
Exercises 6:
MPI Collective Communication

Collective Data Movement

A

B

D

C

B C D

A

A

A

A

Broadcast

Scatter

Gather

A

A

P0

P1

P2

P3

P0

P1

P2

P3

2

More Collective Data Movement

A

B

D

C

A0 B0 C0 D0

A1 B1 C1 D1

A3 B3 C3 D3

A2 B2 C2 D2

A0A1A2A3

B0 B1 B2 B3

D0D1D2D3

C0 C1 C2 C3

A B C D

A B C D

A B C D

A B C D

Allgather

Alltoall

P0

P1

P2

P3

P0

P1

P2

P3

3

Collective Computation

P0

P1

P2

P3

P0

P1

P2

P3

A
B

D
C

A
B

D
C

ABCD

A
AB

ABC
ABCD

Reduce

Scan

P0

P1

P2

P3

A
B

D
C

A
AB

ABC

Excan

4

Collective communication and synchronization points

• collective communication implies
a synchronization point among processes
• all processes must reach a point in

their code before they can all begin
executing again

• MPI has a special function that is
dedicated to synchronizing processes:

MPI_Barrier(MPI_Comm communicator)

• function forms a barrier, and no
processes in the communicator can pass
the barrier until all of them call the
function

5

MPI_Barrier Implementation
• How would you implement an MPI_Barrier?

• One way: recall the ring program from last time

• Process 0 sends to 1, 1 sends to 2, ...p-1 sends back to 0

• This type of program is one of the simplest methods to implement a
barrier since a token can’t be passed around completely until all
processes work together.

6

Broadcasting with MPI_Bcast
• One process sends the same data to all processes in a communicator.

• Main uses of broadcasting: send out user input to a parallel program, or
send out configuration parameters to all processes

7

In this example, process zero is the root process,
and it has the initial copy of data. All of the
other processes receive the copy of data.

MPI_Bcast(

void* data,

int count,

MPI_Datatype datatype,

int root,

MPI_Comm communicator)

• Although the root process and receiver processes do different jobs, they all call the
same MPI_Bcast function.

• When the root process calls MPI_Bcast, the data variable will be sent to all other
processes.

• When all of the receiver processes call MPI_Bcast, the data variable will be filled in
with the data from the root process.

Task 1: Broadcast with MPI_Send and MPI_Recv

• We can implement the functionality of MPI_Bcast just using MPI_Send
and MPI_Recv.

• Root process sends the data to everyone else while the others receive
from the root process

• We can write such a wrapper function right now.

• Look at my_bcast.c

• Fill in the appropriate MPI_Send and MPI_Recv calls

• Reminders:

• Type “module load openmpi” to load the MPI compiler

• To compile, use “mpicc” instead of gcc

• To run, use (e.g.) “mpirun –n 4 ./my_program”

8

Solution

9

my_bcast.c
void my_bcast(void* data, int count, MPI_Datatype datatype, int root, MPI_Comm communicator) {

int world_rank, world_size;

MPI_Comm_rank(communicator, &world_rank);

MPI_Comm_size(communicator, &world_size);

if (world_rank == root) {

// If we are the root process, send our data to everyone

int i;

for (i = 0; i < world_size; i++) {

if (i != world_rank) {

MPI_Send(data, count, datatype, i, 0, communicator);

}

}

} else {

// If we are a receiver process, receive the data from the root

MPI_Recv(data, count, datatype, root, 0, communicator, MPI_STATUS_IGNORE);

}

}

10

Efficiency
• our function is actually very inefficient
• Imagine that each process has only one outgoing/incoming network link.
• Our function is only using one network link from process zero to send all

the data.
• A smarter implementation is a tree-based communication algorithm that

can use more of the available network links at once.

11

• Ex: Process zero starts off with the data and sends
it to process one.

• Similar to our previous example, process zero also
sends the data to process two in the second stage.

• The difference with this example is that process
one is now helping out the root process by
forwarding the data to process three.
• During the second stage, two network

connections are being utilized at a time. The
network utilization doubles at every
subsequent stage of the tree communication
until all processes have received the data.

Comparing MPI_Bcast with Send/Recv version

• MPI_Bcast implementation utilizes such a tree broadcast algorithm for
good network utilization

• We will run compare_bcast.c to compare timing

• Note on timing in MPI:

• MPI_Wtime takes no arguments, and it simply returns a floating-point
number of seconds since a set time in the past.

• Similar to C’s time function, you can call multiple MPI_Wtime
functions throughout your program and subtract their differences to
obtain timing of code segments.

12

13

for (i = 0; i < num_trials; i++) {

// Time my_bcast

// Synchronize before starting timing

MPI_Barrier(MPI_COMM_WORLD);

total_my_bcast_time -= MPI_Wtime();

my_bcast(data, num_elements, MPI_INT, 0, MPI_COMM_WORLD);

// Synchronize again before obtaining final time

MPI_Barrier(MPI_COMM_WORLD);

total_my_bcast_time += MPI_Wtime();

// Time MPI_Bcast

MPI_Barrier(MPI_COMM_WORLD);

total_mpi_bcast_time -= MPI_Wtime();

MPI_Bcast(data, num_elements, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Barrier(MPI_COMM_WORLD);

total_mpi_bcast_time += MPI_Wtime();

}

Task 2: Comparing Bcasts
Start an interactive session with n cores:

srun -n 8 -p express3 --pty /bin/bash -i

• Run compare_bcast with the following parameters:

• num_elements = 500, num_trials = 1000

• num_elements = 500000, num_trials = 1000

• For each set of parameters, try with -n 2 and -n 8 processes (can be on the
same node)

• So you should have a total of 4 runs

14

MPI_Scatter
• similar to MPI_Bcast

• MPI_Scatter involves a designated root process sending data to all
processes in a communicator.

• The primary difference between MPI_Bcast and MPI_Scatter:
MPI_Bcast sends the same piece of data to all processes while
MPI_Scatter sends chunks of an array to different processes.

15

MPI_Scatter(

void* send_data,

int send_count,

MPI_Datatype send_datatype,

void* recv_data,

int recv_count,

MPI_Datatype recv_datatype,

int root,

MPI_Comm communicator)

MPI_Gather
• MPI_Gather is the inverse of MPI_Scatter.

• Instead of spreading elements from one process to many processes, MPI_Gather
takes elements from many processes and gathers them to one single process.

• Highly useful to many parallel algorithms, such as parallel sorting and searching.

• MPI_Gather takes elements from each process and gathers them to the root
process.

• The elements are ordered by the rank of the process from which they were received.

16

MPI_Gather(

void* send_data,

int send_count,

MPI_Datatype send_datatype,

void* recv_data,

int recv_count,

MPI_Datatype recv_datatype,

int root,

MPI_Comm communicator)

Task 3: Averaging Numbers with Collectives
• Example program avg.c meant to compute the average across all numbers

in an array

• demonstrates how one can use MPI to divide work across processes,
perform computation on subsets of data, and then aggregate the smaller
pieces into the final answer

• Does the following:

1. Generate a random array of numbers on the root process (process 0).

2. Scatter the numbers to all processes, giving each process an equal
amount of numbers.

3. Each process computes the average of their subset of the numbers.

4. Gather all averages to the root process. The root process then computes
the average of these numbers to get the final average.

Task: Add the appropriate MPI_Scatter and MPI_Gather calls to the
program

17

Solution

18

// Scatter the random numbers to all processes

MPI_Scatter(rand_nums, num_elements_per_proc, MPI_FLOAT, sub_rand_nums,

num_elements_per_proc, MPI_FLOAT, 0, MPI_COMM_WORLD);

// Compute the average of your subset

float sub_avg = compute_avg(sub_rand_nums, elements_per_proc);

// Gather all partial averages down to the root process

float *sub_avgs = NULL;

if (world_rank == 0) { sub_avgs = malloc(sizeof(float) * world_size);}

MPI_Gather(&sub_avg, 1, MPI_FLOAT, sub_avgs, 1, MPI_FLOAT, 0, MPI_COMM_WORLD);

19

Allgather: many to many collectives
• So far, we have covered two MPI routines that perform many-to-one or

one-to-many communication patterns

• Often it is useful to be able to send many elements to many processes (i.e.
a many-to-many communication pattern)

• Given a set of elements distributed across all processes, MPI_Allgather will
gather all of the elements to all the processes.

• In the most basic sense, MPI_Allgather is an MPI_Gather followed by an
MPI_Bcast.

20

MPI_Allgather(

void* send_data,

int send_count,

MPI_Datatype send_datatype,

void* recv_data,

int recv_count,

MPI_Datatype recv_datatype,

MPI_Comm communicator)

Reductions
• "Reduce" is a classic concept from functional programming.

• Data reduction involves reducing a set of numbers into a smaller set of
numbers via a function.

• For example, let’s say we have a list of numbers [1, 2, 3, 4, 5].

• Reducing this list of numbers with the sum function would produce
sum([1, 2, 3, 4, 5]) = 15.

• Similarly, the multiplication reduction would yield multiply([1, 2, 3, 4,
5]) = 120.

21

MPI_Reduce
• Similar to MPI_Gather, MPI_Reduce takes an array of input elements on

each process and returns an array of output elements to the root process.

• The output elements contain the reduced result

22

MPI_Reduce(

void* send_data,

void* recv_data,

int count,

MPI_Datatype datatype,

MPI_Op op,

int root,

MPI_Comm communicator)

Reduction on Arrays
• Ex: what if processes each have 2 elements?

• The resulting reduction happens on a per-element basis

• ith element from each array are summed into the ith element in result
array of process 0.

23

Included Reduction Operations
• MPI contains a set of common reduction operations that can be used.

• MPI_MAX - Returns the maximum element.

• MPI_MIN - Returns the minimum element.

• MPI_SUM - Sums the elements.

• MPI_PROD - Multiplies all elements.

• MPI_LAND - Performs a logical and across the elements.

• MPI_LOR - Performs a logical or across the elements.

• MPI_BAND - Performs a bitwise and across the bits of the elements.

• MPI_BOR - Performs a bitwise or across the bits of the elements.

• MPI_MAXLOC - Returns the maximum value and the rank of the process that
owns it.

• MPI_MINLOC - Returns the minimum value and the rank of the process that
owns it.

• Custom reduction operations can also be defined

24

Task 4: Computing Average with MPI_Reduce

• Before we computed averages using MPI_Scatter and MPI_Gather

• Using MPI_Reduce simplifies the code

• See reduce_avg.c

• Add the appropriate MPI_Reduce call

25

Solution

26

// Sum the numbers locally

float local_sum = 0;

int i;

for (i = 0; i < num_elements_per_proc; i++) {

local_sum += rand_nums[i];

}

// Reduce all of the local sums into the global sum

float global_sum;

MPI_Reduce(&local_sum, &global_sum, 1, MPI_FLOAT, MPI_SUM, 0,

MPI_COMM_WORLD);

27

MPI_Allreduce
• Many parallel applications will require accessing the reduced results across

all processes rather than the root process.

• In a similar complementary style of MPI_Allgather to MPI_Gather,
MPI_Allreduce will reduce the values and distribute the results to all
processes

• MPI_Allreduce is identical to MPI_Reduce with the exception that it does
not need a root process id (since the results are distributed to all
processes).

28

MPI_Allreduce(

void* send_data,

void* recv_data,

int count,

MPI_Datatype datatype,

MPI_Op op,

MPI_Comm communicator)

MPI_Allreduce = MPI_Reduce + MPI_Bcast

Nonblocking Collectives
• Recall from lecture: Since MPI version 3, nonblocking collectives are

included

• Function returns immediately; doesn't wait for collective
communication to finish

• Can allow overlapping of communication with other useful work

• Nonblocking call has the same syntax as its blocking counterpart, with two
differences

• The letter “I” appears in the name of the call, immediately following the
first underscore: e.g., MPI_Ibcast.

• Final argument is a handle to a request object that holds detailed
information about the transaction. The request handle can be used for
subsequent Wait and Test calls.

• How to check that communication is finished before moving on?

• MPI_Wait(&request, &status);

• MPI_Test(&request, &flag, &status);

29

Syntax Example
int MPI_Ibcast(void *buffer,

int count,

MPI_Datatype datatype,

int root,

MPI_Comm comm,

MPI_Request *request)

int MPI_Wait(MPI_Request *request,

MPI_Status *status)

int MPI_Test(MPI_Request *request,

int *flag,

MPI_Status *status)

30

Task 5: Find the Error

• The file bcastnonblocking.c attempts to implement a
HelloWorld program using a nonblocking broadcast call.

• Try to compile and run this program (use, e.g., 4 processes,
and try running multiple times)

• There is an error!

• Task: Find the error and fix it!

31

Solution

32

Nonblocking Bcast

//Call nonblocking broadcast

MPI_Ibcast(message, 13, MPI_CHAR, root, MPI_COMM_WORLD, &request);

if (rank == root)

{

strcpy(message, "What will happen?");

}

printf("Message from process %d : %s\n", rank, message);

33

carson@r0d0:[~/workingfiles/ex5]: srun -n 4

./bcastnonblocking

Message from process 1 : ▒

@

Message from process 3 : ▒

@

Message from process 2 : ▒

@

Message from process 0 : What will happen?

We don't check to make
sure bcast is finished
before overwriting
message! Causes error!

Nonblocking Bcast
• Need to call MPI_Wait to make sure the communication is complete before we

overwrite the buffer!

• See sols/bcastnonblocking_sol.c

34

//Nonblocking broadcast

MPI_Ibcast(message, 13, MPI_CHAR, root, MPI_COMM_WORLD, &request);

//Call MPI Wait to wait for broadcast to complete

MPI_Wait (&request, &status);

if (rank == root)

{

strcpy(message, "What will happen?");

}

