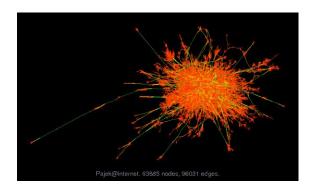
Lecture 8: Sparse Linear Algebra

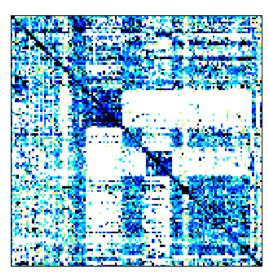
Outline for today

- Sparse matrix formats and basic SpMV
 - Sequential optimizations
 - Distributed memory optimizations
- Higher-level kernels
 - Sparse Matrix Multiply
 - Matrix powers computations
- Iterative solvers Krylov subspace methods
 - Communication-Avoiding Krylov solvers

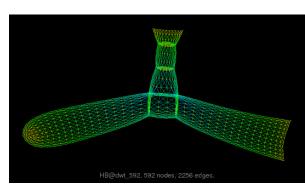
Sparse matrices are everywhere

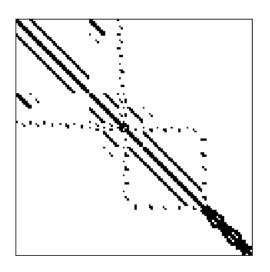
Internet connectivity



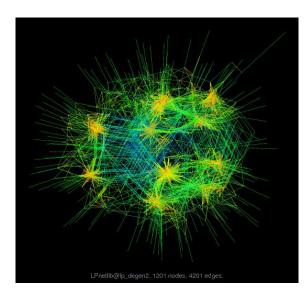


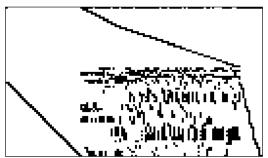
Structural design





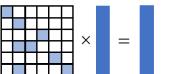
Linear Programming

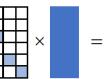


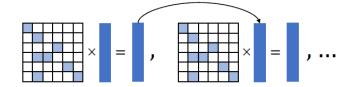


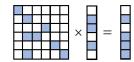
Sparse Matrix Computations

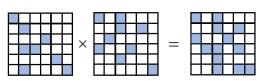
- Sparse matrix-(dense)vector multiplication (SpMV) or sparse-matrix-multiple (dense) vector multiplication
 - Solving linear systems
 - Eigenvalue problems
 - · Optimization algorithms
 - Machine learning, etc.
- Repeated SpMV/SPMM (Akx)
 - Transitive closure on graphs
 - Linear relaxation
 - · Pagerank, Krylov basis computation
- Sparse matrix-sparse-vector (SpMSpV)
 - E.g., graph algorithms: breadth-first search, bipartite graph matching, and maximal independent sets
- Sparse matrix-sparse matrix (SpGEMM)
 - E.g., graph algorithms
 - Common special case: A * A^T
- Sparse matrix-dense matrix (SpDM³)
 - Machine learning
- Sampled Dense-Dense Matrix Multiplication
 - Machine learning

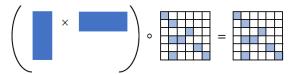




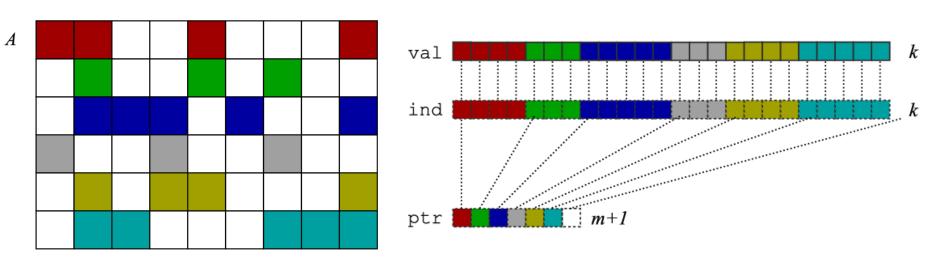








Compressed Sparse Row (CSR) Storage

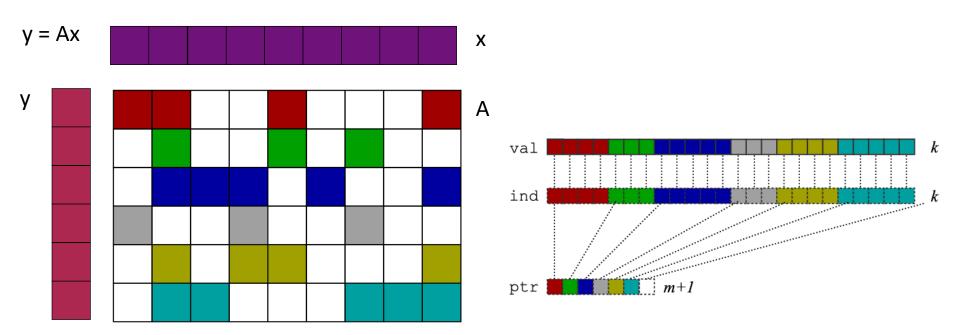


- CSR has:
 - Array of the nonzero values (val) of size nnz = number of nonzeros
 - Array of the column indices for each value of size nnz
 - Array of row start pointers of size n = number of rows
- Other common formats (plus blocking)
 - Compressed sparse column (CSC)

Coordinate (COO): row + column index per nonzero (easy to build)

And many more specialized ones!

SpMV with Compressed Sparse Row (CSR)

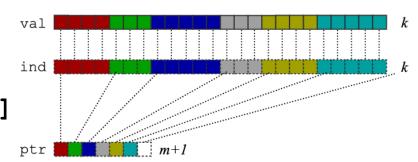


```
Matrix-vector multiply kernel: y(i) ← y(i) + A(i,j)*x(j)
for each row i
  for k=ptr[i] to ptr[i+1]-1 do
    y[i] = y[i] + val[k]*x[ind[k]]
```

SpMV with Compressed Sparse Row (CSR)

Matrix-vector multiply kernel: $y(i) \leftarrow y(i) + A(i,j)*x(j)$

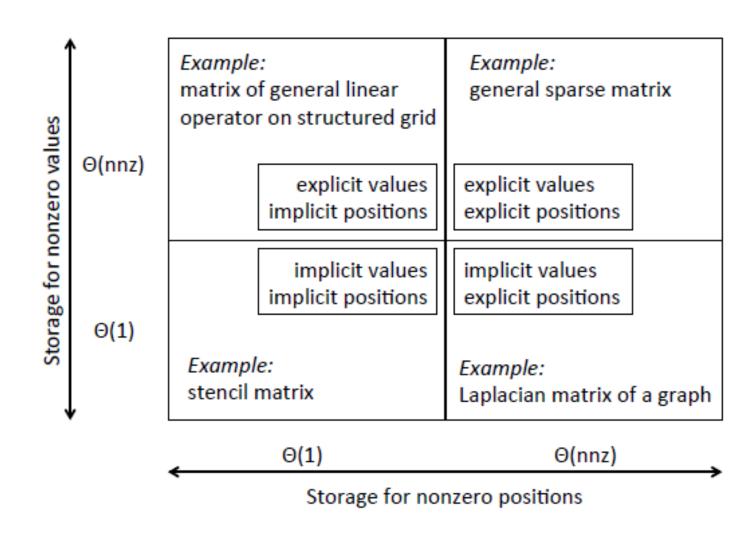
```
for each row i
  for k=ptr[i] to ptr[i+1]-1 do
  y[i] = y[i] + val[k]*x[ind[k]]
```



Possible optimizations:

- 1) Unroll the k loop → need # non-zeros per row
- 2) Hoist $y[i] \rightarrow OK$ absent aliasing
- 3) Eliminate ind[i] → need to know non-zero pattern
- 4) Reuse elements of $\times \rightarrow$ need good non-zero pattern

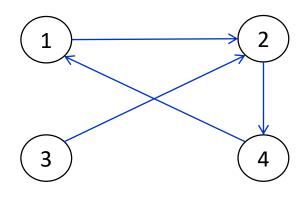
Sparse matrix representations



SpMV dependency graph

- Graph of A: G(A)=(V,E)
 - Directed graph with vertices V={1,...,n}
 - Edges $(i, j) \in E \subseteq V \times V$
 - $(i,j) \in E \text{ iff } A(i,j) \neq 0$
 - nnz = |E|

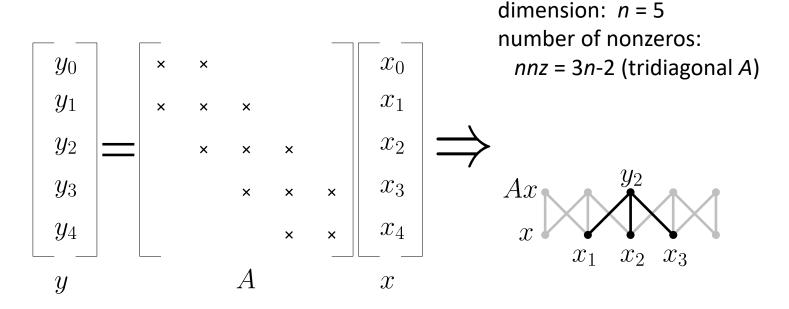
$$\begin{bmatrix} \times & \times & 0 & 0 \\ 0 & \times & 0 & \times \\ 0 & \times & \times & 0 \\ \times & 0 & 0 & \times \end{bmatrix}$$



Lower bounds and optimal algorithms - sequential

- First, sequential case (assume explicit values/indices)
- Flops: $\Omega(nnz)$
- Bandwidth (words moved): $\Omega(nnz)$
 - lower bound for the explicit case follows from the fact that $W = \Omega(\text{nnz})$ words must be moved between slow and fast memory (of size M)
 - this many nonzero values and/or positions must be read to apply A.
- Latency (# messages): $\Omega(nnz/M)$
 - Since we allow messages of size between 1 and M, the latency lower bounds are a factor of M smaller

SpMV Arithmetic Intensity (1)



	SpMV
floating point operations	2·nnz
floating point words moved	$nnz + 2 \cdot n$

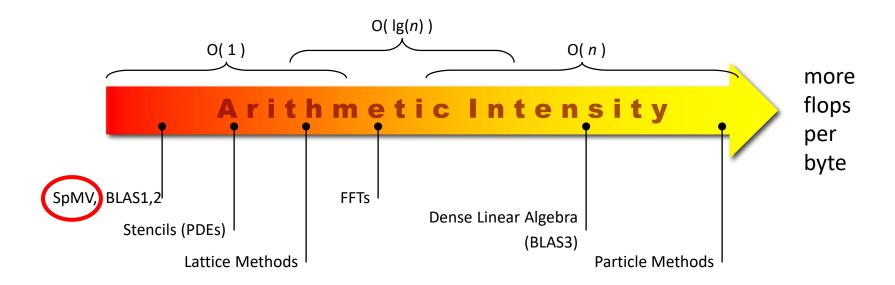
Assumption: A is invertible

⇒ nonzero in every row

 \Rightarrow nnz \geq n

overcounts flops by up to n (diagonal A)

SpMV Arithmetic Intensity (2)

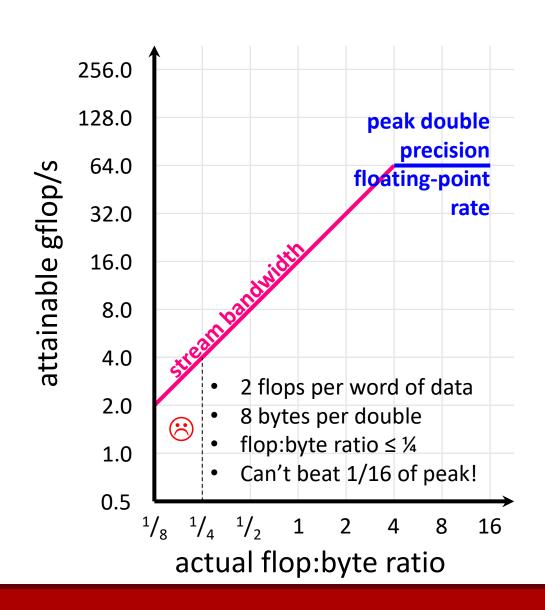


Arithmetic intensity := Total flops / Total DRAM bytes

$$\frac{\text{flops}}{\text{words}} \in 2 \times_{\mathcal{C}}^{\mathcal{R}} \frac{nnz}{nnz + 2n \overset{\ddot{0}}{\otimes}} \xrightarrow{nnz = \mathcal{W}(n)} 2$$

	SpMV
flops	2·nnz
words moved	$nnz + 2 \cdot n$
arith. intensity	2

SpMV Arithmetic Intensity (3)



"Roofline model"
[Williams, Waterman,
Patterson, CACM, 2009]

How to do more flops per byte?

Reuse data (x, y, A) across multiple SpMVs

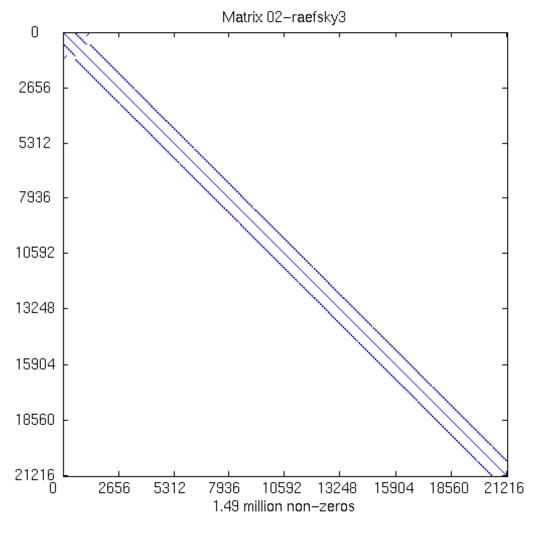
Lower bounds and optimal algorithms - sequential

- SpMV will be communication bound
 - Each nonzero A_{ij} , or its position, is only needed once, so there is **no reuse** of these values.
 - Thus, if the nonzeros, or their positions, do not fit in cache, then they can be accessed at no faster rate than main memory bandwidth.
 - More importantly, at most two floating-point operations a multiply and, perhaps, an add – are performed for each Aij read from memory
- performance generally bounded above by peak memory bandwidth
- no more than 10% of peak flop rate on commodity hardware

Optimization techniques

- Register blocking considering small, dense blocks of A as 'nonzeros' rather than the nonzero elements themselves
 - helps exploit re-use of vector entries, and also reduces the number of indices needing to be read from memory
 - see [Vuduc, 2003], [Vuduc et al., 2005]
- Cache blocking
 - see [Nishtala, Vuduc, Demmel, Yelick, 2007]
- Reordering Reorder the sparse matrix to concentrate elements around the diagonal (e.g., reverse Cuthill–McKee ordering)
 - can improve spatial locality of the vector accesses, potentially reducing the latency cost

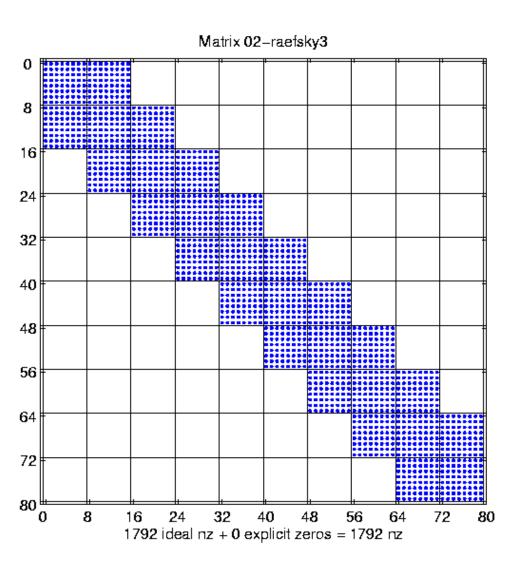
Changing Matrix Format: Blocking



- n = 21200
- nnz = 1.5 M
- kernel: SpMV
- Source: NASA structural analysis problem

https://sparse.tamu.edu/

Changing Matrix Format: Blocking

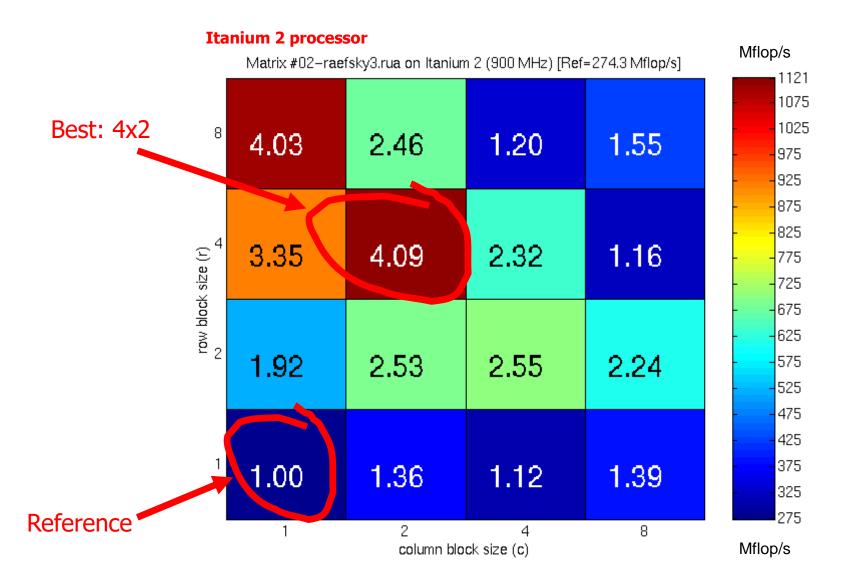


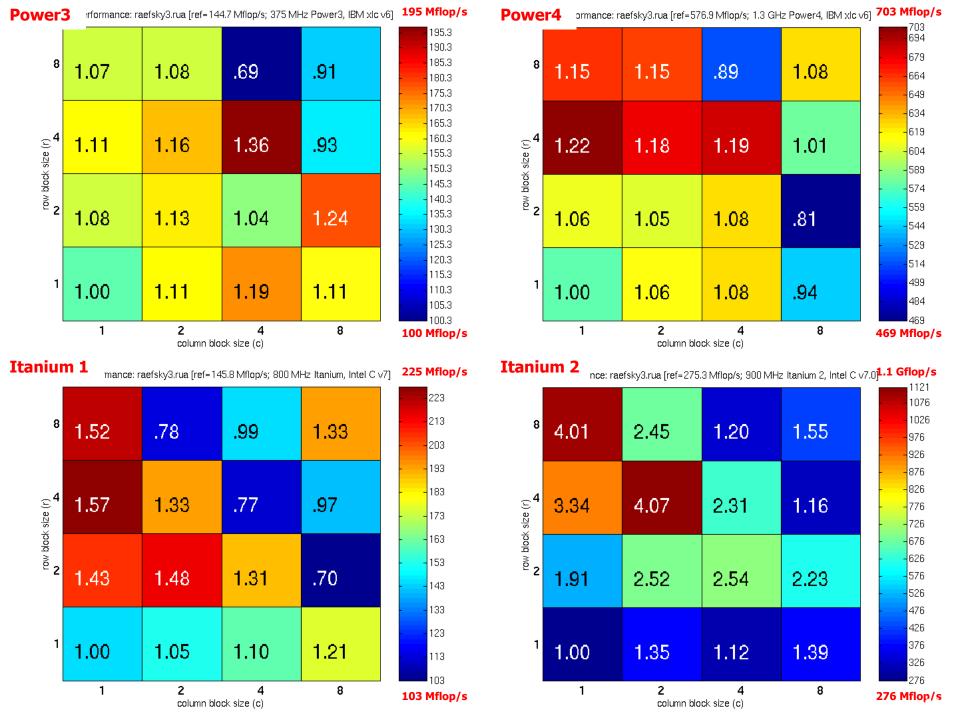
- n = 21200
- nnz = 1.5 M
- kernel: SpMV
- Source: NASA structural analysis problem
- 8x8 dense substructure

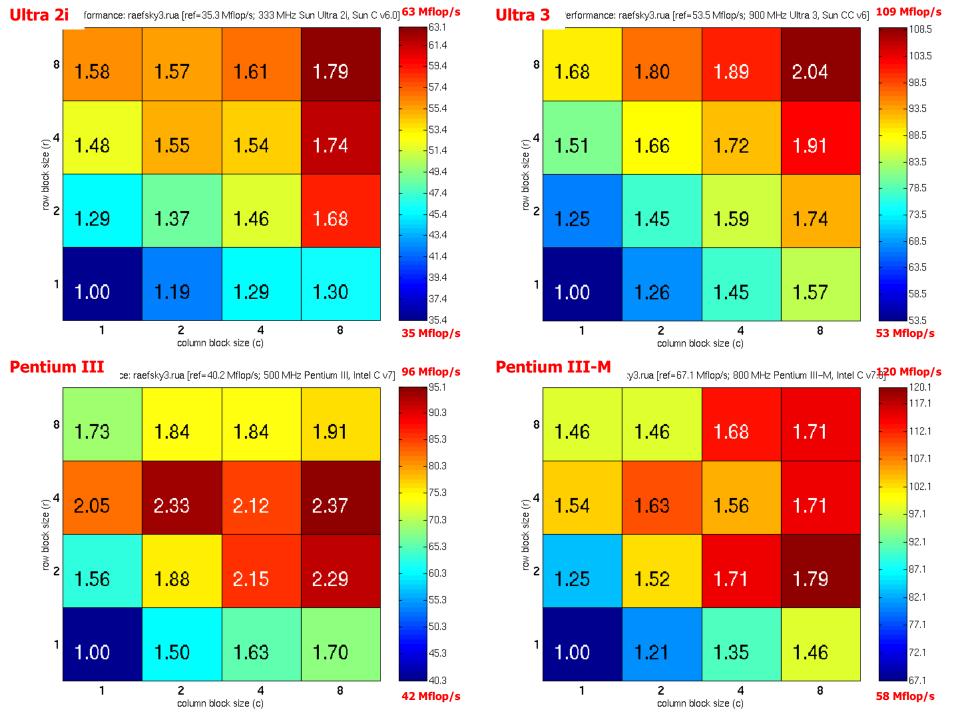
Taking advantage of block structure in SpMV

- Bottleneck is time to get matrix from memory
 - Only 2 flops for each nonzero in matrix
 - Fetching at ~1 int (column index) + 1 float (value) for 2 flops
- Don't store each nonzero with index, instead store each nonzero r-by-c block with 1 column index
 - As r*c grows, storage drops by up to 2x, for all 32-bit quantities
 - Time to fetch matrix from memory decreases
- Change both data structure and algorithm
 - Need to pick r and c
 - Need to change algorithm accordingly
- In example, is r=c=8 best choice?
 - Minimizes storage, so looks like a good idea...
- Consider best case: dense matrix in sparse format

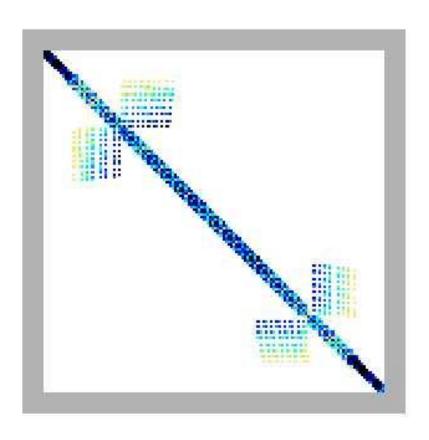
The Need for Search







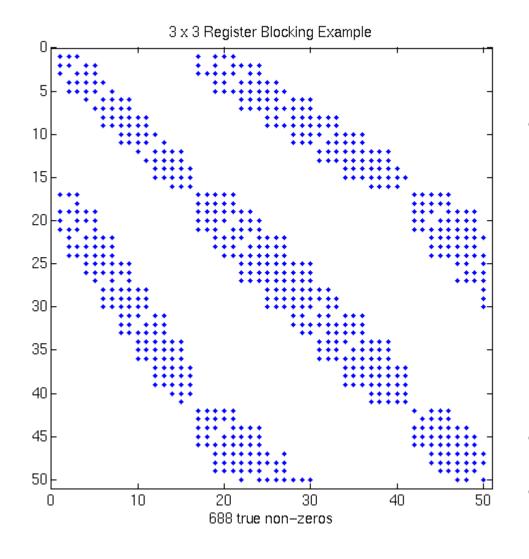
But most matrices don't block so easily



- FEM Fluid dynamics problems
- More complicated nonzero structure in general

- N = 16614
- NNZ = 1.1M

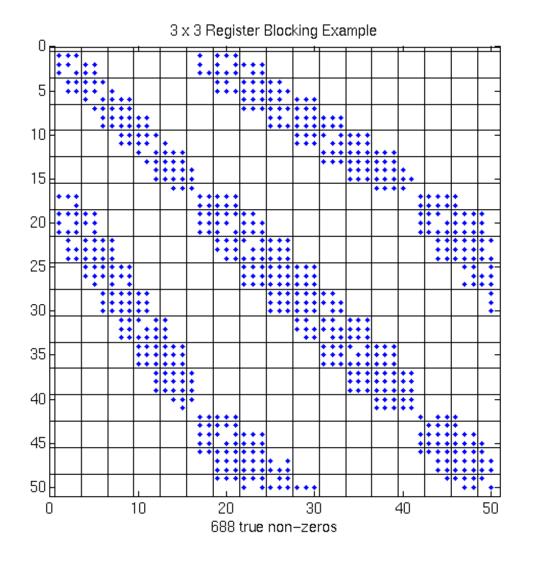
Zoom in to top corner



 More complicated non-zero structure

- N = 16614
- NNZ = 1.1M

3x3 blocks look natural, but...

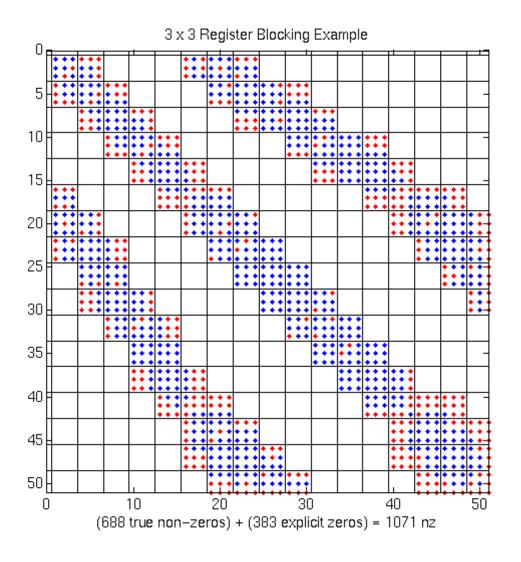


 More complicated nonzero structure

- Example: 3x3 blocks
 - Grid of 3x3 cells
 - Many cell are not full

- N = 16614
- NNZ = 1.1M

Extra work can improve efficiency



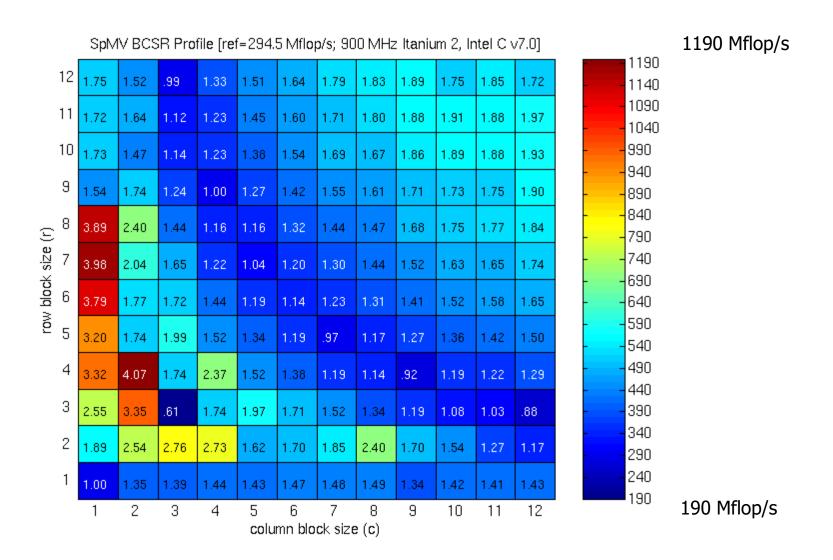
 More complicated nonzero structure

- Example: 3x3 blocks
 - Grid of 3x3 cells
 - Add explicit zeros:
 1.5x "fill overhead"
 - Unroll loops
- More work but can be faster

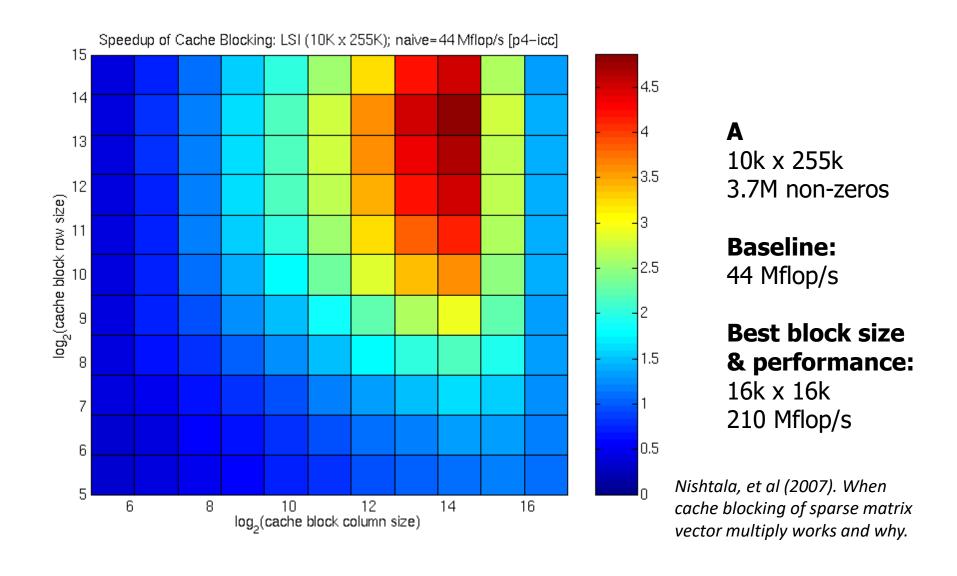
Automatic Register Block Size Selection

- Selecting the r x c block size
 - Off-line benchmark of "register profile"
 - Precompute Mflops(r,c) using dense A in sparse format (blocked sparse row) for each r x c
 - Once per machine/architecture
 - Run-time "search"
 - Sample A to estimate Fill(r,c) for each r x c
 - Run-time heuristic model
 - Choose r, c to minimize time ≈ Fill(r,c) / Mflops(r,c)

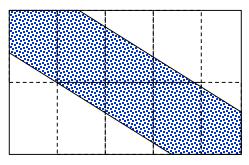
Register Profile: dense matrix in sparse format



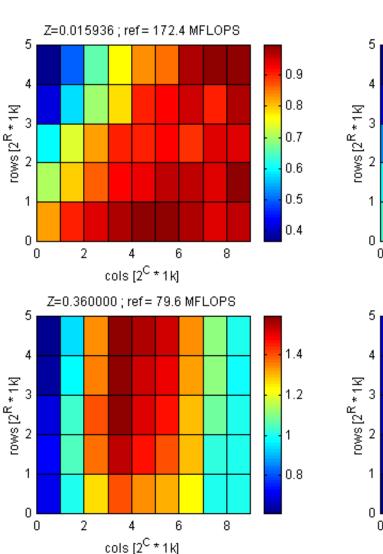
Cache Blocking on LSI Matrix: Pentium 4

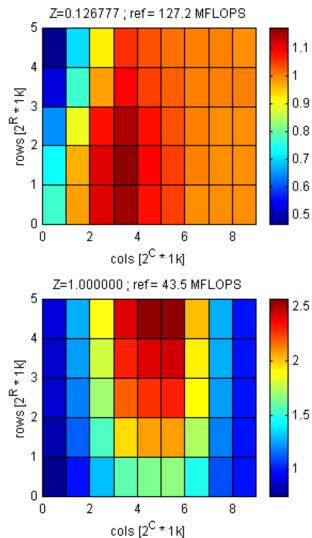


Cache Blocking on Random Matrices: Itanium



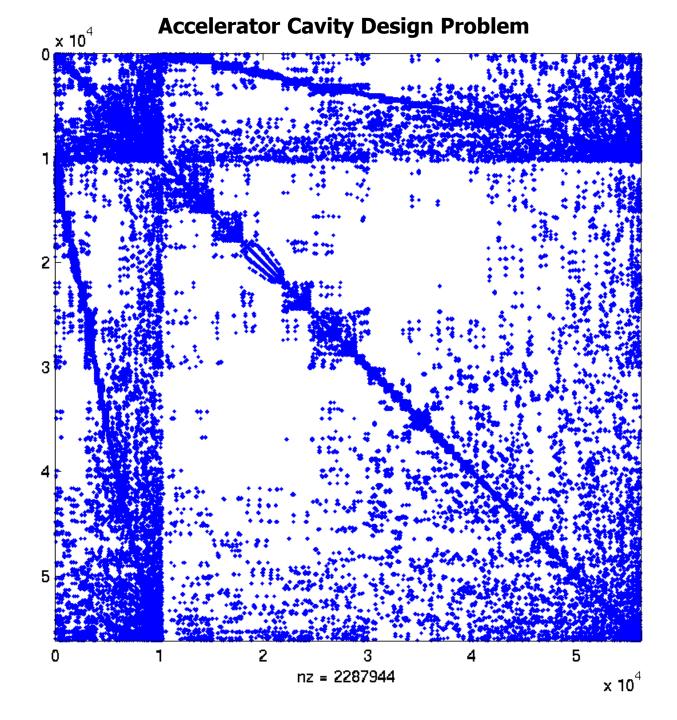
Nishtala, et al (2007). When cache blocking of sparse matrix vector multiply works and why.



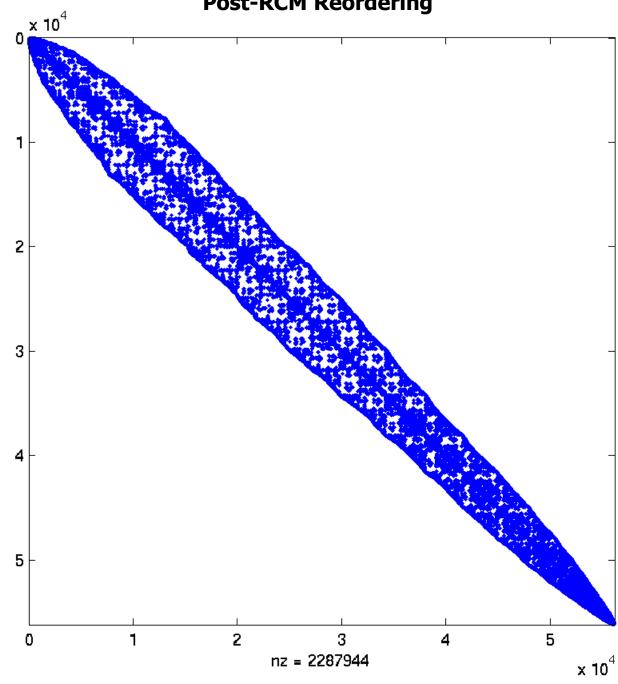


Matrix Reordering: Example

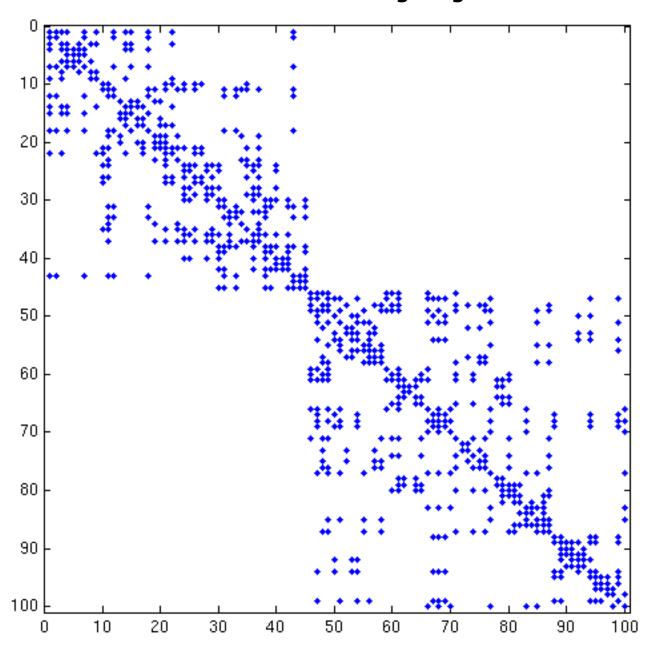
- Application: accelerator cavity design
- Optimizations:
 - Reordering, to create more dense blocks
 - Reverse Cuthill-McKee ordering to reduce bandwidth
 - Do Breadth-First-Search, number nodes in reverse order visited
 - Traveling Salesman Problem-based ordering to create blocks
 - Nodes = columns of A
 - Weights(u, v) = no. of nonzeros u, v have in common
 - Tour = ordering of columns
 - Choose maximum weight tour
 - See [Pinar & Heath '97]



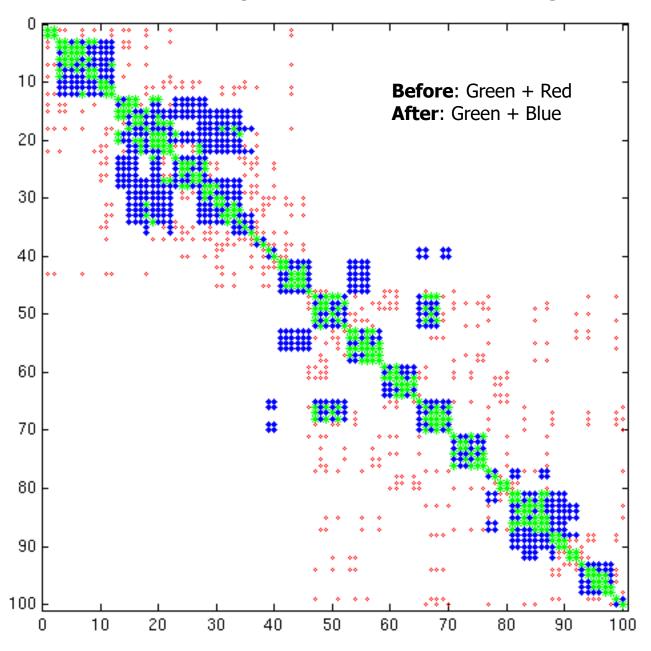
Post-RCM Reordering



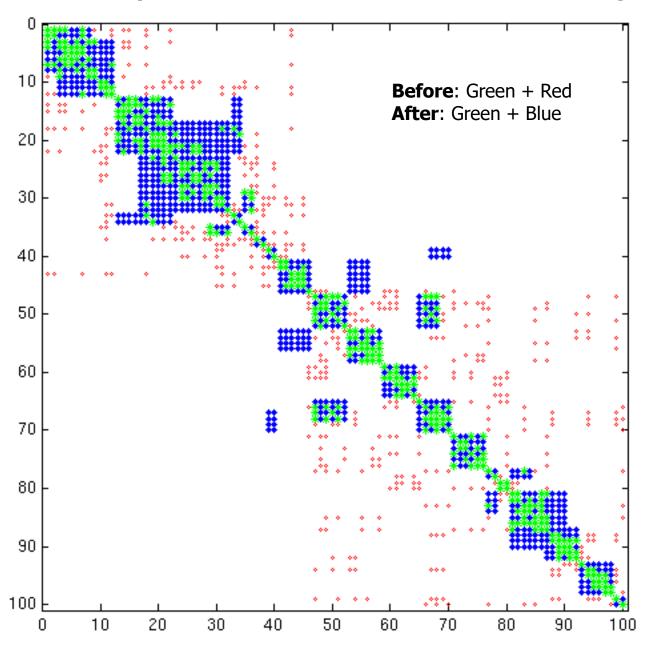
100x100 Submatrix Along Diagonal



"Microscopic" Effect of RCM Reordering



"Microscopic" Effect of Combined RCM+TSP Reordering

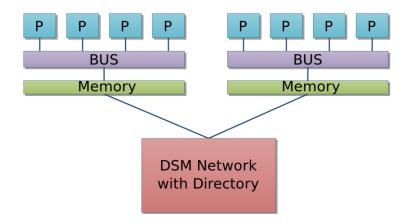


How do permutations affect algorithms?

- A = original matrix, $A_P = P_R A P_C$ (A with permuted rows, columns)
- SpMV: permute x ($x_P = P_C^T x$), multiply $y_P = (P_R A P_C)(P_C^T x)$, permute y ($y = P_R^T y_P$)
- Faster way to solve Ax = b
 - Solve $A_P x_P = P_R b$ for x_P , using SpMV with A_P , then let $x = P_C x_P$
 - Only need to permute vectors twice, not twice per iteration
- Faster way to solve $Ax = \lambda x$
 - A and A_P have same eigenvalues, no vectors to permute!
 - $A_P x_P = \lambda x_P$ implies $Ax = \lambda x$ where $x = P_C x_P$

Shared-Memory Multicore Optimizations

- NUMA Non-Uniform Memory Access
 - pin submatrices to memories close to cores assigned to them



- Prefetch values, indices, and/or vectors
 - use exhaustive search on prefetch distance
- Matrix Compression not just register blocking (BCSR)
 - 32 or 16-bit indices, Block Coordinate format for submatrices
- Cache-blocking
 - 2D partition of matrix, so needed parts of x,y fit in cache

Distributed-memory parallel SpMV

- Harder to make general statements about performance:
 - Many ways to partition x, y, and A processors
 - Communication, computation, and load-balance are partitiondependent
- A parallel SpMV involves 1 or 2 rounds of messages
 - (Sparse) collective communication, costly synchronization
 - Latency-bound (hard to saturate network bandwidth)
 - Scatter entries of x and/or gather entries of y across network
- k SpMVs cost O(k) rounds of messages

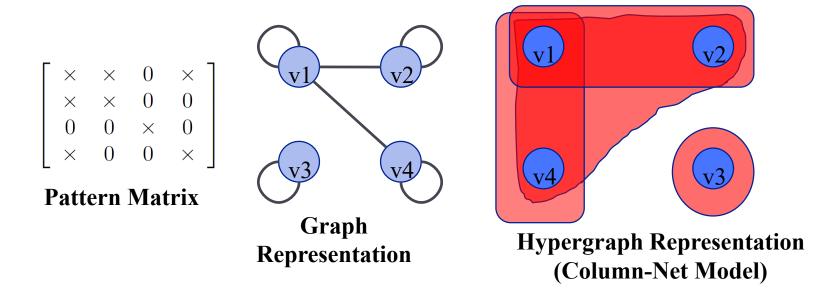
Lower bounds and optimal algorithms - parallel

- First require some notion of initial data layout, load balance and/or local memory capacity
- Classical algorithm: every processor j owns matrix $A^{(j)}$ and computes $y^{(j)} = A^{(j)} x$
- $A = \sum_{j=1}^{P} A^{(j)}$ is a sum of matrices with disjoint nonzero structures.
- vectors x, y are distributed across the P processors, and their layout, along with the splitting of A, determines the communication cost
 - zero or more entries of x are communicated
 - zero or more entries of y are computed by a reduction over the (sparse) vectors y(j)
- assume a load-balanced parallelization among $P \ge 2$ processors, where at least two processors perform at least nnz/P flops.

Hypergraph model

- Hypergraph: generalization of a graph where "edge" can connect more than 2 vertices
- Communication costs for parallel SpMV without data replication (implicit or explicit storage) can be exactly modelled by a hypergraph constructed from the computation's DAG
 - see [Catalyurek and Aykanat, 2001]
- Vertices represent matrix nonzeros and the hyperedges contain the vertices adjacent to incoming (resp. outgoing) edges, of each vertex in the graph of A.
- vertex partition = parallelization of the classical SpMV computations
 - induced hyperedge cut corresponds to interprocessor communication for that parallelization.
- By varying the metric applied to the cut, one can exactly measure communication volume (number of words moved) or synchronization (number of messages between processors) on a distributed-memory machine.
- Various heuristics are applied to find approximate solutions to these NP-hard partitioning problems in practice and mature software packages are available: see, for example, Devine *et al.* (2006).

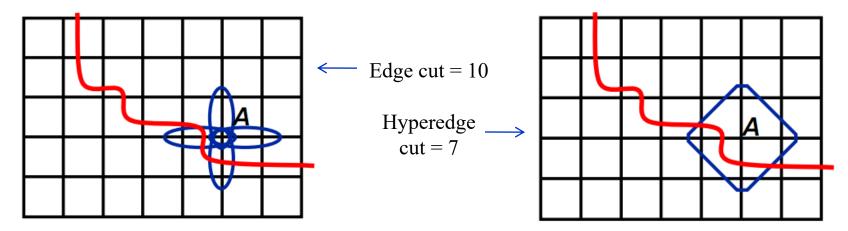
Hypergraph Model for Communication in SpMV



- Hypergraph model for row-wise partition (similar for column-wise)
 - Hyperedge for each column, vertex for each row. Vertex v_i is connected to hyperedge e_i if $A(i,j) \neq 0$
- Benefits over graph model:
 - Natural representation of nonsymmetric matrices
 - Cost of hyperedge cut for a given partition is exactly equal to the number of words moved in SpMV operation with the same partition of A

Graph vs. Hypergraph Partitioning

Consider a 2-way partition of a 2D mesh:



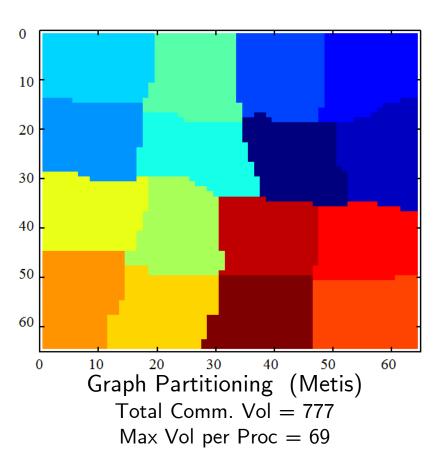
The cost of communicating vertex A is 1 - we can send the value in one message to the other processor

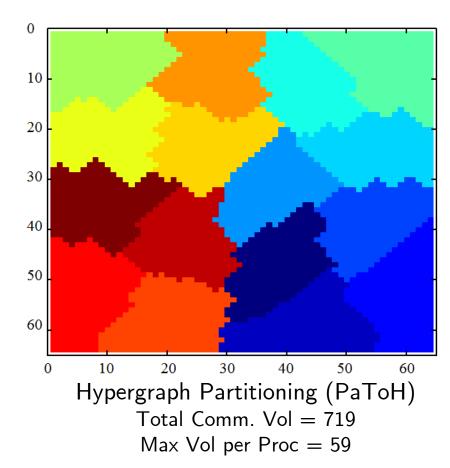
According to the graph model, however the vertex A contributes 2 to the total communication volume, since 2 edges are cut.

The hypergraph model accurately represents the cost of communicating A (one hyperedge cut, so communication volume of 1.

Unlike graph partitioning model, the hypergraph partitioning model gives exact communication volume (minimizing cut = minimizing communication)

Example: Hypergraph vs. Graph Partitioning





Takeaway messages

- Tuning for modern processors is hard
- Sparse matrices: tuning harder
- SpMV: low Computational Intensity
- Usual low-level tuning (prefetch, etc.) have some benefit
- Reordering (including graph partitioning) improves locality
- But SpMV will likely still be bandwidth limited

Is tuning SpMV all we can do?

- Iterative methods all depend on it
- But speedups are limited
 - Just 2 flops per nonzero
 - Communication costs dominate
- Can we beat this bottleneck?
- Need to look at next level in stack:
 - What do algorithms that use SpMV do?
 - Can we reorganize them to avoid communication?
- Only way significant speedups will be possible

Combining multiple SpMVs

(1) k independent SpMVs

$$[y_0, y_1, ..., y_k] = A \cdot [x_0, x_1, ..., x_k]$$

(2) k dependent SpMVs

$$[x_1, x_2, ..., x_k] = A \cdot [x_0, x_1, ..., x_{k-1}]$$
$$= [Ax_0, A^2x_0, ..., A^kx_0]$$

(3) *k* dependent SpMVs, in-place variant

$$x = A^k x$$

What if we can amortize cost of reading *A* over *k* SpMVs?

• (*k*-fold reuse of *A*)

(1) used in:

- Block Krylov methods
- Krylov methods for multiple systems (AX = B)

(2) used in:

 s-step Krylov methods/ Communication-avoiding Krylov methods

...to compute *k* Krylov basis vectors

Def. Krylov space (given A, x, s):

$$K_s(A, x) := \operatorname{span}(x, Ax, \dots, A^s x)$$

(3) used in:

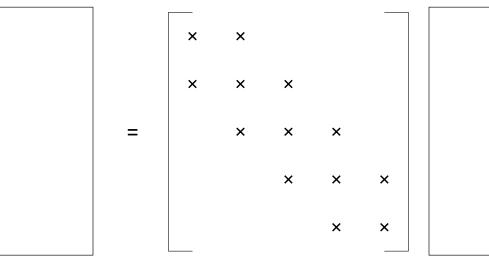
multigrid smoothers, power method

(1) k independent SpMVs (SpMM)

$$[y_0, y_1, ..., y_k] = A \cdot [x_0, x_1, ..., x_k]$$

SpMM optimization:

- Compute row-by-row
- Stream A only once



	1 SpMV	k independent SpMVs	k independent SpMVs (using SpMM)
flops	2·nnz	2k·nnz	2k·nnz
words moved	nnz + 2n	k·nnz + 2kn	1·nnz + 2kn
arith. intensity, $nnz = \omega(n)$	2	2	2 <i>k</i>

(2) k dependent SpMVs (Akx)

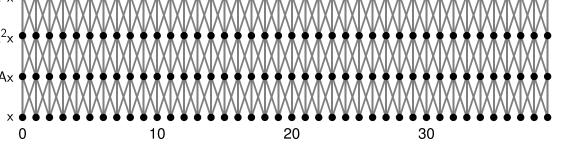
$$[x_1, x_2, ..., x_k] = A \cdot [x_0, x_1, ..., x_{k-1}]$$

$$= [Ax_0, A^2 x_0, ..., A^k x_0]_{A^3 \times \P}$$

Naïve algorithm (no reuse):

Akx (A^kx) optimization:

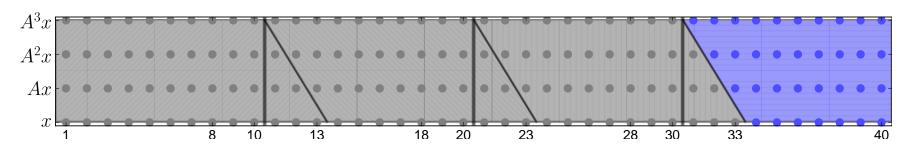
 Must satisfy data dependencies while keeping working set in cache



	1 SpMV	k dependent SpMVs	k dependent SpMVs (using Akx)
flops	2·nnz	2k·nnz	2k·nnz
words moved	nnz + 2n	$k \cdot nnz + 2kn$	$1 \cdot nnz + (k+1)n$
arith. intensity, $nnz = \omega(n)$	2	2	2 <i>k</i>

(2) k dependent SpMVs (Akx)

Akx algorithm (reuse nonzeros of A):



	1 SpMV	k dependent SpMVs	k dependent SpMVs (using Akx)
flops	2·nnz	2k·nnz	2k·nnz
words moved	nnz + 2n	$k \cdot nnz + 2kn$	$1 \cdot nnz + (k+1)n$
arith. intensity, $nnz = \omega(n)$	2	2	2 <i>k</i>

(3) k dependent SpMVs, in-place (Akx, last-vector-only)

$$x = A^k x$$

Last-vector-only Akx optimization:

- Reuses matrix and vector k times, instead of once.
- Overwrites intermediates without memory traffic
 - Attains O(k) reuse, even when nnz < n
 - eg, A is a stencil (implicit values and structure)

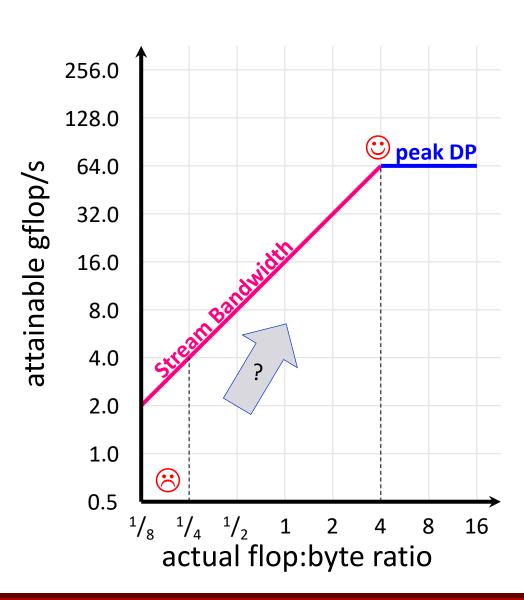
	1 SpMV	k dependent SpMVs, in-place	Akx, last-vector-only
flops	2·nnz	2k·nnz	2k·nnz
words moved	nnz + 2n	$k \cdot nnz + 2kn$	1· <i>nnz</i> + 2 <i>n</i>
arith. intensity	2	2	2 <i>k</i>

Combining multiple SpMVs (summary of sequential results)

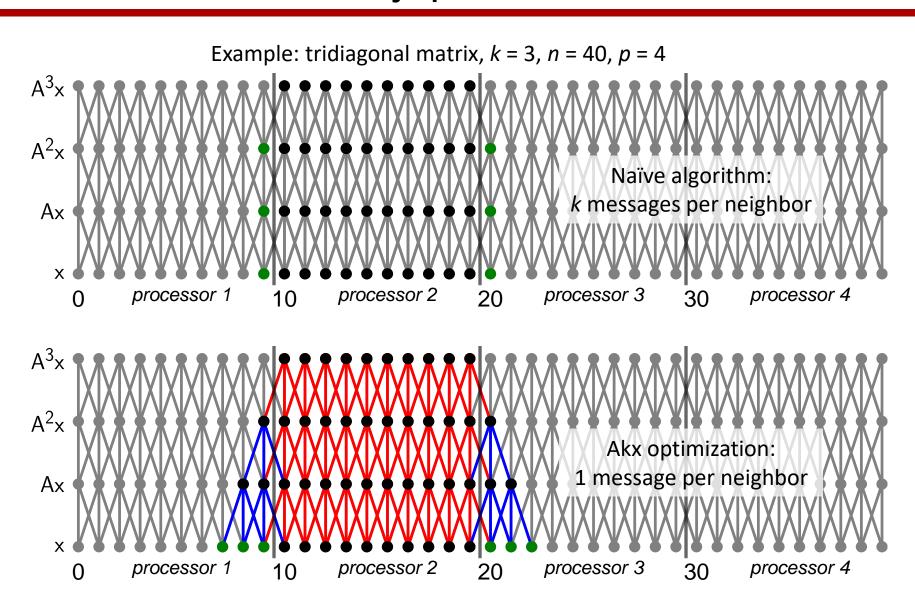
Problem	flops	words moved	optimization	words moved
SpMV	2·nnz	nnz + 2n	-	-
<i>k</i> independent SpMVs	2k∙nnz	k∙nnz + 2kn	SpMM	nnz +2kn
k dependent SpMVs	2k∙nnz	k∙nnz + 2kn	Akx	nnz + (k+1)n
k dependent SpMVs, in-place	2k·nnz	k∙nnz + 2kn	Akx, last- vector-only	nnz+2n

Avoiding Serial Communication

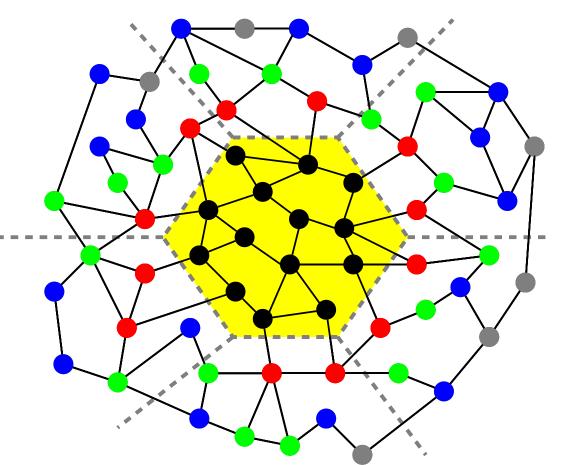
- Reduce compulsory misses by reusing data:
 - more efficient use of memory
 - decreased bandwidth cost (Akx, asymptotic)
- Must also consider latency cost
 - How many cachelines?
 - depends on contiguous accesses
- When k is large \Rightarrow compute-bound?
- In practice, complex performance tradeoffs.
 - Autotune to find best k



Distributed-memory parallel Akx



Matrix Powers Kernel on a General Matrix



- Need hypergraph partitioning
- For implicit memory management (caches) uses a TSP algorithm for layout

See paper by Demmel, Hoemman, Mohiyuddin, Yelick, 2011

- Saves communication for "well partitioned" matrices
 - Serial memory bandwidth: O(1) moves of data vs. O(k)
 - Parallel message latency: O(1) messages vs. O(k)

Example costs for model problem

- Assume 1D 3-point stencil
- n points (rows/cols), partitioned evenly among p processors
 - Assume matrix is partitioned rowwise
 - Assume k<n/p
- Entries in table meant in big-O sense

	Naive Akx	CA-Akx
Flops	kn/p	$kn/p + k^2$
Words Moved	k	k
Messages	k	1

Tuning space for Akx

DLP optimizations:

- vectorization
- ILP optimizations:
 - Software pipelining
 - Loop unrolling
 - Eliminate branches, inline functions
- TLP optimizations:
 - Explicit SMT
- Memory system optimizations:
 - NUMA-aware affinity
 - Software prefetching
 - TLB blocking
- Memory traffic optimizations:
 - Streaming stores (cache bypass)
 - Array padding
 - Cache blocking
 - Index compression
 - Blocked sparse formats
 - Stanza encoding

• Distributed memory optimizations:

- Topology-aware sparse collectives
- Hypergraph partitioning
- Dynamic load balancing
- Overlapped communication and computation

Algorithmic variants:

- Compositions of distributed-memory parallel, shared memory parallel, sequential algorithms
- · Streaming or explicitly buffered workspace
- Explicit or implicit cache blocks
- Avoiding redundant computation/storage/traffic
- Last-vector-only optimization
- Remove low-rank components (blocking covers)
- Different polynomial bases $p_i(A)$

Other:

- Preprocessing optimizations
- Extended precision arithmetic
- Scalable data structures (sparse representations)
- Dynamic value and/or pattern updates

General polynomial bases for Krylov subspaces

• Given A, x, k > 0, compute

$$[p_1(A)x, p_2(A)x, ..., p_k(A)x]$$

where $p_i(A)$ is a degree-j polynomial in A.

• Thus far we considered the special case of the monomials:

$$\left[Ax,A^2x,\ldots,A^kx\right]$$

Krylov subspace methods

- Linear systems Ax = b, eigenvalue problems, singular value problems, least squares, etc.
- Best for: A large & very sparse, stored implicitly, or only approximation needed
- Krylov Subspace Method is a projection process onto the Krylov subspace

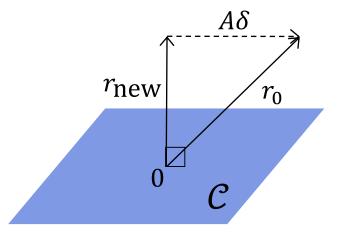
$$\mathcal{K}_i(A, r_0) = \text{span}\{r_0, Ar_0, A^2r_0, \dots, A^{i-1}r_0\}$$

where A is an $N \times N$ matrix and $r_0 = b - Ax_0$ is a length-N vector

- In each iteration,
 - Add a dimension to the Krylov subspace
 - Forms nested sequence of Krylov subspaces

$$\mathcal{K}_1(A,r_0) \subset \mathcal{K}_2(A,r_0) \subset \cdots \subset \mathcal{K}_i(A,r_0)$$

- Orthogonalize (with respect to some C_i)
- Select approximate solution $x_i \in x_0 + \mathcal{K}_i(A, r_0)$ using $r_i = b - Ax_i \perp C_i$



 Ex: Lanczos/Conjugate Gradient (CG), Arnoldi/Generalized Minimum Residual (GMRES), Biconjugate Gradient (BICG), BICGSTAB, GKL, LSQR, etc.

The conjugate gradient method

A is symmetric positive definite, $C_i = \mathcal{K}_i(A, r_0)$

$$r_i \perp \mathcal{K}_i(A, r_0) \iff \|x - x_i\|_A = \min_{z \in x_0 + \mathcal{K}_i(A, r_0)} \|x - z\|_A$$

$$\Rightarrow r_{N+1} = 0$$

Connection with Lanczos

• With $v_1 = r_0/\|r_0\|$, i iterations of Lanczos produces $N \times i$ matrix $V_i = [v_1, \dots, v_i]$, and $i \times i$ tridiagonal matrix T_i such that

$$AV_i = V_i T_i + \delta_{i+1} v_{i+1} e_i^T, \qquad T_i = V_i^* A V_i$$

• CG approximation x_i is obtained by solving the reduced model

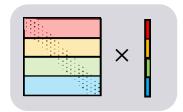
$$T_i y_i = ||r_0|| e_1, \qquad x_i = x_0 + V_i y_i$$

- Connections with orthogonal polynomials, Stieltjes problem of moments, Gauss-Cristoffel quadrature, others (see 2013 book of Liesen and Strakoš)
- ⇒ CG (and other Krylov subspace methods) are highly nonlinear
 - Good for convergence, bad for ease of finite precision analysis

Projection process in terms of communication:

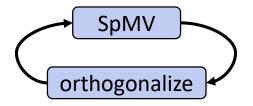
"Add a dimension to \mathcal{K}_i "

- → Sparse matrix-vector multiplication (SpMV)
 - Must communicate vector entries w/ neighboring processors (P2P communication)



"Orthogonalize with respect to C_i "

- → Inner products
 - global synchronization (MPI Allreduce)
 - all processors must exchange data and wait for *all* communication to finish before proceeding



Dependencies between communication-bound kernels in each iteration limit performance!

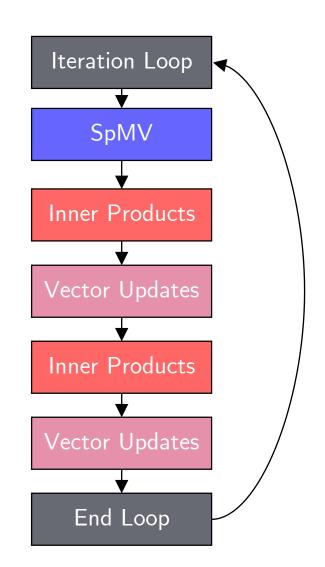
$$r_0 = b - Ax_0, \quad p_0 = r_0$$
 for $i = 1$:nmax
$$\alpha_{i-1} = \frac{r_{i-1}^T r_{i-1}}{p_{i-1}^T A p_{i-1}}$$

$$x_i = x_{i-1} + \alpha_{i-1} p_{i-1}$$

$$r_i = r_{i-1} - \alpha_{i-1} A p_{i-1}$$

$$\beta_i = \frac{r_i^T r_i}{r_{i-1}^T r_{i-1}}$$

$$p_i = r_i + \beta_i p_{i-1}$$
 end



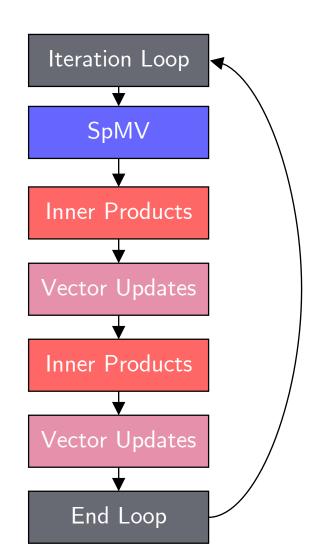
$$r_0 = b - Ax_0, \quad p_0 = r_0$$
 for $i = 1$:nmax
$$\alpha_{i-1} = \frac{r_{i-1}^T r_{i-1}}{p_{i-1}^T A p_{i-1}}$$

$$x_i = x_{i-1} + \alpha_{i-1} p_{i-1}$$

$$r_i = r_{i-1} - \alpha_{i-1} A p_{i-1}$$

$$\beta_i = \frac{r_i^T r_i}{r_{i-1}^T r_{i-1}}$$

$$p_i = r_i + \beta_i p_{i-1}$$
 end



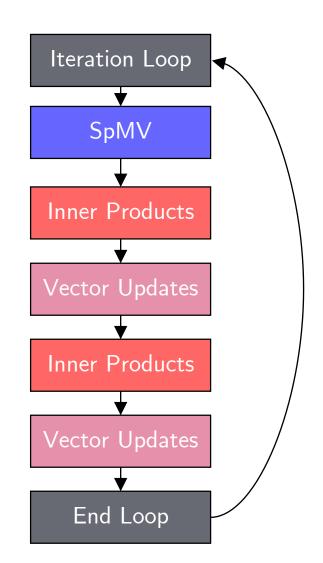
$$r_0 = b - Ax_0, \quad p_0 = r_0$$
 for $i = 1$:nmax
$$\alpha_{i-1} = \frac{r_{i-1}^T r_{i-1}}{p_{i-1}^T A p_{i-1}}$$

$$x_i = x_{i-1} + \alpha_{i-1} p_{i-1}$$

$$r_i = r_{i-1} - \alpha_{i-1} A p_{i-1}$$

$$\beta_i = \frac{r_i^T r_i}{r_{i-1}^T r_{i-1}}$$

$$p_i = r_i + \beta_i p_{i-1}$$
 end



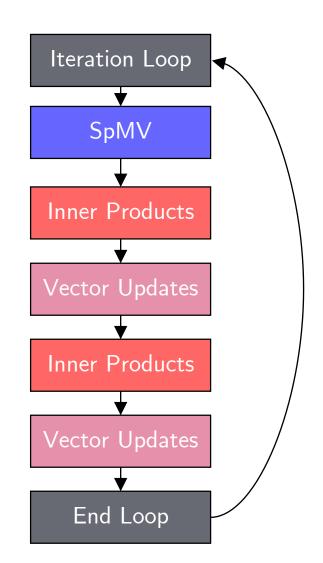
$$r_0 = b - Ax_0, \quad p_0 = r_0$$
 for $i = 1$:nmax
$$\alpha_{i-1} = \frac{r_{i-1}^T r_{i-1}}{p_{i-1}^T Ap_{i-1}}$$

$$x_i = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_i = r_{i-1} - \alpha_{i-1}Ap_{i-1}$$

$$\beta_i = \frac{r_i^T r_i}{r_{i-1}^T r_{i-1}}$$

$$p_i = r_i + \beta_i p_{i-1}$$
 end



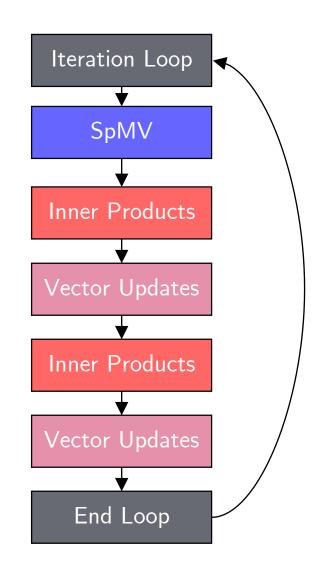
$$r_{0} = b - Ax_{0}, \quad p_{0} = r_{0}$$
 for $i = 1$:nmax
$$\alpha_{i-1} = \frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}}$$

$$x_{i} = x_{i-1} + \alpha_{i-1} p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1} A p_{i-1}$$

$$\beta_{i} = \frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}}$$

$$p_{i} = r_{i} + \beta_{i} p_{i-1}$$
 end

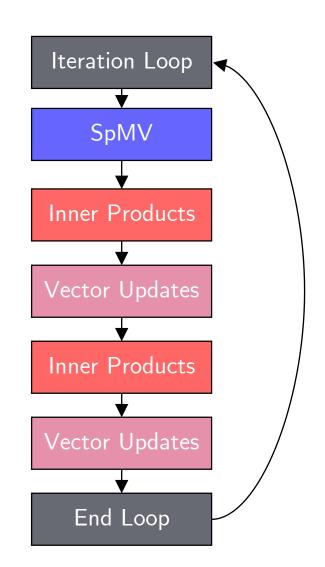


$$r_{0} = b - Ax_{0}, \quad p_{0} = r_{0}$$
 for $i = 1$:nmax
$$\alpha_{i-1} = \frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}}$$

$$x_{i} = x_{i-1} + \alpha_{i-1} p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1} A p_{i-1}$$

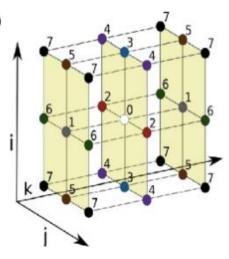
$$\beta_{i} = \frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}}$$
 end



HPCG Benchmark

Model Problem Description

- Synthetic discretized 3D PDE (FEM, FVM, FDM).
- Single DOF heat diffusion model.
- Zero Dirichlet BCs, Synthetic RHS s.t. solution = 1.
- Local domain: $(n_x \times n_y \times n_z)$
- Process layout: $(np_x \times np_y \times np_z)$
- Global domain: $(n_x * np_x) \times (n_y * np_y) \times (n_z * np_z)$
- Sparse matrix:
 - 27 nonzeros/row interior.
 - 7 18 on boundary.
 - Symmetric positive definite.



HPCG Results (June 2022)

Synchronization-reducing variants

Communication cost has motivated many approaches to reducing synchronization in CG:

- Early work: CG with a single synchronization point per iteration
 - 3-term recurrence CG
 - Using modified computation of recurrence coefficients
 - Using auxiliary vectors
- Pipelined Krylov subspace methods
 - Uses modified coefficients and auxiliary vectors to reduce synchronization points to 1 per iteration
 - Modifications also allow decoupling of SpMV and inner products enables overlapping
- s-step Krylov subspace methods
 - Compute iterations in blocks of s using a different Krylov subspace basis
 - Enables one synchronization per s iterations

CG with two three-term recurrences (STCG)

HSCG recurrences can be written as

$$AP_i = R_{i+1}\underline{L}_i, \qquad R_i = P_iU_i$$

we can combine these to obtain a 3-term recurrence for the residuals (STCG):

$$AR_i = R_{i+1}\underline{T_i}, \qquad \underline{T_i} = \underline{L_i}U_i$$

- First developed by Stiefel (1952/53), also Rutishauser (1959) and Hageman and Young (1981)
- Motivated by relation to three-term recurrences for orthogonal polynomials

$$r_0 = b - Ax_0, \quad p_0 = r_0, \quad x_{-1} = x_0, \quad r_{-1} = r_0, \quad e_{-1} = 0$$
 for $i = 1$:nmax
$$q_{i-1} = \frac{(r_{i-1}, Ar_{i-1})}{(r_{i-1}, r_{i-1})} - e_{i-2}$$

$$x_i = x_{i-1} + \frac{1}{q_{i-1}} (r_{i-1} + e_{i-2}(x_{i-1} - x_{i-2}))$$

$$r_i = r_{i-1} + \frac{1}{q_{i-1}} (-Ar_{i-1} + e_{i-2}(r_{i-1} - r_{i-2}))$$

$$e_{i-1} = q_{i-1} \frac{(r_i, r_i)}{(r_{i-1}, r_{i-1})}$$
 end

Can be accomplished with a single synchronization point on parallel computers (Strakoš 1985, 1987)

Similar approach (computing $lpha_i$ using eta_{i-1}) used by D'Azevedo, Eijkhout, Romaine (1992, 1993)

Chronopoulos and Gear's CG (ChG CG)

- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of α_i and using an auxiliary recurrence for Ap_i

$$r_{0} = b - Ax_{0}, \ p_{0} = r_{0},$$

$$s_{0} = Ap_{0}, \ \alpha_{0} = (r_{0}, r_{0})/(p_{0}, s_{0})$$
for $i = 1$:nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

$$w_{i} = Ar_{i}$$

$$\beta_{i} = \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})}$$

$$\alpha_{i} = \frac{(r_{i}, r_{i})}{(w_{i}, r_{i}) - (\beta_{i}/\alpha_{i-1})(r_{i}, r_{i})}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$
end

Chronopoulos and Gear's CG (ChG CG)

- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

• Reduces synchronizations/iteration to 1 by changing computation of α_i and using an auxiliary recurrence for Ap_i

$$r_{0} = b - Ax_{0}, \ p_{0} = r_{0},$$

$$s_{0} = Ap_{0}, \ \alpha_{0} = (r_{0}, r_{0})/(p_{0}, s_{0})$$
for $i = 1$:nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

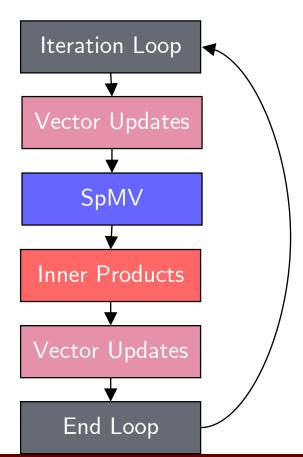
$$w_{i} = Ar_{i}$$

$$\beta_{i} = \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})}$$

$$\alpha_{i} = \frac{(r_{i}, r_{i})}{(w_{i}, r_{i}) - (\beta_{i}/\alpha_{i-1})(r_{i}, r_{i})}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$
end



- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

$$r_{0} = b - Ax_{0}, \ p_{0} = r_{0},$$

$$s_{0} = Ap_{0}, \ \alpha_{0} = (r_{0}, r_{0})/(p_{0}, s_{0})$$
for $i = 1$:nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

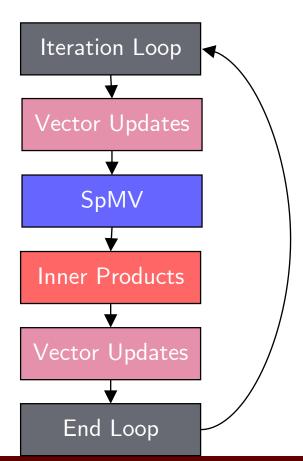
$$w_{i} = Ar_{i}$$

$$\beta_{i} = \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})}$$

$$\alpha_{i} = \frac{(r_{i}, r_{i})}{(w_{i}, r_{i}) - (\beta_{i}/\alpha_{i-1})(r_{i}, r_{i})}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$
end



- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

$$r_{0} = b - Ax_{0}, \ p_{0} = r_{0},$$

$$s_{0} = Ap_{0}, \ \alpha_{0} = (r_{0}, r_{0})/(p_{0}, s_{0})$$
for $i = 1$:nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

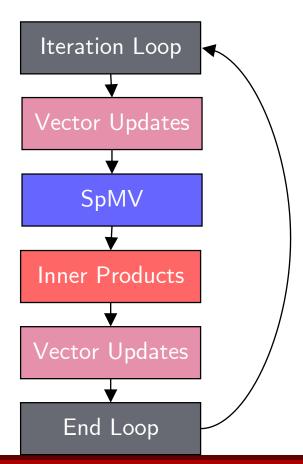
$$w_{i} = Ar_{i}$$

$$\beta_{i} = \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})}$$

$$\alpha_{i} = \frac{(r_{i}, r_{i})}{(w_{i}, r_{i}) - (\beta_{i}/\alpha_{i-1})(r_{i}, r_{i})}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$
end



- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

$$r_{0} = b - Ax_{0}, \ p_{0} = r_{0},$$

$$s_{0} = Ap_{0}, \ \alpha_{0} = (r_{0}, r_{0})/(p_{0}, s_{0})$$
for $i = 1$:nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

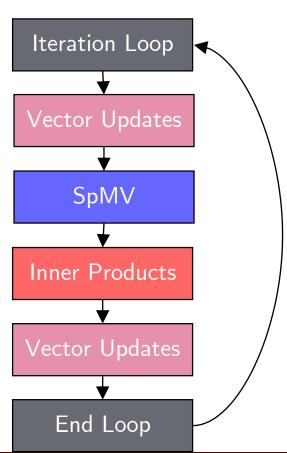
$$w_{i} = Ar_{i}$$

$$\beta_{i} = \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})}$$

$$\alpha_{i} = \frac{(r_{i}, r_{i})}{(w_{i}, r_{i}) - (\beta_{i}/\alpha_{i-1})(r_{i}, r_{i})}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$
end



- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

$$r_{0} = b - Ax_{0}, \ p_{0} = r_{0},$$

$$s_{0} = Ap_{0}, \ \alpha_{0} = (r_{0}, r_{0})/(p_{0}, s_{0})$$
for $i = 1$:nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

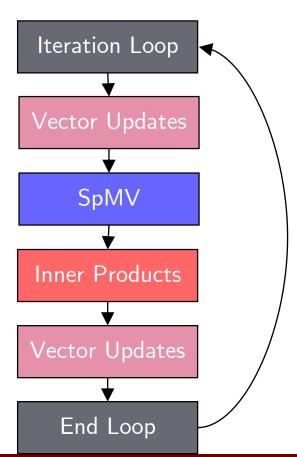
$$w_{i} = Ar_{i}$$

$$\beta_{i} = \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})}$$

$$\alpha_{i} = \frac{(r_{i}, r_{i})}{(w_{i}, r_{i}) - (\beta_{i}/\alpha_{i-1})(r_{i}, r_{i})}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$
end



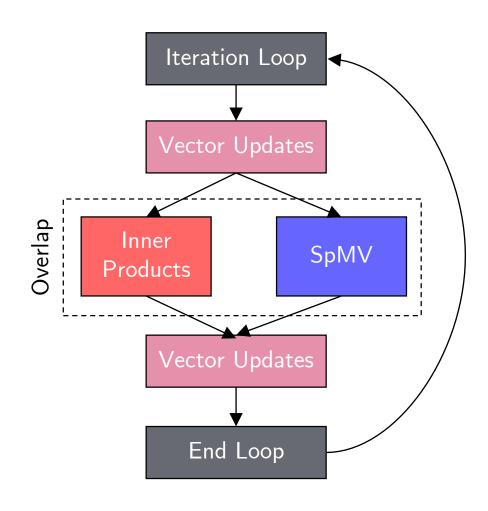
Pipelined CG (GVCG)

- Pipelined CG of Ghysels and Vanroose (2014)
- Similar to Chronopoulos and Gear approach
 - Uses auxiliary vector $s_i \equiv Ap_i$ and same formula for α_i
- Also uses auxiliary vectors for Ar_i and A^2r_i to remove sequential dependency between SpMV and inner products
 - Allows the use of nonblocking (asynchronous) MPI communication to overlap SpMV and inner products
 - Hides the latency of global communications

$$\begin{split} r_0 &= b - Ax_0, \ p_0 = r_0 \\ s_0 &= Ap_0, w_0 = Ar_0, z_0 = Aw_0, \\ \alpha_0 &= r_0^T r_0/p_0^T s_0 \\ \text{for } i &= 1 \text{:nmax} \\ x_i &= x_{i-1} + \alpha_{i-1} p_{i-1} \\ r_i &= r_{i-1} - \alpha_{i-1} s_{i-1} \\ w_i &= w_{i-1} - \alpha_{i-1} z_{i-1} \\ q_i &= Aw_i \\ \beta_i &= \frac{r_i^T r_i}{r_{i-1}^T r_{i-1}} \\ \alpha_i &= \frac{r_i^T r_i}{w_i^T r_i - (\beta_i/\alpha_{i-1}) r_i^T r_i} \\ p_i &= r_i + \beta_i p_{i-1} \\ s_i &= w_i + \beta_i s_{i-1} \\ z_i &= q_i + \beta_i z_{i-1} \end{split}$$

end

$$\begin{split} r_0 &= b - Ax_0, \ p_0 = r_0 \\ s_0 &= Ap_0, w_0 = Ar_0, z_0 = Aw_0, \\ \alpha_0 &= r_0^T r_0/p_0^T s_0 \\ \text{for } i &= 1 \text{:nmax} \\ x_i &= x_{i-1} + \alpha_{i-1} p_{i-1} \\ r_i &= r_{i-1} - \alpha_{i-1} s_{i-1} \\ w_i &= w_{i-1} - \alpha_{i-1} z_{i-1} \\ q_i &= Aw_i \\ \beta_i &= \frac{r_i^T r_i}{r_{i-1}^T r_{i-1}} \\ \alpha_i &= \frac{r_i^T r_i}{w_i^T r_i - (\beta_i/\alpha_{i-1}) r_i^T r_i} \\ p_i &= r_i + \beta_i p_{i-1} \\ s_i &= w_i + \beta_i s_{i-1} \\ z_i &= q_i + \beta_i z_{i-1} \end{split}$$
 end



$$r_{0} = b - Ax_{0}, \ p_{0} = r_{0}$$

$$s_{0} = Ap_{0}, w_{0} = Ar_{0}, z_{0} = Aw_{0},$$

$$\alpha_{0} = r_{0}^{T}r_{0}/p_{0}^{T}s_{0}$$
for $i = 1$:nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

$$w_{i} = w_{i-1} - \alpha_{i-1}z_{i-1}$$

$$q_{i} = Aw_{i}$$

$$\beta_{i} = \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}}$$

$$\alpha_{i} = \frac{r_{i}^{T}r_{i}}{w_{i}^{T}r_{i} - (\beta_{i}/\alpha_{i-1})r_{i}^{T}r_{i}}$$

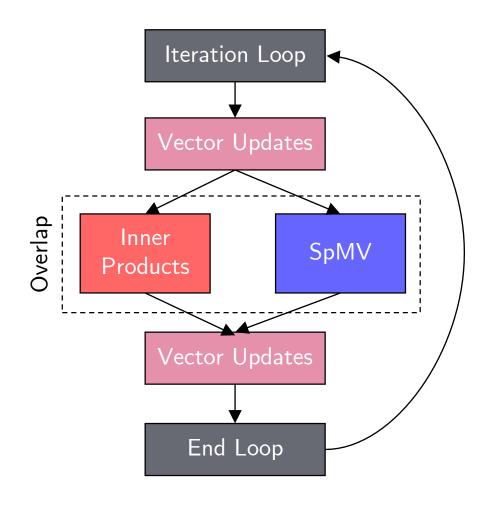
$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$

$$z_{i} = q_{i} + \beta_{i}z_{i-1}$$
end



$$\begin{split} r_0 &= b - Ax_0, \ p_0 = r_0 \\ s_0 &= Ap_0, w_0 = Ar_0, z_0 = Aw_0, \\ \alpha_0 &= r_0^T r_0/p_0^T s_0 \\ \text{for } i &= 1 \text{:nmax} \\ & x_i = x_{i-1} + \alpha_{i-1} p_{i-1} \\ & r_i = r_{i-1} - \alpha_{i-1} s_{i-1} \\ & w_i = w_{i-1} - \alpha_{i-1} z_{i-1} \\ & q_i = Aw_i \\ & \beta_i = \frac{r_i^T r_i}{r_{i-1}^T r_{i-1}} \\ & \alpha_i = \frac{r_i^T r_i}{w_i^T r_i - (\beta_i/\alpha_{i-1}) r_i^T r_i} \\ & p_i = r_i + \beta_i p_{i-1} \\ & s_i = w_i + \beta_i s_{i-1} \\ & z_i = q_i + \beta_i z_{i-1} \\ \end{split}$$
 end



$$r_{0} = b - Ax_{0}, \ p_{0} = r_{0}$$

$$s_{0} = Ap_{0}, w_{0} = Ar_{0}, z_{0} = Aw_{0},$$

$$\alpha_{0} = r_{0}^{T}r_{0}/p_{0}^{T}s_{0}$$
for $i = 1$:nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

$$w_{i} = w_{i-1} - \alpha_{i-1}z_{i-1}$$

$$q_{i} = Aw_{i}$$

$$\beta_{i} = \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}}$$

$$\alpha_{i} = \frac{r_{i}^{T}r_{i}}{w_{i}^{T}r_{i} - (\beta_{i}/\alpha_{i-1})r_{i}^{T}r_{i}}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$

$$z_{i} = q_{i} + \beta_{i}z_{i-1}$$
end



$$r_{0} = b - Ax_{0}, \ p_{0} = r_{0}$$

$$s_{0} = Ap_{0}, w_{0} = Ar_{0}, z_{0} = Aw_{0},$$

$$\alpha_{0} = r_{0}^{T}r_{0}/p_{0}^{T}s_{0}$$
for $i = 1$:nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

$$w_{i} = w_{i-1} - \alpha_{i-1}z_{i-1}$$

$$q_{i} = Aw_{i}$$

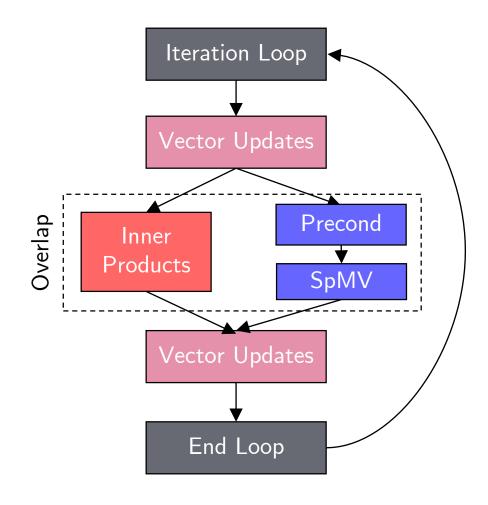
$$\beta_{i} = \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}}$$

$$\alpha_{i} = \frac{r_{i}^{T}r_{i}}{w_{i}^{T}r_{i} - (\beta_{i}/\alpha_{i-1})r_{i}^{T}r_{i}}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$

$$z_{i} = q_{i} + \beta_{i}z_{i-1}$$
end



- Idea: Compute blocks of s iterations at once
 - Compute updates in a different basis
 - Communicate every s iterations instead of every iteration
 - Reduces number of synchronizations per iteration by a factor of s
- An idea rediscovered many times...
- First related work: s-dimensional steepest descent, least squares
 - Khabaza ('63), Forsythe ('68), Marchuk and Kuznecov ('68)
- Flurry of work on s-step Krylov methods in '80s/early '90s: see, e.g., Van Rosendale (1983); Chronopoulos and Gear (1989)

Resurgence of interest in recent years due to growing problem sizes;
 growing relative cost of communication

Key observation: After iteration i, for $j \in \{0,...,s\}$,

$$x_{i+j} - x_i, r_{i+j}, p_{i+j} \in \mathcal{K}_{s+1}(A, p_i) + \mathcal{K}_s(A, r_i)$$

s steps of s-step CG:

Expand solution space s dimensions at once

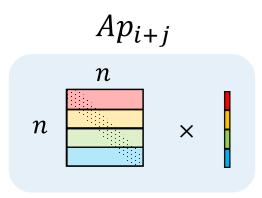
Compute "basis" matrix $\mathcal Y$ such that $\operatorname{span}(\mathcal Y)=\mathcal K_{s+1}(A,p_i)+\mathcal K_s(A,r_i)$ according to the recurrence $A\mathcal Y=\mathcal Y$ $\mathcal B$

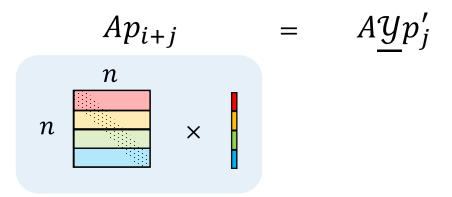
Compute inner products between basis vectors in one synchronization $G = \mathcal{U}^T \mathcal{U}$

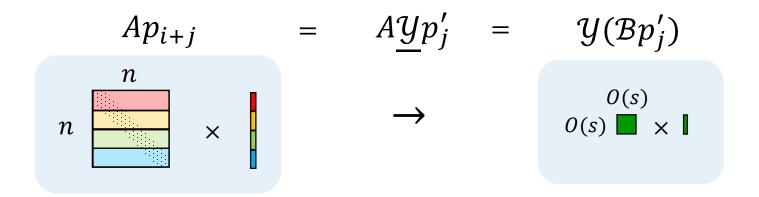
Compute s iterations of vector updates

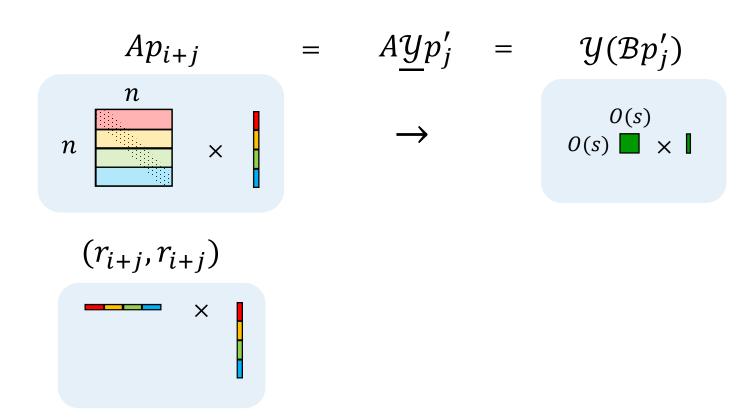
Perform s iterations of vector updates by updating coordinates in basis y:

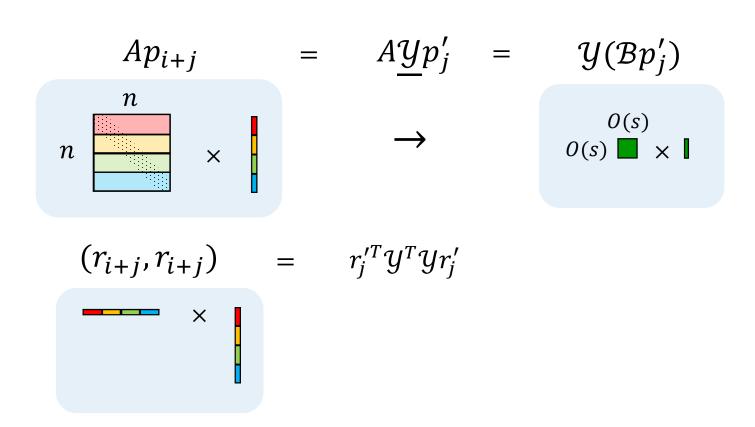
$$x_{i+j} - x_i = \mathcal{Y}x'_j$$
, $r_{i+j} = \mathcal{Y}r'_j$, $p_{i+j} = \mathcal{Y}p'_j$

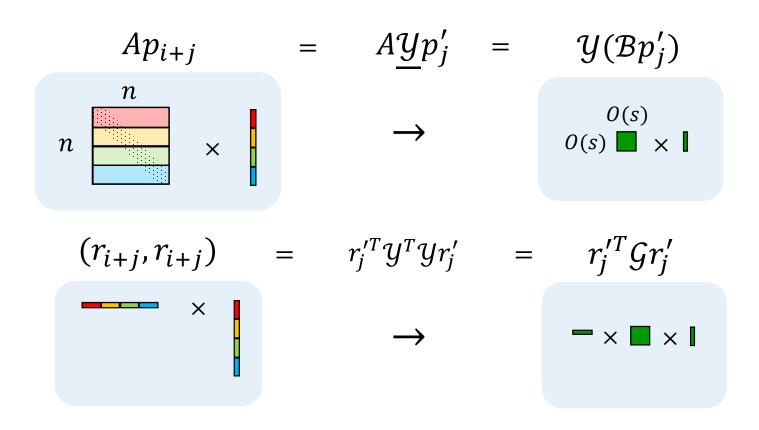












$$r_{0} = b - Ax_{0}, p_{0} = r_{0}$$
 for $k = 0$:nmax/s
Compute \mathcal{Y}_{k} and \mathcal{B}_{k} such that $A\underline{\mathcal{Y}}_{k} = \mathcal{Y}_{k}\mathcal{B}_{k}$ and span $(\mathcal{Y}_{k}) = \mathcal{K}_{s+1}(A, p_{sk}) + \mathcal{K}_{s}(A, r_{sk})$

$$\mathcal{G}_{k} = \mathcal{Y}_{k}^{T}\mathcal{Y}_{k}$$

$$x'_{0} = 0, r'_{0} = e_{s+2}, p'_{0} = e_{1}$$
 for $j = 1$: s

$$\alpha_{sk+j-1} = \frac{r'_{j-1}^{T}\mathcal{G}_{k}r'_{j-1}}{p'_{j-1}^{T}\mathcal{G}_{k}\mathcal{B}_{k}p'_{j-1}}$$

$$x'_{j} = x'_{j-1} + \alpha_{sk+j-1}p'_{j-1}$$

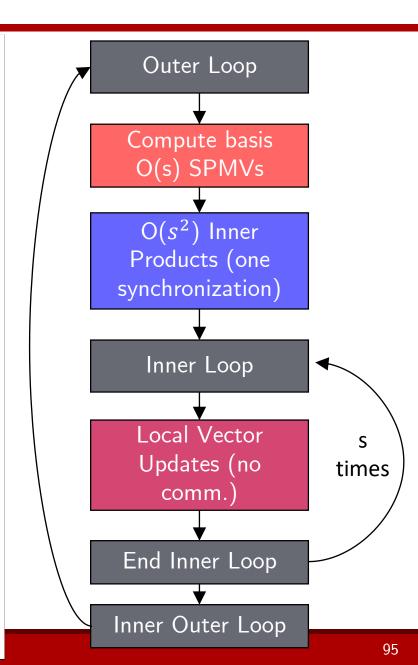
$$r'_{j} = r'_{j-1} - \alpha_{sk+j-1}\mathcal{B}_{k}p'_{j-1}$$

$$\beta_{sk+j} = \frac{r'_{j-1}^{T}\mathcal{G}_{k}r'_{j}}{r'_{j-1}^{T}\mathcal{G}_{k}r'_{j-1}}$$

$$p'_{j} = r'_{j} + \beta_{sk+j}p'_{j-1}$$
 end
$$[x_{s(k+1)} - x_{sk}, r_{s(k+1)}, p_{s(k+1)}] = \mathcal{Y}_{k}[x'_{s}, r'_{s}, p'_{s}]$$

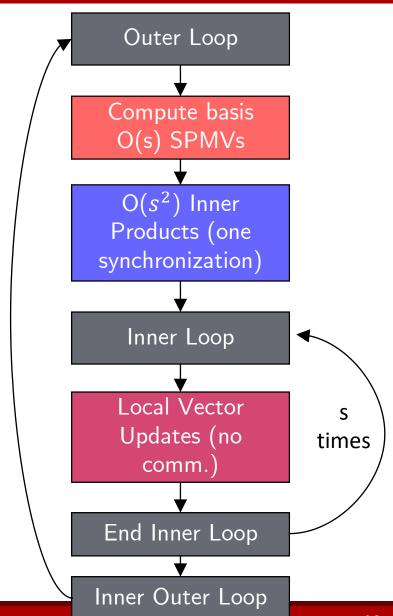
end

end



$$r_0 = b - Ax_0, p_0 = r_0$$
 for $k = 0$:nmax/s
$$\text{Compute } \mathcal{Y}_k \text{ and } \mathcal{B}_k \text{ such that } A\underline{\mathcal{Y}}_k = \mathcal{Y}_k \mathcal{B}_k \text{ and } \\ \text{span}(\mathcal{Y}_k) = \mathcal{K}_{s+1}(A, p_{sk}) + \mathcal{K}_s(A, r_{sk}) \\ \mathcal{G}_k = \mathcal{Y}_k^T \mathcal{Y}_k \\ x'_0 = 0, r'_0 = e_{s+2}, p'_0 = e_1 \\ \text{for } j = 1:s \\ \alpha_{sk+j-1} = \frac{r'_{j-1}^T \mathcal{G}_k r'_{j-1}}{p'_{j-1}^T \mathcal{G}_k \mathcal{B}_k p'_{j-1}} \\ x'_j = x'_{j-1} + \alpha_{sk+j-1} p'_{j-1} \\ x'_j = r'_{j-1} - \alpha_{sk+j-1} \mathcal{B}_k p'_{j-1} \\ \beta_{sk+j} = \frac{r'_{j-1}^T \mathcal{G}_k r'_j}{r'_{j-1}^T \mathcal{G}_k r'_{j-1}} \\ p'_j = r'_j + \beta_{sk+j} p'_{j-1} \\ \text{end}$$
 end

 $[x_{s(k+1)} - x_{sk}, r_{s(k+1)}, p_{s(k+1)}] = \mathcal{Y}_k[x'_s, r'_s, p'_s]$



$$r_0 = b - Ax_0, p_0 = r_0$$
 for $k = 0$:nmax/ s Compute \mathcal{Y}_k and \mathcal{B}_k such that $A\underline{\mathcal{Y}}_k = \mathcal{Y}_k\mathcal{B}_k$ and span $(\mathcal{Y}_k) = \mathcal{K}_{s+1}(A,p_{sk}) + \mathcal{K}_s(A,r_{sk})$
$$\mathcal{G}_k = \mathcal{Y}_k^T\mathcal{Y}_k$$

$$x_0' = 0, r_0' = e_{s+2}, p_0' = e_1$$
 for $j = 1$: s
$$\alpha_{sk+j-1} = \frac{r_{j-1}'^T\mathcal{G}_kr_{j-1}'}{p_{j-1}'^T\mathcal{G}_k\mathcal{B}_kp_{j-1}'}$$

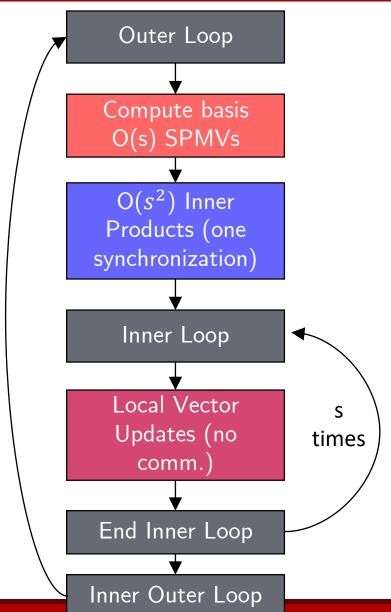
$$x_j' = x_{j-1}' + \alpha_{sk+j-1}p_{j-1}'$$

$$r_j' = r_{j-1}' - \alpha_{sk+j-1}\mathcal{B}_kp_{j-1}'$$

$$\beta_{sk+j} = \frac{r_{j-1}'^T\mathcal{G}_kr_{j-1}'}{r_{j-1}'^T\mathcal{G}_kr_{j-1}'}$$

$$p_j' = r_j' + \beta_{sk+j}p_{j-1}'$$
 end

 $[x_{s(k+1)}-x_{sk},r_{s(k+1)},p_{s(k+1)}]=\mathcal{Y}_k[x'_s,r'_s,p'_s]$



$$r_0 = b - Ax_0, p_0 = r_0$$
 for $k = 0$:nmax/ s Compute \mathcal{Y}_k and \mathcal{B}_k such that $A\underline{\mathcal{Y}}_k = \mathcal{Y}_k\mathcal{B}_k$ and span $(\mathcal{Y}_k) = \mathcal{K}_{s+1}(A, p_{sk}) + \mathcal{K}_s(A, r_{sk})$
$$\mathcal{G}_k = \mathcal{Y}_k^T \mathcal{Y}_k$$

$$x'_0 = 0, r'_0 = e_{s+2}, p'_0 = e_1$$
 for $j = 1$: s
$$\alpha_{sk+j-1} = \frac{r'_{j-1}^T \mathcal{G}_k r'_{j-1}}{p'_{j-1}^T \mathcal{G}_k \mathcal{B}_k p'_{j-1}}$$

$$x'_j = x'_{j-1} + \alpha_{sk+j-1} p'_{j-1}$$

$$r'_j = r'_{j-1} - \alpha_{sk+j-1} \mathcal{B}_k p'_{j-1}$$

$$\beta_{sk+j} = \frac{r'_{j-1}^T \mathcal{G}_k r'_j}{r'_{j-1}^T \mathcal{G}_k r'_{j-1}}$$

$$p'_j = r'_j + \beta_{sk+j} p'_{j-1}$$
 end

Outer Loop Compute basis O(s) SPMVs $O(s^2)$ Inner Products (one synchronization) Inner Loop Local Vector S Updates (no times comm.) End Inner Loop Inner Outer Loop

CA-CG complexity (1)

Kernel	Computation costs	Communication costs
s dependent SpMVs	2s·nnz flops (1 source vector)	 Sequential: Read s vectors of length n Write s vectors of length n Read A s times bandwidth cost ≈ s·nnz + 2sn Parallel: Distribute 1 source vector s times
Akx	4s·nnz flops (2 source vectors)	 Sequential: Read 2 vectors of length n, Write 2s-1 vectors of length n, Read A once (both Akx and SpMM optimizations) bandwidth cost ≈ nnz + (2s+1)n Parallel: Distribute 2 source vectors once Communication volume and number of messages increase with s (ghost zones)

CA-CG complexity (2)

Kernel	Computation costs	Communication costs
2s+1 dot products	 Sequential: 2(2s+1)n flops ≈ 4ns Parallel: (2s+1)(2n+(p-1))/p ≈ 4ns/p 	 Sequential: Read a vector of length n 2s+1 times Parallel: 2s+1 all-reduce collectives, each with lg(p) rounds of messages: latency cost ≈ 2s lg(p) 1 word to/from each proc.: bandwidth cost ≈ 2s lg(p)
Gram matrix	 Sequential: (2s+1)²n flops ≈ 4ns² Parallel: (2s+1)²(n/p + (p-1)/(2p)) ≈ 4ns²/p 	 Sequential: Read a matrix of size (2s+1)×n once Parallel: 1 all-reduce collective, with lg(p) rounds of messages: latency cost ≈ lg(p) (2s+1)²/2 words to/from each proc.: bandwidth cost ≈ 4s² lg(p)

CA-CG complexity (3)

Using Gram matrix and coefficient vectors have additional costs for CA-CG:

 Dense work (besides dot products/Gram matrix, i.e., vector updates) does not significantly increase with s:

$$CG \approx 6sn = O(sn)$$

 $CA-CG \approx 3(2s+1)(2s+n) = O(sn)$

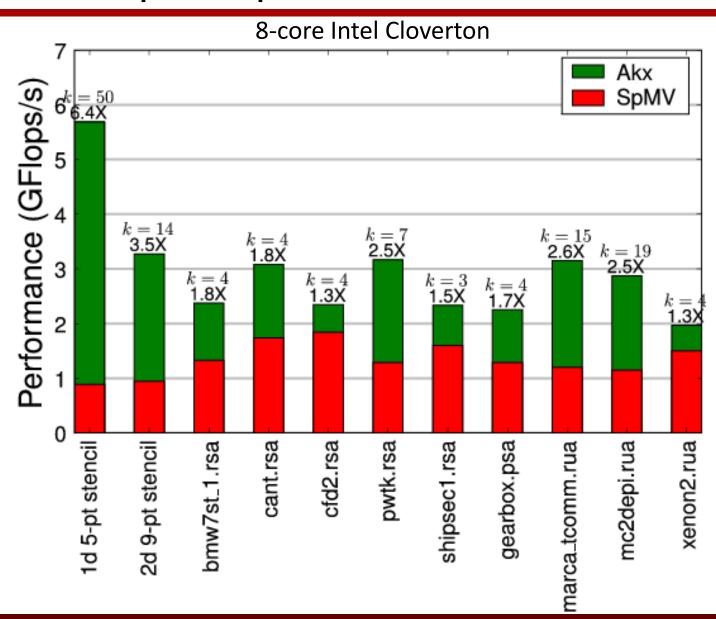
Sequential memory traffic decreases

$$CG \approx 6sn$$
 reads, $3sn$ writes $CA-CG \approx (2s+1)n$ reads, $3n$ writes

Example asymptotic costs for 1D 3-point stencil:

Method	Parallel flops	Parallel bandwidth	Parallel latency
CG, s steps	s·nnz/p + sn/p	s + s lg(p)	s + s lg(p)
CA-CG(s), 1 step	s·nnz/p + <mark>s²</mark> n/p	$s + s^2 \lg(p)$	1+ lg(p)

Multicore Speedups

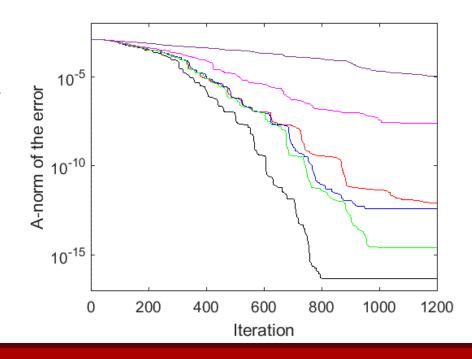


Optimizing high performance iterative solvers

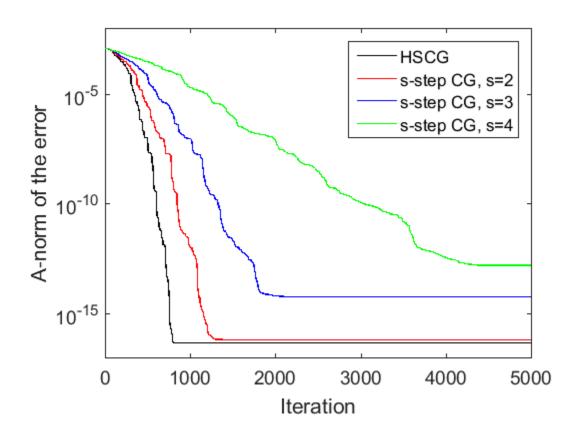
- Synchronization-reducing variants are designed to reduce the time/iteration
- But this is not the whole story!
- What we really want to minimize is the runtime, subject to some constraint on accuracy,

runtime = (time/iteration) x (# iterations)

- Changes to how the recurrences are computed can exacerbate finite precision effects of convergence delay and loss of accuracy
- Crucial that we understand and take into account how algorithm modifications will affect the convergence rate and attainable accuracy!

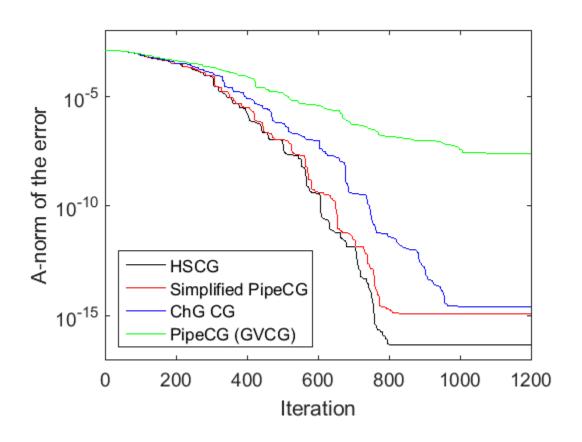


s-step CG with monomial basis ($\mathcal{Y} = [p_i, Ap_i, ..., A^s p_i, r_i, Ar_i, ..., A^{s-1}r_i]$)



Can also use other, more well-conditioned bases to improve convergence rate and accuracy (see, e.g. Philippe and Reichel, 2012).

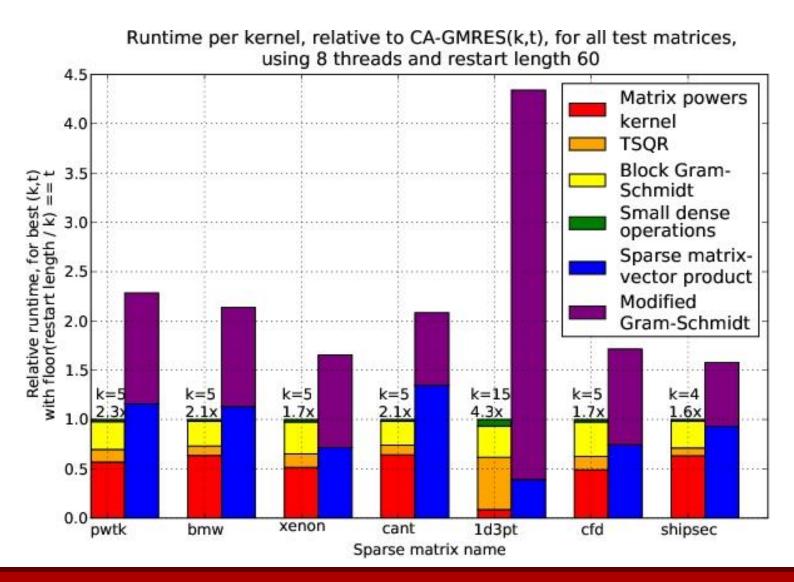
Simple pipelined CG



effect of changing formula for recurrence coefficient α and using auxiliary vectors $s_i \equiv Ap_i$, $w_i \equiv Ar_i$, $z_i \equiv A^2r_i$

Communication-Avoiding Krylov Method (GMRES)

Performance on 8 core Clovertown



Preconditioning

- Instead of solving Ax = b, solve
 - $M^{-1}Ax = M^{-1}b$ (left), or
 - $AM^{-1}y = b$ and Mx = y (right)
- Where goal is that preconditioned system converges faster

- Hard to design preconditioners for communication-avoiding methods
 - Rule-of-thumb: the better the preconditioner, the more communication needed to apply it

Preconditioners: Current Work

- Current communication-avoiding preconditioners
 - Diagonal
 - Sparse Approximate Inverse (SAI) (Mehri, 2014)
 - **CA-ILU(0)** (Moufawad, Grigori, 2013)
 - CA-ILU(k) –(Nataf, Moufawad, Grigori, 2015)
 - **Domain decomposition** (Yamazaki, Rajamanickam, Boman, Hoemmen, Heroux, Tomov, 2014)
 - HSS preconditioning (Hoemmen, 2010); (Knight, C., Demmel, 2014)
 - **Deflation** (C., Knight, Demmel, 2014); (Yamazaki et al., 2014)

An active area of ongoing research...

Other Active Areas of Research

- Pipelined and s-step variants of other Krylov subspace methods
- "Low-synch" variants of Krylov subspace methods
 - "Low synchronization GMRES algorithms", Swirydowicz et al., 2018, https://arxiv.org/abs/1809.05805
- Hypergraph models of communication for other sparse computations
- Other sparse computations:
 - Sparse matrix x sparse matrix
 - Sparse matrix x dense matrix
 - Sparse matrix x sparse vector
 - "Data-sparse" matrices (e.g., hierarchical semiseparable structures)
- Mixed precision approaches