
Lecture 8:
Sparse Linear Algebra

Outline for today

• Sparse matrix formats and basic SpMV

• Sequential optimizations

• Distributed memory optimizations

• Higher-level kernels

• Sparse Matrix Multiply

• Matrix powers computations

• Iterative solvers - Krylov subspace methods

• Communication-Avoiding Krylov solvers

2

Sparse matrices are everywhere

Internet connectivity Structural design Linear Programming

3

Sparse Matrix Computations

• Sparse matrix-(dense)vector multiplication (SpMV) or sparse-
matrix-multiple (dense) vector multiplication

• Solving linear systems

• Eigenvalue problems

• Optimization algorithms

• Machine learning, etc.

• Repeated SpMV/SPMM (Akx)
• Transitive closure on graphs

• Linear relaxation

• Pagerank, Krylov basis computation

• Sparse matrix-sparse-vector (SpMSpV)
• E.g., graph algorithms: breadth-first search, bipartite graph matching, and

maximal independent sets

• Sparse matrix-sparse matrix (SpGEMM)
• E.g., graph algorithms

• Common special case: A * AT

• Sparse matrix-dense matrix (SpDM3)
• Machine learning

• Sampled Dense-Dense Matrix Multiplication
• Machine learning

4

Compressed Sparse Row (CSR) Storage

• CSR has:

• Array of the nonzero values (val) of size nnz = number of nonzeros

• Array of the column indices for each value of size nnz

• Array of row start pointers of size n = number of rows

• Other common formats (plus blocking)

• Compressed sparse column (CSC)

• Coordinate (COO): row + column index per nonzero (easy to build)

And many more
specialized ones!

5

y = Ax

Matrix-vector multiply kernel: y(i)  y(i) + A(i,j)*x(j)

for each row i

for k=ptr[i] to ptr[i+1]-1 do

y[i] = y[i] + val[k]*x[ind[k]]

SpMV with Compressed Sparse Row (CSR)

y

x

A

6

SpMV with Compressed Sparse Row (CSR)

Possible optimizations:

1) Unroll the k loop → need # non-zeros per row

2) Hoist y[i] → OK absent aliasing

3) Eliminate ind[i] → need to know non-zero pattern

4) Reuse elements of x → need good non-zero pattern

Matrix-vector multiply kernel: y(i)  y(i) + A(i,j)*x(j)

for each row i

for k=ptr[i] to ptr[i+1]-1 do

y[i] = y[i] + val[k]*x[ind[k]]

7

Sparse matrix representations

8

SpMV dependency graph

• Graph of A: G(A)=(V,E)

• Directed graph with vertices V={1,...,n}

• Edges (i, 𝑗) ∈ 𝐸 ⊆ 𝑉 × 𝑉

• 𝑖, 𝑗 ∈ 𝐸 iff 𝐴 𝑖, 𝑗 ≠ 0

• nnz = |E|

9

× × 0 0
0 × 0 ×
0 × × 0
× 0 0 ×

1 2

3 4

Lower bounds and optimal algorithms - sequential

• First, sequential case (assume explicit values/indices)

• Flops: Ω(nnz)

• Bandwidth (words moved): Ω(nnz)

• lower bound for the explicit case follows from the fact that
W = Ω(nnz) words must be moved between slow and fast
memory (of size M)

• this many nonzero values and/or positions must be read to
apply A.

• Latency (# messages): Ω(nnz/M)

• Since we allow messages of size between 1 and M, the
latency lower bounds are a factor of M smaller

10

dimension: n = 5
number of nonzeros:

nnz = 3n-2 (tridiagonal A)

overcounts flops by up to n (diagonal A)

SpMV

floating point operations 2⋅nnz

floating point words moved nnz + 2⋅n

Assumption: A is invertible
⇒ nonzero in every row
⇒ nnz ≥ n

SpMV Arithmetic Intensity (1)

11

• Arithmetic intensity := Total flops / Total DRAM bytes

O(n)

O(lg(n))

O(1)

SpMV, BLAS1,2

Stencils (PDEs)

Lattice Methods

FFTs
Dense Linear Algebra

(BLAS3)
Particle Methods

more
flops
per
byte

flops

words
£ 2 ×

nnz

nnz+ 2n

æ

è
ç

ö

ø
÷ nnz=w (n)¾ ®¾¾¾ 2

SpMV

flops 2⋅nnz

words moved nnz + 2⋅n

arith. intensity 2

SpMV Arithmetic Intensity (2)

12

actual flop:byte ratio

at
ta

in
ab

le
 g

fl
o

p
/s

0.5

1.0

1/8

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4
1/2 1 2 4 8 16

peak double
precision

floating-point
rate

• 2 flops per word of data
• 8 bytes per double
• flop:byte ratio ≤ ¼
• Can’t beat 1/16 of peak!

How to do more
flops per byte?

Reuse data (x, y, A)
across multiple SpMVs



SpMV Arithmetic Intensity (3)

13

“Roofline model”
[Williams, Waterman,
Patterson, CACM, 2009]

Lower bounds and optimal algorithms - sequential

• SpMV will be communication bound

• Each nonzero Aij , or its position, is only needed once, so
there is no reuse of these values.

• Thus, if the nonzeros, or their positions, do not fit in
cache, then they can be accessed at no faster rate than
main memory bandwidth.

• More importantly, at most two floating-point operations –
a multiply and, perhaps, an add – are performed for each
Aij read from memory

• performance generally bounded above by peak memory
bandwidth

• no more than 10% of peak flop rate on commodity hardware

14

Optimization techniques

• Register blocking - considering small, dense blocks of A as ‘nonzeros’ rather
than the nonzero elements themselves

• helps exploit re-use of vector entries, and also reduces the number of
indices needing to be read from memory

• see [Vuduc, 2003], [Vuduc et al., 2005]

• Cache blocking

• see [Nishtala, Vuduc, Demmel, Yelick, 2007]

• Reordering - Reorder the sparse matrix to concentrate elements around the
diagonal (e.g., reverse Cuthill–McKee ordering)

• can improve spatial locality of the vector accesses, potentially reducing
the latency cost

15

Changing Matrix Format: Blocking

• n = 21200

• nnz = 1.5 M

• kernel: SpMV

• Source: NASA structural
analysis problem

16

https://sparse.tamu.edu/

Changing Matrix Format: Blocking

• n = 21200

• nnz = 1.5 M

• kernel: SpMV

• Source: NASA structural
analysis problem

• 8x8 dense substructure

17

Taking advantage of block structure in SpMV

• Bottleneck is time to get matrix from memory

• Only 2 flops for each nonzero in matrix

• Fetching at ~1 int (column index) + 1 float (value) for 2 flops

• Don’t store each nonzero with index, instead store each nonzero r-by-c
block with 1 column index

• As r*c grows, storage drops by up to 2x, for all 32-bit quantities

• Time to fetch matrix from memory decreases

• Change both data structure and algorithm

• Need to pick r and c

• Need to change algorithm accordingly

• In example, is r=c=8 best choice?

• Minimizes storage, so looks like a good idea…

• Consider best case: dense matrix in sparse format

18

The Need for Search

Reference

Best: 4x2

Mflop/s

Mflop/s
Itanium 2 processor

19

SpMV Performance (Matrix #2): Generation 1
Power3 Power4

Itanium 2Itanium 1

195 Mflop/s

100 Mflop/s

703 Mflop/s

469 Mflop/s

225 Mflop/s

103 Mflop/s

1.1 Gflop/s

276 Mflop/s
20

SpMV Performance (Matrix #2): Generation 2
Ultra 2i Ultra 3

Pentium III-M Pentium III

63 Mflop/s

35 Mflop/s

109 Mflop/s

53 Mflop/s

96 Mflop/s

42 Mflop/s

120 Mflop/s

58 Mflop/s
21

But most matrices don’t block so easily

• FEM Fluid dynamics
problems

• More complicated non-
zero structure in
general

• N = 16614

• NNZ = 1.1M

22

Zoom in to top corner

• More complicated
non-zero structure

• N = 16614

• NNZ = 1.1M

23

3x3 blocks look natural, but…

• More complicated non-
zero structure

• Example: 3x3 blocks
• Grid of 3x3 cells

• Many cell are not full

• N = 16614

• NNZ = 1.1M

24

Extra work can improve efficiency

• More complicated non-
zero structure

• Example: 3x3 blocks
• Grid of 3x3 cells

• Add explicit zeros:
1.5x “fill overhead”

• Unroll loops

• More work but can be
faster

25

Automatic Register Block Size Selection

• Selecting the r x c block size
• Off-line benchmark of “register profile”

• Precompute Mflops(r,c) using dense A in sparse format
(blocked sparse row) for each r x c

• Once per machine/architecture
• Run-time “search”

• Sample A to estimate Fill(r,c) for each r x c

• Run-time heuristic model

• Choose r, c to minimize time ≈ Fill(r,c) / Mflops(r,c)

26

Register Profile: dense matrix in sparse format

190 Mflop/s

1190 Mflop/s

27

Cache Blocking on LSI Matrix: Pentium 4

A
10k x 255k
3.7M non-zeros

Baseline:
44 Mflop/s

Best block size
& performance:
16k x 16k
210 Mflop/s

Nishtala, et al (2007). When
cache blocking of sparse matrix
vector multiply works and why.

28

Cache Blocking on Random Matrices: Itanium

Speedup on four banded
random matrices.

Nishtala, et al (2007). When
cache blocking of sparse matrix
vector multiply works and why.

29

Matrix Reordering: Example

• Application: accelerator cavity design

• Optimizations:

• Reordering, to create more dense blocks

• Reverse Cuthill-McKee ordering to reduce bandwidth

• Do Breadth-First-Search, number nodes in reverse order
visited

• Traveling Salesman Problem-based ordering to create blocks

• Nodes = columns of A

• Weights(u, v) = no. of nonzeros u, v have in common

• Tour = ordering of columns

• Choose maximum weight tour

• See [Pinar & Heath ’97]

30

Accelerator Cavity Design Problem

Post-RCM Reordering

100x100 Submatrix Along Diagonal

Before: Green + Red
After: Green + Blue

“Microscopic” Effect of RCM Reordering

“Microscopic” Effect of Combined RCM+TSP Reordering

Before: Green + Red
After: Green + Blue

How do permutations affect algorithms?

• 𝐴 = original matrix, 𝐴𝑃 = 𝑃𝑅𝐴𝑃𝐶 (𝐴 with permuted rows, columns)

• SpMV: permute 𝑥 (𝑥𝑃 = 𝑃𝑐
𝑇𝑥), multiply 𝑦𝑃 = (𝑃𝑅𝐴𝑃𝐶)(𝑃𝐶

𝑇𝑥), permute 𝑦 (𝑦 =
𝑃𝑅
𝑇𝑦𝑃)

• Faster way to solve 𝐴𝑥 = 𝑏

• Solve 𝐴𝑃𝑥𝑃 = 𝑃𝑅𝑏 for 𝑥𝑃, using SpMV with 𝐴𝑃, then let 𝑥 = 𝑃𝐶𝑥𝑃
• Only need to permute vectors twice, not twice per iteration

• Faster way to solve 𝐴𝑥 = 𝜆𝑥

• 𝐴 and 𝐴𝑃 have same eigenvalues, no vectors to permute!

• 𝐴𝑃𝑥𝑃 = 𝜆𝑥𝑃 implies 𝐴𝑥 = 𝜆𝑥 where 𝑥 = 𝑃𝐶𝑥𝑃

36

Shared-Memory Multicore Optimizations

• NUMA - Non-Uniform Memory Access

• pin submatrices to memories close to
cores assigned to them

37

• Prefetch – values, indices, and/or vectors

• use exhaustive search on prefetch distance

• Matrix Compression – not just register blocking (BCSR)

• 32 or 16-bit indices, Block Coordinate format for submatrices

• Cache-blocking

• 2D partition of matrix, so needed parts of x,y fit in cache

Distributed-memory parallel SpMV

• Harder to make general statements about performance:

• Many ways to partition x, y, and A processors

• Communication, computation, and load-balance are partition-
dependent

• A parallel SpMV involves 1 or 2 rounds of messages

• (Sparse) collective communication, costly synchronization

• Latency-bound (hard to saturate network bandwidth)

• Scatter entries of x and/or gather entries of y across network

• k SpMVs cost O(k) rounds of messages

38

Lower bounds and optimal algorithms - parallel

• First require some notion of initial data layout, load balance and/or local
memory capacity

• Classical algorithm: every processor j owns matrix 𝐴(𝑗) and computes
𝑦(𝑗) = 𝐴(𝑗)𝑥

• 𝐴 = σ𝑗=1
𝑃 𝐴 𝑗 is a sum of matrices with disjoint nonzero structures.

• vectors x, y are distributed across the P processors, and their layout, along
with the splitting of A, determines the communication cost

• zero or more entries of x are communicated

• zero or more entries of y are computed by a reduction over the (sparse)
vectors y(j)

• assume a load-balanced parallelization among P ≥ 2 processors, where at
least two processors perform at least nnz/P flops.

39

Hypergraph model
• Hypergraph: generalization of a graph where “edge” can connect more than 2 vertices

• Communication costs for parallel SpMV without data replication (implicit or explicit
storage) can be exactly modelled by a hypergraph constructed from the
computation’s DAG

• see [Catalyurek and Aykanat, 2001]

• Vertices represent matrix nonzeros and the hyperedges contain the vertices adjacent to
incoming (resp. outgoing) edges, of each vertex in the graph of A.

• vertex partition = parallelization of the classical SpMV computations

• induced hyperedge cut corresponds to interprocessor communication for that
parallelization.

• By varying the metric applied to the cut, one can exactly measure communication
volume (number of words moved) or synchronization (number of messages between
processors) on a distributed-memory machine.

• Various heuristics are applied to find approximate solutions to these NP-hard
partitioning problems in practice and mature software packages are available: see, for
example, Devine et al. (2006).

40

Hypergraph Model for Communication in SpMV

v1 v2

v3 v4

v1 v2

v3v4
Pattern Matrix

Graph

Representation
Hypergraph Representation

(Column-Net Model)

• Hypergraph model for row-wise partition (similar for column-wise)

– Hyperedge for each column, vertex for each row. Vertex 𝑣𝑖 is connected to

hyperedge 𝑒𝑗 if 𝐴(𝑖, 𝑗) ≠ 0

• Benefits over graph model:

– Natural representation of nonsymmetric matrices

– Cost of hyperedge cut for a given partition is exactly equal to the number of
words moved in SpMV operation with the same partition of 𝐴

41

Graph vs. Hypergraph Partitioning
Consider a 2-way partition of a 2D mesh:

The cost of communicating vertex A is 1 – we can
send the value in one message to the other processor

According to the graph model, however the vertex
A contributes 2 to the total communication volume,
since 2 edges are cut.

The hypergraph model accurately
represents the cost of communicating A
(one hyperedge cut, so communication
volume of 1.

Unlike graph partitioning model, the hypergraph partitioning model gives
exact communication volume (minimizing cut = minimizing communication)

Edge cut = 10

Hyperedge

cut = 7

42

Example: Hypergraph vs. Graph Partitioning

2D Mesh, 5-pt stencil, n = 64, p = 16

Hypergraph Partitioning (PaToH)
Total Comm. Vol = 719
Max Vol per Proc = 59

Graph Partitioning (Metis)
Total Comm. Vol = 777
Max Vol per Proc = 69

43

Takeaway messages

• Tuning for modern processors is hard

• Sparse matrices: tuning harder

• SpMV: low Computational Intensity

• Usual low-level tuning (prefetch, etc.) have some benefit

• Reordering (including graph partitioning) improves locality

• But SpMV will likely still be bandwidth limited

44

Is tuning SpMV all we can do?

• Iterative methods all depend on it

• But speedups are limited

• Just 2 flops per nonzero

• Communication costs dominate

• Can we beat this bottleneck?

• Need to look at next level in stack:

• What do algorithms that use SpMV do?

• Can we reorganize them to avoid communication?

• Only way significant speedups will be possible

45

   kk xxxAyyy ,,,,,, 1010  =

(1) used in:
• Block Krylov methods
• Krylov methods for multiple

systems (AX = B)

(1) k independent SpMVs

   

 00

2

0

11021

,,,

,,,,,,

xAxAAx

xxxAxxx

k

kk





=

= −

(2) used in:
• s-step Krylov methods/

Communication-avoiding Krylov
methods

…to compute k Krylov basis vectors

() ()xAAxxxAK s

s ,,,span:, =

Def. Krylov space (given A, x, s):

What if we can amortize cost
of reading A over k SpMVs ?
• (k-fold reuse of A)

Combining multiple SpMVs

(2) k dependent SpMVs

(3) k dependent SpMVs,
in-place variant
x = Akx

(3) used in:
• multigrid smoothers, power

method

46

SpMM optimization:
• Compute row-by-row
• Stream A only once

=

   kk xxxAyyy ,,,,,, 1010  =

1 SpMV k independent SpMVs k independent SpMVs
(using SpMM)

flops 2⋅nnz 2k⋅nnz 2k⋅nnz

words moved nnz + 2n k⋅nnz + 2kn 1⋅nnz + 2kn

arith. intensity,
nnz = ω(n)

2 2 2k

(1) k independent SpMVs (SpMM)

47

Akx (Akx) optimization:
• Must satisfy data

dependencies while keeping
working set in cache

   

 00

2

0

11021

,,,

,,,,,,

xAxAAx

xxxAxxx

k

kk





=

= − Naïve algorithm (no reuse):

1 SpMV k dependent SpMVs k dependent SpMVs
(using Akx)

flops 2⋅nnz 2k⋅nnz 2k⋅nnz

words moved nnz + 2n k⋅nnz + 2kn 1⋅nnz + (k+1)n

arith. intensity,
nnz = ω(n)

2 2 2k

(2) k dependent SpMVs (Akx)

48

1 8 10 13 18 20 23 28 30 33 401 8 10 13 18 20 23 28 30 33 401 8 10 13 18 20 23 28 30 33 401 8 10 13 18 20 23 28 30 33 401 8 10 13 18 20 23 28 30 33 40

1 SpMV k dependent SpMVs k dependent SpMVs
(using Akx)

flops 2⋅nnz 2k⋅nnz 2k⋅nnz

words moved nnz + 2n k⋅nnz + 2kn 1⋅nnz + (k+1)n

arith. intensity,
nnz = ω(n)

2 2 2k

(2) k dependent SpMVs (Akx)

Akx algorithm (reuse nonzeros of A):

49

1 SpMV k dependent SpMVs,
in-place

Akx, last-vector-only

flops 2⋅nnz 2k⋅nnz 2k⋅nnz

words moved nnz + 2n k⋅nnz + 2kn 1⋅nnz + 2n

arith. intensity 2 2 2k

x = Akx

Last-vector-only Akx optimization:
• Reuses matrix and vector k times, instead of once.
• Overwrites intermediates without memory traffic
• Attains O(k) reuse, even when nnz < n

• eg, A is a stencil (implicit values and structure)

(3) k dependent SpMVs, in-place (Akx, last-vector-only)

50

Problem flops words moved optimization words moved

SpMV 2⋅nnz nnz + 2n - -

k independent
SpMVs

2k⋅nnz k⋅nnz + 2kn SpMM nnz +2kn

k dependent
SpMVs

2k⋅nnz k⋅nnz + 2kn Akx nnz + (k+1)n

k dependent
SpMVs,
in-place

2k⋅nnz k⋅nnz + 2kn
Akx, last-

vector-only
nnz+2n

Combining multiple SpMVs (summary of sequential results)

51

Avoiding Serial Communication
• Reduce compulsory misses by reusing

data:

• more efficient use of memory

• decreased bandwidth cost (Akx,
asymptotic)

• Must also consider latency cost

• How many cachelines?

• depends on contiguous accesses

• When k is large ⇒ compute-bound?

• In practice, complex performance
tradeoffs.

• Autotune to find best k

actual flop:byte ratio

at
ta

in
ab

le
 g

fl
o

p
/s

0.5

1.0

1/8

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4
1/2 1 2 4 8 16

peak DP



☺

53

0 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 4

0 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 4

Example: tridiagonal matrix, k = 3, n = 40, p = 4

Naïve algorithm:
k messages per neighbor

Akx optimization:
1 message per neighbor

Distributed-memory parallel Akx

54

Matrix Powers Kernel on a General Matrix

• Saves communication for “well partitioned” matrices

• Serial memory bandwidth: O(1) moves of data vs. O(k)

• Parallel message latency: O(1) messages vs. O(k)

See paper by Demmel, Hoemman,
Mohiyuddin, Yelick, 2011

• Need hypergraph
partitioning

• For implicit memory
management (caches)
uses a TSP algorithm for
layout

55

Example costs for model problem
• Assume 1D 3-point stencil

• n points (rows/cols), partitioned evenly among p processors

• Assume matrix is partitioned rowwise

• Assume k<n/p

• Entries in table meant in big-O sense

56

Naive Akx CA-Akx

Flops 𝑘𝑛/𝑝 Τ𝑘𝑛 𝑝 + 𝑘2

Words Moved 𝑘 𝑘

Messages 𝑘 1

Tuning space for Akx

• DLP optimizations:

• vectorization

• ILP optimizations:

• Software pipelining

• Loop unrolling

• Eliminate branches, inline functions

• TLP optimizations:

• Explicit SMT

• Memory system optimizations:

• NUMA-aware affinity

• Software prefetching

• TLB blocking

• Memory traffic optimizations:

• Streaming stores (cache bypass)

• Array padding

• Cache blocking

• Index compression

• Blocked sparse formats

• Stanza encoding

• Distributed memory optimizations:

• Topology-aware sparse collectives

• Hypergraph partitioning

• Dynamic load balancing

• Overlapped communication and computation

• Algorithmic variants:

• Compositions of distributed-memory parallel,
shared memory parallel, sequential algorithms

• Streaming or explicitly buffered workspace

• Explicit or implicit cache blocks

• Avoiding redundant computation/storage/traffic

• Last-vector-only optimization

• Remove low-rank components (blocking covers)

• Different polynomial bases pj(A)

• Other:

• Preprocessing optimizations

• Extended precision arithmetic

• Scalable data structures (sparse representations)

• Dynamic value and/or pattern updates

57

General polynomial bases for Krylov subspaces

• Given A, x, k > 0, compute

where pj(A) is a degree-j polynomial in A.

• Thus far we considered the special case of the monomials:

() () () xApxApxAp k,,, 21 

 xAxAAx k,,, 2 

58

Krylov subspace methods

• In each iteration,

• Add a dimension to the Krylov subspace

– Forms nested sequence of Krylov subspaces

𝒦1 𝐴, 𝑟0 ⊂ 𝒦2 𝐴, 𝑟0 ⊂ ⋯ ⊂ 𝒦𝑖(𝐴, 𝑟0)

• Orthogonalize (with respect to some 𝒞𝑖)

• Select approximate solution 𝑥𝑖 ∈ 𝑥0 +𝒦𝑖(𝐴, 𝑟0)

using 𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖 ⊥ 𝒞𝑖

• Ex: Lanczos/Conjugate Gradient (CG), Arnoldi/Generalized Minimum Residual
(GMRES), Biconjugate Gradient (BICG), BICGSTAB, GKL, LSQR, etc.

• Krylov Subspace Method is a projection process onto the Krylov subspace

𝒦𝑖 𝐴, 𝑟0 = span 𝑟0, 𝐴𝑟0, 𝐴
2𝑟0, … , 𝐴𝑖−1𝑟0

where 𝐴 is an 𝑁 ×𝑁 matrix and 𝑟0 = 𝑏 − 𝐴𝑥0 is a length-𝑁 vector

𝒞

𝑟new

𝐴𝛿

𝑟0

0

• Linear systems 𝐴𝑥 = 𝑏, eigenvalue problems, singular value problems, least squares, etc.
• Best for: 𝐴 large & very sparse, stored implicitly, or only approximation needed

59

The conjugate gradient method
𝐴 is symmetric positive definite, 𝒞𝑖 = 𝒦𝑖(𝐴, 𝑟0)

𝑟𝑖 ⊥ 𝒦𝑖 𝐴, 𝑟0 ⟺ 𝑥 − 𝑥𝑖 𝐴 = min
𝑧∈𝑥0+𝒦𝑖(𝐴,𝑟0)

𝑥 − 𝑧 𝐴

⟹ 𝑟𝑁+1 = 0

Connection with Lanczos

• With 𝑣1 = 𝑟0/ 𝑟0 , 𝑖 iterations of Lanczos produces 𝑁 × 𝑖 matrix 𝑉𝑖 =
𝑣1, … , 𝑣𝑖 , and 𝑖 × 𝑖 tridiagonal matrix 𝑇𝑖 such that

𝐴𝑉𝑖 = 𝑉𝑖𝑇𝑖 + 𝛿𝑖+1𝑣𝑖+1𝑒𝑖
𝑇 , 𝑇𝑖 = 𝑉𝑖

∗𝐴𝑉𝑖

• CG approximation 𝑥𝑖 is obtained by solving the reduced model

𝑇𝑖𝑦𝑖 = 𝑟0 𝑒1, 𝑥𝑖 = 𝑥0 + 𝑉𝑖𝑦𝑖

• Connections with orthogonal polynomials, Stieltjes problem of moments, Gauss-
Cristoffel quadrature, others (see 2013 book of Liesen and Strakoš)

⇒ CG (and other Krylov subspace methods) are highly nonlinear
• Good for convergence, bad for ease of finite precision analysis

60

“Orthogonalize with respect to 𝒞𝑖”

→ Inner products

• global synchronization (MPI_Allreduce)

• all processors must exchange data and wait for all
communication to finish before proceeding

Projection process in terms of communication:

“Add a dimension to 𝒦𝑖”
→ Sparse matrix-vector multiplication (SpMV)
• Must communicate vector entries w/ neighboring

processors (P2P communication)

Dependencies between communication-bound kernels
in each iteration limit performance!

SpMV

orthogonalize

×

×

Communication in CG

61

Communication in HSCG

Iteration Loop

SpMV

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
end

62

Communication in HSCG

Iteration Loop

SpMV

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
end

63

Communication in HSCG

Iteration Loop

SpMV

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
end

64

Communication in HSCG

Iteration Loop

SpMV

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
end

65

Communication in HSCG

Iteration Loop

SpMV

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
end

66

Communication in HSCG

Iteration Loop

SpMV

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
end

67

HPCG Benchmark

68

HPCG Results (June 2022)

~3% of peak

Synchronization-reducing variants

Communication cost has motivated many approaches to reducing
synchronization in CG:

• Early work: CG with a single synchronization point per iteration

• 3-term recurrence CG

• Using modified computation of recurrence coefficients

• Using auxiliary vectors

• Pipelined Krylov subspace methods

• Uses modified coefficients and auxiliary vectors to reduce synchronization points
to 1 per iteration

• Modifications also allow decoupling of SpMV and inner products - enables
overlapping

• s-step Krylov subspace methods

• Compute iterations in blocks of s using a different Krylov subspace basis

• Enables one synchronization per s iterations

70

CG with two three-term recurrences (STCG)

• HSCG recurrences can be written as
𝐴𝑃𝑖 = 𝑅𝑖+1𝐿𝑖 , 𝑅𝑖 = 𝑃𝑖𝑈𝑖

we can combine these to obtain a 3-term recurrence for the residuals (STCG):
𝐴𝑅𝑖 = 𝑅𝑖+1𝑇𝑖 , 𝑇𝑖 = 𝐿𝑖𝑈𝑖

Can be accomplished with
a single synchronization
point on parallel
computers (Strakoš 1985,
1987)

• Similar approach (computing 𝛼𝑖 using 𝛽𝑖−1) used by D'Azevedo, Eijkhout, Romaine (1992, 1993)

• First developed by Stiefel (1952/53), also Rutishauser (1959) and Hageman and Young
(1981)

• Motivated by relation to three-term recurrences for orthogonal polynomials

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0, 𝑥−1= 𝑥0, 𝑟−1= 𝑟0, 𝑒−1= 0
for 𝑖 = 1:nmax

𝑞𝑖−1 =
(𝑟𝑖−1,𝐴𝑟𝑖−1)

(𝑟𝑖−1,𝑟𝑖−1)
− 𝑒𝑖−2

𝑥𝑖 = 𝑥𝑖−1 +
1

𝑞𝑖−1
𝑟𝑖−1 + 𝑒𝑖−2(𝑥𝑖−1 − 𝑥𝑖−2)

𝑟𝑖 = 𝑟𝑖−1 +
1

𝑞𝑖−1
−𝐴𝑟𝑖−1 + 𝑒𝑖−2(𝑟𝑖−1 − 𝑟𝑖−2)

𝑒𝑖−1 = 𝑞𝑖−1
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

end

18

Chronopoulos and Gear's CG (ChG CG)
• Chronopoulos and Gear (1989)

• Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

• Reduces synchronizations/iteration to 1 by changing computation of 𝛼𝑖 and
using an auxiliary recurrence for 𝐴𝑝𝑖

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0,

𝑠0 = 𝐴𝑝0, 𝛼0= (𝑟0, 𝑟0)/(𝑝0, 𝑠0)

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1
𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1
𝑤𝑖 = 𝐴𝑟𝑖

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝛼𝑖 =
(𝑟𝑖,𝑟𝑖)

𝑤𝑖,𝑟𝑖 −(Τ𝛽𝑖 𝛼𝑖−1)(𝑟𝑖,𝑟𝑖)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

end

72

Chronopoulos and Gear's CG (ChG CG)
• Chronopoulos and Gear (1989)

• Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

• Reduces synchronizations/iteration to 1 by changing computation of 𝛼𝑖 and
using an auxiliary recurrence for 𝐴𝑝𝑖

Iteration Loop

SpMV

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0,

𝑠0 = 𝐴𝑝0, 𝛼0= (𝑟0, 𝑟0)/(𝑝0, 𝑠0)

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1
𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1
𝑤𝑖 = 𝐴𝑟𝑖

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝛼𝑖 =
(𝑟𝑖,𝑟𝑖)

𝑤𝑖,𝑟𝑖 −(Τ𝛽𝑖 𝛼𝑖−1)(𝑟𝑖,𝑟𝑖)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

end

73

Chronopoulos and Gear's CG (ChG CG)
• Chronopoulos and Gear (1989)

• Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

• Reduces synchronizations/iteration to 1 by changing computation of 𝛼𝑖 and
using an auxiliary recurrence for 𝐴𝑝𝑖

Iteration Loop

SpMV

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0,

𝑠0 = 𝐴𝑝0, 𝛼0= (𝑟0, 𝑟0)/(𝑝0, 𝑠0)

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1
𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1
𝑤𝑖 = 𝐴𝑟𝑖

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝛼𝑖 =
(𝑟𝑖,𝑟𝑖)

𝑤𝑖,𝑟𝑖 −(Τ𝛽𝑖 𝛼𝑖−1)(𝑟𝑖,𝑟𝑖)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

end

74

Chronopoulos and Gear's CG (ChG CG)
• Chronopoulos and Gear (1989)

• Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

• Reduces synchronizations/iteration to 1 by changing computation of 𝛼𝑖 and
using an auxiliary recurrence for 𝐴𝑝𝑖

Iteration Loop

SpMV

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0,

𝑠0 = 𝐴𝑝0, 𝛼0= (𝑟0, 𝑟0)/(𝑝0, 𝑠0)

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1
𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1
𝑤𝑖 = 𝐴𝑟𝑖

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝛼𝑖 =
(𝑟𝑖,𝑟𝑖)

𝑤𝑖,𝑟𝑖 −(Τ𝛽𝑖 𝛼𝑖−1)(𝑟𝑖,𝑟𝑖)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

end

75

Chronopoulos and Gear's CG (ChG CG)
• Chronopoulos and Gear (1989)

• Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

• Reduces synchronizations/iteration to 1 by changing computation of 𝛼𝑖 and
using an auxiliary recurrence for 𝐴𝑝𝑖

Iteration Loop

SpMV

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0,

𝑠0 = 𝐴𝑝0, 𝛼0= (𝑟0, 𝑟0)/(𝑝0, 𝑠0)

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1
𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1
𝑤𝑖 = 𝐴𝑟𝑖

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝛼𝑖 =
(𝑟𝑖,𝑟𝑖)

𝑤𝑖,𝑟𝑖 −(Τ𝛽𝑖 𝛼𝑖−1)(𝑟𝑖,𝑟𝑖)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

end

76

Chronopoulos and Gear's CG (ChG CG)
• Chronopoulos and Gear (1989)

• Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

• Reduces synchronizations/iteration to 1 by changing computation of 𝛼𝑖 and
using an auxiliary recurrence for 𝐴𝑝𝑖

Iteration Loop

SpMV

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0,

𝑠0 = 𝐴𝑝0, 𝛼0= (𝑟0, 𝑟0)/(𝑝0, 𝑠0)

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1
𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1
𝑤𝑖 = 𝐴𝑟𝑖

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝛼𝑖 =
(𝑟𝑖,𝑟𝑖)

𝑤𝑖,𝑟𝑖 −(Τ𝛽𝑖 𝛼𝑖−1)(𝑟𝑖,𝑟𝑖)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

end

77

Pipelined CG (GVCG)

• Pipelined CG of Ghysels and Vanroose (2014)

• Similar to Chronopoulos and Gear approach

• Uses auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖 and same formula for 𝛼𝑖

• Also uses auxiliary vectors for 𝐴𝑟𝑖 and 𝐴2𝑟𝑖 to remove sequential
dependency between SpMV and inner products

• Allows the use of nonblocking (asynchronous) MPI communication to
overlap SpMV and inner products

• Hides the latency of global communications

78

GVCG (Ghysels and Vanroose 2014)

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− Τ𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end

79

GVCG (Ghysels and Vanroose 2014)

Iteration Loop

Inner
Products

SpMV

Vector Updates

End Loop

O
ve

rl
ap

Vector Updates

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− Τ𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end

80

GVCG (Ghysels and Vanroose 2014)

Iteration Loop

Inner
Products

SpMV

Vector Updates

End Loop

O
ve

rl
ap

Vector Updates

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− Τ𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end

81

GVCG (Ghysels and Vanroose 2014)

Iteration Loop

Inner
Products

SpMV

Vector Updates

End Loop

O
ve

rl
ap

Vector Updates

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− Τ𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end

82

GVCG (Ghysels and Vanroose 2014)

Iteration Loop

Inner
Products

SpMV

Vector Updates

End Loop

O
ve

rl
ap

Vector Updates

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− Τ𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end

83

GVCG (Ghysels and Vanroose 2014)

Iteration Loop

Inner
Products

SpMV

Vector Updates

End Loop

O
ve

rl
ap

Vector Updates

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− Τ𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end

Precond

84

s-step CG

• Idea: Compute blocks of 𝑠 iterations at once

• Compute updates in a different basis

• Communicate every 𝑠 iterations instead of every iteration

• Reduces number of synchronizations per iteration by a factor of s

• An idea rediscovered many times…
• First related work: s-dimensional steepest descent, least squares

• Khabaza (‘63), Forsythe (‘68), Marchuk and Kuznecov (‘68)
• Flurry of work on s-step Krylov methods in ‘80s/early ‘90s: see, e.g., Van

Rosendale (1983); Chronopoulos and Gear (1989)

• Resurgence of interest in recent years due to growing problem sizes;
growing relative cost of communication

85

Key observation: After iteration 𝑖, for 𝑗 ∈ {0, . . , 𝑠},

𝑥𝑖+𝑗 − 𝑥𝑖 , 𝑟𝑖+𝑗 , 𝑝𝑖+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑝𝑖 +𝒦𝑠 𝐴, 𝑟𝑖

s-step CG

s steps of s-step CG:

Expand solution space 𝒔 dimensions at once

Compute “basis” matrix 𝒴 such that span 𝒴 = 𝒦𝑠+1 𝐴, 𝑝𝑖 +𝒦𝑠 𝐴, 𝑟𝑖 according to

the recurrence 𝐴𝒴 = 𝒴 ℬ

Compute inner products between basis vectors in one synchronization

𝒢 = 𝒴𝑇𝒴

Compute s iterations of vector updates

Perform 𝑠 iterations of vector updates by updating coordinates in basis 𝒴:

𝑥𝑖+𝑗 − 𝑥𝑖 = 𝒴𝑥𝑗
′, 𝑟𝑖+𝑗 = 𝒴𝑟𝑗

′, 𝑝𝑖+𝑗 = 𝒴𝑝𝑗
′

86

s-step CG

For s iterations of updates, inner products and SpMVs (in basis 𝒴) can be
computed by independently by each processor without communication:

87

𝐴𝑝𝑖+𝑗

×𝑛

𝑛

s-step CG

For s iterations of updates, inner products and SpMVs (in basis 𝒴) can be
computed by independently by each processor without communication:

88

𝐴𝑝𝑖+𝑗

×𝑛

𝑛

𝐴𝒴𝑝𝑗
′

=

s-step CG

For s iterations of updates, inner products and SpMVs (in basis 𝒴) can be
computed by independently by each processor without communication:

89

→

𝒴(ℬ𝑝𝑗
′)

𝑂(𝑠)

𝑂(𝑠)

×

𝐴𝑝𝑖+𝑗

×𝑛

𝑛

𝐴𝒴𝑝𝑗
′

= =

s-step CG

For s iterations of updates, inner products and SpMVs (in basis 𝒴) can be
computed by independently by each processor without communication:

90

→

𝒴(ℬ𝑝𝑗
′)

𝑂(𝑠)

𝑂(𝑠)

×

(𝑟𝑖+𝑗 , 𝑟𝑖+𝑗)

𝐴𝑝𝑖+𝑗

×

×𝑛

𝑛

𝐴𝒴𝑝𝑗
′

= =

s-step CG

For s iterations of updates, inner products and SpMVs (in basis 𝒴) can be
computed by independently by each processor without communication:

91

→

𝒴(ℬ𝑝𝑗
′)

𝑂(𝑠)

𝑂(𝑠)

×

(𝑟𝑖+𝑗 , 𝑟𝑖+𝑗)

𝐴𝑝𝑖+𝑗

×

×𝑛

𝑛

𝐴𝒴𝑝𝑗
′

= =

= 𝑟𝑗
′𝑇𝒴𝑇𝒴𝑟𝑗

′

s-step CG

For s iterations of updates, inner products and SpMVs (in basis 𝒴) can be
computed by independently by each processor without communication:

92

→

→

𝒴(ℬ𝑝𝑗
′)

𝑂(𝑠)

𝑂(𝑠)

×

𝑟𝑗
′𝑇𝒢𝑟𝑗

′

× ×

(𝑟𝑖+𝑗 , 𝑟𝑖+𝑗)

𝐴𝑝𝑖+𝑗

×

×𝑛

𝑛

𝐴𝒴𝑝𝑗
′

= =

= 𝑟𝑗
′𝑇𝒴𝑇𝒴𝑟𝑗

′ =

s-step CG

For s iterations of updates, inner products and SpMVs (in basis 𝒴) can be
computed by independently by each processor without communication:

93

s-step CG
𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 +𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗
′𝑇𝒢𝑘𝑟𝑗

′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end 94

s-step CG

Outer Loop

Compute basis
O(s) SPMVs

O(𝑠2) Inner
Products (one

synchronization)

Inner Loop

Local Vector
Updates (no

comm.)

End Inner Loop

Inner Outer Loop

s
times

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 +𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗
′𝑇𝒢𝑘𝑟𝑗

′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end 95

s-step CG

Outer Loop

Compute basis
O(s) SPMVs

O(𝑠2) Inner
Products (one

synchronization)

Inner Loop

Local Vector
Updates (no

comm.)

End Inner Loop

Inner Outer Loop

s
times

96

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 +𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗
′𝑇𝒢𝑘𝑟𝑗

′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end

s-step CG

Outer Loop

Compute basis
O(s) SPMVs

O(𝑠2) Inner
Products (one

synchronization)

Inner Loop

Local Vector
Updates (no

comm.)

End Inner Loop

Inner Outer Loop

s
times

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 +𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗
′𝑇𝒢𝑘𝑟𝑗

′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end 97

s-step CG

Outer Loop

Compute basis
O(s) SPMVs

O(𝑠2) Inner
Products (one

synchronization)

Inner Loop

Local Vector
Updates (no

comm.)

End Inner Loop

Inner Outer Loop

s
times

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 +𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗
′𝑇𝒢𝑘𝑟𝑗

′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end 98

Kernel Computation costs Communication costs

s
dependent

SpMVs

2s⋅nnz flops
(1 source vector)

Sequential:
• Read s vectors of length n
• Write s vectors of length n
• Read A s times
• bandwidth cost ≈ s⋅nnz + 2sn
Parallel:
• Distribute 1 source vector s times

Akx 4s⋅nnz flops
(2 source vectors)

Sequential:
• Read 2 vectors of length n,
• Write 2s-1 vectors of length n,
• Read A once (both Akx and SpMM optimizations)
• bandwidth cost ≈ nnz + (2s+1)n
Parallel:
• Distribute 2 source vectors once
• Communication volume and number of messages

increase with s (ghost zones)

CA-CG complexity (1)

99

Kernel Computation costs Communication costs

2s+1 dot
products

Sequential:
• 2(2s+1)n flops
• ≈ 4ns
Parallel:
• (2s+1)(2n+(p-1))/p
• ≈ 4ns/p

Sequential:
• Read a vector of length n 2s+1 times
Parallel:
• 2s+1 all-reduce collectives, each with

lg(p) rounds of messages: latency cost ≈
2s lg(p)

• 1 word to/from each proc.: bandwidth
cost ≈ 2s lg(p)

Gram
matrix

Sequential:
• (2s+1)2n flops
• ≈ 4ns2

Parallel:
• (2s+1)2(n/p + (p-1)/(2p))
• ≈ 4ns2/p

Sequential:
• Read a matrix of size (2s+1)×n once
Parallel:
• 1 all-reduce collective, with lg(p) rounds

of messages: latency cost ≈ lg(p)
• (2s+1)2/2 words to/from each proc.:

bandwidth cost ≈ 4s2 lg(p)

CA-CG complexity (2)

100

Using Gram matrix and coefficient vectors have additional costs for CA-CG:
• Dense work (besides dot products/Gram matrix, i.e., vector updates) does

not significantly increase with s:
CG ≈ 6sn = O(sn)
CA-CG ≈ 3(2s+1)(2s+n) = O(sn)

• Sequential memory traffic decreases
CG ≈ 6sn reads, 3sn writes
CA-CG ≈ (2s+1)n reads, 3n writes

• Example asymptotic costs for 1D 3-point stencil:

Method Parallel flops Parallel bandwidth Parallel latency

CG,
s steps

s⋅nnz/p + sn/p s + s lg(p) s + s lg(p)

CA-CG(s),
1 step

s⋅nnz/p + s2n/p s + s2 lg(p) 1+ lg(p)

CA-CG complexity (3)

101

Multicore Speedups
8-core Intel Cloverton

102

• Synchronization-reducing variants are designed to reduce the time/iteration

• But this is not the whole story!

• What we really want to minimize is the runtime, subject to some
constraint on accuracy,

runtime = (time/iteration) x (# iterations)

Optimizing high performance iterative solvers

• Changes to how the recurrences are
computed can exacerbate finite
precision effects of convergence delay
and loss of accuracy

• Crucial that we understand and take
into account how algorithm
modifications will affect the
convergence rate and attainable
accuracy!

12

s-step CG

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , … 𝐴𝑠−1𝑟𝑖])

Can also use other, more well-conditioned bases to improve convergence rate
and accuracy (see, e.g. Philippe and Reichel, 2012).

104

Simple pipelined CG

effect of changing formula for recurrence coefficient 𝛼 and
using auxiliary vectors 𝑠𝑖 ≡ 𝐴𝑝𝑖, 𝑤𝑖 ≡ 𝐴𝑟𝑖 , 𝑧𝑖 ≡ 𝐴2𝑟𝑖

105

Communication-Avoiding Krylov Method (GMRES)

Performance on 8 core Clovertown

106

Preconditioning

107

Runtime = (time/iteration) x (# iterations)

• Hard to design preconditioners for communication-avoiding
methods
• Rule-of-thumb: the better the preconditioner, the more

communication needed to apply it

Preconditioners: Current Work

108

• Current communication-avoiding preconditioners

• Diagonal

• Sparse Approximate Inverse (SAI) –(Mehri, 2014)

• CA-ILU(0) – (Moufawad, Grigori, 2013)

• CA-ILU(k) –(Nataf, Moufawad, Grigori, 2015)

• Domain decomposition – (Yamazaki, Rajamanickam, Boman,
Hoemmen, Heroux, Tomov, 2014)

• HSS preconditioning – (Hoemmen, 2010); (Knight, C.,
Demmel, 2014)

• Deflation – (C., Knight, Demmel, 2014); (Yamazaki et al.,
2014)

An active area of ongoing research…

Other Active Areas of Research
• Pipelined and s-step variants of other Krylov subspace methods

• “Low-synch” variants of Krylov subspace methods
• “Low synchronization GMRES algorithms”, Swirydowicz et al., 2018,

https://arxiv.org/abs/1809.05805

• Hypergraph models of communication for other sparse computations

• Other sparse computations:
• Sparse matrix x sparse matrix
• Sparse matrix x dense matrix
• Sparse matrix x sparse vector
• “Data-sparse” matrices (e.g., hierarchical semiseparable structures)

• Mixed precision approaches

109

https://arxiv.org/abs/1809.05805

