
Lecture 6:
Performance Modeling/

Advanced MPI: Collective
Communication

Outline

• Performance modeling

• MPI Recap

• Advanced MPI: Collective Communication

2

Performance
Modeling

Shared Memory Performance Models

• Parallel Random Access Memory (PRAM)

• All memory access operations complete in one clock period -- no
concept of memory hierarchy ("too good to be true").

• Ignores costs of synchronization, communication

• Other assumptions

• There is no limit on the number of processors in the machine.

• Any memory location is uniformly accessible from any processor.

• There is no limit on the amount of shared memory in the system.

• Resource contention is absent.

• The programs written on these machines are, in general, of
type SIMD.

4

PRAM Complexity Measures

• for each individual processor
• time: number of instructions executed

• space: number of memory cells accessed

• PRAM machine
• time: time taken by the longest running processor

• hardware: maximum number of active processors

5

Example: Parallel Addition

• log(n) steps=time needed

• n/2 processors needed

• Speed-up = n/log(n)

• Efficiency = 2/log(n)

• Applicable for other

operations too

+, *, <, >, == etc.

6

Shared Memory Access Variations
• Different variations:

• Exclusive Read Exclusive Write (EREW) PRAM: no two processors are
allowed to read or write the same shared memory cell simultaneously

• Concurrent Read Exclusive Write (CREW): simultaneous read allowed,
but only one processor can write

• Concurrent Read Concurrent Write (CRCW)

• Concurrent writes:

• Priority CRCW: processors assigned fixed distinct priorities, highest
priority wins

• Arbitrary CRCW: one randomly chosen write wins

• Common CRCW: all processors are allowed to complete write if and
only if all the values to be written are equal

7

PRAM Model Flaws

• OK for understanding whether an algorithm has enough parallelism at all

• But often too simple to give practical guidance.

• Parallel algorithm design strategy: first do a PRAM algorithm, then
worry about memory/communication time (sometimes works)

• Some variations are more realistic

• E.g., Concurrent Read Exclusive Write (CREW) PRAM.

• Still missing the memory hierarchy

8

BSP: Bulk Synchronous Parallel

• Leslie Valiant and Bill McColl, 1990s

• Differs from PRAM in that it accounts for costs of
synchronization and communication

• Still being developed; In 2017, McColl developed a extension
that provides fault tolerance and tail tolerance for large-scale
parallel computations in AI, Analytics and HPC

9

BSP Computer

A BSP computer consists of

1. components capable of processing and/or local memory
transactions (i.e., processors),

2. a network that routes messages between pairs of such
components, and

3. a hardware facility that allows for the synchronization of all
or a subset of components.

Commonly interpreted as a set of processors which may follow
different threads of computation, with each processor equipped
with fast local memory and interconnected by a communication
network

10

BSP Computer

Computation proceeds in a series of global supersteps,
which consists of three components:

1. Concurrent computation: every participating
processor may perform local computations, i.e.,
each process can only make use of values stored in
the local fast memory of the processor. The
computations occur asynchronously of all the
others but may overlap with communication.

2. Communication: The processes exchange data
between themselves to facilitate remote data
storage capabilities.

3. Barrier synchronization: When a process reaches
this point (the barrier), it waits until all other
processes have reached the same barrier.

11

local comp

local comp

local comp

comm

comm

comm

barrier

barrier

barrier

Communication in BSP

• BSP model considers communication actions en masse

• gives an upper bound on the time taken to communicate a
set of data

• Considers all communication actions of a superstep as one
unit, and assumes all individual messages sent as part of this
unit have a fixed size.

12

Communication in BSP
• Parameters:

• h: max # of incoming or outgoing messages for any process

• g: single-word delivery time under continuous traffic conditions, defined
such that it takes time hg for a processor to deliver h messages of size
1; determined empirically for each parallel computer

• m: length of message

• w: max cost of local computation for any process

• L: cost of a barrier synchronization

Cost of a superstep:
𝑤 + ℎ𝑔 + 𝐿

Cost of algorithm (sum of S supersteps):

𝑊 +𝐻𝑔 + 𝑆𝐿 =෍

𝑠=1

𝑆

𝑤𝑠 + 𝑔෍

𝑠=1

𝑆

ℎ𝑠 + 𝑆𝐿

13

Further Reading
• Sections 1-3 of Scalable Computing, McColl:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.5671&rep=re
p1&type=pdf

• McColl, Tiskin. Memory-Efficient Matrix Multiplication in the BSP Model
https://link.springer.com/article/10.1007%2FPL00008264

14

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.5671&rep=rep1&type=pdf
https://link.springer.com/article/10.1007/PL00008264

LogP

• Culler, Karp, Patterson, 1993

• Aims at being more practical than PRAM model

• LogP machine consists of arbitrarily many processing units with distributed
memory

• Processing units connected through abstract communication medium which
allows point to point communication

• name comes from the 4 parameters: L, o, g, and P:

• L, the latency of the communication medium.

• o, the overhead of sending and receiving a message.

• g, the gap required between two send/receive operations. A more
common interpretation of this quantity is as the inverse of the
bandwidth of a processor-processor communication channel.

• P, the number of processing units. Each local operation on each
machine takes the same time ('unit time'). This time is called a
processor cycle.

15

LogP Parameters: Overhead & Latency

• Non-overlapping overhead • Send and recv overhead can
overlap

P0

P1

osend

L

orecv

P0

P1

osend

orecv

EEL = End-to-End Latency

= osend + L + orecv

EEL = f(osend, L, orecv)

 max(osend, L, orecv)

16

LogP Parameters: gap

• The Gap is the delay between
sending messages

• Gap could be greater than send
overhead
• NIC may be busy finishing the

processing of last message and cannot
accept a new one.

• Flow control or backpressure on the
network may prevent the NIC from
accepting the next message to send.

• No overlap 
time to send n messages (pipelined) =

P0

P1

osendgap

gap

(osend + L + orecv - gap) + n*gap → L+ n*gap

17

Limitations of the LogP Model

• The LogP model has a fixed cost for each message

• This is useful in showing how to quickly broadcast a single word

• Other examples also in the LogP papers

• For larger messages, there is a variation LogGP

• Two gap parameters, one for small and one for large messages

• No topology considerations (including no limits for bisection
bandwidth)

• Assumes a fully connected network

• OK for some algorithms with nearest neighbor communication,
but with “all-to-all” communication we need to refine this further

• This is a flat model, i.e., each processor is connected to the network

• Clusters of multicores are not accurately modeled

18

Latency and Bandwidth Model

• Time to send message of length n is roughly

• Topology is assumed irrelevant.

• Often called “a-b model” and written

• Usually a >> b >> time per flop.

• One big message is cheaper than many small ones.

• Can do hundreds or thousands of flops for cost of one message.

• Lesson: Need large computation-to-communication ratio to be efficient.

• [Chan, Heimlich, Purkayastha, van de Geijn, 2007].

Time = latency + n*cost_per_word
= latency+ n/bandwidth

Time = α + n*𝛽

α + n*𝛽 << n*(α + 1* 𝛽)

19

The 𝛼 − 𝛽 − 𝛾 model
• Let 𝛾 be the cost of a floating point operation (seconds per flop)

• Let 𝛼 be the latency cost of a message (seconds)

• Let 𝛽 be the inverse bandwidth cost (seconds/word)

• The cost (in seconds) of a computation that performs F flops and sends S
messages consisting of W words (along the critical path) is

𝛾𝐹 + 𝛼𝑆 + 𝛽𝑊

• If we can overlap computation and communication,

max(𝛾𝐹, 𝛼𝑆 + 𝛽𝑊)

• Note: you can have model of sequential/shared memory computation
(where 𝛼, 𝛽 correspond to the cost of moving data throughout memory
hierarchy) and also model of distributed computation (where 𝛼, 𝛽
correspond to cost of moving data over the interconnect network)
• Models can be composed!

20

Advanced MPI

• All communication, synchronization require subroutine calls

• No shared variables

• Program runs on a single processor just like any uniprocessor program,
except for calls to message passing library

• Subroutines for

• Communication

• Pairwise or point-to-point: Send and Receive

• Collectives all processor get together to

• Move data: Broadcast, Scatter/gather

• Compute and move: sum, product, max, prefix sum, … of data on
many processors

• Synchronization

• Barrier

• No locks because there are no shared variables to protect

• Enquiries

• How many processes? Which one am I? Any messages waiting?

Review: Message Passing Libraries

22

Review: MPI Concepts
• Communicator

• Communicator objects connect groups of processes in the MPI session.

• Each communicator gives each contained process an independent
identifier and arranges its contained processes in an ordered topology

• Default: MPI_COMM_WORLD

• Point-to-point communication

• Sends and receives between individual processes

• Both blocking and nonblocking types

23

Another Approach to Parallelism

• Collective routines provide a higher-level way to organize a parallel
program

• Each process executes the same communication operations

• MPI provides a rich set of collective operations…

• Also non-blocking collective operations.

24

Collective Data Movement

A

B

D

C

B C D

A

A

A

A

Broadcast

Scatter

Gather

A

A

P0

P1

P2

P3

P0

P1

P2

P3

25

Practical Comment on Broadcast, other Collectives

• All collective operations must be called by all processes in the
communicator

• MPI_Bcast is called by both the sender (called the root process) and
the processes that are to receive the broadcast
• “root” argument is the rank of the sender; this tells MPI which

process originates the broadcast and which receive

• Will get experience with this in today's lab

26

More Collective Data Movement

A

B

D

C

A0 B0 C0 D0

A1 B1 C1 D1

A3 B3 C3 D3

A2 B2 C2 D2

A0A1A2A3

B0 B1 B2 B3

D0D1D2D3

C0 C1 C2 C3

A B C D

A B C D

A B C D

A B C D

Allgather

Alltoall

P0

P1

P2

P3

P0

P1

P2

P3

27

Collective Computation

P0

P1

P2

P3

P0

P1

P2

P3

A
B

D
C

A
B

D
C

ABCD

A
AB

ABC
ABCD

Reduce

Scan

P0

P1

P2

P3

A
B

D
C

A
AB

ABC

Exscan

28

MPI Built-in Collective Computation Operations

• MPI_MAX

• MPI_MIN

• MPI_PROD

• MPI_SUM

• MPI_LAND

• MPI_LOR

• MPI_LXOR

• MPI_BAND

• MPI_BOR

• MPI_BXOR

• MPI_MAXLOC

• MPI_MINLOC

Maximum

Minimum

Product

Sum

Logical and

Logical or

Logical exclusive or

Binary and

Binary or

Binary exclusive or

Maximum and location

Minimum and location

29

Lower Bounds

• Using “a-b-𝛾 model”, we can give lower bounds on the cost of collectives
• Assume one MPI process per node
• Latency

• lower bound on latency is derived by the simple observation that
for all collective communications at least one node has data that
must somehow arrive at all other nodes.

• Under the model, at each step, we can at most double the number
of nodes that get the data

• Computation
• Only some collectives require computation

• Bandwidth

• Let 𝑥 be a vector of length 𝑛

• For some operations, 𝑥 is divided into subvectors 𝑥𝑖 , 𝑖 = 0, … , 𝑝 − 1 where
𝑝 is number of nodes

• Superscript indicates vector that must be reduced with other vectors from
other nodes

30

Lower bounds for simple send/recv

• Number of messages: 1

• Number of words moved: n

• Flops: 0

Lower bound on cost:
𝛼 + 𝛽𝑛

31

Before After

Node 0 Node 1

x

Node 0 Node 1

x

Scatter

Before After

32

Node 0 Node 1 Node 2 Node 3

𝑥0
𝑥1
𝑥2
𝑥3

Node 0 Node 1 Node 2 Node 3

𝑥0
𝑥1

𝑥2
𝑥3

• Can be done in tree-like manner
• Number of messages = log2 𝑝

• Words moved =
𝑝−1 𝑛

𝑝
(doesn't need to send to itself)

• flops:0

Lower bound on cost:

𝛼 log2 𝑝 + 𝛽
𝑝 − 1 𝑛

𝑝

Gather

• Again, done in tree-like manner
• Number of messages = log2 𝑝

• Words moved =
𝑝−1 𝑛

𝑝
(doesn't need to receive from itself)

• flops:0

• Lower bound on cost:

𝛼 log2 𝑝 + 𝛽
𝑝 − 1 𝑛

𝑝

33

Before After

Node 0 Node 1 Node 2 Node 3

𝑥0
𝑥1
𝑥2
𝑥3

Node 0 Node 1 Node 2 Node 3

𝑥0
𝑥1

𝑥2
𝑥3

Allgather

34

Before After

Node 0 Node 1 Node 2 Node 3

𝑥0
𝑥1
𝑥2
𝑥3

𝑥0
𝑥1
𝑥2
𝑥3

𝑥0
𝑥1
𝑥2
𝑥3

𝑥0
𝑥1
𝑥2
𝑥3

Node 0 Node 1 Node 2 Node 3

𝑥0
𝑥1

𝑥2
𝑥3

• Butterfly communication scheme

• Number of messages = log2 𝑝

• Words moved =
𝑝−1 𝑛

𝑝
(doesn't need to receive from itself)

• flops:0

• Lower bound on cost:

𝛼 log2 𝑝 + 𝛽
𝑝 − 1 𝑛

𝑝

Broadcast

Before After

35

Node 0 Node 1 Node 2 Node 3

x

Node 0 Node 1 Node 2 Node 3

x x x x

• Scatter + Allgather
• flops = 0

Lower bound on cost:

2𝛼 log2 𝑝 + 2𝛽
𝑝−1

𝑝
𝑛

Reduce-Scatter

36

Before After

Node 0 Node 1 Node 2 Node 3

෍

𝑗

𝑥0
(𝑗)

෍

𝑗

𝑥1
(𝑗)

෍

𝑗

𝑥2
(𝑗)

෍

𝑗

𝑥3
(𝑗)

Node 0 Node 1 Node 2 Node 3

𝑥0
(0)

𝑥1
(0)

𝑥2
(0)

𝑥3
(0)

𝑥0
(1)

𝑥1
(1)

𝑥2
(1)

𝑥3
(1)

𝑥0
(2)

𝑥1
(2)

𝑥2
(2)

𝑥3
(2)

𝑥0
(3)

𝑥1
(3)

𝑥2
(3)

𝑥3
(3)

• Number of messages = log2 𝑝

• Words moved =
𝑝−1 𝑛

𝑝
(doesn't need to receive from itself)

• flops:
𝑝−1 𝑛

𝑝

• Lower bound on cost:

𝛼 log2 𝑝 + 𝛽
𝑝 − 1 𝑛

𝑝
+ 𝛾

𝑝 − 1 𝑛

𝑝

Reduce

Before After

37

Node 0 Node 1 Node 2 Node 3

𝑥(0) 𝑥(1) 𝑥(2) 𝑥(3)

Node 0 Node 1 Node 2 Node 3

෍

𝑗

𝑥(𝑗)

• Reduce-scatter + gather

Lower bound on cost:

2𝛼 log2 𝑝 + 2𝛽
𝑝 − 1 𝑛

𝑝
+ 𝛾

𝑝 − 1 𝑛

𝑝

Allreduce

Before After

38

Node 0 Node 1 Node 2 Node 3

𝑥(0) 𝑥(1) 𝑥(2) 𝑥(3)

Node 0 Node 1 Node 2 Node 3

෍

𝑗

𝑥(𝑗) ෍

𝑗

𝑥(𝑗) ෍

𝑗

𝑥(𝑗) ෍

𝑗

𝑥(𝑗)

• Reduce-scatter + Allgather

Lower bound on cost:

2𝛼 log2 𝑝 + 2𝛽
𝑝 − 1 𝑛

𝑝
+ 𝛾

𝑝 − 1 𝑛

𝑝

Special Variants of Collectives
• The basic routines send the same amount of data from each process

• E.g., MPI_Scatter(&v,1,MPI_INT,…) sends 1 int to each process

• What if you want to send a different number of items to each process?

• Use MPI_Scatterv

• The “v” (for vector) routines allow the programmer to specify a
different number of elements for each destination (one to all routines)
or source (all to one routines).

• Efficient algorithms exist for these cases, though not as fast as the
simpler, basic routines

• In one case (MPI_Alltoallw), there are two "vector" routines, to allow
more general specification of MPI datatypes for each source

• Alltoallw : allows different data types

39

Determinism in Collective Computations

• In exact arithmetic, you always get the same results

• but roundoff error, truncation can happen

• MPI does not require that the same input gives the same output every time

• Implementations are encouraged but not required to provide exactly the
same output given the same input

• Round-off error may cause slight differences

• Allreduce does guarantee that the same value is received by all processes
for each call

• Why didn’t MPI mandate determinism?

• Not all applications need it

• Would be sacrificing performance!

40

Nonblocking Collectives
• Introduced in MPI-3 for all collectives

• e.g., MPI_Ibcast()

• As in point-to-point case, all calls return immediately

• All return an "MPI_Request" - handle on a nonblocking operation

• used by MPI_Wait or MPI_Test to know when non-blocking
operation completes

• Can give performance benefit (not necessarily)

• Application must be able to do enough work between when collective
begins and when collective must be completed to offset additional
overhead of Wait() or Test()

• Larger message size = requires more computation to offset costs

41

MPI Topologies
• A communicator describes a group of processes, but the structure of your

computation may not be such that every process will communicate with
every other process.

• Ex: in a computation that is mathematically defined on a Cartesian 2D
grid, the processes themselves act as if they are two-dimensionally ordered
and communicate with N/S/E/W neighbors.

• If MPI had this knowledge about your application, could conceivably
optimize for it

• e.g., by renumbering the ranks so that communicating processes are
closer together physically in your cluster.

• Mechanism to declare this structure of a computation to MPI is known as
a virtual topology

42

MPI Topologies
• Defined types of topologies:

• MPI_UNDEFINED

• holds for communicators where no topology has been explicitly
specified

• MPI_CART

• Cartesian topology

• MPI_DIST_GRAPH

• general graph topology

43

Cartesian Topology
• A Cartesian topology is a mesh

• neighborhood communication simply involves the nearest neighbors in all
directions

• Two processes are in the same neighborhood if all coordinates are the same
except for possibly one coordinate, and that coordinate must be no more
than one in difference between the two processes

44

The routine MPI_Cart_create creates a Cartesian decomposition of the
processes, with the number of dimensions given by the ndim argument.

int MPI_Cart_create(MPI_Comm comm_old, int ndims, int *dims, int

*periods, int reorder, MPI_Comm *comm_cart)

Cartesian Topology

45

Reorder argument

• The reorder parameter to MPI_Cart_create indicates whether processes can have a
rank in the new communicator that is different from in the old one.

• In many parallel computer interconnects, some processors are closer to than others.
These routines allow the MPI implementation to provide an ordering of processes in
a topology that makes logical neighbors close in the physical interconnect.

• The reorder argument is used to request the best ordering.

46

Periods argument

int* periods is an array that, for each dimension, holds 0 if
nonperiodic, 1 if periodic

• Periodic

• Nonperiodic

• indicated by a rank of MPI_PROC_NULL.

• This rank may be used in send and receive calls in MPI.
The action in both cases is as if the call was not made.

47

Cartesian Topology
• Each point in this new communicator has a coordinate and a rank. They

can be queried with MPI_Cart_coords and MPI_Cart_rank respectively.

int MPI_Cart_coords(MPI_Comm comm, int rank, int maxdims,int

*coords);

int MPI_Cart_rank(MPI_Comm comm, init *coords, int *rank);

• Note that these routines can give the coordinates for any rank, not just for
the current process.

48

Distributed Graph Topology

• In many calculations on a grid (using
the term in its mathematical, FEM,
sense), a grid point will collect
information from grid points around it.

• Under a sensible distribution of the grid
over processes, this means that each
process will collect information from a
number of neighbor processes

• number of neighbors is dependent on
the process.

• e.g., in a 2D grid (assuming a five-
point stencil) most processes
communicate with four neighbors;
processes on the edge with three,
and processes in the corners with
two.

49

Illustration of a distributed graph topology where each node has
four neighbors
http://pages.tacc.utexas.edu/~eijkhout/pcse/html/mpi-topo.html

Distributed Graph Topology
• Two creation routines for process graphs

• MPI_Dist_graph_create_adjacent

• assumes that process knows both who it is sending to and who will
send to it

• MPI_Dist_graph_create

• specify on each process only who the process will be sending to

50

Neighborhood Collectives
• MPI offers "neighborhood collectives", i.e., collectives defined only on

neighboring processes as defined by dist graph structure

• eg: MPI_Neighbor_allgather

int MPI_Neighbor_allgather (const void *sendbuf, int sendcount,

MPI_Datatype sendtype, void *recvbuf,

int recvcount, MPI_Datatype recvtype,

MPI_Comm comm)

• Neighbor collectives have the same argument list as the regular collectives,
but they apply to a graph communicator

• Others: MPI_Neighbor_alltoall, MPI_Neighbor_allgatherv,
MPI_Neighbor_alltoallv, MPI_Neighbor_alltoallw

• Also called "sparse collectives"

51

Example: SUMMA Algorithm

• SUMMA = Scalable Universal Matrix Multiply

• Slightly less efficient than Cannon
… but simpler and easier to generalize

• Presentation from van de Geijn and Watts

• www.netlib.org/lapack/lawns/lawn96.ps

• Similar ideas appeared many times

• Used in practice in PBLAS = Parallel BLAS

• www.netlib.org/lapack/lawns/lawn100.ps

52

SUMMA

* =
I

J

A(I,k)

k

k

B(k,J)

• I, J represent all rows, columns owned by a processor
• k is a single row or column

• or a block of b rows or columns

• C(I,J) = C(I,J) + A(I,k)*B(k,J)

• Assume a pr by pc processor grid (pr = pc = 4 above)
• Need not be square

C(I,J)

53

MPI_Comm_split

int MPI_Comm_split(MPI_Comm comm,

int color,

int key,

MPI_Comm *newcomm)

MPI’s internal Algorithm:

1. Use MPI_Allgather to get the color and key from each process

2. Count the number of processes with the same color; create a

communicator with that many processes. If this process has

MPI_UNDEFINED as the color, create a process with a single

member.

3. Use key to order the ranks

Color: controls assignment to new communicator
Key: controls rank assignment within new communicator

54

SUMMA

For k=0 to n-1 … or n/b-1 where b is the block size

… = # cols in A(I,k) and # rows in B(k,J)

for all I = 1 to pr … in parallel

owner of A(I,k) broadcasts it to whole processor row

for all J = 1 to pc … in parallel

owner of B(k,J) broadcasts it to whole processor column

Receive A(I,k) into Acol

Receive B(k,J) into Brow

C(myproc , myproc) = C(myproc , myproc) + Acol * Brow

* =
I

J

A(I,k)

k

k

B(k,J)

C(I,J)

55

(naïve) SUMMA in MPI

void SUMMA(double *mA, double *mB, double *mC, int p_c)

{

int row_color = rank / p_c; // p_c = sqrt(p) for simplicity

MPI_Comm row_comm;

MPI_Comm_split(MPI_COMM_WORLD, row_color, rank, &row_comm);

int col_color = rank % p_c;

MPI_Comm col_comm;

MPI_Comm_split(MPI_COMM_WORLD, col_color, rank, &col_comm);

for (int k = 0; k < p; ++k) {

if (col_color == k) memcpy(Atemp, mA, size);

if (row_color == k) memcpy(Btemp, mB, size);

MPI_Bcast(Atemp, size, MPI_DOUBLE, k, row_comm);

MPI_Bcast(Btemp, size, MPI_DOUBLE, k, col_comm);

SimpleDGEMM(Atemp, Btemp, mC, N/p, N/p, N/p);

}

}

56

Reading for Today
• PRAM paper

• BSP paper

• LogP paper

• Collective communication: theory, practice, and experience (abg model)

• All the above located in today's folder on Moodle

57

