
Exercises 7:
Dense Linear Algebra Libraries



Today
• Look at and understand sample code calling ScaLAPACK functions

• Understand how distribution of the data matters

2



ScaLAPACK Parallel Library

3



PBLAS

• Parallel Basic Linear Algebra Subroutines

• Level 1: vector - vector operations

• Level 2: matrix - vector operations

• Level 3: matrix - matrix operations

4



ScaLAPACK

• Matrix decompositions

• Solving linear systems of equations

• Eigenvalue equations

• Linear Least Squares

• For dense, banded, triangular, general, real, complex, 
etc. 

5



BLACS

• (Basic Linear Algebra Communication Subprograms)

• The BLACS project is an ongoing investigation whose purpose is to create 
a linear algebra oriented message passing interface that may be 
implemented efficiently and uniformly across a large range of distributed 
memory platforms

6



Structure of a code using ScaLAPACK

7



Calling ScaLAPACK routines

• It's the responsibility of the programmer to correctly distribute 
a global matrix before calling ScaLAPACK routines

• ScaLAPACK routines are written using a message passing 
paradigm, therefore each subroutine access directly ONLY local 
data

• Each process of a given CONTEXT must call the same 
ScaLAPACK routine...

• … providing in input its local portion of the global matrix

8



BLACS startup

//Returns the number of processes available for use

Cblacs_pinfo( &myrank_mpi, &nprocs_mpi ) ;

//Assigns available processes to BLACS process grid

Cblacs_gridinit( &ictxt, "Row", nprow, npcol );

//Returns information on the current grid - my rank's Cartesian indices

Cblacs_gridinfo( ictxt, &nprow, &npcol, &myrow, &mycol );

9



Block-cyclic Array Distribution

10



Another example

11



ScaLAPACK naming scheme

• The ScaLAPACK routine names follow a simple scheme. Each name has 
the structure PXYYZZZ, where the components have various meanings. 

• X the second letter indicates the data type (real or complex) and precision 

• D real, double precision (in Fortran, DOUBLE PRECISION) 

• Z complex, double precision (in Fortran, COMPLEX*16) 

• (for real and complex, single precision, S and C respectively) 

• YY the third and fourth letters indicate the type of the matrix A 

• GE general matrix 

• PO symmetric or Hermitian positive-definite dense matrix 

• TR triangular matrix 

• PT symmetric or Hermitian positive-definite tridiagonal matrix 

• PB symmetric or Hermitian positive-definite banded matrix 

• ZZZ the last three letters indicate the computation performed 

• TRF triangular factorization 

• TRS solution of linear equations, using

12



PDGETRF

void pdgetrf (MKL_INT *m , MKL_INT *n , double *a , MK

L_INT *ia , MKL_INT *ja , MKL_INT *desca , MKL_INT *ip

iv , MKL_INT *info );

The pdgetrf function forms the LU factorization of a general m-by-n 
distributed matrix sub(A) = A(ia:ia+m-1, ja:ja+n-1) as

A = P*L*U

where P is a permutation matrix, L is lower triangular with unit diagonal 
elements (lower trapezoidal if m>n) and U is upper triangular (upper 
trapezoidal if m < n). L and U are stored in sub(A).

The function uses partial pivoting, with row interchanges.

13

https://software.intel.com/en-us/mkl-developer-reference-c-p-getrf

https://software.intel.com/en-us/mkl-developer-reference-c-p-getrf


PDGETRF Input Parameters

14

https://software.intel.com/en-us/mkl-developer-reference-c-p-getrf

https://software.intel.com/en-us/mkl-developer-reference-c-p-getrf


PDGETRF Output Parameters

15

https://software.intel.com/en-us/mkl-developer-reference-c-p-getrf

https://software.intel.com/en-us/mkl-developer-reference-c-p-getrf


PDGETRS
void pdgetrs (char *trans , MKL_INT *n , MKL_INT *nrhs , double

*a, MKL_INT *ia, MKL_INT *ja, MKL_INT *desca, MKL_INT *ipiv,

double *b , MKL_INT *ib , MKL_INT *jb , MKL_INT *descb, MKL_INT

*info );

The pdgetrs function solves a system of distributed linear equations with a 
general n-by-n distributed matrix sub(A) = A(ia:ia+n-1, ja:ja+n-1) using 
the LU factorization computed by pdgetrf.

The system has one of the following forms specified by trans:

sub(A)*X = sub(B) (no transpose),

sub(A)T*X = sub(B) (transpose),

sub(A)H*X = sub(B) (conjugate transpose),

where sub(B) = B(ib:ib+n-1, jb:jb+nrhs-1).

Before calling this function, you must call pdgetrf to compute 
the LU factorization of sub(A).

16

https://software.intel.com/en-us/mkl-developer-reference-c-p-getrs

https://software.intel.com/en-us/mkl-developer-reference-c-p-getrs


PDGESV

• Computes the solution to the system of linear equations with a square 
distributed matrix and multiple right-hand sides.

17

https://software.intel.com/en-us/mkl-developer-reference-c-p-gesv

https://software.intel.com/en-us/mkl-developer-reference-c-p-gesv


The array descriptor

18

• The Descriptor is an integer array that stores the information required to establish the 
mapping between each global array entry and its corresponding process and memory 
location.

• Each matrix MUST be associated with a Descriptor. 



What are the local array dimensions?

19



I/O

20



Terminating ScaLAPACK
• Release BLACS grid context

Cblacs_gridexit(ictxt)

• Terminate all communication

Cblacs_exit(0)

• Similar to MPI_Finalize()

Cblacs_exit(1)

• exit BLACS but continue using MPI

21



Resources
• BLAS quick guide:  http://www.netlib.org/lapack/lug/node145.html

• LAPACK quick guide: http://www.netlib.org/lapack/lug/node142.html

• BLACS quick guide: http://www.netlib.org/blacs/BLACS/QRef.html

• PBLAS quick guide: http://www.netlib.org/scalapack/slug/node184.html

• ScaLAPACK user guide: http://www.netlib.org/scalapack/slug/

22

http://www.netlib.org/lapack/lug/node145.html
http://www.netlib.org/lapack/lug/node142.html
http://www.netlib.org/blacs/BLACS/QRef.html
http://www.netlib.org/scalapack/slug/node184.html
http://www.netlib.org/scalapack/slug/


Example: Choosing the Block Size
• Get the file LUex.c from Moodle and put it in your local directory on the 

cluster

• Generates an NxN matrix distributed amongst 4 processes with block size 
nb

• Uses a 2x2 processor grid - must call with 4 processes

• nb = 1 corresponds to 2D cyclic layout 

• nb = N/2 corresponds to 2D blocked layout 

• Something in between will be best

23

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1

2 3



Different Data Layouts for Parallel GE

Bad load balance:

P0 idle after first

n/4 steps

Load balanced, but can't 

easily use BLAS3

Can trade load balance

and BLAS3 

performance by 

choosing b, but

factorization of block

column is a bottleneck

Complicated addressing,

May not want full parallelism

In each column, row 

0123012301230123

0 1 2 3 0 1 2 3

0 1 2 3

3 0 1 2

2 3 0 1

1 2 3 0

1) 1D Column Blocked Layout 2) 1D Column Cyclic Layout

3) 1D Column Block Cyclic Layout 4) Block Skewed Layout

The winner!

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3
6) 2D Row and Column 

Block Cyclic Layout

0 1 2 3

Bad load balance:

P0 idle after first

n/2 steps

0 1

2 3

5) 2D Row and Column Blocked Layout

b

24



Setup on cluster

• Start an interactive session with 4 processors (or use a batch script if you 
prefer):

srun -n 4 -p express3 --pty /bin/bash -i

• Load MPI and ScaLAPACK libraries:

module load openmpi

module load scalapack

• compile the file

mpicc -o LUex LUex.c -lscalapack –lm

• To run:

mpirun -n 4 ./LUex N nb

25



Task: Performance vs. Block Size
• Run the code with N = 8192

• Try nb = 2𝑖 for 𝑖 = 0,...,12
• Make a plot of LU factorization time versus block size

Questions to consider:

• What happens at the extremes (nb = 1, 4096)?

• What block size is best?

26



27

0

20

40

60

80

100

120

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

TI
M

E 
(S

EC
O

N
D

S)

BLOCK SIZE NB

LU FACTORIZATION TIME VS. BLOCK SIZE

Example of how your plot should look


