplacian matrix represents graph connectivity

« Second eigenvector gives a graph bisection
* Roughly equal "weights" in two parts
* Weak connection in the graph will be separator
* Implementation via the Lanczos Algorithm
* To optimize sparse-matrix-vector multiply, we graph partition

* To graph partition, we find an eigenvector of a matrix
associated with the graph

* To find an eigenvector, we do sparse-matrix vector multiply

* Have we made progress?

* The first matrix-vector multiplies are slow, but use them to
learn how to make the rest faster

Outline

e Multilevel Acceleration
* BIG IDEA, appears often in scientific computing

Introduction to Multilevel Partitioning

* If we want to partition G = (N, E), but it is too big to do
efficiently, what can we do?

* 1) Replace G = (N, E) by a coarse approximation G, =
(N, E.) and partition G, instead

* 2) Use partition of G, to get a rough partitioning of G, and
then iteratively improve it

* What if G, still too big?
* Apply same idea recursively

Multilevel Partitioning - High Level Algorithm

(N+,N-) = Multilevel Partition(N, E)
.. recursive partitioning routine returns N+ and N- where N = N+ U N-

if [N|is small
(1) Partition G = (N,E) directly to get N = N+ U N-
Return (N4, N-)
else
(2) Coarsen G to get an approximation G. = (N, E.)
(3) (N.4 , N.-) = Multilevel Partition(N,, E,)
(4) Expand (N.+ , N.-) to a partition (N+, N-) of N
(5) Improve the partition (N+, N-)
Return (N+, N-)
endif
How do we 23)\ /o
Coarsen? O ®(5)
?
Expand? 23\ /

?
Improve O Do)

Multilevel Kernighan-Lin

* Coarsen graph and expand partition using maximal matchings

* Improve partition using Kernighan-Lin

Maximal Matching

* Definition: A matching of a graph G = (N, E) is a subset E,,, of E
such that no two edges in E,,, share an endpoint

* Definition: A maximal matching of a graph G = (N,E) is a
matching E,,, to which no more edges can be added and remain a
matching

* A simple greedy algorithm computes a maximal matching:

let E,,, be empty
mark all nodes in N as unmatched
fori = 1to |[N| ... visit the nodes in any order
if i has not been matched
mark i as matched
if there is an edge e = (i,j) where j is also unmatched,

add e to E,,
mark j as matched
endif
endif
endfor

Maximal Matching: Example

ls

0

Example of Coarsening

How to coarsen a graph using a maximal matching

G=(N,E) Ge=(Ne, E¢)
E j, is shown in red N isshown in red
Edge weights shown in blue Edge weights shown in blue

Node weights are all one Node weights shown in black

Coarsening using a maximal matching (details)

1) Construct a maximal matching E,,, of G = (N, E)

for all edges e = (j, k) in E,, 2) collapse matched nodes into a single one
Put node n(e) in N,
Wmn(e)) = W) + W(k) ... gray statements update node/edge weights

for all nodes n in N not incident on an edge in E,;, 3) add unmatched nodes
Putnin N, ... do not change W (n)

... Now each node r in N is "inside" a unique node n(r) in N,

... 4) Connect two nodes in N, if nodes inside them are connected in E
for all edges e = (j, k) in E,,
for each other edge ¢’ = (j,r) or (k,r)in E
Put edge ee = (n(e),n(r))in E,
W(ee) = W(e')

If there are multiple edges connecting two nodes in N, collapse them,
adding edge weights

Expanding a partition of G, to a partition of G

Converting a coarse partition to a fine partition

Partition shown in green

Multilevel Spectral Bisection

* Coarsen graph and expand partition using maximal independent
sets

* Improve partition using Rayleigh Quotient lteration

Maximal Independent Sets

* Definition: An independent set of a graph G = (N, E) is a subset N; of N
such that no two nodes in N; are connected by an edge

* Definition: A maximal independent set (MIS) of a graph G = (N, E) is an
independent set N; to which no more nodes can be added and remain an
independent set

* A simple greedy algorithm computes a maximal independent set:

let N; be empty

fork = 1to |[N| ... visit the nodes in any order
if node k is not adjacent to any node already in N;
add k to N;
endif Maximal Independent Subset N; of N
endfor P 9 9 9 ¢ o 9

® and ® -nodesof N

L -nodes of N i

Example of Coarsening

Computing G ofrom G

® and ¢ -nodesofN

o -nodes of N i

-edgesin E

-edgesinE |

{33 - encloses domain D, = node of N,

Coarsening using Maximal Independent Sets (details)

... Build "domains" D (k) around each node k in N; to get nodes in N,
... Add an edge to E,. whenever it would connect two such domains
E. = empty set
for all nodes k in N;
D(k) =({k}, empty set)
... first set contains nodes in D(k), second set contains edges in D (k)
unmark all edges in E
repeat
choose an unmarked edge e = (k,j) from E
if exactly one of k and j (say k) is in some D(m)
mark e
add j and e to D(m)
else if k and j are in two different D(m)’s (say D(mk) and D(mj))
mark e
add edge (mk, mj) to E,
else if both k and j are in the same D(m)
mark e
add e to D(m)
else
leave e unmarked
endif
until no unmarked edges

Expanding a partition of G, to a partition of G

* Need to convert an eigenvector v, of L(G,) to an approximate
eigenvector v of L(G)

* Use interpolation:

For each node j in N
if j is also a node in N, then

v(j) = v.(j) ... use same eigenvector component
else
v(j) = average of v.(k) for all neighbors k of j in N,
end if
endif

Example: 1D mesh of 9 nodes

Znd Elgenvectars of G = ehaln of nedas

oe

| | |
vactar of 8 node ehaln

f— =t = i m == EEE I e R L P R Pre= === mrm e, I —

i.raetur of 5 nodea sub&haln

Improve eigenvector: Rayleigh Quotient lteration

J =20
pick starting vector v(0) ... from expanding v,
repeat

j=j+1

r(D=v"(G-1D-LG) v(j—-1)
. 1(j) = Rayleigh Quotient of v(j — 1)
= good approximate eigenvalue
v(]) = LG —-r()-DH-v(G-1
... expensive to do exactly, so solve approximately
.. using an iteration called SYMMLQ,
... which uses matrix-vector multiply (no surprise)
v(j) = v() /|lv()]||l ... normalize v(j)
until v(j) converges
.. Convergence is very fast: cubic

Example of cubic convergence for 1D mesh

Coenvergence of Raylelgh Quotlant taratien

i}
18 T I T T T
-||:!'2
Tl
1n®
g 1q°
w
-|n'"' E ; ;.._.-.-. ._._.-.,E E
-”':"12 I I I---I I
“']'"'
Elganvmtni afror ; ; ;
1!1-“ : | . | :

1 2 - 3 4
[taratlen Humbar

Outline

* Available Implementations

Available Implementations

* Multilevel Kernighan/Lin
 METIS and ParMETIS (glaros.dtc.umn.edu/gkhome/views/metis)
* SCOTCH and PT-SCOTCH (www.labri.fr/perso/pelegrin/scotch/)

Matlab toolbox for geometric and spectral partitioning by Gilbert, Tang,
and Li: https://github.com/Yingzhouli/meshpart

Multilevel Spectral Bisection

« S. Barnard and H. Simon, "A fast multilevel implementation of
recursive spectral bisection ...", 1993

* Chaco (SC'14 Test of Time Award)
Hybrids possible

* Ex: Use Kernighan/Lin to improve a partition from spectral bisection

Recent packages with collection of techniques

* Zoltan (www.cs.sandia.gov/Zoltan)
« KaHIP (http://algo2.iti.kit.edu/kahip/)

https://github.com/YingzhouLi/meshpart
http://www.cs.sandia.gov/Zoltan
http://algo2.iti.kit.edu/kahip

Outline

* Beyond Graph Partitioning: Hypergraphs

Beyond simple graph partitioning:

Representing a sparse matrix as a hypergraph

: ‘<@
| | ()

S O O X
X X X O
S X X X
X © O O

() ()

Using a graph to partition, versus a hypergraph

rl
Pl

r2

r3
P2

Source vector entries
corresponding to c¢2
and c3 are needed by
both partitions — so
total volume of
communication is 2

x 0 x 0
0 x x 0
0 x x 0
0 x 0 X
But graph cut is 3!
P1 1 2
[
P2 |3 4

= Cut size of graph partition
may not accurately count
communication volume

A sparse matrix in the graph model

1 23 45 6 7 8 910

i Tl X X X X x| 1
2 | % 2| X X X X x| 2
3| x P, 3 X X X X x| 3
4| X 4| X X X X X X | 4
5><_~5 X X X X x| s
6 | x| — 6 | X X X X x| 6
7 | x \7 X X | X X X x| 7
8 | X P, 8 X X X X X1 8
9 | X 9 X X X X x| 9
10 | X ilo X X X X X | 10
y A X

edge (vi,vj) € E>
y(@) «y(@ + AW J) x(G) and y(j) < y() + A@, D) x(D)

P; performs: y(4) « y(4) + A(4,7) x(7) and

y(5) « y(5) + A(57) x(7)
x(7) only needs to be communicated once !

A sparse matrix in the hypergraph model

o

SR N

123 45 6 7 8 910

X X
X

X X

X

X

X X X X

X

X
X

X
X

X

O OV 0 N OO Ul A W N -

[EnY

< | X X X X X|X X X X X

}'N-o

O O 00 N O W N B

Iy

X

X
X

X

XX X X X XX X X X X

= O 00 N O A WN B

* Column-net model for block-row distributions
* Rows are vertices, columns are nets (hyperedges)

Each {vertex, net} pair represents unique nonzero net-cut metric:
cutsize(Il) = Y,,eng W)
connectivity-1 metric: cutsize(Il) = Y., enE W(nl-)(c(nj) —-1)

wo Different 2D Mesh Partitioning Strategies

Graph:
Cartesian Partitioning
0000000 H:;
0000000 %:;
00000

2900000
QORBREN

.QQQQQQQ
0000000 RIGOOOOOO
0000000 RIGOOOOOO
0000000 RIGOOOOOO
0000000 RIGOOOOOO
0000000 RIG0OOOOOGO
0000000 RIG0OOOOOGO
0000000 RIGOOOOOGO

Total SpMV communication volume = 64

Hypergraph:
MeshPart Algorithm [Ucar, Catalyurek, 2010]

000000000
000000000
00000000
0000000 H::
000000 H:

000000% N
(X XX E X IS O x X
0000000 """" 0O
QQQQQQQQQ .
0000000000
0000000 N
00000000 H I
(XX XXXX X X
00000ONRINOGO
X XXX EZX XXX
X XXX EZX XXX

Total SpMV communication volume = 58

10

12

14

16

Generalization of the MeshPart Algorithm

999 I I NI EEEERER

9999 I EEEEEERETR

299999 iR EERER

EEEEERAAAAAAALADODDOOSYS
EEEERAAAAAAAAGOOOOGOTYS
EEEENAAAAAAALAALGOOOOOYS
EEEAAAAAAALADOODODOOOY
ERAAAALAAAALADOOOOOOOYS
BAAAAAAAALAGOOOOOOPOODS
CAAAAAALAL SO0 O0OOROROS® X X
AAAAA

Al d 2 2 2 2 2 RN NNNEDNHN,.
A A 2 2 & & 4
2 & & 2

XX KXXXKXXX

X XXX XXX XX

XX X X XX X X X

A A 2 2 2 2 X 2 4

(=]

SR R E S R S E E 2 3 N ENNERENIRE

10 15

- vol =102 boundary-1 = 86 boundary-2 =8

(a) 2 x 3-way partitioning of the 16 x 24 mesh

25

0

10}

15}

20}

25f

30t

EEEEEEENAAAAAAALAG00 00000
EEREEEENAAAAAAALAGOO 00000
EEEEEERAAAAAALLAOOOOOOOS
EEEEERAAAAAALLAGOOOO OO
EEEERAAAAALAALAGOOOO0OOO)

i
““=ss::m§§

h 4
yvyw
YVYVVYY

XX XXX XYYV VIVY
KARKKXXAXYTIVVVYYYY

XEAXKXX XXX XTIVIVIVYYY
xxxxxxxxxxvvvvvvvv

HHXX

PP EET \
XK KKK

XK
oo
KR KK
XXX

0

5 10 15 20 25 30
354 boundary-1 = 282 boundary-2 = 36

(c) 16-way partitioning of the 32 x 32 mesh

VO

For N X N mesh on P X P processor grid:

Usual Cartesian partitioning costs

~ 4NP words moved

MeshPart costs = 3NP words moved, 25% savings

Experimental Results: Hypergraph vs. Graph Partitioning

64x64 Mesh (5-pt stencil), 16 processors

0

10 +

20

30
40 40
50 | 50

60 [60

20 30 40 50 60 0 10 20 30 40 50 60

0 10
Graph Partitioning (Metis) Hypergraph Partitioning (PaToH)
Total Comm. Vol = 777 Total Comm. Vol = 719
Max Vol per Proc = 69 Max Vol per Proc = 59

~8% reduction in total communication volume
using hypergraph partitioning (PaToH)
versus graph partitioning (METIS)

Further Benefits of Hypergraph Model: Nonsymmetric Matrices

* Graph model of matrix has edge (i,j) if either A(i,j) or A(j, i) nonzero
 Same graph for A as |A| + |AT]

* Ok for symmetric matrices, what about nonsymmetric?
Illustrative Bad Example: triangular matrix

Whereas the hypergraph model can capture nonsymmetry, the graph partitioning model deals
with nonsymmetry by partitioning the graph of A + AT (which in this case is a dense matrix).

X X
X X X

xxxxxxxxxxxxxxx

xX X X X
X X X X X

xxxxxxxxxxxx
xxxxxxxxxxx

X X X X X X

KX X X X X X

XX X X XX X X
X X X X X X X X X
KX X X X X X X XX

xxxxxxxx
xxxxxxx

XXX XXX XXXXX
XX X X X X X X X X X X
X X X X X X X X X XX XX

xxxxx

XXXXXXXXXXXXXX
X X X X X X X X X X X X X X X

KX XX XXX XX XXX XX XX

KX XXX X XXX XXX XXXX
KX KX KX KK AK KX KKK XX
XX X X K KK KK KKK KKK X
XXX X R KX H X KK X KK XX
X X X X X XX XX X X X[X XX X
X X X X X X X X X X X X X XX X
XX X X X X X X X X X X X X X X
XX X X X X X X X X X X X XX X
XX X X X X X X X X X X X X X X
XX XX X XX XX XX XX XXX
KX XX XX XXX XXX XXXX

X X X X X XX XX X X X[X XX X
XX X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X XX X
XX X X X X X X X X X X X XX X

Given A, graph which gives the
partition A + AT partition for A

This results in a suboptimal partition in terms of both communication and load balancing. In this case,

Total Communication Volume = 60 (optimal is 712 in this case, subject to load balancing)
Procl: 76 nonzeros, Proc 2: 60 nonzeros (~26% imbalance ratio)

Further Benefits of Hypergraph Model: Nonsymmetric Matrices

* Graph model of matrix has edge (i,)) if either A(i,j) or A(j, i) nonzero

 Same graph for 4 as |A| + |AT|

* Ok for symmetric matrices, what about nonsymmetric?

* Try A upper triangular

Graph Partitioning (Metis)
Total Communication Volume= 254
Load imbalance ratio = 6%

I-iyperglraph Fl’artitiloningl
(PaToH)

Total Communication Volume= 181
Load imbalance ratio = 0.1%

Summary: Graphs versus Hypergraphs

* Pros and cons

* When matrix is non-symmetric, the graph partitioning
model (using A + A") loses information, resulting in
suboptimal partitioning in terms of communication and
load balance.

* Even when matrix is symmetric, graph cut size is not an
accurate measurement of communication volume

* Hypergraph partitioning model solves both these problems

* However, hypergraph partitioning (PaToH) can be much
more expensive than graph partitioning (METIS)

* Hypergraph partitioners: PaToH, HMETIS, ZOLTAN

Is Graph Partitioning a Solved Problem?

* Myths of partitioning due to Bruce Hendrickson
mm) 1. Edge cut = communication cost

. Simple graphs are sufficient

. Edge cut is the right metric

Existing tools solve the problem

Key is finding the right partition

Graph partitioning is a solved problem

—
—

OO A W N

* Slides and myths based on Bruce Hendrickson's:
"Load Balancing Myths, Fictions & Legends"

Myth: Partition Quality is Paramount

* When structure are changing dynamically during a simulation, need
to partition dynamically

* Speed may be more important than quality
 Partitioner must run fast in parallel

* Another chicken and egg problem here
 Partition should be incremental

* Change minimally relative to prior one
* Must not use too much memory

* Recent research on streaming partitioning:

 Stanton, |. and Kliot, G., "Streaming graph partitioning for
large distributed graphs". KDD, 2012.

* The idea is used by many graph processing systems such as
PowerGraph and GPS

Some References

* A. Pothen, H. Simon, K.-P. Liou, "Partitioning sparse matrices with
eigenvectors of graphs", SIAM J. Mat. Anal. Appl. 11:430-452 (1990)

* M. Fiedler, "Algebraic Connectivity of Graphs", Czech. Math. J.,
23:298-305 (1973)

* M. Fiedler, Czech. Math. J., 25:619-637 (1975)
* B. Parlett, "The Symmetric Eigenproblem", Prentice-Hall, 1980

Outline

* Graph algorithms in sparse direct methods

Symmetric sparse matrices and graphs

® The structure of a square symmetric matrix A with nonzero diagonal can
be represented by an undirected graph G(A) = (V. E) with

n vertices, one for each row/column of A
an edge (i, J) for each nonzero aj,i > j

i 2 3 4 &5 6 7T & 9 123
lrfxxx \1
2 | x x x x " —e—8
3 x X x
4 | =x x 0x X 456
Sl -
T X X X Tag
& x x x @ x
Qk x x x J
G(A)

Notation: upper case (A) - matrices; lower case (ajj) - elements

Nonsymmetric sparse matrices and graphs

® The structure of a nonsymmetric matrix A of size n X n can be
represented by

7 a directed graph G(A) = (V, E) with
¥ n vertices, one for each column of A
% an edge from i to j for each nonzero a;;

7 a bipartite graph H(A) = (V, E) with
B 2n vertices, for n rows and n columns of A
u an edge (i’,j) for each nonzero aj;

7 a hypergraph

1 z 3 4 5

rlox | x| x . , 1’ 1

> | x X | % . 'q}l.& T e :

3 X X “ i“!‘ 3 3 3
R

g x .F: . if 4 4

5 X 3 4 5 5

Sparse Linear Solvers

Direct methods of factorization

® For solving Ax = b, least squares problems
- Cholesky, LU, QR, LDLT factorizations

= Limited by fill-in/memory consumption and scalability

lterative solvers

® For solving Ax = b, least squares, Ax = Ax, SVD
= When only multiplying A by a vector is possible

®= Limited by accuracy/convergence

Hybrid methods

As domain decomposition methods

Examples of Sparse Direct Solvers

A non-complete list of solvers and their characteristics:

m PSPASES: for SPD matrices, distributed memory.

http://www-users.cs.umn.edu/~mjoshi/pspases/

= UMFPACK / SuiteSparse (Matlab, Google Ceres) - symmetric/unsymmetric,

LU, QR, multicores/GPUs.
http://faculty.cse.tamu.edu/davis/suitesparse.html

® SuperLU: unsymmetric matrices, shared/distributed memory.

http://crd-legacy.1lbl.gov/~xiaoye/SuperLU/

® MUMPS: symmetric/unsymmetric, distributed memory.

http://mumps.enseeiht.fr/

® Pardiso (Intel MKL): symmetric/unsymmetric, shared /distributed memory.

http://www.pardiso-project.org/

Review: LU Factorization

LU factorization
Compute the factorization PA = LU

3 0 3
A=|6 7 0
9 12 3

The first step of the LU factorization is performed as

1 3 0 3
Ml — -2 1 . leq — 0 { —6
-3 1 0 12 -6

Fill-in elements
Are elements which are zero in A, but become nonzero in L or U (as —6

above).

Example
Given the matrix

Sparse LU Factorization

Right looking factorization of A by rows
for k=1:n—1do
Permute row i and row k, where ay is element of maximum magnitude in A(k : n, k)
for i=k+1:nstay+#0do
/* store in place [*/

3k = 3ik [Ak k [
/* add a multiple of row k to row i */ . . o
for j =k +1:nstay+#0do 12..U’
end for @ o4 % T o
o/ | e 500
end for 6
i ® (o0 o0y
Observations —
m [he order of the indices i, j, k can be changed, leading to different
algorithms:

. computing the factorization by rows, by columns, or by sub-matrices,
- using a left looking, right looking, or multifrontal approach.

Simple case

A is symmetric and positive definite (SPD) if
" A=AT,
= all its eigenvalues are positive,

= or equivalently, A has a Cholesky factorization, A= LLT.

Some properties of an SPD matrix A

® There is no need to pivot for accuracy (just performance) during the
Cholesky factorization.

= For any permutation matrix P, PAPT is also SPD.

Sparse Cholesky

m The algebra can be written as:

A n Al _(Vau [Van Al ./\/an
Axn Ax Axi./\/air Lo L2,

= Compute and store only the lower triangular part since U = LT

Algorithm
fork=1:n—1do
Ak = /KK
/* factor(k) */
for i=k+1:nstay+#0do
Ak = Jik/ Ak
end for
fori=k+1:nstay#0 do
update(k, i)
for j =i:nstag;+#0do
3jj = ajj — ik Ak
end for
end for

end for

Filled graph G*(4)

= Given G(A) = (V,E), GT(A) = (V,E™) is defined as:
there is an edge (i,j) € GT(A) iff there is a path from i to j in G(A)
going through lower numbered vertices.

= Definition holds also for directed graphs (LU factorization).

= G(L+L")= G*(A), ignoring cancellations.

Filled graph G*(4)

(]

~ T
R
Mo MMM
Wowow MM
WoomoWow WM
Wow M MMM M
WowowoM oM M
WoMoM M
Mok MW M
o =
- -
o B I I o - I o = e}
Il
b
]
i
]
_ R
R
Mo m oMM
] R
Woom o= £
R N T
Y Wow
W]
WowowW M
o =
L -
L I L s ol = i = =

Filled graph G*(4)

m GT(A) is chordal (every cycle of length at least four has a chord, an edge
connecting two non-neighboring nodes).
= Conversely, if G(A) is chordal, then there is a perfect elimination order,

that is a permutation P such that G(PAPT) = GT(PAPT).

m References: [Parter, 1961, Rose, 1970, Rose and Tarjan, 1978]

Steps of Sparse Cholesky

1. Order rows and columns of A to reduce fill-in

7. Symbolic factorization: based on eliminaton trees

' Compute the elimination tree (in nearly linear time in nnz(A))
" Allocate data structure for L
. Compute the nonzero structure of the factor L, in O(nnz(L)

3. Numeric factorization

' Exploit memory hierarchy
- Exploit parallelism due to sparsity

4. Triangular solve

Ordering rows and columns of A

Strategies applied to the graph of A for Cholesky,
to the graph of AT A for LU with partial pivoting.

Local strategy: minimum degree [Tinney/Walker '67]

® Minimize locally the fill-in.

® Choose at each step (for 1 to n) the node of minimum degree.

Global strategy: graph partitioning approach

= Nested dissection [George, 1973]
" First level: find the smallest possible

separator S, order last {;f";r_f'fTB"mx A 0 x
" Recurse on A and B NN 0 B x
T X X S

= Multilevel schemes [Barnard /Simon '93,
Hendrickson/Leland "95, Karypis/Kumar
'95].

Nested Dissection Example

[]

[]

T(A)

G (A)

G(A)

Elimination Tree

Definition ([Schreiber, 1982| and also [Duff, 1982|)

Given A= LL", the etree T(A) has the same node set as G(A), and k is
the parent of j iff

k =min{i >j: [; # 0}

0
1 2 3 4 & & T 8 9 |
1||,x X X y 8
3 ¥ | x X |
3 ¥ X | x ¥ X X
_II_4 x x x ?
L+l =58 X X X // \
6 x x| x Y X X 3 6
7 X v | ox x | x x x
8 x x x X X £ VA
0\ X ¥ X ¥ x x x / 1 2 4 R

Elimination Tree

Definition ([Schreiber, 1982] and also [Duff, 1982])

Given A= LL", the etree T(A) has the same node set as G(A), and k is
the parent of j iff

k =min{i >j: I; #0}

Properties (ignoring cancellations), for more details see e.g.
[Liu, 1990]

m T(A) is a spanning tree of the filled graph GT(A).
= T(A) is the result of the transitive reduction of the directed graph G(LT).

m T(A) of a connected graph G(A) is a depth first search tree of GT(A)
(with specific tie-breaking rules).

Elimination Tree

Complexity

= Can be computed in O(nnz(A)a(nnz(A), n)), where «() is the inverse of
Ackerman'’s function.

= (Can be used to

' compute # nonzeros of each column/row of L (same complexity),

- identify columns with similar structure (supernodes), (same complexity)

' compute nonzero structure of L, in O(nnz(L))

Column dependencies and elimination tree

® |f [# 0, then

Factor(k) needs to be computed before Factor(j).
k is an ancestor of j in T(A).

Columns belonging to disjoint subtrees can be factored independently.

» Topological orderings of T(A) (that number children before their parent)

preserve the amount of fill, the flops of the factorization, the structure of
T(A)
postordering most used in practice

9
1 2 3 4] 4] Fi 8 0 |
1 X X x 8
2 (X X X \ |
3 X X X X X X
T 4 X X ?
L+l =5& X X X e AN
G X x x 4 x ¥ 3 6
T X X X X X X X
B X X X X X £ VA
o\ x | x x | x| x x x / 1 P, 4 o)

Nested Dissection and Separator Tree

Separator tree:

® Combines together nodes belonging to a same separator, or to a same
disjoint graph

o 0 @
o | /Q\A
o o E ¢
O I O O

 Available packages:

* Metis, parmetis
e Scotch, PT-Scotch

Lower Bounds on Communication for Sparse Direct Solvers

= More difficult than the dense case

' For example computing the product of two (block) diagonal matrices
involves no communication in parallel

Lower bound on communication from dense linear algebra is loose

\ery few existing results:

' Lower bounds for parallel multiplication of sparse random matrices
[Ballard et al., 2013]

' Lower bounds for Cholesky factorization of model problems
[Grigori et al., 2010]

Lower bounds for Cholesky

m Consider A of size k® x k* results from a finite difference operator on a
regular grid of dimension s > 2 with k* nodes.

m |ts Cholesky L factor contains a dense lower triangular matrix of size

ks—l % ks—l
1 2 3 4 5 6 7 8 90
1 X X X
2 (X X x\'
3 X X X X X X wm
4 x x X Al
L—|—LT=5 X X X Qm
6 X X X X X X
7 | x X X X X X X 4 6 b
8 X X X X X
9] ka X X X X X X x.) G_(A]

= Computing the Cholesky factorization of the k=1 x k=1 matrix
dominates the computation and the communication.

Lower bounds for Cholesky

® This result applies more generally to matrix A whose graph G = (V, E),
V| = n has the following property for some /-

- if every set of vertices W C V with n/3 < |W| < 2n/3 is adjacent to at
least | vertices in V — W,

' then the Cholesky factor of A contains a dense [x [submatrix.

Lower Bounds for Cholesky

For the Cholesky factorization of a k® x k® matrix resulting from a finite
difference operator on a regular grid of dimension s > 2 with k* nodes:

Fwords > () (\/ﬂﬂ) ., #Fmessages > () (Mh:jz)

= Sequential algorithm
" W = k*57Y /3 and M is the fast memory size

= Work balanced parallel algorithm executed on P processors
W =<2 and M ~ nnz(L)/P

P

