
Lecture 9:
Graph Partitioning

Outline

• Review definition of Graph Partitioning problem

• Overview of heuristics

• Partitioning with Nodal Coordinates

• Ex: In finite element models, node at point in (x,y) or (x,y,z)
space

• Partitioning without Nodal Coordinates

• Ex: In model of WWW, nodes are web pages

• Multilevel Acceleration

• BIG IDEA, appears often in scientific computing

• Available Implementations

• Beyond Graph Partitioning: Hypergraphs

• Graph algorithms in sparse direct methods

2

Definition of Graph Partitioning

• Given a graph 𝐺 = (𝑁, 𝐸,𝑊𝑁,𝑊𝐸)

• 𝑁 = nodes (or vertices),

• 𝑊𝑁 = node weights

• 𝐸 = edges

• 𝑊𝐸 = edge weights

• Ex: 𝑁 = {tasks}, 𝑊𝑁 = {task costs}, edge (𝑗, 𝑘) in 𝐸 means task 𝑗
sends 𝑊𝐸(𝑗, 𝑘) words to task 𝑘

• Choose a partition 𝑁 = 𝑁1 ∪ 𝑁2 ∪⋯∪ 𝑁𝑃 such that

• The sum of the node weights in each 𝑁𝑗 is "about the same"

• The sum of all edge weights of edges connecting all different pairs
𝑁𝑗 and 𝑁𝑘 is minimized

• Ex: balance the work load, while minimizing communication

• Special case of 𝑁 = 𝑁1 ∪ 𝑁2: Graph Bisection

1 (2)

2 (2) 3 (1)

4 (3)

5 (1)

6 (2) 7 (3)

8 (1)
5

4

6

1

2

1

2
12 3

3

1 (2)

2 (2) 3 (1)

4 (3)

5 (1)

6 (2) 7 (3)

8 (1)

4

6

1

2

1

2
12 3

5

Definition of Graph Partitioning

• Given a graph 𝐺 = (𝑁, 𝐸,𝑊𝑁,𝑊𝐸)

• 𝑁 = nodes (or vertices),

• 𝑊𝑁 = node weights

• 𝐸 = edges

• 𝑊𝐸 = edge weights

• Ex: 𝑁 = {tasks}, 𝑊𝑁 = {task costs}, edge (𝑗, 𝑘) in 𝐸 means task 𝑗
sends 𝑊𝐸(𝑗, 𝑘) words to task 𝑘

• Choose a partition 𝑁 = 𝑁1 ∪ 𝑁2 ∪⋯∪ 𝑁𝑃 such that

• The sum of the node weights in each 𝑁𝑗 is "about the same"

• The sum of all edge weights of edges connecting all different pairs
𝑁𝑗 and 𝑁𝑘 is minimized (shown in black)

• Ex: balance the work load, while minimizing communication

• Special case of 𝑁 = 𝑁1 ∪ 𝑁2 : Graph Bisection

4

Some Applications

• Telephone network design

• Original application, algorithm due to Kernighan

• Load Balancing while Minimizing Communication

• Sparse Matrix times Vector Multiplication (SpMV)

• Solving PDEs

• 𝑁 = {1,… , 𝑛}, 𝑗, 𝑘 ∈ 𝐸 if 𝐴(𝑗, 𝑘) nonzero,

• 𝑊𝑁(𝑗) = #nonzeros in row 𝑗, 𝑊𝐸(𝑗, 𝑘) = 1

• VLSI Layout

• 𝑁 = {units on chip}, 𝐸 = {wires}, 𝑊𝐸(𝑗, 𝑘)= wire length

• Sparse Gaussian Elimination

• Used to reorder rows and columns to increase parallelism, and
to decrease "fill-in"

• Data mining and clustering

• Physical Mapping of DNA

• Image Segmentation

5

Sparse Matrix Vector Multiplication 𝑦 = 𝑦 + 𝐴𝑥

… declare A_local, A_remote(1:num_procs), x_local, x_remote, y_local
y_local = y_local + A_local * x_local
for all procs P that need part of x_local

send(needed part of x_local, P)
for all procs P owning needed part of x_remote

receive(x_remote, P)
y_local = y_local + A_remote(P)*x_remote

6

Cost of Graph Partitioning

• Many possible partitionings
to search

• Just to divide in 2 parts there are:

𝑛

𝑛/2
=

𝑛!

𝑛
2

!
2 ≈ 2𝑛

2

𝑛𝜋

1/2

possibilities

• Choosing optimal partitioning is NP-complete

• (NP-complete = we can prove it is a hard as other well-known
hard problems in a class Nondeterministic Polynomial time)

• Only known exact algorithms have cost = exponential(𝑛)

• We need good heuristics!

7

Outline

• Review definition of Graph Partitioning problem

• Overview of heuristics

• Partitioning with Nodal Coordinates

• Ex: In finite element models, node at point in (x,y) or (x,y,z)
space

• Partitioning without Nodal Coordinates

• Ex: In model of WWW, nodes are web pages

• Multilevel Acceleration

• BIG IDEA, appears often in scientific computing

• Available Implementations

• Beyond Graph Partitioning: Hypergraphs

• Graph algorithms in sparse direct methods

8

First Heuristic: Repeated Graph Bisection

• To partition 𝑁 into 2𝑘 parts

• bisect graph recursively 𝑘 times

• Henceforth discuss mostly graph bisection

9

Edge Separators vs. Vertex Separators

• Edge Separator: 𝐸𝑠 (subset of 𝐸) separates 𝐺 if removing 𝐸𝑠 from 𝐸 leaves two
approx. equal-sized, disconnected components of 𝑁: 𝑁1 and 𝑁2

• Vertex Separator: 𝑁𝑠 (subset of 𝑁) separates 𝐺 if removing 𝑁𝑠 and all incident
edges leaves two approx. equal-sized, disconnected components of 𝑁: 𝑁1 and
𝑁2

• Making a 𝑁𝑠 from an 𝐸𝑠: pick one endpoint of each edge in 𝐸𝑠
• 𝑁𝑠 ≤ |𝐸𝑠|

• Making an 𝐸𝑠 from a 𝑁𝑠: pick all edges incident on 𝑁𝑠
• 𝐸𝑠 ≤ 𝑑|𝑁𝑠| where 𝑑 is the maximum degree of the graph

• We will find Edge or Vertex Separators, as convenient

𝐺 = (𝑁, 𝐸), Nodes 𝑁 and Edges 𝐸
𝐸𝑠 = green edges or blue edges
𝑁𝑠 = red vertices

10

Overview of Bisection Heuristics

• Partitioning with Nodal Coordinates
• Each node has 𝑥, 𝑦, 𝑧 coordinates → partition space

• Partitioning without Nodal Coordinates
• E.g., Sparse matrix of Web documents

• 𝐴(𝑗, 𝑘)= # times keyword 𝑗 appears in URL 𝑘
• Multilevel acceleration (BIG IDEA)

• Approximate problem by "coarse graph," do so recursively

11

Outline

• Review definition of Graph Partitioning problem

• Overview of heuristics

• Partitioning with Nodal Coordinates

• Ex: In finite element models, node at point in (x,y) or (x,y,z)
space

• Partitioning without Nodal Coordinates

• Ex: In model of WWW, nodes are web pages

• Multilevel Acceleration

• BIG IDEA, appears often in scientific computing

• Available Implementations

• Beyond Graph Partitioning: Hypergraphs

• Graph algorithms in sparse direct methods

12

Nodal Coordinates: How Well Can We Do?

• A planar graph can be drawn in plane without edge
crossings

• Ex: 𝑚 ×𝑚 grid of 𝑚2 nodes: ∃ vertex separator 𝑁𝑠 with
𝑁𝑠 = 𝑚 = 𝑁 1/2 (see earlier slide for 𝑚 = 5)

• Theorem (Tarjan, Lipton, 1979): If 𝐺 is planar, ∃ Ns such
that

• 𝑁 = 𝑁1 ∪ 𝑁𝑠 ∪ 𝑁2 is a partition,

• 𝑁1 ≤ 2/3 |𝑁| and 𝑁2 ≤ 2/3 |𝑁|

• 𝑁𝑠 ≤ 8 𝑁 1/2

• Theorem motivates intuition of following algorithms

13

Nodal Coordinates: Inertial Partitioning

• For a graph in 2D, choose line with half the nodes on one side and half
on the other

• In 3D, choose a plane, but consider 2D for simplicity

• Choose a line 𝐿, and then choose a line 𝐿⊥ perpendicular to it, with
half the nodes on either side

1. Choose a line 𝐿 through the points

𝐿 given by 𝑎 𝑥 − ҧ𝑥 + 𝑏 𝑦 − ത𝑦 = 0,

with 𝑎2 + 𝑏2 = 1; (𝑎, 𝑏) is unit vector ⊥ to 𝐿
L

(a,b)
(ഥ𝒙, ഥ𝒚)

2. Project each point to the line

For each 𝑛𝑗 = (𝑥𝑗 , 𝑦𝑗), compute coordinate

𝑆𝑗 = −𝑏 𝑥𝑗 − ҧ𝑥 + 𝑎(𝑦𝑗 − ത𝑦) along 𝐿
3. Compute the median

Let ҧ𝑆 = median(𝑆1, … , 𝑆𝑛)

4. Use median to partition the nodes

Let nodes with 𝑆𝑗 < ҧ𝑆 be in 𝑁1, rest in 𝑁2

L^

14

Inertial Partitioning: Choosing 𝐿

• Clearly prefer 𝐿, 𝐿⊥ on left below

• Mathematically, choose 𝐿 to be a total least squares fit of
the nodes

• Minimize sum of squares of distances to 𝐿 (green lines
on last slide)

• Equivalent to choosing 𝐿 as axis of rotation that
minimizes the moment of inertia of nodes (unit
weights) - source of name

L

L

N1 N2
N1

N2

L^

L^

15

Inertial Partitioning: choosing 𝐿 (continued)

σ𝑗 (length of j−th green line)2 = σ𝑗 𝑥𝑗 − ҧ𝑥
2
+ 𝑦𝑗 − ത𝑦

2
− −𝑏 𝑥𝑗 − ҧ𝑥 + 𝑎 𝑦𝑗 − ത𝑦

2

… Pythagorean Theorem

= 𝑎2σ𝑗 𝑥𝑗 − ҧ𝑥
2
+ 2𝑎𝑏σ𝑗(𝑥𝑗 − ҧ𝑥)(𝑦𝑗 − ത𝑦) + 𝑏2σ𝑗 𝑦𝑗 − ത𝑦

2

= 𝑎2𝑋1 + 2𝑎𝑏𝑋2 + 𝑏2𝑋3

= [𝑎 𝑏]
𝑋1 𝑋2
𝑋2 𝑋3

𝑎
𝑏

Minimized by choosing

ҧ𝑥, ത𝑦 = σ𝑗 𝑥𝑗 , σ𝑗 𝑦𝑗 /𝑛 = center of mass

(𝑎, 𝑏)= eigenvector of smallest eigenvalue of
𝑋1 𝑋2
𝑋2 𝑋3

(𝑎, 𝑏) is unit vector
perpendicular to 𝐿

(a,b)

L

(ഥ𝒙,ഥ𝒚)

(xj , yj)

16

Nodal Coordinates: Random Spheres

• Generalize nearest neighbor idea of a planar graph to higher dimensions

• Any graph can fit in 3D without edge crossings

• Capture intuition of planar graphs of being connected to "nearest
neighbors" but in higher than 2 dimensions

• For intuition, consider graph defined by a regular 3D mesh

• An 𝑛 × 𝑛 × 𝑛 mesh of 𝑁 = 𝑛3 nodes

• Edges to 6 nearest neighbors

• Partition by taking plane parallel to 2 axes

• Cuts 𝑛2 = 𝑁 2/3 = 𝑂 𝐸 2/3 edges

• For the general graphs

• Need a notion of "well-shaped" like mesh

17

Random Spheres: Well-Shaped Graphs

• Approach due to Miller, Teng, Thurston, Vavasis

• Def: A 𝑘-ply neighborhood system in 𝑑 dimensions is a set
{𝐷1, … , 𝐷𝑛} of closed disks in ℝ𝑑 such that no point in ℝ𝑑 is strictly
interior to more than 𝑘 disks

• Def: An (𝛼, 𝑘) overlap graph is a graph defined in terms of 𝛼 ≥ 1 and
a 𝑘-ply neighborhood system 𝐷1, … , 𝐷𝑛 : There is a node for each 𝐷𝑗,
and an edge from 𝑗 to 𝑖 if expanding the radius of the smaller of 𝐷𝑗
and 𝐷𝑖 by > 𝛼 causes the two disks to overlap

Ex: 𝒏 × 𝒏 mesh is a (1,1) overlap graph

Ex: Any planar graph is (𝜶, 𝒌) overlap for

some 𝜶, 𝒌

2D Mesh is

(1,1) overlap

graph

18

Generalizing Lipton/Tarjan to Higher Dimensions

• Theorem (Miller, Teng, Thurston, Vavasis, 1993):

Let 𝐺 = (𝑁, 𝐸) be an (𝛼, 𝑘) overlap graph in 𝑑 dimensions with
𝑛 = |𝑁|. Then there is a vertex separator 𝑁𝑠 such that

• 𝑁 = 𝑁1 ∪ 𝑁𝑠 ∪ 𝑁2 and
• 𝑁1 and 𝑁2 each has at most 𝑛(𝑑 + 1)/(𝑑 + 2) nodes

• 𝑁𝑠 has at most 𝑂 𝛼𝑘1/𝑑𝑛(𝑑−1)/𝑑 nodes

• When 𝑑 = 2, similar to Lipton/Tarjan

• Algorithm:
• Choose a sphere 𝑆 in ℝ𝑑

• Edges that 𝑆 "cuts" form edge separator 𝐸𝑠
• Build 𝑁𝑠 from 𝐸𝑠
• Choose 𝑆 "randomly", so that it satisfies Theorem with high

probability

19

Stereographic Projection

• Stereographic projection from plane to sphere
• In 𝑑 = 2, draw line from 𝑝 to North Pole, projection 𝑝’ of 𝑝 is

where the line and sphere intersect

• Similar in higher dimensions

p

p’

p = (x,y) p’ = (2x,2y,x2 + y2 –1) / (x2 + y2 + 1)

20

Choosing a Random Sphere

• Do stereographic projection from ℝ𝑑 to sphere 𝑆 in ℝ𝑑+1

• Find centerpoint of projected points

• Any plane through centerpoint divides points approx. venly

• There is a linear programming algorithm, cheaper heuristics

• Conformally map points on sphere

• Rotate points around origin so centerpoint at (0, …0, 𝑟) for some 𝑟

• Dilate points (unproject, multiply by
1−𝑟

1+𝑟

1/2
, project)

• this maps centerpoint to origin (0,…,0), spreads points around 𝑆

• Pick a random plane through origin

• Intersection of plane and sphere 𝑆 is "circle"

• Unproject circle

• yields desired circle 𝐶 in ℝ𝑑

• Create 𝑁𝑠: 𝑗 belongs to 𝑁𝑠 if 𝛼𝐷𝑗 intersects 𝐶

21

Random Sphere Algorithm (Gilbert)

22

Finite Element Mesh

Random Sphere Algorithm (Gilbert)

23

Mesh Points in the Plane

Random Sphere Algorithm (Gilbert)

24

Points Projected onto the Sphere

Random Sphere Algorithm (Gilbert)

25

Conformally Mapped Projected Points

Random Sphere Algorithm (Gilbert)

26

Mesh Points in the Plane

Random Sphere Algorithm (Gilbert)

27

Partition of the Original Mesh

42 cut edges

Nodal Coordinates: Summary

• Other variations on these algorithms

• Algorithms are efficient

• Rely on graphs having nodes connected
(mostly) to "nearest neighbors" in space
• algorithm does not depend on where

actual edges are!

• Common when graph arises from physical
model

• Ignores edges, but can be used as good
starting guess for subsequent partitioners
that do examine edges

• Can do poorly if graph connectivity is not
spatial:

28

Outline

• Review definition of Graph Partitioning problem

• Overview of heuristics

• Partitioning with Nodal Coordinates

• Ex: In finite element models, node at point in (x,y) or (x,y,z)
space

• Partitioning without Nodal Coordinates

• Ex: In model of WWW, nodes are web pages

• Multilevel Acceleration

• BIG IDEA, appears often in scientific computing

• Available Implementations

• Beyond Graph Partitioning: Hypergraphs

• Graph algorithms in sparse direct methods

29

Coordinate-Free: Breadth First Search (BFS)

• Given 𝐺 = (𝑁, 𝐸) and a root node 𝑟 in 𝑁, BFS produces

• A subgraph 𝑻 of 𝑮 (same nodes, subset of edges)

• 𝑻 is a tree rooted at 𝒓

• Each node assigned a level = distance from 𝒓

Tree edges

Horizontal edges

Inter-level edges

Level 0

Level 1

Level 2

Level 3

Level 4

N1

N2

root

30

Partitioning via Breadth First Search
• BFS identifies 3 kinds of edges

• Tree Edges - part of T

• Horizontal Edges - connect nodes at same level

• Interlevel Edges - connect nodes at adjacent levels

• No edges connect nodes in levels

differing by more than 1 (why?)

• BFS partioning heuristic

• 𝑁 = 𝑁1 ∪ 𝑁2, where

• 𝑁1 = {nodes at level ≤ 𝐿},

• 𝑁2 = {nodes at level > 𝐿}

• Choose 𝐿 so |𝑁1| close to |𝑁2|

BFS partition of a 2D Mesh
using center as root:
𝑁1 = levels 0, 1, 2, 3
𝑁2 = levels 4, 5, 6

root

31

Coordinate-Free: Kernighan/Lin

• Take a initial partition and iteratively improve it

• Kernighan/Lin (1970), cost = 𝑂(𝑁 3) but easy to understand

• Fiduccia/Mattheyses (1982), cost = 𝑂(|𝐸|),much better, but more
complicated

• Given 𝐺 = (𝑁, 𝐸,𝑊𝐸) and a partitioning 𝑁 = 𝐴 ∪ 𝐵, where |𝐴| = |𝐵|

• 𝑇 = cost(𝐴, 𝐵) = σ{𝑊(𝑒) where 𝑒 connects nodes in 𝐴 and 𝐵}

• Find subsets 𝑋 of 𝐴 and 𝑌 of 𝐵 with |𝑋| = |𝑌|

• Consider swapping 𝑋 and 𝑌 if it decreases cost:

• newA = 𝐴 – 𝑋 ∪ 𝑌 and newB = 𝐵 – 𝑌 ∪ 𝑋

• newT = cost(newA , newB) < 𝑇 = cost(𝐴, 𝐵)

• Need to compute newT efficiently for many possible 𝑋 and 𝑌, choose
smallest (best)

32

Kernighan/Lin: Preliminary Definitions

• 𝑇 = cost(𝐴, 𝐵), newT = cost(newA, newB)

• Need an efficient formula for newT; will use

• 𝐸(𝑎) = external cost of 𝑎 in 𝐴 = Σ {w(𝑎, 𝑏) for 𝑏 in 𝐵}

• 𝐼(𝑎) = internal cost of 𝑎 in 𝐴 = Σ {𝑤(𝑎, 𝑎’) for other 𝑎’ in 𝐴}

• 𝐷(𝑎)= cost of 𝑎 in 𝐴 = 𝐸(𝑎) − 𝐼(𝑎)

• 𝐸(𝑏), 𝐼(𝑏) and 𝐷(𝑏) defined analogously for 𝑏 in 𝐵

• Consider swapping 𝑋 = {𝑎} and 𝑌 = {𝑏}

• newA = 𝐴 − 𝑎 ∪ {𝑏}, newB = 𝐵 − 𝑏 ∪ {𝑎}

• newT = 𝑇 − 𝐷 𝑎 + 𝐷 𝑏 − 2𝑤 𝑎, 𝑏 ≡ 𝑇 − gain(𝑎, 𝑏)

• gain(𝑎, 𝑏) measures improvement from swapping 𝑎 and 𝑏

• Update formulas

• newD(𝑎’) = 𝐷(𝑎’) + 2𝑤(𝑎’, 𝑎) − 2𝑤(𝑎’, 𝑏) for 𝑎’ in 𝐴, 𝑎’ ≠ 𝑎

• newD(𝑏’) = 𝐷(𝑏’) + 2𝑤(𝑏’, 𝑏) − 2𝑤(𝑏’, 𝑎) for 𝑏’ in 𝐵, 𝑏’ ≠ 𝑏

33

Kernighan/Lin Algorithm

Compute T = cost(A,B) for initial A, B … cost = O(|N|2)
Repeat

… One pass greedily computes |N|/2 possible X,Y to swap, picks best
Compute costs D(n) for all n in N … cost = O(|N|2)
Unmark all nodes in N … cost = O(|N|)
While there are unmarked nodes … |N|/2 iterations

Find an unmarked pair (a,b) maximizing gain(a,b) … cost = O(|N|2)
Mark a and b (but do not swap them) … cost = O(1)
Update D(n) for all unmarked n,

as though a and b had been swapped … cost = O(|N|)
Endwhile

… At this point we have computed a sequence of pairs
… (a1,b1), … , (ak,bk) and gains gain(1),…., gain(k)
… where k = |N|/2, numbered in the order in which we marked them

Pick m maximizing Gain = Σk=1 to m gain(k) … cost = O(|N|)
… Gain is reduction in cost from swapping (a1,b1) through (am,bm)

If Gain > 0 then … it is worth swapping
Update newA = A - { a1,…,am } U { b1,…,bm } … cost = O(|N|)
Update newB = B - { b1,…,bm } U { a1,…,am } … cost = O(|N|)
Update T = T - Gain … cost = O(1)

endif
Until Gain <= 0

34

Comments on Kernighan/Lin Algorithm

• Most expensive line shown in red, 𝑂(𝑁 3)

• Some gain(k) may be negative, but if later gains are large, then final
gain may be positive

• can escape "local minima" where switching no pair helps

• How many times do we repeat?

• K/L tested on very small graphs (𝑁 ≤ 360) and got
convergence after 2-4 sweeps

• For random graphs (of theoretical interest) the probability of
convergence in one step appears to drop like 2−|𝑁|/30

A summary of improvements over Kernighan/Lin can be found in this
recent survey:

Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., & Schulz, C. (2016).
Recent advances in graph partitioning. In Algorithm Engineering.

35

a

hg
fe

dc

b
Green nodes are in Part1;
black nodes are in Part2.

The initial partition into two
parts is arbitrary. In this
case it cuts 8 edges.

The initial node gains are
shown in green.

0

1 0

2

3 0

1-1

Nodes tentatively moved (and cut size after each pair):

none (8);

Simplified Fiduccia-Mattheyses: Example (1)

36

a

hg
fe

dc

bThe node in Part1 with
largest gain is g. We
tentatively move it to Part2
and recompute the gains of
its neighbors.

Tentatively moved nodes are
hollow circles. After a node
is tentatively moved its gain
doesn’t matter any more.

-2

1 0

2

-2

1-3

Nodes tentatively moved (and cut size after each pair):

none (8); g,

Simplified Fiduccia-Mattheyses: Example (2)

37

a

hg
fe

dc

bThe node in Part2 with
largest gain is d. We
tentatively move it to Part1
and recompute the gains of
its neighbors.

After this first tentative
swap, the cut size is 4.

-2

-1 -2

0

0

-1

Nodes tentatively moved (and cut size after each pair):

none (8); g, d (4);

Simplified Fiduccia-Mattheyses: Example (3)

38

a

hg
fe

dc

bThe unmoved node in Part1
with largest gain is f. We
tentatively move it to Part2
and recompute the gains of
its neighbors. -2

-1 -2

-2

-1

Nodes tentatively moved (and cut size after each pair):

none (8); g, d (4); f

Simplified Fiduccia-Mattheyses: Example (4)

39

a

hg
fe

dc

bThe unmoved node in Part2
with largest gain is c. We
tentatively move it to Part1
and recompute the gains of
its neighbors.

After this tentative swap,
the cut size is 5.

0

-3 -2

0

Nodes tentatively moved (and cut size after each pair):

none (8); g, d (4); f, c (5);

Simplified Fiduccia-Mattheyses: Example (5)

40

a

hg
fe

dc

bThe unmoved node in Part1
with largest gain is b. We
tentatively move it to Part2
and recompute the gains of
its neighbors. 0

-1

0

Nodes tentatively moved (and cut size after each pair):

none (8); g, d (4); f, c (5); b

Simplified Fiduccia-Mattheyses: Example (6)

41

a

hg
fe

dc

bThere is a tie for largest
gain between the two
unmoved nodes in Part2.
We choose one (say e) and
tentatively move it to Part1.
It has no unmoved neighbors
so no gains are recomputed.

After this tentative swap the
cut size is 7.

-1

0

Nodes tentatively moved (and cut size after each pair):

none (8); g, d (4); f, c (5); b, e (7);

Simplified Fiduccia-Mattheyses: Example (7)

42

a

hg
fe

dc

bThe unmoved node in Part1
with the largest gain (the
only one) is a. We
tentatively move it to Part2.
It has no unmoved neighbors
so no gains are recomputed.

0

Nodes tentatively moved (and cut size after each pair):

none (8); g, d (4); f, c (5); b, e (7); a

Simplified Fiduccia-Mattheyses: Example (8)

43

a

hg
fe

dc

bThe unmoved node in Part2
with the largest gain (the
only one) is h. We
tentatively move it to Part1.

The cut size after the final
tentative swap is 8, the
same as it was before any
tentative moves.

Nodes tentatively moved (and cut size after each pair):

none (8); g, d (4); f, c (5); b, e (7); a, h (8)

Simplified Fiduccia-Mattheyses: Example (9)

44

a

hg
fe

dc

bAfter every node has been
tentatively moved, we look
back at the sequence and
see that the smallest cut was
4, after swapping g and d.
We make that swap
permanent and undo all the
later tentative swaps.

This is the end of the first
improvement step.

Nodes tentatively moved (and cut size after each pair):

none (8); g, d (4); f, c (5); b, e (7); a, h (8)

Simplified Fiduccia-Mattheyses: Example (10)

45

a

hg
fe

dc

b

Now we recompute the gains
and do another improvement
step starting from the new
size-4 cut. The details are
not shown.

The second improvement
step doesn’t change the cut
size, so the algorithm ends
with a cut of size 4.

In general, we keep doing
improvement steps as long
as the cut size keeps getting
smaller.

Simplified Fiduccia-Mattheyses: Example (11)

46

Coordinate-Free: Spectral Bisection

• Based on theory of Fiedler (1970s), popularized by Pothen, Simon,
Liou (1990)

• Motivation, by analogy to a vibrating string

• Basic definitions

• Vibrating string, revisited

• Implementation via the Lanczos Algorithm

• To optimize sparse-matrix-vector multiply, we graph partition

• To graph partition, we find an eigenvector of a matrix
associated with the graph

• To find an eigenvector, we do sparse-matrix vector multiply

• No free lunch ...

47

Motivation for Spectral Bisection

• Vibrating string

• Think of 𝐺 = 1D mesh as masses (nodes) connected by springs
(edges), i.e. a string that can vibrate

• Vibrating string has modes of vibration, or harmonics

• Label nodes by whether mode - or + to partition into N- and N+

• Same idea for other graphs (eg planar graph ~ trampoline)

48

Basic Definitions

• Definition: The incidence matrix 𝐼𝑛(𝐺) of a graph 𝐺 = (𝑁, 𝐸) is
an |𝑁| by |𝐸|matrix, with one row for each node and one column
for each edge. If edge 𝑒 = (𝑖, 𝑗) then column 𝑒 of 𝐼𝑛(𝐺) is zero
except for the i-th and j-th entries, which are +1 and -1,
respectively.

• Slightly ambiguous definition because multiplying column e of
𝐼𝑛(𝐺) by -1 still satisfies the definition, but this won’t matter...

• Definition: The Laplacian matrix L(G) of a graph 𝐺 = (𝑁, 𝐸) is an
|𝑁| by |𝑁| symmetric matrix, with one row and column for each
node. It is defined by

• 𝐿(𝐺)(𝑖, 𝑖)= degree of node 𝑖 (number of incident edges)

• 𝐿(𝐺)(𝑖, 𝑗)= -1 if 𝑖 ≠ 𝑗 and there is an edge (𝑖, 𝑗)

• 𝐿(𝐺)(𝑖, 𝑗)= 0 otherwise

49

Example of In(G) and L(G) for Simple Meshes

50

Nodes numbered in black
Edges numbered in blue

Graph 𝐺 Incidence Matrix 𝐼𝑛(𝐺) Laplacian Matrix 𝐿(𝐺)

Properties of Laplacian Matrix

• Theorem 1: Given 𝐺, 𝐿(𝐺) has the following properties

• 𝐿(𝐺) is symmetric.

• This means the eigenvalues of 𝐿(𝐺) are real and its
eigenvectors are real and orthogonal.

• 𝐼𝑛 𝐺 × 𝐼𝑛 𝐺
𝑇
= 𝐿(𝐺)

• The eigenvalues of 𝐿(𝐺) are nonnegative:

• 0 = 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑛
• The number of connected components of 𝐺 is equal to the

number of 𝜆𝑖 equal to 0.

• Definition: 𝜆2 𝐿(𝐺) is the algebraic connectivity of 𝐺

• The magnitude of 𝜆2 measures connectivity

• In particular, 𝜆2 ≠ 0 if and only if 𝐺 is connected.

51

Spectral Bisection Algorithm

• Spectral Bisection Algorithm:

• Compute eigenvector v2 corresponding to 𝜆2 𝐿(𝐺)

• For each node 𝑛 of 𝐺

• if 𝑣2(𝑛) < 0 put node 𝑛 in partition N-

• else put node 𝑛 in partition N+

• Why does this make sense? Some reasons...

• Theorem 2 (Fiedler, 1975): Let 𝐺 be connected, and N- and
N+ defined as above. Then N- is connected. If no 𝑣2(𝑛) = 0,
then N+ is also connected.

• Recall 𝜆2 𝐿(𝐺) is the algebraic connectivity of 𝐺

• Theorem 3 (Fiedler): Let 𝐺1 = (𝑁, 𝐸1) be a subgraph of 𝐺 =
(𝑁, 𝐸), so that 𝐺1 is "less connected" than 𝐺. Then
𝜆2 𝐿(𝐺1) ≤ 𝜆2 𝐿(𝐺) , i.e., the algebraic connectivity of 𝐺1 is
less than or equal to the algebraic connectivity of 𝐺.

52

Details for Vibrating String Analogy

• Force on mass 𝑗 = 𝑘 𝑥 𝑗 − 1 − 𝑥 𝑗 + 𝑘 𝑥 𝑗 + 1 − 𝑥 𝑗

= −𝑘 −𝑥 𝑗 − 1 + 2𝑥 𝑗 − 𝑥 𝑗 + 1

• 𝐹 = 𝑚𝑎 yields 𝑚 ⋅ 𝑥′′(𝑗) = −𝑘 −𝑥 𝑗 − 1 + 2𝑥 𝑗 − 𝑥 𝑗 + 1 (*)

• Writing (*) for 𝑗 = 1,2, … , 𝑛 yields

(−𝒎/𝒌) 𝒙′′ = 𝑳𝒙

53

𝑚 =
𝑑2

𝑑𝑥2

𝑥(1)
𝑥(2)
⋮

𝑥(𝑗)
⋮

𝑥(𝑛)

= −𝑘

2𝑥 1 − 𝑥 2
−𝑥 1 + 2𝑥 2 − 𝑥 3

⋮
−𝑥 𝑗 − 1 + 2𝑥 𝑗 − 𝑥 𝑗 + 1

⋮
−𝑥 𝑛 − 1 + 2𝑥 𝑛

= −𝑘

2 −1
−1 2 ⋱

⋱ ⋱ −1
−1 2

𝑥 1
𝑥 2
⋮

𝑥 𝑗
⋮

𝑥 𝑛

= −𝑘𝐿

𝑥(1)
𝑥(2)
⋮

𝑥(𝑗)
⋮

𝑥(𝑛)

Details for Vibrating String (continued)

• −(𝑚/𝑘) 𝑥’’ = 𝐿𝑥, where 𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑛
𝑇

• Seek solution of form 𝑥 𝑡 = sin(𝛼𝑡) 𝑥0
• 𝐿𝑥0 = Τ𝑚 𝑘 𝛼2𝑥0 = 𝜆𝑥0
• For each integer 𝑖, get 𝜆 = 2(1 − cos(𝑖𝜋/(𝑛 + 1)),

• Thus 𝑥0 is a sine curve with frequency proportional to 𝑖

• Thus 𝛼2 = 2(𝑘/𝑚)(1 − cos(𝑖𝜋/(𝑛 + 1)) or 𝛼 ~ Τ𝑘 𝑚 Τ1 2𝜋𝑖/(𝑛 + 1)

• 𝐿 = 2 -1 not quite Laplacian of 1D mesh,

-1 2 -1 but we can fix that ...

….

-1 2

54

𝑥0 =

sin(1𝑖𝜋/(𝑛 + 1))

sin 2𝑖𝜋/(𝑛 + 1)
⋮

sin(𝑛𝑖𝜋/(𝑛 + 1))

Details for Vibrating String (continued)

• Write down F=ma for "vibrating string" below

• Get Graph Laplacian of 1D mesh

55

Eigenvectors of 𝐿 (1D mesh)

Eigenvector 1
(all ones)

Eigenvector 2

Eigenvector 3

56

2nd eigenvector of 𝐿 (planar mesh)

57

Computing 𝑣2 and 𝜆2of 𝐿(𝐺) using Lanczos
• Given any 𝑛 × 𝑛 symmetric matrix 𝐴 (such as 𝐿(𝐺)) Lanczos computes a
𝑘 × 𝑘 "approximation" 𝑇 by doing 𝑘 matrix-vector products, 𝑘 ≪ 𝑛

• Approximate 𝐴’s eigenvalues/vectors using 𝑇’s

Choose an arbitrary starting vector 𝑟
𝑏 0 = ||𝑟||
𝑗 = 0
repeat

𝑗 = 𝑗 + 1
𝑞(𝑗) = 𝑟/𝑏(𝑗 − 1) … scale a vector (BLAS1)
𝑟 = 𝐴𝑞(𝑗) … matrix vector multiplication, expensive step
𝑟 = 𝑟 − 𝑏(𝑗 − 1)𝑣(𝑗 − 1) … "axpy", or scalar*vector + vector (BLAS1)
𝑎(𝑗) = 𝑣 𝑗 𝑇𝑟 … dot product (BLAS1), expensive step
𝑟 = 𝑟 − 𝑎(𝑗)𝑣(𝑗) … "axpy" (BLAS1)
𝑏(𝑗) = ||𝑟|| … compute vector norm (BLAS1), expensive step

until convergence … details omitted
T = a(1) b(1)

b(1) a(2) b(2)

b(2) a(3) b(3)

… … …

b(k-2) a(k-1) b(k-1)

b(k-1) a(k)

58

Spectral Bisection: Summary

• Laplacian matrix represents graph connectivity

• Second eigenvector gives a graph bisection

• Roughly equal "weights" in two parts

• Weak connection in the graph will be separator

• Implementation via the Lanczos Algorithm

• To optimize sparse-matrix-vector multiply, we graph partition

• To graph partition, we find an eigenvector of a matrix
associated with the graph

• To find an eigenvector, we do sparse-matrix vector multiply

• Have we made progress?

• The first matrix-vector multiplies are slow, but use them to
learn how to make the rest faster

59

Outline

• Review definition of Graph Partitioning problem

• Overview of heuristics

• Partitioning with Nodal Coordinates

• Ex: In finite element models, node at point in (x,y) or (x,y,z)
space

• Partitioning without Nodal Coordinates

• Ex: In model of WWW, nodes are web pages

• Multilevel Acceleration

• BIG IDEA, appears often in scientific computing

• Available Implementations

• Beyond Graph Partitioning: Hypergraphs

• Graph algorithms in sparse direct methods

60

Introduction to Multilevel Partitioning

• If we want to partition 𝐺 = (𝑁, 𝐸), but it is too big to do
efficiently, what can we do?

• 1) Replace 𝐺 = (𝑁, 𝐸) by a coarse approximation 𝐺𝑐 =
(𝑁𝑐 , 𝐸𝑐) and partition 𝐺𝑐 instead

• 2) Use partition of 𝐺𝑐 to get a rough partitioning of 𝐺, and
then iteratively improve it

• What if 𝐺𝑐 still too big?

• Apply same idea recursively

61

Multilevel Partitioning - High Level Algorithm
(𝑁+,𝑁-) = Multilevel_Partition(𝑁,𝐸)

… recursive partitioning routine returns 𝑁+ and 𝑁- where 𝑁 = 𝑁+ U 𝑁-
if |𝑁| is small

(1) Partition 𝐺 = (𝑁, 𝐸) directly to get 𝑁 = 𝑁+ U 𝑁-
Return (𝑁+, 𝑁-)

else
(2) Coarsen 𝐺 to get an approximation 𝐺𝑐 = (𝑁𝑐 , 𝐸𝑐)
(3) (𝑁𝑐+ , 𝑁𝑐-) = Multilevel_Partition(𝑁𝑐 , 𝐸𝑐)
(4) Expand (𝑁𝑐+ , 𝑁𝑐-) to a partition (𝑁+, 𝑁-) of 𝑁
(5) Improve the partition (𝑁+, 𝑁-)

Return (𝑁+, 𝑁-)
endif

(2,3)

(2,3) (4)

(4)

(5)

(5)

(5)

How do we
Coarsen?
Expand?
Improve?

"V - cycle":

62

(2,3)

(1)

(4)

Multilevel Kernighan-Lin

• Coarsen graph and expand partition using maximal matchings

• Improve partition using Kernighan-Lin

63

Maximal Matching

• Definition: A matching of a graph 𝐺 = (𝑁, 𝐸) is a subset 𝐸𝑚 of 𝐸
such that no two edges in 𝐸𝑚 share an endpoint

• Definition: A maximal matching of a graph 𝐺 = (𝑁, 𝐸) is a
matching 𝐸𝑚 to which no more edges can be added and remain a
matching

• A simple greedy algorithm computes a maximal matching:

let 𝐸𝑚 be empty
mark all nodes in 𝑁 as unmatched
for 𝑖 = 1 to |𝑁| … visit the nodes in any order

if 𝑖 has not been matched
mark 𝑖 as matched
if there is an edge 𝑒 = (𝑖, 𝑗) where 𝑗 is also unmatched,

add 𝑒 to 𝐸𝑚
mark 𝑗 as matched

endif
endif

endfor

64

Maximal Matching: Example

65

Example of Coarsening

66

Coarsening using a maximal matching (details)

1) Construct a maximal matching 𝐸𝑚 of 𝐺 = (𝑁, 𝐸)
for all edges 𝑒 = (𝑗, 𝑘) in 𝐸𝑚 2) collapse matched nodes into a single one

Put node 𝑛(𝑒) in 𝑁𝑐
𝑊(𝑛(𝑒)) = 𝑊(𝑗) + 𝑊(𝑘) … gray statements update node/edge weights

for all nodes 𝑛 in 𝑁 not incident on an edge in 𝐸𝑚 3) add unmatched nodes
Put 𝑛 in 𝑁𝑐 … do not change 𝑊(𝑛)

… Now each node 𝑟 in 𝑁 is "inside" a unique node 𝑛(𝑟) in 𝑁𝑐

… 4) Connect two nodes in 𝑁𝑐 if nodes inside them are connected in 𝐸
for all edges 𝑒 = (𝑗, 𝑘) in 𝐸𝑚

for each other edge 𝑒’ = (𝑗, 𝑟) or (𝑘, 𝑟) in 𝐸
Put edge 𝑒𝑒 = (𝑛(𝑒), 𝑛(𝑟)) in 𝐸𝑐
𝑊(𝑒𝑒) = 𝑊(𝑒’)

If there are multiple edges connecting two nodes in 𝑁𝑐, collapse them,
adding edge weights

67

Expanding a partition of 𝐺𝑐 to a partition of 𝐺

69

Multilevel Spectral Bisection

• Coarsen graph and expand partition using maximal independent
sets

• Improve partition using Rayleigh Quotient Iteration

70

Maximal Independent Sets

• Definition: An independent set of a graph 𝐺 = (𝑁, 𝐸) is a subset 𝑁𝑖 of 𝑁
such that no two nodes in Ni are connected by an edge

• Definition: A maximal independent set (MIS) of a graph 𝐺 = (𝑁, 𝐸) is an
independent set 𝑁𝑖 to which no more nodes can be added and remain an
independent set

• A simple greedy algorithm computes a maximal independent set:

let 𝑁𝑖 be empty
for 𝑘 = 1 to |𝑁| … visit the nodes in any order

if node 𝑘 is not adjacent to any node already in 𝑁𝑖
add 𝑘 to 𝑁𝑖

endif
endfor

71

Example of Coarsening

- encloses domain Dk = node of Nc

72

Coarsening using Maximal Independent Sets (details)

… Build "domains" 𝐷(𝑘) around each node 𝑘 in 𝑁𝑖 to get nodes in 𝑁𝑐
… Add an edge to 𝐸𝑐 whenever it would connect two such domains
𝐸𝑐 = empty set
for all nodes 𝑘 in 𝑁𝑖

𝐷(𝑘) = ({𝑘}, empty set)
… first set contains nodes in 𝐷(𝑘), second set contains edges in 𝐷(𝑘)

unmark all edges in 𝐸
repeat

choose an unmarked edge 𝑒 = (𝑘, 𝑗) from 𝐸
if exactly one of 𝑘 and 𝑗 (say 𝑘) is in some 𝐷(𝑚)

mark 𝑒
add 𝑗 and 𝑒 to 𝐷(𝑚)

else if 𝑘 and 𝑗 are in two different 𝐷(𝑚)’s (say 𝐷(𝑚𝑘) and 𝐷(𝑚𝑗))
mark 𝑒
add edge (𝑚𝑘,𝑚𝑗) to 𝐸𝑐

else if both 𝑘 and 𝑗 are in the same 𝐷(𝑚)
mark 𝑒
add 𝑒 to 𝐷(𝑚)

else
leave 𝑒 unmarked

endif
until no unmarked edges

73

Expanding a partition of 𝐺𝑐 to a partition of 𝐺

• Need to convert an eigenvector 𝑣𝑐 of 𝐿(𝐺𝑐) to an approximate
eigenvector 𝑣 of 𝐿(𝐺)

• Use interpolation:

For each node 𝑗 in 𝑁
if 𝑗 is also a node in 𝑁𝑐, then

𝑣(𝑗) = 𝑣𝑐(𝑗) … use same eigenvector component
else

𝑣(𝑗)= average of 𝑣𝑐(𝑘) for all neighbors 𝑘 of 𝑗 in 𝑁𝑐
end if

endif

74

Example: 1D mesh of 9 nodes

75

Improve eigenvector: Rayleigh Quotient Iteration

𝑗 = 0
pick starting vector 𝑣(0) … from expanding 𝑣𝑐
repeat

𝑗 = 𝑗 + 1
𝑟 𝑗 = 𝑣𝑇 𝑗 − 1 ⋅ 𝐿 𝐺 ⋅ 𝑣(𝑗 − 1)
… 𝑟(𝑗)= Rayleigh Quotient of 𝑣(𝑗 − 1)
… = good approximate eigenvalue
𝑣 𝑗 = 𝐿 𝐺 − 𝑟 𝑗 ⋅ 𝐼 −1 ⋅ 𝑣(𝑗 − 1)
… expensive to do exactly, so solve approximately
… using an iteration called SYMMLQ,
… which uses matrix-vector multiply (no surprise)
𝑣(𝑗) = 𝑣(𝑗) / ||𝑣(𝑗)|| … normalize 𝑣(𝑗)

until 𝑣(𝑗) converges
… Convergence is very fast: cubic

76

Example of cubic convergence for 1D mesh

77

Outline

• Review definition of Graph Partitioning problem

• Overview of heuristics

• Partitioning with Nodal Coordinates

• Ex: In finite element models, node at point in (x,y) or (x,y,z)
space

• Partitioning without Nodal Coordinates

• Ex: In model of WWW, nodes are web pages

• Multilevel Acceleration

• BIG IDEA, appears often in scientific computing

• Available Implementations

• Beyond Graph Partitioning: Hypergraphs

• Graph algorithms in sparse direct methods

78

Available Implementations

• Multilevel Kernighan/Lin

• METIS and ParMETIS (glaros.dtc.umn.edu/gkhome/views/metis)

• SCOTCH and PT-SCOTCH (www.labri.fr/perso/pelegrin/scotch/)

• Matlab toolbox for geometric and spectral partitioning by Gilbert, Tang,
and Li: https://github.com/YingzhouLi/meshpart

• Multilevel Spectral Bisection

• S. Barnard and H. Simon, "A fast multilevel implementation of
recursive spectral bisection …", 1993

• Chaco (SC’14 Test of Time Award)

• Hybrids possible

• Ex: Use Kernighan/Lin to improve a partition from spectral bisection

• Recent packages with collection of techniques

• Zoltan (www.cs.sandia.gov/Zoltan)

• KaHIP (http://algo2.iti.kit.edu/kahip/)

79

https://github.com/YingzhouLi/meshpart
http://www.cs.sandia.gov/Zoltan
http://algo2.iti.kit.edu/kahip

Outline

• Review definition of Graph Partitioning problem

• Overview of heuristics

• Partitioning with Nodal Coordinates

• Ex: In finite element models, node at point in (x,y) or (x,y,z)
space

• Partitioning without Nodal Coordinates

• Ex: In model of WWW, nodes are web pages

• Multilevel Acceleration

• BIG IDEA, appears often in scientific computing

• Available Implementations

• Beyond Graph Partitioning: Hypergraphs

• Graph algorithms in sparse direct methods

80

r1

r2

r3

r4

c1

c2

c3

c4

Beyond simple graph partitioning:

Representing a sparse matrix as a hypergraph

81

r1

r2

r3

r4

c1

c2

c3

c4

P1

P2

But graph cut is 3!

⇒ Cut size of graph partition

may not accurately count

communication volume

Source vector entries

corresponding to c2

and c3 are needed by

both partitions – so

total volume of

communication is 2

Using a graph to partition, versus a hypergraph

1 2

3 4

P1

P2

82

P1 P2

v5

v3
v4

1vv2 v6

v8 v9

v10v7

4

4 5

4

4 4

4

5

4

4

2

2

2

2

2

2

2

2

2 2

2

2
2

2
22

edge 𝑣𝑖 , 𝑣𝑗 ∈ 𝐸 ⇒

𝑦 𝑖 ← 𝑦(𝑖) + 𝐴(𝑖, 𝑗) 𝑥(𝑗) and 𝑦 𝑗 ← 𝑦(𝑗) + 𝐴(𝑗, 𝑖) 𝑥(𝑖)

𝑃1 performs: 𝑦 4 ← 𝑦(4) + 𝐴(4,7) 𝑥(7) and

𝑦 5 ← 𝑦(5) + 𝐴(5,7) 𝑥(7)

𝑥(7) only needs to be communicated once !

2

5

7

8

9

1

3

4

6

10

2

5

7

8

9

1

3

4

6

10

2

5

7

8

9

1

3

4

6

10

1 2 3 4 5 6 7 8 9 10

P
2

P
1

=

y A x

A sparse matrix in the graph model

83

P1 P2

v4

v6
v8v2

4

v3 4

5

v5 4

1v
4 4

4

v75

v9
4

v10
4

• Column-net model for block-row distributions

• Rows are vertices, columns are nets (hyperedges)

2

5

7

8

9

1

3

4

6

10

2

5

7

8

9

1

3

4

6

10

2

5

7

8

9

1

3

4

6

10

1 2 3 4 5 6 7 8 9 10

P
2

P
1

=

y A x

Each {vertex, net} pair represents unique nonzero net-cut metric:
cutsize(Π) = σ𝑛∈𝑁𝐸𝑤 𝑛𝑖

connectivity-1 metric: cutsize(Π) = σ𝑛∈𝑁𝐸𝑤 𝑛𝑖 𝑐 𝑛𝑗 − 1

n7

n1

n4

n6

n8n5

A sparse matrix in the hypergraph model

84

Two Different 2D Mesh Partitioning Strategies

Y
Y

Graph:
Cartesian Partitioning

Total SpMV communication volume = 64

Hypergraph:
MeshPart Algorithm [Ucar, Catalyurek, 2010]

Total SpMV communication volume = 58

85

Generalization of the MeshPart Algorithm

In general, for a PxQ partitioning of an MxN mesh,

MeshPart: vol(M,N,P,Q) = n(3PQ
where n = M/P = N/Q

Cartesian: vol(M,N,P,Q) = 2N(P

For 𝑁 × 𝑁 mesh on 𝑃 × 𝑃 processor grid:
Usual Cartesian partitioning costs ≈ 4𝑁𝑃 words moved
MeshPart costs ≈ 3𝑁𝑃 words moved, 25% savings

86

Experimental Results: Hypergraph vs. Graph Partitioning

~8% reduction in total communication volume
using hypergraph partitioning (PaToH)

versus graph partitioning (METIS)

64x64 Mesh (5-pt stencil), 16 processors

Hypergraph Partitioning (PaToH)
Total Comm. Vol = 719
Max Vol per Proc = 59

Graph Partitioning (Metis)
Total Comm. Vol = 777
Max Vol per Proc = 69

87

Further Benefits of Hypergraph Model: Nonsymmetric Matrices

• Graph model of matrix has edge (𝑖, 𝑗) if either 𝐴(𝑖, 𝑗) or 𝐴(𝑗, 𝑖) nonzero

• Same graph for 𝐴 as |𝐴| + |𝐴𝑇|

• Ok for symmetric matrices, what about nonsymmetric?
Illustrative Bad Example: triangular matrix

This results in a suboptimal partition in terms of both communication and load balancing. In this case,

Total Communication Volume = 60 (optimal is ~12 in this case, subject to load balancing)
Proc1: 76 nonzeros, Proc 2: 60 nonzeros (~26% imbalance ratio)

Whereas the hypergraph model can capture nonsymmetry, the graph partitioning model deals
with nonsymmetry by partitioning the graph of 𝐴 + 𝐴𝑇 (which in this case is a dense matrix).

Given 𝐴, graph
partition 𝐴 + 𝐴𝑇

which gives the
partition for 𝐴

88

Further Benefits of Hypergraph Model: Nonsymmetric Matrices

• Graph model of matrix has edge (𝑖, 𝑗) if either 𝐴(𝑖, 𝑗) or 𝐴(𝑗, 𝑖) nonzero

• Same graph for 𝐴 as |𝐴| + |𝐴𝑇|

• Ok for symmetric matrices, what about nonsymmetric?

• Try 𝐴 upper triangular

Graph Partitioning (Metis)
Total Communication Volume= 254

Load imbalance ratio = 6%

Hypergraph Partitioning
(PaToH)

Total Communication Volume= 181
Load imbalance ratio = 0.1%

89

Summary: Graphs versus Hypergraphs

• Pros and cons

• When matrix is non-symmetric, the graph partitioning
model (using 𝐴 + 𝐴𝑇) loses information, resulting in
suboptimal partitioning in terms of communication and
load balance.

• Even when matrix is symmetric, graph cut size is not an
accurate measurement of communication volume

• Hypergraph partitioning model solves both these problems

• However, hypergraph partitioning (PaToH) can be much
more expensive than graph partitioning (METIS)

• Hypergraph partitioners: PaToH, HMETIS, ZOLTAN

90

Is Graph Partitioning a Solved Problem?

• Myths of partitioning due to Bruce Hendrickson

1. Edge cut = communication cost

2. Simple graphs are sufficient

3. Edge cut is the right metric

4. Existing tools solve the problem

5. Key is finding the right partition

6. Graph partitioning is a solved problem

• Slides and myths based on Bruce Hendrickson’s:

"Load Balancing Myths, Fictions & Legends"

91

Myth: Partition Quality is Paramount

• When structure are changing dynamically during a simulation, need
to partition dynamically

• Speed may be more important than quality

• Partitioner must run fast in parallel

• Another chicken and egg problem here

• Partition should be incremental

• Change minimally relative to prior one

• Must not use too much memory

• Recent research on streaming partitioning:

• Stanton, I. and Kliot, G., "Streaming graph partitioning for
large distributed graphs". KDD, 2012.

• The idea is used by many graph processing systems such as
PowerGraph and GPS

92

Some References

• A. Pothen, H. Simon, K.-P. Liou, "Partitioning sparse matrices with
eigenvectors of graphs", SIAM J. Mat. Anal. Appl. 11:430-452 (1990)

• M. Fiedler, "Algebraic Connectivity of Graphs", Czech. Math. J.,
23:298-305 (1973)

• M. Fiedler, Czech. Math. J., 25:619-637 (1975)

• B. Parlett, "The Symmetric Eigenproblem", Prentice-Hall, 1980

93

Outline

• Review definition of Graph Partitioning problem

• Overview of heuristics

• Partitioning with Nodal Coordinates

• Ex: In finite element models, node at point in (x,y) or (x,y,z)
space

• Partitioning without Nodal Coordinates

• Ex: In model of WWW, nodes are web pages

• Multilevel Acceleration

• BIG IDEA, appears often in scientific computing

• Available Implementations

• Beyond Graph Partitioning: Hypergraphs

• Graph algorithms in sparse direct methods

94

Symmetric sparse matrices and graphs

95

Nonsymmetric sparse matrices and graphs

96

Sparse Linear Solvers

97

Examples of Sparse Direct Solvers

98

Review: LU Factorization

99

Sparse LU Factorization

100

Simple case

101

Sparse Cholesky

102

Filled graph 𝐺+(𝐴)

103

Filled graph 𝐺+(𝐴)

104

Filled graph 𝐺+(𝐴)

105

Steps of Sparse Cholesky

106

Ordering rows and columns of A

107

Nested Dissection Example

108

Elimination Tree

109

Elimination Tree

110

Elimination Tree

111

Column dependencies and elimination tree

112

Nested Dissection and Separator Tree

• Available packages:
• Metis, parmetis
• Scotch, PT-Scotch

113

Lower Bounds on Communication for Sparse Direct Solvers

114

Lower bounds for Cholesky

115

Lower bounds for Cholesky

116

Lower Bounds for Cholesky

117

