
Lecture 7:
Dense Linear Algebra

Outline

• Dense Linear Algebra Overview

• Lower Bounds on Communication

• Parallel Matrix Multiply

• LU, QR factorizations

2

Dense Linear Algebra
Overview

3

What is dense linear algebra?

• Not just matmul!

• Linear Systems: Ax=b

• Least Squares: choose x to minimize ||Ax-b||2
• Overdetermined or underdetermined

• Unconstrained, constrained, weighted

• Eigenvalues and vectors of Symmetric Matrices

• Standard (Ax = λx), Generalized (Ax=λBx)

• Eigenvalues and vectors of Unsymmetric matrices

• Eigenvalues, Schur form, eigenvectors, invariant subspaces

• Standard, Generalized

• Singular Values and vectors (SVD)

• Standard, Generalized

• Different matrix structures

• Real, complex; Symmetric, Hermitian, positive definite; dense, triangular, banded …

• Level of detail

• Simple Driver ("x=A\b")

• Expert Drivers with error bounds, extra-precision, other options

• Lower level routines ("apply certain kind of orthogonal transformation", matmul…)

4

A brief history of (Dense) Linear Algebra software

• Libraries like EISPACK (for eigenvalue problems)

• Then the BLAS (1) were invented (1973-1977)

• Standard library of 15 operations (mostly) on vectors

• "AXPY" (y = α·x + y), dot product, scale (x = α·x), etc

• Up to 4 versions of each (S/D/C/Z), 46 routines, 3300 LOC

• Goals

• Common "pattern" to ease programming, readability

• Robustness, via careful coding (avoiding over/underflow)

• Portability + Efficiency via machine specific implementations

• Why BLAS 1 ? They do O(n1) ops on O(n1) data

• Used in libraries like LINPACK (for linear systems)

• Source of the name "LINPACK Benchmark" (not the code!)

• Mid 60's

5

A brief history of (Dense) Linear Algebra software

• But the BLAS-1 weren't enough

• Consider AXPY (y = α·x + y): 2n flops on 3n read/writes

• Computational intensity = (2n)/(3n) = 2/3

• Too low to run near peak speed (read/write dominates)

• Hard to vectorize ("SIMD'ize") on supercomputers of the day (1980s)

• So the BLAS-2 were invented (1984-1986)

• Standard library of 25 operations (mostly) on matrix/vector pairs

• "GEMV": y = α·A·x + β·x, "GER": A = A + α·x·yT, x = T-1·x

• Up to 4 versions of each (S/D/C/Z), 66 routines, 18K LOC

• Why BLAS 2 ? They do O(n2) ops on O(n2) data

• So computational intensity still just ~(2n2)/(n2) = 2

• OK for vector machines, but not for machine with caches

6

A brief history of (Dense) Linear Algebra software

• The next step: BLAS-3 (1987-1988)

• Standard library of 9 operations (mostly) on matrix/matrix pairs

• "GEMM": C = α·A·B + β·C, C = α·A·AT + β·C, B = T-1·B

• Up to 4 versions of each (S/D/C/Z), 30 routines, 10K LOC

• Why BLAS 3 ? They do O(n3) ops on O(n2) data

• So computational intensity (2n3)/(4n2) = n/2 – big at last!

• Good for machines with caches, other mem. hierarchy levels

• How much BLAS1/2/3 code so far? (all at www.netlib.org/blas)

• Source: 142 routines, 31K LOC, Testing: 28K LOC

• Reference (unoptimized) implementation only

• Part of standard math libraries (e.g. Intel MKL)

7

A brief history of (Dense) Linear Algebra software

• LAPACK – "Linear Algebra PACKage" - uses BLAS-3 (1989 – now)

• Ex: Obvious way to express Gaussian Elimination (GE) is adding
multiples of one row to other rows – BLAS-1

• How do we reorganize GE to use BLAS-3 ? (details later)

• Contents of LAPACK (summary)

• Algorithms that are (nearly) 100% BLAS 3

• Linear Systems: solve Ax=b for x

• Least Squares: choose x to minimize ||Ax-b||2
• Algorithms that are only 50% BLAS 3

• Eigenproblems: Find 𝜆 and x where Ax = 𝜆 x

• Singular Value Decomposition (SVD)

• Generalized problems (e.g. Ax = 𝜆 Bx)

• Error bounds for everything

• Lots of variants depending on A's structure (banded, A=AT, etc)

• Ongoing development

8

A brief history of (Dense) Linear Algebra software

• Is LAPACK parallel?

• Only if the BLAS are parallel (possible in shared memory)

• ScaLAPACK – "Scalable LAPACK" (1995 – now)

• For distributed memory – uses MPI

• More complex data structures, algorithms than LAPACK

• All at www.netlib.org/scalapack

9

A brief future look at (Dense) Linear Algebra software

• PLASMA, DPLASMA and MAGMA (now)

• Ongoing extensions to Multicore/GPU/Heterogeneous

• Can one software infrastructure accommodate all algorithms and
platforms of current (future) interest?

• How much code generation and tuning can we automate?

• icl.cs.utk.edu/{{d}plasma,magma}

• Other related projects

• Elemental (libelemental.org)

• Distributed memory dense linear algebra

• "Balance ease of use and high performance"

• FLAME (z.cs.utexas.edu/wiki/flame.wiki/FrontPage)

• Formal Linear Algebra Method Environment

• Attempt to automate code generation across multiple platforms

• BLAST Forum (www.netlib.org/blas/blast-forum)

• Attempt to extend BLAS, add new functions, extra-precision, …

10

Organizing Linear Algebra – in books

www.netlib.org/lapack www.netlib.org/scalapack

www.cs.utk.edu/~dongarra/etemplateswww.netlib.org/templates

gams.nist.gov

11

Lower Bounds on
Communication

12

Why avoiding communication is important

Algorithms have two costs:

1.Arithmetic (FLOPS)

2.Communication: moving data between
• levels of a memory hierarchy (sequential case)

• processors over a network (parallel case).

CPU

Cache

DRAM

CPU

DRAM

CPU

DRAM

CPU

DRAM

CPU

DRAM

13

Why avoiding communication is important
• Recall 𝛼 − 𝛽 − 𝛾 model

• Running time sum of 3 terms:

• # flops x time per flop

• # words moved / bandwidth

• # messages x latency

• Time per flop << 1/bandwidth << latency

• Gaps growing exponentially in time

14

Goal: Organize Linear Algebra to Avoid Communication

• Between all memory hierarchy levels

• L1 L2 DRAM network, etc

• Not just hiding communication (overlap with arithmetic)

• Speedup  2x

• Arbitrary speedups/energy savings possible

• Later: Same goal for other computational patterns

• Lots of open problems

15

Review: Blocked Matrix Multiply

• Blocked Matmul 𝐶 = 𝐴 · 𝐵 breaks 𝐴, 𝐵 and 𝐶 into blocks with
dimensions that depend on cache size

… Break 𝐴 (𝑛 × 𝑛), 𝐵 (𝑛 × 𝑛), 𝐶 𝑛 × 𝑛 into 𝑏 × 𝑏 blocks labeled 𝐴(𝑖, 𝑗), etc.

… 𝑏 chosen so 3 𝑏 × 𝑏 blocks fit in cache

for 𝑖 = 1 𝑡𝑜 𝑛/𝑏, for 𝑗 = 1 𝑡𝑜 𝑛/𝑏, for 𝑘 = 1 𝑡𝑜 𝑛/𝑏

𝐶(𝑖, 𝑗) = 𝐶(𝑖, 𝑗) + 𝐴(𝑖, 𝑘) · 𝐵(𝑘, 𝑗) … 𝑏 × 𝑏 matmul, 4𝑏2 reads/writes

• When 𝑏 = 1, get "naïve" algorithm, want 𝑏 larger …

• (𝑛/𝑏)3 · 4𝑏2 = 4𝑛3/𝑏 reads/writes altogether

• Minimized when 3𝑏2 = cache size = 𝑀, yielding 𝑂(𝑛3/𝑀1/2) reads/writes

• What if we had more levels of memory? (L1, L2, cache etc)?

• Would need 3 more nested loops per level

• Recursive (cache-oblivious algorithm) also possible

16

Communication Lower Bounds: Prior Work on Matmul

• Assume 𝑛3 algorithm (i.e., not Strassen-like)

• Sequential case, with fast memory of size 𝑀:

• Lower bound on #words moved to/from slow memory = Ω
𝑛3

𝑀 Τ1 2

[Hong, Kung, 81]

• Attained using blocked or cache-oblivious algorithms

• Parallel case on 𝑝 processors:

• Let 𝑀 be memory per processor; assume load balanced

• Lower bound on #words moved = Ω
𝑛3

𝑝𝑀 Τ1 2

[Irony, Tiskin, Toledo, 04]

• If 𝑀 = 3𝑛2/𝑝 (one copy of each matrix), then lower bound = Ω
𝑛2

𝑝 Τ1 2

• Attained by SUMMA, Cannon's algorithm

17

New lower bound for all "direct" linear algebra

• Holds for
• Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, …
• Some whole programs (sequences of these operations, no matter how they

are interleaved, e.g., computing 𝐴𝑘)
• Dense and sparse matrices (where #flops << 𝑛3)
• Sequential and parallel algorithms
• Some graph-theoretic algorithms (e.g., Floyd-Warshall)

• Generalizations later (Strassen-like algorithms, loops accessing arrays)

Let 𝑀 = "fast" memory size per processor
= cache size (sequential case) or 𝑂(𝑛2/𝑝) (parallel case)

#flops = number of flops done per processor

#words_moved per processor = Ω(#flops / 𝑀1/2)

Lower bound on messages = lower bound on words moved / largest possible message size:

#messages_sent per processor = Ω(#flops / 𝑀3/2)

18

New lower bound for all "direct" linear algebra

• Sequential case, dense 𝑛 × 𝑛 matrices, so 𝑂(𝑛3) flops

• #words_moved = Ω(𝑛3/𝑀1/2)

• #messages_sent = Ω(𝑛3/𝑀3/2)

• Parallel case, dense 𝑛 × 𝑛 matrices

• Assume load balanced, so 𝑂(𝑛3/𝑝) flops/processor

• One copy of data, load balanced, so 𝑀 = 𝑂(𝑛2/𝑝) per processor

• #words_moved = Ω(𝑛2/𝑝1/2)

• #messages_sent = Ω 𝑝 Τ1 2

19

Let 𝑀 = "fast" memory size per processor
= cache size (sequential case) or 𝑂(𝑛2/𝑝) (parallel case)

#flops = number of flops done per processor

#words_moved per processor = Ω(#flops / 𝑀1/2)

Lower bound on messages = lower bound on words moved / largest possible message size:

#messages_sent per processor = Ω(#flops / 𝑀3/2)

Can we attain these lower bounds?

• Do conventional dense algorithms as implemented in LAPACK and
ScaLAPACK attain these bounds?

• Mostly not yet, work in progress

• If not, are there other algorithms that do?

• Yes

• Goals for algorithms:

• Minimize #words_moved

• Minimize #messages_sent

• Minimize for multiple memory hierarchy levels

• Fewest flops when matrix fits in fastest memory

• Attainable for nearly all dense linear algebra

• Just a few prototype implementations so far

• Only a few sparse algorithms so far (e.g., Cholesky)

20

Parallel Matrix
Multiply

21

Different Parallel Data Layouts for Matrices (not all!)

0123012301230123

0 1 2 3 0 1 2 3

1) 1D Column Blocked Layout 2) 1D Column Cyclic Layout

3) 1D Column Block Cyclic Layout

4) Row versions of the previous layouts

Generalizes others

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3
6) 2D Row and Column

Block Cyclic Layout

0 1 2 3

0 1

2 3

5) 2D Row and Column Blocked Layout

b

22

Parallel Matrix-Vector Product

• Compute 𝑦 = 𝑦 + 𝐴𝑥, where 𝐴 is a dense matrix

• Layout:

• 1D row blocked

• 𝐴(𝑖) refers to the 𝑛/𝑝 by 𝑛 block row
that processor 𝑖 owns,

• 𝑥(𝑖) and 𝑦(𝑖) similarly refer to
segments of 𝑥, 𝑦 owned by 𝑖

• Algorithm:

• For each processor 𝑖

• Broadcast 𝑥 𝑖

• Compute 𝑦 𝑖 = 𝐴 𝑖 ⋅ 𝑥

• Algorithm uses the formula

𝑦 𝑖 = 𝑦 𝑖 + 𝐴 𝑖 ⋅ 𝑥 = 𝑦 𝑖 +෍

𝑖

𝐴 𝑖, 𝑗 ⋅ 𝑥(𝑗)

xy

P0

P1

P2

P3

A(0)

A(1)

A(2)

A(3)

23

=

Parallel Matrix-Vector Product

• Compute 𝑦 = 𝑦 + 𝐴𝑥, where 𝐴 is a dense matrix

• Layout:

• 1D column blocked

• 𝐴(𝑖) refers to the 𝑛 by 𝑛/𝑝 block column
that processor 𝑖 owns,

• 𝑥(𝑖) and 𝑦(𝑖) similarly refer to
segments of 𝑥, 𝑦 owned by 𝑖

• Algorithm:

• For each processor 𝑖

• Compute 𝑦 𝑖 = 𝐴 𝑖 ⋅ 𝑥 𝑖

• Reduction to compute 𝑦

• Algorithm uses the formula

𝑦 = 𝑦 +෍

𝑖

𝐴 𝑖 ⋅ 𝑥(𝑖)

xy

P0

P1

P2

P3

A(0) A(1) A(2) A(3)

24

=

Matrix-Vector Product y = y + Ax

• A 2D blocked layout uses a broadcast and reduction, both on a subset of
processors

• sqrt(p) for square processor grid

P0 P1 P2 P3

P4 P5 P6 P7

P8 P9 P10 P11

P12 P13 P14 P15

25

Parallel Matrix Multiply

• Computing 𝐶 = 𝐶 + 𝐴 ⋅ 𝐵

• Using basic algorithm: 2𝑛3Flops

• Variables are:

• Data layout: 1D? 2D? Other?

• Topology of machine: Ring? Torus?

• Scheduling communication

• Use of performance models for algorithm design

• Message Time = "latency" + #words * time-per-word

= 𝛼 + 𝑛𝛽

• Efficiency (in any model):

• serial time / (𝑝 × parallel time)

• perfect (linear) speedup  efficiency = 1

26

Matrix Multiply with 1D Column Layout

• Assume matrices are 𝑛 × 𝑛 and 𝑛 is divisible by 𝑝

• 𝐴(𝑖) refers to the 𝑛 by 𝑛/𝑝 block column that processor 𝑖 owns
(similiarly for 𝐵(𝑖) and 𝐶(𝑖))

• 𝐵(𝑗, 𝑖) is the 𝑛/𝑝 by 𝑛/𝑝 subblock of 𝐵(𝑖)

• in rows 𝑗 × 𝑛/𝑝 through 𝑗 + 1 × 𝑛/𝑝 − 1

• Algorithm uses the formula

𝐶 𝑖 = 𝐶 𝑖 + 𝐴 ⋅ 𝐵(𝑖) = 𝐶(𝑖) +෍

𝑗

𝐴 𝑗 ⋅ 𝐵(𝑗, 𝑖)

p0 p1 p2 p3 p5 p4 p6 p7

May be a reasonable
assumption for
analysis, not for
code

27

Matrix Multiply: 1D Layout on Bus or Ring
• Algorithm uses the formula

𝐶 𝑖 = 𝐶 𝑖 + 𝐴 ⋅ 𝐵(𝑖) = 𝐶(𝑖) +෍

𝑗

𝐴 𝑗 ⋅ 𝐵(𝑗, 𝑖)

• First consider a bus-connected machine without broadcast: only one
pair of processors can communicate at a time (ethernet)

• Second consider a machine with processors on a ring: all processors
may communicate with nearest neighbors simultaneously

28

MatMul: 1D layout on Bus w/out Broadcast

Naïve algorithm:

𝐶 𝑚𝑦𝑝𝑟𝑜𝑐 = 𝐶 𝑚𝑦𝑝𝑟𝑜𝑐 + 𝐴 𝑚𝑦𝑝𝑟𝑜𝑐 ⋅ 𝐵(𝑚𝑦𝑝𝑟𝑜𝑐,𝑚𝑦𝑝𝑟𝑜𝑐)

for 𝑖 = 0 to 𝑝 − 1

for 𝑗 = 0 to 𝑝 − 1 except 𝑖

if (𝑚𝑦𝑝𝑟𝑜𝑐 == 𝑖) send 𝐴(𝑖) to processor 𝑗

if (𝑚𝑦𝑝𝑟𝑜𝑐 == 𝑗)

receive 𝐴(𝑖) from processor 𝑖

𝐶 𝑚𝑦𝑝𝑟𝑜𝑐 = 𝐶 𝑚𝑦𝑝𝑟𝑜𝑐 + 𝐴 𝑖 ⋅ 𝐵(𝑖,𝑚𝑦𝑝𝑟𝑜𝑐)

barrier

Cost of inner loop:

computation: 𝐴 𝑖 ⋅ 𝐵(𝑖,𝑚𝑦𝑝𝑟𝑜𝑐): 2𝑛(𝑛/𝑝)2 = 2𝑛3/𝑝2

communication: send 𝐴(𝑖): 𝛼 + 𝛽𝑛2/𝑝

29

Naïve MatMul (continued)

Cost of inner loop:

computation: 𝐴 𝑖 ⋅ 𝐵(𝑖,𝑚𝑦𝑝𝑟𝑜𝑐): 2𝑛(𝑛/𝑝)2 = 2𝑛3/𝑝2

communication: send 𝐴(𝑖): 𝛼 + 𝛽𝑛2/𝑝

Only 1 pair of processors (i and j) are active on any iteration,

and of those, only i is doing computation

=> the algorithm is almost entirely serial

Running time:

= 𝑝 𝑝 − 1 × computation + 𝑝 𝑝 − 1 × communication

 2𝑛3 + 𝑝2𝛼 + 𝑝𝑛2𝛽

This is worse than the serial time and grows with 𝑝.

30

Matmul for 1D layout on a Processor Ring

• Pairs of adjacent processors can communicate simultaneously

Copy A(myproc) into Tmp

C(myproc) = C(myproc) + Tmp*B(myproc , myproc)

for j = 1 to p-1

Send Tmp to processor myproc+1 mod p

Receive Tmp from processor myproc-1 mod p

C(myproc) = C(myproc) + Tmp*B(myproc-j mod p , myproc)

• Time of inner loop = 2(𝛼 + 𝛽𝑛2/𝑝) + 2𝑛(𝑛/𝑝)2

31

Matmul for 1D layout on a Processor Ring
• Time of inner loop = 2(𝛼 + 𝛽𝑛2/𝑝) + 2𝑛(𝑛/𝑝)2

• Total Time = 2𝑛 Τ𝑛 𝑝 2 + 𝑝 − 1 × Time of inner loop

 2𝑛3/𝑝 + 2𝑝𝛼 + 2𝛽𝑛2

• (Nearly) Optimal for 1D layout on Ring or Bus, even with Broadcast:

• Perfect speedup for arithmetic

• A(myproc) must move to each other processor, costs at least

𝑝 − 1 × (cost of sending 𝑛 × (𝑛/𝑝) words)

• Parallel Efficiency = 2𝑛3/(𝑝 × Total Time)

= 1/(1 + 𝛼𝑝2/(2𝑛3) + 𝛽𝑝/(2𝑛))

= 1/ (1 + 𝑂(𝑝/𝑛))

• Grows to 1 as 𝑛/𝑝 increases (or 𝛼 and 𝛽 shrink)

• But far from communication lower bound

32

Need to try 2D Matrix layout

0123012301230123

0 1 2 3 0 1 2 3

1) 1D Column Blocked Layout 2) 1D Column Cyclic Layout

3) 1D Column Block Cyclic Layout

4) Row versions of the previous layouts

Generalizes others

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3
6) 2D Row and Column

Block Cyclic Layout

0 1 2 3

0 1

2 3

5) 2D Row and Column Blocked Layout

b

33

Summary of Parallel Matrix Multiply

• SUMMA

• Scalable Universal Matrix Multiply Algorithm

• Attains communication lower bounds (within log 𝑝)

• Cannon

• Historically first, attains lower bounds

• More assumptions

• A and B square

• 𝑝 a perfect square

• 2.5D SUMMA

• Uses more memory to communicate even less

• Parallel Strassen

• Attains different, even lower bounds

34

SUMMA uses Outer Product form of MatMul

• 𝐶 = 𝐴 ⋅ 𝐵 means 𝐶(𝑖, 𝑗) = σ𝑘 𝐴 𝑖, 𝑘 ⋅ 𝐵(𝑘, 𝑗)

• Column-wise outer product:

𝐶 = 𝐴 ⋅ 𝐵

= σ𝑘 𝐴 : , 𝑘 ⋅ 𝐵(𝑘, :)

= σ𝑘 𝑘𝑡ℎ 𝑐𝑜𝑙 𝑜𝑓 𝐴 ⋅ (𝑘𝑡ℎ 𝑟𝑜𝑤 𝑜𝑓 𝐵)

• Block column-wise outer product

(block size = 4 for illustration)

𝐶 = 𝐴 ⋅ 𝐵

= 𝐴 : , 1: 4 ⋅ 𝐵 1: 4, : + 𝐴 : , 5: 8 ⋅ 𝐵(5: 8, :) + …

= σ𝑘 𝑘𝑡ℎ 𝑏𝑙𝑜𝑐𝑘 𝑜𝑓 4 𝑐𝑜𝑙𝑠 𝑜𝑓 𝐴 ⋅ (𝑘𝑡ℎ 𝑏𝑙𝑜𝑐𝑘 𝑜𝑓 4 𝑟𝑜𝑤𝑠 𝑜𝑓 𝐵)

35

=

=

+

+

+

SUMMA – 𝑛 × 𝑛 matmul on p1/2 × 𝑝1/2 grid

• 𝐶[𝑖, 𝑗] is Τ𝑛 𝑝 Τ1 2 × Τ𝑛 𝑝 Τ1 2 submatrix of 𝐶 on processor 𝑝𝑖𝑗

• 𝐴[𝑖, 𝑘] is Τ𝑛 𝑝 Τ1 2 × 𝑏 submatrix of 𝐴

• 𝐵[𝑘, 𝑗] is Τ𝑏 × 𝑛 𝑝 Τ1 2 submatrix of 𝐵

• 𝐶 𝑖, 𝑗 = 𝐶 𝑖, 𝑗 + σ𝑘 𝐴 𝑖, 𝑘 ⋅ 𝐵[𝑘, 𝑗]

• summation over submatrices

• Need not be square processor grid

* =
i

j

A[i,k]

k

k

B[k,j]

C[i,j]

36

SUMMA – 𝑛 × 𝑛 matmul on p1/2 × 𝑝1/2 grid

* =
i

j

A[i,k]

k

k

B[k,j]

C(i,j)

For 𝑘 = 0 to 𝑛/𝑏 − 1

for all 𝑖 = 1 to 𝑝1/2

owner of A[i,k] broadcasts it to whole processor row (using binary tree)

for all 𝑗 = 1 to 𝑝1/2

owner of B[k,j] broadcasts it to whole processor column (using binary tree)

Receive A[i,k] into Acol

Receive B[k,j] into Brow

C_myproc = C_myproc + Acol * Brow

Brow

Acol

37

SUMMA Costs

For 𝑘 = 0 to 𝑛/𝑏 − 1

for all 𝑖 = 1 to 𝑝1/2

owner of A[i,k] broadcasts it to whole processor row (using binary tree)

… #words = log 𝑝 Τ1 2 × 𝑏 × 𝑛/𝑝1/2 , #messages = log 𝑝1/2

for all 𝑗 = 1 to 𝑝1/2

owner of B[k,j] broadcasts it to whole processor column (using binary tree)

… same #words and #messages

Receive A[i,k] into Acol

Receive B[k,j] into Brow

C_myproc = C_myproc + Acol * Brow … #flops = 2n2*b/p

° Total #words = log 𝑝 × 𝑛2/𝑝1/2

° Within factor of log 𝑝 of lower bound
° (more complicated implementation removes log 𝑝 factor)

° Total #messages = log 𝑝 × 𝑛/𝑏

° Choose 𝑏 close to maximum, 𝑛/𝑝1/2, to approach lower bound 𝑝1/2

° Total #flops = 2𝑛3/𝑝

38

Can we do better?

• Lower bound assumed 1 copy of data: 𝑀 = 𝑂(𝑛2/𝑝) per proc.

• What if matrix small enough to fit 𝑐 > 1 copies, so 𝑀 = 𝑐𝑛2/𝑝 ?

• #words_moved = Ω(#𝑓𝑙𝑜𝑝𝑠/𝑀 Τ1 2) = Ω(𝑛2/𝑐 Τ1 2𝑝1/2)

• #messages = Ω(#𝑓𝑙𝑜𝑝𝑠/𝑀 Τ3 2) = Ω(𝑝 Τ1 2/𝑐3/2)

• Can we attain new lower bound?

• Special case: "3D Matmul": 𝑐 = 𝑝1/3

• Bernsten 89, Agarwal, Chandra, Snir 90, Aggarwal 95

• Processors arranged in 𝑝1/3 × 𝑝1/3 × 𝑝1/3 grid

• Processor (i,j,k) performs 𝐶 𝑖, 𝑗 = 𝐶 𝑖, 𝑗 + 𝐴 𝑖, 𝑘 ⋅ 𝐵(𝑘, 𝑗), where
each submatrix is 𝑛/𝑝1/3 × 𝑛/𝑝1/3

• Not always that much memory available…

39

2.5D Matrix Multiplication

• Assume can fit 𝑐𝑛2/𝑝 data per processor, 𝑐 > 1

• Processors form Τ𝑝 𝑐 1/2 × Τ𝑝 𝑐 1/2 × 𝑐 grid

c

(p/c)1/2

Example: 𝑝 = 32, 𝑐 = 2

40

2.5D Matrix Multiplication

k

j

Initially p(i,j,0) owns A(i,j) and B(i,j)
each of size n(c/p)1/2 x n(c/p)1/2

(1) p(i,j,0) broadcasts A(i,j) and B(i,j) to p(i,j,k)
(2) Processors at level k perform 1/c-th of SUMMA, i.e. 1/c-th of Σm A(i,m)*B(m,j)
(3) Sum-reduce partial sums Σm A(i,m)*B(m,j) along k-axis so p(i,j,0) owns C(i,j)

41

• Assume can fit 𝑐𝑛2/𝑝 data per processor, 𝑐 > 1

• Processors form Τ𝑝 𝑐 1/2 × Τ𝑝 𝑐 1/2 × 𝑐 grid

2.5D Matmul on IBM BG/P, n=64K
• As 𝑝 increases, available memory grows → 𝑐 increases proportionally to 𝑝

• #flops, #words_moved, #messages per proc all decrease proportionally to p

• #words_moved = Ω(#𝑓𝑙𝑜𝑝𝑠/𝑀 Τ1 2) = Ω(𝑛2/(𝑐 Τ1 2𝑝1/2))

• #messages = Ω(#𝑓𝑙𝑜𝑝𝑠/𝑀 Τ3 2) = Ω(𝑝 Τ1 2/𝑐3/2)
• Perfect strong scaling! But only up to 𝑐 = 𝑝1/3

42

Classical Matmul vs Parallel Strassen

• Complexity of classical Matmul vs Strassen

• Flops: O(n3/p) vs O(nw/p) where w = log2 7 ~ 2.81

• Communication lower bound on #words:

Ω((n3/p)/M1/2) = Ω(M(n/M1/2)3/p) vs Ω(M(n/M1/2)w/p)

• Communication lower bound on #messages:

Ω((n3/p)/M3/2) = Ω((n/M1/2)3/p) vs Ω((n/M1/2)w/p)

• All attainable as M increases past O(n2/p), up to a limit:

can increase M by factor up to p1/3 vs p1-2/w

#words as low as Ω(n/p2/3) vs Ω(n/p2/w)

• How well does parallel Strassen work in practice?

43

ScaLAPACK Parallel Library

44

Extensions of Lower Bound and Optimal Algorithms

• For each processor that does 𝐺 flops with fast memory of size 𝑀

#words_moved = Ω(𝐺/𝑀1/2)

• Extension: for any program that looks like

• Nested loops …

• That access arrays …

• Where array subscripts are linear functions of loop indices

• Ex: A(i,j), B(3*i-4*k+5*j, i-j, 2*k, …), …

• There is a constant s such that

#words_moved = Ω(𝐺/𝑀𝑠−1)

• 𝑠 comes from recent generalization of Loomis-Whitney (𝑠 = 3/2)

• Ex: linear algebra, n-body, database join, …

• Lots of open questions: deriving s, optimal algorithms …

45

LU and QR
Factorizations

50

Gaussian Elimination (GE) for solving Ax=b

• Add multiples of each row to later rows to make A upper triangular

• Solve resulting triangular system Ux = c by substitution

… for each column i

… zero it out below the diagonal by adding multiples of row i to later rows

for i = 1 to n-1

… for each row j below row i

for j = i+1 to n

… add a multiple of row i to row j

tmp = A(j,i);

for k = i to n

A(j,k) = A(j,k) - (tmp/A(i,i)) * A(i,k)

0
.
.
.

0

0
.
.
.
0

0
.
0

0

0

0

0
.
.
.

0

0
.
.
.
0

0
.
0

0
.
.
.

0

0
.
.
.
0

0
.
.
.

0

After i=1 After i=2 After i=3 After i=n-1

…

51

Refine GE Algorithm (1/5)

• Initial Version

• Remove computation of constant tmp/A(i,i) from inner loop.

… for each column i

… zero it out below the diagonal by adding multiples of row i to later rows

for i = 1 to n-1

… for each row j below row i

for j = i+1 to n

… add a multiple of row i to row j

tmp = A(j,i);

for k = i to n

A(j,k) = A(j,k) - (tmp/A(i,i)) * A(i,k)

for i = 1 to n-1

for j = i+1 to n

m = A(j,i)/A(i,i)

for k = i to n

A(j,k) = A(j,k) - m * A(i,k)

m

i

j

52

Refine GE Algorithm (2/5)

• Last version

• Don't compute what we already know: zeros below diagonal in column i

for i = 1 to n-1

for j = i+1 to n

m = A(j,i)/A(i,i)

for k = i+1 to n

A(j,k) = A(j,k) - m * A(i,k)

for i = 1 to n-1

for j = i+1 to n

m = A(j,i)/A(i,i)

for k = i to n

A(j,k) = A(j,k) - m * A(i,k)

Do not compute zeros

m

i

j

53

Refine GE Algorithm (3/5)

• Last version

• Store multipliers m below diagonal in zeroed entries for later use

for i = 1 to n-1

for j = i+1 to n

m = A(j,i)/A(i,i)

for k = i+1 to n

A(j,k) = A(j,k) - m * A(i,k)

for i = 1 to n-1

for j = i+1 to n

A(j,i) = A(j,i)/A(i,i)

for k = i+1 to n

A(j,k) = A(j,k) - A(j,i) * A(i,k)

m

i

j

54

Refine GE Algorithm (4/5)

• Last version

for i = 1 to n-1

for j = i+1 to n

A(j,i) = A(j,i)/A(i,i)

for k = i+1 to n

A(j,k) = A(j,k) - A(j,i) * A(i,k)

• Split Loop

for i = 1 to n-1

for j = i+1 to n

A(j,i) = A(j,i)/A(i,i)

for j = i+1 to n

for k = i+1 to n

A(j,k) = A(j,k) - A(j,i) * A(i,k)

Store all m's here before updating

rest of matrix

i

j

55

Refine GE Algorithm (5/5)

• Last version

• Express using matrix operations (BLAS)

for i = 1 to n-1

A(i+1:n,i) = A(i+1:n,i) * (1 / A(i,i))

… BLAS 1 (scale a vector)

A(i+1:n,i+1:n) = A(i+1:n , i+1:n)

- A(i+1:n , i) * A(i , i+1:n)

… BLAS 2 (rank-1 update)

for i = 1 to n-1

for j = i+1 to n

A(j,i) = A(j,i)/A(i,i)

for j = i+1 to n

for k = i+1 to n

A(j,k) = A(j,k) - A(j,i) * A(i,k)

56

What GE really computes

• Call the strictly lower triangular matrix of multipliers M, and let L = I+M

• Call the upper triangle of the final matrix U

• Lemma (LU Factorization): If the above algorithm terminates (does not
divide by zero) then A = LU

• Solving Ax=b using GE

• Factorize A = LU using GE (cost = 2/3 n3 flops)

• Solve Ly = b for y, using substitution (cost = n2 flops)

• Solve Ux = y for x, using substitution (cost = n2 flops)

• Thus Ax = (LU)x = L(Ux) = Ly = b as desired

for i = 1 to n-1

A(i+1:n,i) = A(i+1:n,i) / A(i,i) … BLAS 1 (scale a vector)

A(i+1:n,i+1:n) = A(i+1:n , i+1:n) - A(i+1:n , i) * A(i , i+1:n) … BLAS 2 (rank-1 update)

= *

57

Problems with basic GE algorithm

• What if some A(i,i) is zero? Or very small?

• Result may not exist, or be "unstable", so need to pivot

• Current computation all BLAS 1 or BLAS 2, but we know that BLAS 3 (matrix
multiply) is fastest (earlier lecture…)

for i = 1 to n-1

A(i+1:n,i) = A(i+1:n,i) / A(i,i) … BLAS 1 (scale a vector)

A(i+1:n,i+1:n) = A(i+1:n , i+1:n) … BLAS 2 (rank-1 update)

- A(i+1:n , i) * A(i , i+1:n)

Peak

BLAS 3

BLAS 2

BLAS 1

58

Pivoting in Gaussian Elimination

• 𝐴 =
0 1
1 0

fails completely because can't divide by 𝐴(1,1) = 0

•But solving 𝐴𝑥 = 𝑏 should be easy!

• When diagonal 𝐴(𝑖, 𝑖) is tiny (not just zero), algorithm may
terminate but get completely wrong answer

- Numerical instability
- Roundoff error is cause

• Cure: Pivot (swap rows of 𝐴) so 𝐴(𝑖, 𝑖) large

59

Gaussian Elimination with Partial Pivoting (GEPP)

• Partial Pivoting: swap rows so that A(i,i) is largest in column

for i = 1 to n-1
find and record k where |A(k,i)| = max{i  j  n} |A(j,i)|

… i.e. largest entry in rest of column i
if |A(k,i)| = 0

exit with a warning that A is singular, or nearly so
elseif k ≠ i

swap rows i and k of A
end if
A(i+1:n,i) = A(i+1:n,i) / A(i,i) … each |quotient| ≤ 1
A(i+1:n,i+1:n) = A(i+1:n , i+1:n) - A(i+1:n , i) * A(i , i+1:n)

•Lemma: This algorithm computes A = PLU, where P is a permutation
matrix.

•This algorithm is numerically stable in practice
• For details see LAPACK code at

http://www.netlib.org/lapack/single/sgetf2.f
•Standard approach – but communication costs?

60

http://www.netlib.org/lapack/single/sgetf2.f

Problems with basic GE algorithm
• What if some A(i,i) is zero? Or very small?

• Result may not exist, or be "unstable", so need to pivot

• Current computation all BLAS 1 or BLAS 2, but we know that BLAS 3
(matrix multiply) is fastest (earlier lectures…)

for i = 1 to n-1

A(i+1:n,i) = A(i+1:n,i) / A(i,i) … BLAS 1 (scale a vector)

A(i+1:n,i+1:n) = A(i+1:n , i+1:n) … BLAS 2 (rank-1 update)

- A(i+1:n , i) * A(i , i+1:n)

Peak

BLAS 3

BLAS 2

BLAS 1

61

Converting BLAS2 to BLAS3 in GEPP
• Blocking

• Used to optimize matrix-multiplication

• Harder here because of data dependencies in GEPP

• BIG IDEA: Delayed Updates

• Save updates to "trailing matrix" from several consecutive BLAS2
(rank-1) updates

• Apply many updates simultaneously in one BLAS3 (matmul) operation

• Same idea works for much of dense linear algebra

• Not eigenvalue problems or SVD – need more ideas

• First Approach: Need to choose a block size b

• Algorithm will save and apply b updates

• b should be small enough so that active submatrix consisting of b
columns of A fits in cache

• b should be large enough to make BLAS3 (matmul) fast

62

Blocked GEPP (www.netlib.org/lapack/single/sgetrf.f)

for ib = 1 to n-1 step b … Process matrix b columns at a time

end = ib + b-1 … Point to end of block of b columns

apply BLAS2 version of GEPP to get A(ib:n , ib:end) = P' * L' * U'

… let LL denote the strict lower triangular part of A(ib:end , ib:end) + I

A(ib:end , end+1:n) = LL-1 * A(ib:end , end+1:n) … update next b rows of U

A(end+1:n , end+1:n) = A(end+1:n , end+1:n)

- A(end+1:n , ib:end) * A(ib:end , end+1:n)

… apply delayed updates with single matrix-multiply

… with inner dimension b

=
*

63

Communication Lower Bound for GE
• Matrix multiply can be "reduced to" GE

• Not a good way to do matmul but it shows that GE needs at least as much
communication as matmul

• Does blocked GEPP minimize communication?

𝐼 0 −𝐵
𝐴 𝐼 0
0 0 𝐼

=
𝐼
𝐴 𝐼
0 0 𝐼

⋅
𝐼 0 −𝐵

𝐼 𝐴 × 𝐵
𝐼

64

Does LAPACK's GEPP Minimize Communication?

• Case 1: n ≥ M - huge matrix – attains lower bound
• b = M1/2 optimal, dominated by matmul

• Case 2: n ≤ M1/2 - small matrix – attains lower bound
• Whole matrix fits in fast memory, any algorithm attains lower bound

• Case 3: M1/2 < n < M - medium size matrix – not optimal

• Can't choose b to simultaneously optimize matmul and BLAS2 GEPP of n
x b submatrix

• Worst case: Exceed lower bound by factor M1/6 when n = M2/3

for ib = 1 to n-1 step b … Process matrix b columns at a time

end = ib + b-1 … Point to end of block of b columns

apply BLAS2 version of GEPP to get A(ib:n , ib:end) = P' * L' * U'

… let LL denote the strict lower triangular part of A(ib:end , ib:end) + I

A(ib:end , end+1:n) = LL-1 * A(ib:end , end+1:n) … update next b rows of U

A(end+1:n , end+1:n) = A(end+1:n , end+1:n)

- A(end+1:n , ib:end) * A(ib:end , end+1:n)

… apply delayed updates with single matrix-multiply

… with inner dimension b

65

Explicitly Parallelizing Gaussian Elimination

• Parallelization steps

• Decomposition: identify enough parallel work, but not too much

• Assignment: load balance work among threads

• Orchestrate: communication and synchronization

• Mapping: which processors execute which threads (locality)

• Decomposition

• In BLAS 2 algorithm nearly each flop in inner loop can be done in parallel,
so with n2 processors, need 3n parallel steps, O(n log n) with pivoting

• This is too fine-grained, prefer calls to local matmuls instead

• Need to use parallel matrix multiplication

• Assignment and Mapping

• Which processors are responsible for which submatrices?

for i = 1 to n-1

A(i+1:n,i) = A(i+1:n,i) / A(i,i) … BLAS 1 (scale a vector)

A(i+1:n,i+1:n) = A(i+1:n , i+1:n) … BLAS 2 (rank-1 update)

- A(i+1:n , i) * A(i , i+1:n)

66

Different Data Layouts for Parallel GE

Bad load balance:

P0 idle after first

n/4 steps

Load balanced, but can't

easily use BLAS3

Can trade load balance

and BLAS3

performance by

choosing b, but

factorization of block

column is a bottleneck

Complicated addressing,

May not want full parallelism

In each column, row

0123012301230123

0 1 2 3 0 1 2 3

0 1 2 3

3 0 1 2

2 3 0 1

1 2 3 0

1) 1D Column Blocked Layout 2) 1D Column Cyclic Layout

3) 1D Column Block Cyclic Layout 4) Block Skewed Layout

The winner!

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3
6) 2D Row and Column

Block Cyclic Layout

0 1 2 3

Bad load balance:

P0 idle after first

n/2 steps

0 1

2 3

5) 2D Row and Column Blocked Layout

b

67

Distributed GE with a 2D Block Cyclic Layout

68

Distributed GE with a 2D Block Cyclic Layout

M
at

ri
x

m
u

lt
ip

ly
 o

f

gr
ee

n
 =

 g
re

en
-

b
lu

e
*

p
in

k

69

Does ScaLAPACK Minimize Communication?

• Lower Bound: 𝑂(𝑛2/𝑝1/2) words sent in 𝑂(𝑝1/2)mess.

• Attained by Cannon and SUMMA (nearly) for matmul

• ScaLAPACK:

• 𝑂(𝑛2 log 𝑝 /𝑝1/2) words sent – close enough

• 𝑂 𝑛 log 𝑝 messages – too large

• Why so many? One reduction costs 𝑂(log 𝑝) per column to find
maximum pivot, times 𝑛 = #columns

• Need to replace partial pivoting to reduce #messages

• Suppose we have 𝑛 × 𝑛 matrix on 𝑝1/2 × 𝑝1/2 processor grid

• Goal: For each panel of 𝑏 columns spread over 𝑝1/2 procs, identify 𝑏
"good" pivot rows in one reduction

• Call this factorization TSLU = "Tall Skinny LU"

• Several natural bad (numerically unstable) ways explored, but good way
exists

• "Communication Avoiding GE", [Demmel, Grigori, Xiang, 2008]

70

Choosing Rows by "Tournament Pivoting"

Wnxb =

W1

W2

W3

W4

P1·L1·U1

P2·L2·U2

P3·L3·U3

P4·L4·U4

=

Choose b pivot rows of W1, call them W1'
Choose b pivot rows of W2, call them W2'
Choose b pivot rows of W3, call them W3'
Choose b pivot rows of W4, call them W4'

W1'

W2'

W3'

W4'

P12·L12·U12

P34·L34·U34

=
Choose b pivot rows, call them W12'

Choose b pivot rows, call them W34'

W12'

W34'
= P1234·L1234·U1234 Choose b pivot rows

Go back to W and use these b pivot rows
(move them to top, do LU without pivoting)

Not the same pivots rows chosen as for GEPP
Proof that this is numerically stable [Demmel, Grigori, Xiang, '11]

71

Minimizing Communication in TSLU

W =

W1

W2

W3

W4

LU
LU
LU
LU

LU

LU
LU

Parallel:

W =

W1

W2

W3

W4

LU
LU

LU

LU

Sequential:

W =

W1

W2

W3

W4

LU
LU LU

LU
LU

LU
LU

Dual Core:

Can choose reduction tree dynamically

Multicore / Multisocket / Multirack / Multisite / Out-of-core:?

72

Performance vs. ScaLAPACK LU

• TSLU

– IBM Power 5

• Up to 4.37x faster (16 procs, 1M x 150)
– Cray XT4

• Up to 5.52x faster (8 procs, 1M x 150)
• CALU

– IBM Power 5

• Up to 2.29x faster (64 procs, 1000 x 1000)
– Cray XT4

• Up to 1.81x faster (64 procs, 1000 x 1000)
• See INRIA Tech Report 6523 (2008)

73

Same idea for TSQR: QR of a Tall, Skinny matrix

W =

Q00 R00

Q10 R10

Q20 R20

Q30 R30

W0

W1

W2

W3

Q00

Q10

Q20

Q30

= =
.

R00

R10

R20

R30

R00

R10

R20

R30

=
Q01 R01

Q11 R11

Q01

Q11

=
. R01

R11

R01

R11

= Q02 R02

75

Same idea for TSQR: QR of a Tall, Skinny matrix

W =

Q00 R00

Q10 R10

Q20 R20

Q30 R30

W0

W1

W2

W3

Q00

Q10

Q20

Q30

= =
.

R00

R10

R20

R30

R00

R10

R20

R30

=
Q01 R01

Q11 R11

Q01

Q11

=
. R01

R11

R01

R11

= Q02 R02

Output = { Q00, Q10, Q20, Q30, Q01, Q11, Q02, R02 }

76

TSQR: An Architecture-Dependent Algorithm

W =

W0

W1

W2

W3

R00

R10

R20

R30

R01

R11

R02
Parallel:

W =

W0

W1

W2

W3

R01
R02

R00

R03

Sequential:

W =

W0

W1

W2

W3

R00

R01
R01

R11

R02

R11

R03

Dual Core:

Can choose reduction tree dynamically

Multicore / Multisocket / Multirack / Multisite / Out-of-core:?

77

Summary of dense parallel O(n3/p) algorithms attaining comm. lower bounds

Computation Minimizes # Words Minimizes # Messages

BLAS3 [1,2,3,4] [1,2,3,4]

Cholesky [2] [2]

LU [2,5,10,11] [5,10,11]

Symmetric Indefinite [2,6,9] [6,9]

QR [2,7] [7]

Eig(A=AT) and SVD [2,8,9] [8,9]

Eig(A) [8] [8]

• References are from Table 3.2 in [Ballard, C., Demmel, Hoemmen, Knight,
Schwartz, Acta Numerica vol 23, 2014] (Table 3.1 for sequential algorithms)

• Assume 𝑛 × 𝑛 matrices on 𝑝 procs, minimum memory per proc: 𝑀 = 𝑂(𝑛2/𝑝)
• #words moved = Ω(𝑛2/𝑝1/2) , #messages = Ω(𝑝1/2) ,

• ScaLAPACK in red

- ScaLAPACK sends > 𝑛/𝑝1/2 times too many messages (except Cholesky)

78

