| ecture 7:

Dense Linear Algebra

Outline

* Dense Linear Algebra Overview
* Lower Bounds on Communication

* Parallel Matrix Multiply

LU, QR factorizations

Dense Linear Algebra

Overview

What is dense linear algebra?

* Not just matmul!
* Linear Systems: Ax=b

* Least Squares: choose x to minimize ||Ax-bl|,
* Overdetermined or underdetermined
* Unconstrained, constrained, weighted

* Eigenvalues and vectors of Symmetric Matrices
 Standard (Ax = Ax), Generalized (Ax=ABx)

* Eigenvalues and vectors of Unsymmetric matrices
» Eigenvalues, Schur form, eigenvectors, invariant subspaces
» Standard, Generalized

* Singular Values and vectors (SVD)
 Standard, Generalized

e Different matrix structures
* Real, complex; Symmetric, Hermitian, positive definite; dense, triangular, banded ...

* Level of detail
* Simple Driver ("x=A\b")
» Expert Drivers with error bounds, extra-precision, other options
* Lower level routines ("apply certain kind of orthogonal transformation", matmul...)

A brief history of (Dense) Linear Algebra software

* Mid 60's
* Libraries like EISPACK (for eigenvalue problems)

* Then the BLAS (1) were invented (1973-1977)
* Standard library of 15 operations (mostly) on vectors
« "AXPY" (y = ax+y), dot product, scale (x = a-x), etc
* Up to 4 versions of each (S/D/C/Z), 46 routines, 3300 LOC
* Goals
 Common "pattern" to ease programming, readability
* Robustness, via careful coding (avoiding over/underflow)
 Portability + Efficiency via machine specific implementations
* Why BLAS 1 7 They do O(n!) ops on O(n') data
* Used in libraries like LINPACK (for linear systems)
* Source of the name "LINPACK Benchmark" (not the code!)

A brief history of (Dense) Linear Algebra software

* But the BLAS-1 weren't enough
* Consider AXPY (y = ax + vy): 2n flops on 3n read/writes
« Computational intensity = (2n)/(3n) = 2/3
* Too low to run near peak speed (read/write dominates)
 Hard to vectorize ("SIMD'ize") on supercomputers of the day (1980s)

* So the BLAS-2 were invented (1984-1986)
» Standard library of 25 operations (mostly) on matrix/vector pairs
« "GEMV":y = a-Ax + B-x, "GER": A = A + a-xy', x = Tlx
* Up to 4 versions of each (S/D/C/Z), 66 routines, 18K LOC
* Why BLAS 2 ? They do O(n?) ops on O(n?) data
* So computational intensity still just ~(2n?)/(n?) = 2
* OK for vector machines, but not for machine with caches

A brief history of (Dense) Linear Algebra software

* The next step: BLAS-3 (1987-1988)
* Standard library of 9 operations (mostly) on matrix/matrix pairs
« "GEMM": C = a-AB + B-C, C = oA AT + B.C, B=T!B
* Up to 4 versions of each (S/D/C/Z), 30 routines, 10K LOC
* Why BLAS 37 They do O(n®) ops on O(n?) data
* So computational intensity (2n3)/(4n?) = n/2 — big at last!
* Good for machines with caches, other mem. hierarchy levels

* How much BLAS1/2/3 code so far? (all at www.netlib.org/blas)
* Source: 142 routines, 31K LOC, Testing: 28K LOC

* Reference (unoptimized) implementation only
* Part of standard math libraries (e.g. Intel MKL)

A brief history of (Dense) Linear Algebra software

* LAPACK — "Linear Algebra PACKage" - uses BLAS-3 (1989 — now)

* Ex: Obvious way to express Gaussian Elimination (GE) is adding
multiples of one row to other rows — BLAS-1

* How do we reorganize GE to use BLAS-3 7 (details later)
 Contents of LAPACK (summary)
* Algorithms that are (nearly) 100% BLAS 3
* Linear Systems: solve Ax=b for x
* Least Squares: choose x to minimize ||Ax-b||,
 Algorithms that are only *50% BLAS 3
* Eigenproblems: Find A and x where Ax = 4 x
* Singular Value Decomposition (SVD)
* Generalized problems (e.g. Ax = 4 Bx)
* Error bounds for everything
* Lots of variants depending on A's structure (banded, A=AT, etc)
* Ongoing development

A brief history of (Dense) Linear Algebra software

* Is LAPACK parallel?
* Only if the BLAS are parallel (possible in shared memory)

* ScaLAPACK — "Scalable LAPACK" (1995 — now)
* For distributed memory — uses MPI
* More complex data structures, algorithms than LAPACK
* All at www.netlib.org/scalapack

A brief future look at (Dense) Linear Algebra software

 PLASMA, DPLASMA and MAGMA (now)
* Ongoing extensions to Multicore/GPU /Heterogeneous

* Can one software infrastructure accommodate all algorithms and
platforms of current (future) interest?

* How much code generation and tuning can we automate?
* icl.cs.utk.edu/{{d}plasma,magma}

* Other related projects
* Elemental (libelemental.org)
 Distributed memory dense linear algebra
» "Balance ease of use and high performance"
* FLAME (z.cs.utexas.edu/wiki/flame.wiki/FrontPage)
* Formal Linear Algebra Method Environment
« Attempt to automate code generation across multiple platforms

* BLAST Forum (www.netlib.org/blas/blast-forum)
* Attempt to extend BLAS, add new functions, extra-precision, ...

Organizing Linear Algebra — in books

c S APPLIED

% = NUMERICAL
€1 = LINEAR
e = ALGEBRA

AOITWARE . CNVINOAMENTR . TCOLA

: N O R
L le>>» 23>

James W. Demmel

www.neflib.org/lapack

Templates <
for the Solution of Linear Systema:
Buildmg Blecks for [terative Methoda
www.netlib.org/templates www.cs.utk.edu/~dongarra/etemplates

| ower Bounds on

Communication

Why avoiding communication is important

Algorithms have two costs:
1.Arithmetic (FLOPS)

2.Communication: moving data between

* levels of a memory hierarchy (sequential case)
* processors over a network (parallel case).

CPU CPU

CPU DRAM DRAM
Cache
DRAM
CPU CPU

DRAM DRAM

Why avoiding communication is important

* Recall @ — f — y model

* Running time sum of 3 terms:
o # flops x time per flop
* # words moved / bandwidth

* # messages x latency

* Time per flop << 1/bandwidth << latency
* Gaps growing exponentially in time

Goal: Organize | inear Algebra to Avoid Communication

e Between all memory hierarchy levels
e |1 <> L2 «<—> DRAM <«— network, etc

e Not just hiding communication (overlap with arithmetic)
e Speedup < 2x

e Arbitrary speedups/energy savings possible

e Later: Same goal for other computational patterns

e Lots of open problems

Review: Blocked Matrix Multiply

 Blocked Matmul C = A - B breaks A, B and C into blocks with
dimensions that depend on cache size

... Break A(nxn), B(nxn), C(nxXn)into b X b blocks labeled A(i,), etc.
. b chosen so 3 b X b blocks fit in cache

fori = 1ton/b, forj=1ton/b, fork=1ton/b
C(i,j) = C(i,j) + A(i,k)-B(k,j) ... b xbmatmul, 4b? reads/writes

* When b = 1, get "naive" algorithm, want b larger ...
* (n/b)3 - 4b*> = 4n3/b reads/writes altogether
* Minimized when 3bh? = cache size = M, yielding 0(n3/M'/?) reads/writes

* What if we had more levels of memory? (L1, L2, cache etc)?
* Would need 3 more nested loops per level
* Recursive (cache-oblivious algorithm) also possible

Communication Lower Bounds: Prior Work on Matmul

* Assume n3 algorithm (i.e., not Strassen-like)

* Sequential case, with fast memory of size M:

3
* Lower bound on #words moved to/from slow memory = Q (Mnl/2>
[Hong, Kung, 81]
 Attained using blocked or cache-oblivious algorithms

* Parallel case on p processors:
 Let M be memory per processor; assume load balanced

n3
* Lower bound on #words moved = () (le/z)
[Irony, Tiskin, Toledo, 04]

2
 If M = 3n?/p (one copy of each matrix), then lower bound = Q(p?/z)
« Attained by SUMMA, Cannon's algorithm

New lower bound for all "direct" linear algebra

Let M = "fast" memory size per processor
= cache size (sequential case) or O(n?/p) (parallel case)
#flops = number of flops done per processor

#words moved per processor = Q(#flops / M1/?)
Lower bound on messages = lower bound on words moved / largest possible message size:

#messages sent per processor = Q(#flops / M3/2)

* Holds for
 Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, ...

* Some whole programs (sequences of these operations, no matter how they
are interleaved, e.g., computing A¥)

* Dense and sparse matrices (where #flops << n3)
* Sequential and parallel algorithms
* Some graph-theoretic algorithms (e.g., Floyd-Warshall)

* Generalizations later (Strassen-like algorithms, loops accessing arrays)

New lower bound for all "direct" linear algebra

Let M = "fast" memory size per processor
= cache size (sequential case) or O(n?/p) (parallel case)
#flops = number of flops done per processor

#words moved per processor = Q(#flops / M1/2)
Lower bound on messages = lower bound on words moved / largest possible message size:

#messages sent per processor = Q(#flops / M3/2)

* Sequential case, dense n X n matrices, so 0(n?) flops
 Htwords moved = Q(n3/M*/?)
 #tmessages sent = Q(n3/M3/?)
* Parallel case, dense n X n matrices
* Assume load balanced, so 0(n3/p) flops/processor
* One copy of data, load balanced, so M = 0(n?/p) per processor
* Htwords moved = Q(n?/p'/?)
* Ftmessages sent = Q(p'/?)

Can we attain these lower bounds?

* Do conventional dense algorithms as implemented in LAPACK and
ScaLAPACK attain these bounds?

* Mostly not yet, work in progress

* If not, are there other algorithms that do?
* Yes

 Goals for algorithms:
* Minimize #words moved
* Minimize #messages sent
* Minimize for multiple memory hierarchy levels
* Fewest flops when matrix fits in fastest memory

 Attainable for nearly all dense linear algebra
» Just a few prototype implementations so far
* Only a few sparse algorithms so far (e.g., Cholesky)

Parallel Matrix

Multiply

Different Parallel Data Layouts for Matrices (not all!)

1) 1D Column Blocked Layout 2) 1D Column Cyclic Layout

4) Row versions of the previous layouts

>

b
3) 1D Column Block Cyclic Layout

O[1IfO 110101

O 1 2131 2131213213 .
O T[O[T[O[T[0T Generalizes others
213231213 12]3
O[1IlO 1101|101

2 3 213231213 12]3
Of1JOTIOf IOy T 6) 2D Row and Column
213231213 12]3

5) 2D Row and Column Blocked Layout Block Cyclic Layout

Parallel Matrix-Vector Product

* Compute y = y + Ax, where A is a dense matrix

* Layout:
* 1D row blocked
» A(iQ) refers to the n/p by n block row y X
that processor i owns, N F
| o PO A(0)
* x(i) and y(i) similarly refer to — -
segments of x,y owned by i P1 B A(1)
* Algorithm: 1 B
P2
* For each processor i L AQ) N
e Broadcast x(i) P3| A(3) i

e Compute y(i) = A(Q) - x

* Algorithm uses the formula

y(®) = YO + AD-x = YO +) AGL) - x()

Parallel Matrix-Vector Product

 Compute y = y + Ax, where A is a dense matrix

* Layout:
e 1D column blocked

* A(i) refers to the n by n/p block column y X
that processor i owns, PO

* x(i) and y(i) similarly refer to
segments of x,y owned by i PL 1 _ a0 |AQ) | AQ) | A@B)
* Algorithm: P2
* For each processor i
« Compute y(i) = A() - x(i) s L i
* Reduction to compute y

 Algorithm uses the formula

y = y+ZA(i) - x (1)

Matrix-Vector Product y = y + Ax

* A 2D blocked layout uses a broadcast and reduction, both on a subset of
Processors

* sqrt(p) for square processor grid

e e e b =] = e -

e e b e] o o e

Parallel Matrix Multiply

« ComputingC=C+A-B
» Using basic algorithm: 2n3 Flops

Variables are:
* Data layout: 1D? 2D? Other?
* Topology of machine: Ring? Torus?
* Scheduling communication

Use of performance models for algorithm design
 Message Time = "latency" 4+ #words * time-per-word

=a + np
Efficiency (in any model):

* serial time / (p X parallel time)
* perfect (linear) speedup <> efficiency =1

Matrix Multiply with 1D Column Layout

* Assume matrices are n X n and n is divisible by p May be a reasonable
assumption for

analysis, not for
code

» A(Q) refers to the n by n/p block column that processor i owns
(similiarly for B(i) and C(i))
* B(j,i) is the n/p by n/p subblock of B(i)
* inrows j Xn/p through G+ 1) Xxn/p — 1
* Algorithm uses the formula

Ci)= C)+ A-B(i) = C(i) +ZA(j) "B, D)
J

Matrix Multiply: 1D Layout on Bus or Ring

* Algorithm uses the formula

Ci)= CW)+ A-B@) = C(0) +ZA(j) "B, D)
J

* First consider a bus-connected machine without broadcast: only one
pair of processors can communicate at a time (ethernet)

» Second consider a machine with processors on a ring: all processors
may communicate with nearest neighbors simultaneously

MatMul: 1D layout on Bus w/out Broadcast

Naive algorithm:

C(myproc) = C(myproc) + A(myproc) - B(myproc, myproc)
fori = 0top—1
forj = O0top—1 except i
if (myproc == i) send A(i) to processor j
if (myproc == j)
receive A(i) from processor i
C(myproc) = C(myproc) + A(i) - B(i, myproc)

barrier
Cost of inner loop:

computation: A(i) - B(i, myproc): 2n(n/p)2 = 2n3/p?
communication: send A(i): a + fn?/p

Naive MatMul (continued)

Cost of inner loop:
computation: A(i) - B(i, myproc): 2n(n/p)2 = 2n3/p?

communication: send A(i): a + fn?/p

Only 1 pair of processors (i and j) are active on any iteration,
and of those, only i is doing computation

=> the algorithm is almost entirely serial
Running time:
= p(p — 1) X computation + p(p — 1) X communication

~ 2n® + pa + pn?p

This is worse than the serial time and grows with p.

Matmul for 1D layout on a Processor Ring

* Pairs of adjacent processors can communicate simultaneously

Copy A(myproc) into Tmp
C(myproc) = C(myproc) + Tmp*B(myproc , myproc)
forj =1 to p-1

Send Tmp to processor myproc+1 mod p

Receive Tmp from processor myproc-1 mod p

C(myproc) = C(myproc) + Tmp*B(myproc-j mod p , myproc)

 Time of inner loop = 2(« +,Bn2/p) + 27’1(”/19)2

Matmul for 1D layout on a Processor Ring

* Time of inner loop = 2(a + fn2/p) + 2n(n/p)2
Total Time = 2n(n/p)2 + (p — 1) X Time of inner loop
~2n3/p + 2pa + 2[n?

(Nearly) Optimal for 1D layout on Ring or Bus, even with Broadcast:
» Perfect speedup for arithmetic
* A(myproc) must move to each other processor, costs at least
(p — 1) X (cost of sending n X (n/p) words)

* Parallel Efficiency = 2n3/(p X Total Time)
= 1/(1 + ap?/(2n°) + Bp/(2n))

=1/ + 0(p/n))
Grows to 1 as n/p increases (or @ and [shrink)

But far from communication lower bound

Need to try 2D Matrix layout

1) 1D Column Blocked Layout 2) 1D Column Cyclic Layout

4) Row versions of the previous layouts

>

b
3) 1D Column Block Cyclic Layout

OlI10(110]11]0]1

O 1 21312 1312]13]2]3 .
O] T]O[T[0] T[0T Generalizes others
2131213121323
OlI10([110]1]0]1

2 3 21312 1312]13]2]3
O] T]OTIOTTIO T 6) 2D Row and Column
21312 1312131213

5) 2D Row and Column Blocked Layout Block Cyclic Layout

Summary of Parallel Matrix Multiply

« SUMMA
 Scalable Universal Matrix Multiply Algorithm
* Attains communication lower bounds (within logp)

* Cannon
 Historically first, attains lower bounds
* More assumptions
* A and B square
* p a perfect square

« 2.5D SUMMA
* Uses more memory to communicate even less

e Parallel Strassen
* Attains different, even lower bounds

SUMMA uses Outer Product form of MatMul

« C = A-B means C(i,j) = X A(i, k) -B(k,))

* Column-wise outer product:
C =A-B —
— ZkA(:)k) ’ B(k))

+
= Y (k" col of A) - (k™ row of B)
I
* Block column-wise outer product
I

(block size = 4 for illustration)
C =A-B
= A(:,1:4) - B(1:4,:) + A(:,5:8) - B(5:8,:) + ...
= Y (k™" block of 4 cols of A) - (k*" block of 4 rows of B)

SUMMA — n X n matmul on p'/? x p'/2 grid

K j /Blk.]
ESE———
f\ * l —

i SRR Cli,il

e
yd
Ali K] /
o C[i,j]is n/p*? xn/p'/? submatrix of C on processor p;
e Alik]is n/pY? x b submatrix of A
e B[k, jlis bx n/p'?submatrix of B
e Cli,jl= Cli,jl+ X, Ali, k] Blk,J]

e summation over submatrices

e Need not be square processor grid

SUMMA — n X n matmul on p'/? x p'/2 grid

k

j /BIK.I

——)

|

i 4{(\“\

e

Al K]

e

e

C(i.))

Acol

<« Brow

Fork=0ton/b—1
foralli = 1to pl/?

for all j = 1to p/?

Receive Ali,k] into Acol
Receive B[k,j| into Brow

C myproc = C_myproc 4+ Acol * Brow

owner of A[i k| broadcasts it to whole processor row (using binary tree)

owner of B[k,j| broadcasts it to whole processor column (using binary tree)

SUMMA Costs

Fork=0ton/b—1
foralli = 1to pl/?

owner of A[i k| broadcasts it to whole processor row (using binary tree)

... #words = logp/? x b x n/p'/?, #messages = logp'/?
for all j = 1to pl/?
owner of B[k,j| broadcasts it to whole processor column (using binary tree)
. same #words and #messages
Receive Ali k] into Acol
Receive B[k,j| into Brow
C myproc = C_myproc + Acol * Brow ... #flops = 2n*b/p

° Total #words = logp x n?/p/?
° Within factor of logp of lower bound
(more complicated implementation removes logp factor)
° Total #messages = logp X n/b
° Choose b close to maximum, n/p
° Total #flops = 2n3/p

o

/2 to approach lower bound p1/?

Can we do better?

* Lower bound assumed 1 copy of data: M = 0O(n?/p) per proc.

* What if matrix small enough to fit ¢ > 1 copies, so M = cn?/p?
* #words moved = Q(#flops/MY?) = Qn?/c/?p1/?)
* #messages = Q(#flops/M3/2) = Q(p¥?/c3/?)

 Can we attain new lower bound?

e Special case: "3D Matmul": ¢ = p'/3
* Bernsten 89, Agarwal, Chandra, Snir 90, Aggarwal 95
e Processors arranged in p1/3 x p1/3 x p/3 grid

* Processor (i,j,k) performs C(i,j) = C(i,j) + A(i, k) - B(k,j), where
each submatrix is n/pl/3 x n/pl/3

* Not always that much memory available...

2.5D Matrix Multiplication

 Assume can fit cn?/p data per processor, ¢ > 1

* Processors form (p/c)Y/? x (p/c)'/? x ¢ grid

(p/C) 1/2

>

A\
@<

I
N

CI Example: p = 32, ¢

2.5D Matrix Multiplication

 Assume can fit cn?/p data per processor, ¢ > 1

* Processors form (p/c)Y/? x (p/c)'/? x ¢ grid

Initially p(i,j,0) owns A(i,j) and B(i,j)
k each of size n(c/p)'/2 x n(c/p)/?

(1) p(i,j,0) broadcasts A(i,j) and B(i,j) to p(i,j,k)
(2) Processors at level k perform 1/c-th of SUMMA, i.e. 1/c-th of X_ A(i,m)*B(m,j)
(3) Sum-reduce partial sums X A(i,m)*B(m,j) along k-axis so p(i,j,0) owns C(i,j)

2.5D Matmul on IBM BG/P, n=64K

* As p increases, available memory grows — ¢ increases proportionally to p
* Fflops, #words moved, #messages per proc all decrease proportionally to p
« Hwords moved = Q(#flops/MY?) = Qn?/(c/?*p'/?))
« #messages = Q(#flops/M3/2) = Q(p'/?/c3/?)

« Perfect strong scaling! But only up to ¢ = p1/3

Matrix multiplication on BG/P (n=65,536)

100 T T
: - 2.5DMM ——

BO - i

I e

,,,

T —————.— AEQ -

Percentage of machine peak

of i

Classical Matmul vs

* Complexity of classical Matmul

Flops: O(n3/p)

* Communication lower bound on #words:
Q((n3/p)/M/2) = Q(M(n/M1/2)3 /p)

* Communication lower bound on #messages:
Q((n3/p)/M3/2) = ((n/MH/2)3/p

All attainable as M increases past O(n?/p), up to a limit:
1/3

can increase M by factor up to p
#words as low as Q(n/p2/3)

ScaLAPACK Parallel Library

ScalLAPACK SOFT'WARE HIERARCHY

| ScaLAPACK|

| LAPACK|

(Message Passing Primitives
{MPL, PVM, elc.)

Extensions of Lower Bound and Optimal Algorithms

* For each processor that does G flops with fast memory of size M
H#words moved = Q(G/M/?)
* Extension: for any program that looks like
* Nested loops ...

e That access arrays ...
* Where array subscripts are linear functions of loop indices

o Ex: A(i,j), B(3*i-4*k+5%j, i-j, 2%k, ...), ...
* There is a constant s such that
#words moved = Q(G/M5™1)
* s comes from recent generalization of Loomis-Whitney (s = 3/2)
« Ex: linear algebra, n-body, database join, ...
* Lots of open questions: deriving s, optimal algorithms ...

LU and QR

Factorizations

Gaussian Elimination (GE) for solving Ax=b

* Add multiples of each row to later rows to make A upper triangular

* Solve resulting triangular system Ux = c by substitution

... for each column i
... zero it out below the diagonal by adding multiples of row i to later rows
fori=1ton-1
... for each row j below row i
forj=i+lton
... add a multiple of row i to row j
tmp = A(j,i);
fork=iton
A(,k) = A(,k) - tmp/A(,D)) * A(i,K)

0 0 0 anm 0
- 10 - 10 - 10
. e [:]o0 110
0 0l 0lnal. 0[alAl0
0 Ofo Ofo olo
After i=1 After i=2 After i=3 After i=n-1

Refine GE Algorithm (1/5)

* Initial Version

... for each column i
... zero it out below the diagonal by adding multiples of row i to later rows
fori=1ton-1
... for each row j below row i
forj=i+lton
... add a multiple of row i to row j
tmp = A(,1);
fork=iton
A(,k) = A(,k) - tmp/A(i,i)) * A(i,k)

* Remove computation of constant tmp/A(i,i) from inner loop.

fori=1ton-1
forj=i+lton
m = A(,)/A(i,I)
fork=iton m
A(,k) =A(,k) - m *A(i,k) Y

Refine GE Algorithm (2/5)

e |ast version

fori=1ton-1
forj=i+lton
m = A(j,i)/A(i,i)
fork=iton
A(,k) = A(,k) - m *A(i,k)

* Don't compute what we already know: zeros below diagonal in column i

fori=1ton-1

forj=i+lton i

m = A(j,i)/A(i,i)
fork=i+1ton m

AG.K) = AGK) - m * A k) S j

/

DAot compute zeros

Refine GE Algorithm (3/5)

e |ast version

fori=1ton-1
forj=i+lton
m = A(j,i)/A(i,i)
fork =i+1ton
A(,k) = A(,k) - m *A(i,k)

» Store multipliers m below diagonal in zeroed entries for later use

fori=1ton-1
forj=i+lton i
A1) =AG,DIA(IL)

fork =i+1ton m
A(,k) = A(,K) - A1) *A(k) Y j

Refine GE Algorithm (4/5)

e |ast version

fori=1ton-1
forj=i+lton
A(,1) = A(,D/IA(IL)
fork =i+1ton
A(,k) = A(,k) - AG,D *A(lLk)

e Split Loop

fori=1ton-1

forj=i+lton i

A1) = AGDAL) -
forj=i+lton

fork=i+1ton - j
AQ.K) = AQ.K) -AGT) *Ad1LK) /

Store all m's here before updating
rest of matrix

Refine GE Algorithm (5/5)

* Last version fori=1ton-1
: : : forj=i+1lton
 Express using matrix operations (BLAS) ,i\(j) = AGLIVAGD)
forj=i+lton
fork =i+1ton
A(,k) =AG,k) - A1) *A(k)

Work at step i of Gaussian Elimination
i

Finished part of U
: : - fori=1ton-1
i AGi,i) ! AGRY < Alirln) A@+1:n,i) = A@i+1:n,i) * (1/A(,D))
Finished ... BLAS 1 (scale a vector)
jmultipliers| | A(i+1:n,i+1:n) = A(i+1:n , i+1:n)
- - - - - ... BLAS 2 (rank-1 update)

}

Ali+1:n,i) Ali+1:n,i+1:n)

What GE really computes

fori=1ton-1
A(i+1:n,i) = A(i+1:n,i) /AG,i) ... BLAS 1 (scale a vector)
A(i+1:n,i+1:n) = A(i+1:n ,i+1:n) - A(i+1l:n,i) *A(i , i+1:n) ... BLAS 2 (rank-1 update)

Call the strictly lower triangular matrix of multipliers M, and let L = I+M

Call the upper triangle of the final matrix U

Lemma (LU Factorization): If the above algorithm terminates (does not
divide by zero) then A = LU

Solving Ax=b using GE - N\
« Factorize A = LU using GE (cost = 2/3 n3 flops)
* Solve Ly = b for y, using substitution (cost = n? flops)

* Solve Ux =y for x, using substitution (cost = n? flops)
Thus Ax = (LU)x = L(Ux) = Ly = b as desired

Problems with basic GE algorithm

fori=1ton-1
A(i+1:n,i) = A(i+1:n,i) 1 A(i,i) ... BLAS 1 (scale a vector)
A(i+1:n,i+1:n) = A(i+1:n,i+1:n) ... BLAS 2 (rank-1 update)
-A@+1n i) * A, 1+1:n)

* What if some A(i,i) is zero? Or very small?
* Result may not exist, or be "unstable", so need to pivot

 Current computation all BLAS 1 or BLAS 2, but we know that BLAS 3 (matrix
multiply) is fastest (earlier lecture...)

RE2: Level1, 2 and 3 BELAS

300
----------------------------------- Peak
250 b
BLAS 3
3200
%150
& 100 { BLAS 2
//”/««—’/’-’i‘//w BLAS 1
50+ i
e
00 160 260 360 4(;0 560 600

Order of vestarsmatrices

Pivoting in Gaussian Elimination

o A= [2 (1)] fails completely because can't divide by A(1,1) =0

eBut solving Ax = b should be easy!

e When diagonal A(i, i) is tiny (not just zero), algorithm may
terminate but get completely wrong answer
- Numerical instability
- Roundoff error is cause

e Cure: Pivot (swap rows of A) so A(i, 1) large

Gaussian Elimination with Partial Pivoting (GEPP)

e Partial Pivoting: swap rows so that A(i,i) is largest in column

fori =1 ton-1
find and record k where |A(k,i)| = max{i <j < n} |A(.i)]
.. i.e. largest entry in rest of column i

if |A(k,i)| =0
exit with a warning that A is singular, or nearly so
elseif k #i
swap rows i and k of A
end if
A(i+1:n,i) = A(i+1L:n,i) / A(i,i) ... each |quotient| <1

A(i4+1:n,i+1:n) = A(i+1:n, i+1:n) - A(i+L:n, i) * A(i , i+1:n)

® Lemma: This algorithm computes A = PLU, where P is a permutation
matrix.
® This algorithm is numerically stable in practice
® For details see LAPACK code at
http://www.netlib.org/lapack/single /sgetf2.f
® Standard approach — but communication costs?

http://www.netlib.org/lapack/single/sgetf2.f

Problems with basic GE algorithm

* Current computation all BLAS 1 or BLAS 2, but we know that BLAS 3

(matrix multiply) is fastest (earlier lectures...)
fori=1ton-1
A(i+1:n,i) = A(i+1:n,i) 1 A(,D) ... BLAS 1 (scale a vector)
A(i+1:n,i+1:n) = A(i+1:n ,i+1:n) ... BLAS 2 (rank-1 update)
-A(+L:n i) *A@ , 1+1:n)

RE2: Level1, 2 and 3 BELAS

300
----------------------------------- Peak
250 b
BLAS 3
3200
%‘,150
& 100 { BLAS 2
//”/««—’/’-’i‘//w BLAS 1
50+ R
e
00 1(;0 260 360 4(;0 5(;0 600

Order of vestarsmatrices

Converting BLAS2 to BLAS3 in GEPP

* Blocking

» Used to optimize matrix-multiplication

* Harder here because of data dependencies in GEPP
« BIG IDEA: Delayed Updates

» Save updates to "trailing matrix" from several consecutive BLAS2
(rank-1) updates

* Apply many updates simultaneously in one BLAS3 (matmul) operation
* Same idea works for much of dense linear algebra

* Not eigenvalue problems or SVD — need more ideas
* First Approach: Need to choose a block size b

* Algorithm will save and apply b updates

* b should be small enough so that active submatrix consisting of b
columns of A fits in cache

* b should be large enough to make BLAS3 (matmul) fast

Blocked GEPP

for ib=1ton-1stepb ... Process matrix b columns at a time
end =ib + b-1 ... Point to end of block of b columns ~Q
apply BLAS2 version of GEPP to get A(ib:n ,ib:end) =P'*L" * U’
... let LL denote the strictllower triangular part of A(ib:end , ib:end) + |
=LL >
A(end+1:n , end+1:n) =A(end+1l:n, end+1l:n)
-A(end+1:n , ib:end) *

(www.netlib.org/lapack/single/sgetrf.f)

... update next b rows of U

... apply delayed updates with single matrix-multiply
... With inner dimension b

b

-3

ib el_ld

Co:mpleted: partof U
LA (ibzend, ibzend)
2 B il == -
bl A(ib:end, end+1:n)
end|. ... B,

A(end+1:n, end+1:n)

fL

Completed part

Communication Lower Bound for GE

* Matrix multiply can be "reduced to" GE

* Not a good way to do matmul but it shows that GE needs at least as much
communication as matmul

* Does blocked GEPP minimize communication?

H s

I —B

0
A I 0
0 O

I

Does LAPACK's GEPP Minimize Communication?

for ib=1ton-1stepb ... Process matrix b columns at a time

end =ib + b-1 ... Point to end of block of b columns
apply BLAS2 version of GEPP to get A(ib:n ,ib:end) =P'* L' * U’
... let LL denote the strict lower triangular part of A(ib:end , ib:end) + |

=LL1=* ... update next b rows of U
A(end+1:n,end+1:n) =A(end+1l:n, end+1l:n)

- A(end+1:n , ib:end) *
... apply delayed updates with single matrix-multiply
... with inner dimension b

e Case 1: n>M - huge matrix — attains lower bound
« b = M/2 optimal, dominated by matmul

e Case 2: n < MY2 _ small matrix — attains lower bound
* Whole matrix fits in fast memory, any algorithm attains lower bound

e Case 3: M¥/2 < n < M - medium size matrix — not optimal

* Can't choose b to simultaneously optimize matmul and BLAS2 GEPP of n
x b submatrix

« Worst case: Exceed lower bound by factor M1/6 when n = M?2/3

Explicitly Parallelizing Gaussian Elimination

» Parallelization steps
* Decomposition: identify enough parallel work, but not too much
* Assignment: load balance work among threads
* Orchestrate: communication and synchronization
* Mapping: which processors execute which threads (locality)

* Decomposition

* In BLAS 2 algorithm nearly each flop in inner loop can be done in parallel,
so with n2 processors, need 3n parallel steps, O(n log n) with pivoting

fori=1ton-1
A(i+1:n,i) = A@i+1:n,i) T A(,1) ... BLAS 1 (scale a vector)
A(i+1:n,i+1:n) = A(i+1:n ,i+1:n) ... BLAS 2 (rank-1 update)
-A(i+1:n 1) * A, i+1:n)

* This is too fine-grained, prefer calls to local matmuls instead
* Need to use parallel matrix multiplication

e Assignment and Mapping
* Which processors are responsible for which submatrices?

Different Data Layouts for Parallel GE

—

Bad load balance: Load balanced, but can't
n/4 steps
1) 1D Column Blocked Layout 2) 1D Column Cyclic Layout
Can trade load balance
and BLASS3 011123 c i d add .
performance by 3[of1]2 Momp cate "’:c IIreSSITIgi'
choosing b, but ol1l213lol1l2l3 >T3T0T1 | ay nﬁt W?nt ull parallelism
factorization of block n €ach column, row
_ 112(3(0

column is a bottleneck

>

b

3) 1D Column Block Cyclic Layout 4) Block Skewed Layout

Ol110 (11011011
Bad load balance: 0 1 AESEEEE |
PO idle after first T The winner!
2 steps 2 | 3| | ook
e et 6) 2D Row and Column

5) 2D Row and Column Blocked Layout Block Cyclic Layout

Distributed GE with a 2D Block Cyclic Layout

(2}

(6]

forih=1ton-1 step b

(3)

(6]

end = mini ib+b-1,n3
for i = ib to end

{1} find pivot row Kk, column broadcast

{2 swap rows K and i inblock column, broadcast rovw k

(3) A Wln, i) = A(kLn, i)/ A, 1)

4y Ali+ln, +lend) —ali+ln,id*¥ali,i+lend)

end for

broadcast all swap inforrmation right and left

apply all rows swaps to other colamns

Distributed GE with a 2D Block Cyclic Layout

(7 : (7Y Broadcast LL right
(8) (8) Alibend, end+lny=LL% Afibend, end+1mn}
(&) . (9 Broadcast Af ibiend, end+1:n) dovwm \
vy =
f=3
*
5
“ =
o 0
10 10% Broadcast A{ end+1:n, ibiend) right :
(107 (1) roadcast Af end+1:n, ibend) righ >_;5
+ Cl)
- S W
E 1
X
£ 00
© °
(11} {11y Eliminate &{ end+1:n, end+1n) j 2 o0

Does ScaLAPACK Minimize Communication?

* Lower Bound: 0(n?/p'/?) words sent in 0(p/?) mess.
* Attained by Cannon and SUMMA (nearly) for matmul

e ScaLAPACK:

e 0(n?logp /p'/?) words sent — close enough

e O(nlogp) messages — too large

* Why so many? One reduction costs O(logp) per column to find
maximum pivot, times n = #columns

* Need to replace partial pivoting to reduce #messages
1/2 % p1/2

» Goal: For each panel of b columns spread over p
"good" pivot rows in one reduction

* Call this factorization TSLU = "Tall Skinny LU"

* Several natural bad (numerically unstable) ways explored, but good way
exists

processor grid
1/2

* Suppose we have n X n matrix on p
procs, identify b

* "Communication Avoiding GE", [Demmel, Grigori, Xiang, 2008]

Choosing Rows by "Tournament Pivoting"

(\p7) T I
W, P.-L; U, Choose b pivot rows of W, call them W'
WWnxb = W, B P,-L,-U, Choose b pivot rows of W,, call them W.,'
W, - P. LU, Choose b pivot rows of W, call them W'
W, \P4-L4-U4/ Choose b pivot rows of W,, call them W,'
- S
r N
Wy PL i
W..' ~ 12° 12'U127 Choose b pivot rows, call them W'
wj P34.|_34.U34J Choose b pivot rows, call them W,
(. S
I\
Wiz | = Pyl U Choose b pi
W, 1234 1234" Y1234 oose b pivot rows
J

Go back to W and use these b pivot rows
(move them to top, do LU without pivoting)
Not the same pivots rows chosen as for GEPP
Proof that this is numerically stable [Demmel, Grigori, Xiang, '11]

Minimizing Communication in TSLU

Wl — W ——,1u
Parallel: ,_lw, | = w — ™~ v
w, | > w
W, |- Ww—
1. S LW
Sequential: |, _| w, TS w
w, = W
L W, _
W, | - w
\
Dual Core: _|w, | > w S%Y—
w, W
W, | w——

Multicore / Multisocket / Multirack / Multisite / Out-of-core:?
Can choose reduction tree dynamically

Performance vs. ScaLAPACK LU

« TSLU
— IBM Power 5

* Up to 4.37x faster (16 procs, 1M x 150)
— Cray XT4

* Up to 5.52x faster (8 procs, 1M x 150)

« CALU
— IBM Power 5

* Up to 2.29x faster (64 procs, 1000 x 1000)
— Cray XT4

* Up to 1.81x faster (64 procs, 1000 x 1000)
» See INRIA Tech Report 6523 (2008)

Same idea for TSQR: QR of a Tall, Skinny matrix

A
J

=

=
|
=

=

=

4
N

Same idea for TSQR: QR of a Tall, Skinny matrix

e N e N
Wo /Qoo Roo\ /Qoo A Roo
W W, Qo Ry | . Q1o | Rao
W, Q20 Ryg Qa0 Rao
\Ws) \Q3o Rscy _ Qscy \Rso)
e N

Roo

&0_ = Qo1 R01 _ QOl : R01
Rzo Q11 R11 Qll R11
R

30
[%ﬁﬂ i [Qoz Roz]

Output = { Quo, Q10, Q20s Q305 Qo1s Q15 Qozs Ry }

TSQR: An Architecture-Dependent Algorithm

Wo | - Ry — R,,
Parallel: | W, | = Ro — ™ ™
W, | — Ry — p / 02
] W3] —_ R30 Pl
‘W, . &
. 00
Sequential: ,_| W, — Fo I
w, g Ry
L W3 _
‘W, . &
00 —
Dual Core: ,,_| W, Ry — ot ——s
W ., —> Ry
2 R >Ry,
W; R —

Multicore / Multisocket / Multirack / Multisite / Out-of-core:?
Can choose reduction tree dynamically

Summary of dense parallel O(n3/p) algorithms attaining comm. lower bounds

e References are from Table 3.2 in [Ballard, C., Demmel, Hoemmen, Knight,
Schwartz, Acta Numerica vol 23, 2014] (Table 3.1 for sequential algorithms)
e Assume n X n matrices on p procs, minimum memory per proc: M = 0(n?/p)
« #words moved = Q(n?/p'/?), Fmessages = Q(p/?),
e ScalLAPACK in red
- ScaLAPACK sends > n/p'/? times too many messages (except Cholesky)

Computation Minimizes # Words Minimizes # Messages
BLAS3 [1,2,3,4] [1,2,3,4]

Cholesky [2] [2]

LU [2,5,10,11] [5,10,11]

Symmetric Indefinite [2,6,9] [6,9]

QR [2,7] [7]

Eig(A=AT) and SVD [2,8,9] [8,9]

Eig(A) 8] 8]

