
Exercises 8:
Sparse Linear Algebra



Today

• Sparse matrix-vector storage and multiplication

• Setup:

• Download ex8.tar from Moodle, scp it to the cluster, and unpack the 
tar file

• You should see csrmv.c and cscmv.c

2



Sparse Matrix Storage Formats
• CSR: compressed sparse row

• CSC: compressed sparse column

• COO: coordinate format

• BCRS: block compressed sparse row

• DIA or CDS: Diagonal storage

• SKS: skyline storage

• ELL

• Many, many others

3



Compressed Sparse Row (CSR) Storage

• CSR has:

• Array of the nonzero values (val) of size nnz = number of nonzeros

• Array of the column indices (colidx) for each value of size nnz

• Array of row start pointers (rowptr) of size n = number of rows

4

colidx

rowptr



y = Ax

Matrix-vector multiply kernel: y(i)  y(i) + A(i,j)*x(j)

for each row i

for k=rowptr[i] to rowptr[i+1]-1 do

y[i] = y[i] + val[k]*x[colidx[k]]

SpMV with Compressed Sparse Row (CSR)

y

x

A

5

colidx

rowptr



Task 1: Implement CSR-MV
• Open the file csrmv.c

• This file takes 2 command line inputs: 𝑛 and 
Ntrials

• This file creates a 2D Poisson matrix (a 
square matrix with dimension 𝑁, where 𝑁 =
𝑛2) in CSR format and will multiply it by a 
vector of all ones

• Measures the time to do the matrix-vector 
product, averaged over Ntrials trials

6

• Your task: implement the code that does the CSR matrix vector 
multiplication

• To compile: gcc –fopenmp –o csrmv csrmv.c

• To run: ./csrmv n Ntrials

𝑛 = 4



Task 2: OpenMP Parallelization
• Parallelize the CSR matrix-vector multiplication part using OpenMP

• (should be simple)

• Test your implementation:

• Measure runtimes (using fixed problem size) for different numbers of 
threads (e.g., p=1,2,4,8,16 threads)

• Try a few different problem sizes (small, too big for cache, etc.)

• You can use the example batch script job.sh (or just run on r3d3)

7



8



9

Parallel efficiency = (sequential time)/(p*parallel time)



Compressed Sparse Column MV

10

Matrix-vector multiply kernel: y(i)  y(i) + A(i,j)*x(j)

for each col i

for k=colptr[i] to colptr[i+1]-1 do

y[rowidx[k]] += val[k]*x[i]

×
×
×
×
×

=

1 0 0 1 0
0 1 0 0 2
2 3 2 0 3
0 1 0 1 1
0 0 1 0 0

×
×
×
×
×

val = [1,2,1,3,1,2,1,1,1,2,3,1]
rowidx = [0,2,1,2,3,2,4,0,3,1,2,3]
colptr = [0,2,5,7,9,25]



Task 3: CSC Format
• In cscmv.c, we have given you an implementation of CSC matrix-vector 

multiply, parallelized with OpenMP, but there is an error in the way we 
have used OpenMP.

• Find and fix the error!

11



Task 3: CSC Format
• In cscmv.c, we have given you an implementation of CSC matrix-vector 

multiply, parallelized with OpenMP, but there is an error in the way we 
have used OpenMP.

• Find and fix the error!

• Hints: Write code that prints out the solution y=Ax

• Given that x is a vector of all 1’s, you know what the vector y=Ax 
should look like

• Try running on a small problem size, for different numbers of threads

12



Task 4: CSR vs. CSC
• With the corrected CSC code, compare the performance using CSR and 

CSC formats. 

• Choose a problem size

• Measure runtimes for csrmv and cscmv for different numbers of threads 
(e.g., p=1,2,4,8,16,32 threads)

• Which is faster? Why?

13



14

Example output



Other Sparse Matrix Formats

15



Other Sparse Matrix Formats

16

https://sites.google.com/site/mcfastsparse/



Other Sparse Matrix Formats

17

https://matteding.github.io/2019/04/25/sparse-matrices/



Other Sparse Matrix Formats

18

https://matteding.github.io/2019/04/25/sparse-matrices/



Current Research
• New storage formats

• For SIMD architectures
• Kreutzer, Moritz, et al. "A unified sparse matrix data format for efficient 

general sparse matrix-vector multiplication on modern processors with 
wide SIMD units“, SIAM SISC, 36.5 (2014): C401-C423.

• For GPUs
• Kreutzer, Moritz, et al. "Sparse matrix-vector multiplication on GPGPU 

clusters: A new storage format and a scalable implementation“, IPDPS, 
2012.

• For portability across architectures
• Liu, Weifeng, and Brian Vinter. "CSR5: An efficient storage format for 

cross-platform sparse matrix-vector multiplication“, Supercomputing, 
2015.

• Using Machine Learning to select the best sparse matrix format:
• Zhao, Yue, et al. "Bridging the gap between deep learning and sparse matrix 

format selection“, PPoPP 2018.
• Benatia, Akrem, et al. "Sparse matrix format selection with multiclass SVM 

for SpMV on GPU“, ICPP, 2016.

19



High-Performance Libraries Implementing Sparse LA

• Trilinos (Sandia National Lab), https://trilinos.github.io/

• PETSc, Portable, Extensible Toolkit for
Scientific Computation (Argonne National Lab), 
https://www.mcs.anl.gov/petsc/

• Many storage formats, many numerical algorithms (LU, CG, SPMV, …) 
implemented, tested and ready to use! 

20

https://trilinos.github.io/
https://www.mcs.anl.gov/petsc/

