
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2007; 19:1749–1783
Published online 5 July 2007 inWiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe.1206

Collective communication:
theory, practice, and
experience

Ernie Chan1,∗,†, Marcel Heimlich1, Avi Purkayastha2

and Robert van de Geijn1

1Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712,U.S.A.
2Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX 78712,U.S.A.

SUMMARY

We discuss the design and high-performance implementation of collective communications operations on
distributed-memory computer architectures. Using a combination of known techniques (many of which
were first proposed in the 1980s and early 1990s) along with careful exploitation of communication
modes supported by MPI, we have developed implementations that have improved performance in most
situations compared to those currently supported by public domain implementations of MPI such as
MPICH. Performance results from a large Intel Xeon/Pentium 4 (R) processor cluster are included.
Copyright © 2007 John Wiley & Sons, Ltd.

Received 14 September 2006; Revised 24 January 2007; Accepted 10 March 2007

KEY WORDS: collective communication; distributed-memory architecture; clusters

1. INTRODUCTION

This paper makes a number of contributions to the topic of collective communication:

1. A review of best practices: Collective communication was an active research in the 1980s and
early 1990s as distributed-memory architectures with large numbers of processors were first
introduced [1–7]. Since then an occasional paper has been published [8–16], but no dramatic
new developments have been reported.

∗Correspondence to: Ernie Chan, Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712,
U.S.A.

†E-mail: echan@cs.utexas.edu

Contract/grant sponsor: National Science Foundation; contract/grant number: CCF-0540926

Copyright q 2007 John Wiley & Sons, Ltd.

1750 E. CHAN ET AL.

2. Focus on simplicity: Historically, hypercube topologies were the first topologies used for
distributed-memory architectures. Examples include Caltech’s Cosmic Cube [17], the Intel
iPSC, NCUBE [18], and Thinking Machines’ Connection Machine architectures. As a result,
highly efficient algorithms for hypercubes were developed first, and these algorithms were
then modified to target architectures with alternative topologies. Similarly, textbooks often
start their discussion of collective communication by considering hypercubes.
In our exposition, we take a different approach by considering one-dimensional topologies
first. Algorithms that perform well are then generalized to multidimensional meshes.
Hypercubes are finally discussed briefly by observing that they are log(p) dimensional
meshes with two (computational) nodes in each dimension. This fact allows us to focus
on simple, effective solutions that naturally generalize to higher dimensions and ultimately
hypercubes.

3. Algorithms: One consequence of Item 2 is that we can state the algorithms more simply and
concisely. Minimum-spanning tree algorithms on hypercubes typically required loop-based
algorithms that computed indices of destination nodes by ‘toggling’ bits of the indices of
source nodes. We instead present the algorithms recursively and avoid such obscuring by
restricting bit manipulation.

4. Analysis: The cost of algorithms is analyzed via a simple but effective model of parallel
computation.

5. Tunable libraries: More recently, the topic of tuning, preferably automatically, of collective
communication libraries has again become fashionable [19]. Unfortunately, many of these
papers focus on the mechanism for choosing algorithms from a loose collection of algorithms.
Often this collection does not even include the fastest and/or most practical algorithm. Per-
haps the most important contribution of this paper is that it shows how algorithms for a given
operation can be organized as a parameterized family, which then clearly defines what param-
eters can be tuned to improve performance. This approach was already incorporated into the
highly tuned InterCom library for the Intel Touchstone Delta and Paragon architectures of the
early and mid-1990s [20–22]. However, many details of the theory and practical techniques
used to build that library were never published.

6. Implementation: The merits of the approach are verified via a MPI-compatible implementation
of all the presented algorithms [23]. Experiments show that the resulting implementation is
comparable and sometimes better than the MPICH implementation of the Message-Passing
Interface (MPI) [24–26].

There is an entire class of algorithms that we do not treat: pipelined algorithms [2,3,27]. The reason
is that we do not consider these practical on current generation architectures.
The remainder of the paper is organized as follows. In Section 2, we explain some basic as-

sumptions that are made for the purpose of presenting this paper. In Section 3, we discuss the
communication operations. Section 4 delineates the lower bounds of the collective communication
operations followed by a discussion of network topologies in Section 5. In Section 6, we discuss
different algorithms for varying data lengths. In Section 7, we discuss strategies for the special cases
where short and long vectors of data are communicated. More sophisticated hybrid algorithms that
combine techniques for all vector lengths are discussed in Section 8. Performance results are given
in Section 9. Concluding remarks can be found in Section 10.

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:1749–1783
DOI: 10.1002/cpe

COLLECTIVE COMMUNICATION: THEORY, PRACTICE, AND EXPERIENCE 1751

2. MODEL OF PARALLEL COMPUTATION

To analyze the cost of the presented algorithms, it is useful to assume a simple model of parallel
computation. These assumptions are:

• Target architectures: Currently, the target architectures are distributed-memory parallel archi-
tectures. However, we expect that the methods discussed in this paper also have applicability
when many cores on a single processor become available.

• Indexing: This paper assumes a parallel architecture with p computational nodes (nodes here-
after). The nodes are indexed from 0 to p − 1. Each node could consist of a Symmetric
Multi-Processor (SMP) but for communication purposes will be treated as one unit.

• Logically fully connected: We will assume that any node can send directly to any other node
through a communication network where some topology provides automatic routing.

• Communicating between nodes: At any given time, a single node can send only one message
to one other node. Similarly, it can only receive one message from one other node. We will
assume a node can send and receive simultaneously.

• Cost of communication: The cost of sending a message between two nodes will be modeled by
� + n�, in the absence of network conflicts. Here � and �, respectively, represent the message
startup time and per data item transmission time.
In our model, the cost of the message is not a function of the distance between two nodes. The
start-up cost is largely due to software overhead on the sending and the receiving nodes. The
routing of messages between nodes is subsequently done in hardware using wormhole routing,
which pipelines messages and incurs a very small extra overhead due to the distance between
two nodes [17]. Typically, � is four to five orders of magnitude greater than � where � is on
the order of the cost of an instruction.

• Network conflicts: Assuming that the path between two communicating nodes, determined by
the topology and the routing algorithm, is completely occupied, then if some link (connection
between neighboring nodes) in the communication path is occupied by two or more messages,
a network conflict occurs. This extra cost is modeled with �+kn�where k is the maximum over
all links (along the path of the message) of the number of conflicts on the links. Alternatively,
links on which there is a conflict may be multiplexed, which yields the same modification to
the cost.

• Bidirectional channels: We will assume that messages traveling in opposite directions on a
link do not conflict.

• Cost of computation: The cost required to perform an arithmetic operation (e.g. a reduction
operation) is denoted by �.

Although simple, the above assumptions are useful when conducting an analysis of communication
costs on actual architectures.
Some additional discussion is necessary regarding parameters � and �:

• Communication protocols: The most generic communication uses the so-called three-pass
protocol. A message is sent to alert the receiving node that a message of a given size will be
sent. After the buffer space for the message has been allocated, the receiving node responds.

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:1749–1783
DOI: 10.1002/cpe

1752 E. CHAN ET AL.

Finally, the message itself is sent. Note that this requires three control messages to be sent
between the sending and receiving nodes. We will denote the latency associated with this
protocol by �3.
If the sender can rely on the fact that a receive buffer already exists, a one-pass protocol can
be used, in which the message is simply sent without the above-described handshake. We will
denote the latency associated with this protocol by �1. In particular, we will assume that there
is always static buffer space for very short messages.
The three-pass protocol can easily cost up to three times more than the one-pass protocol.
Thus, in our discussion we will assume that �3 = 3�1.

• Relative order of send and receive calls: The cost per item sent is affected by the relative
order in which a send and corresponding receive are posted. If a send is initiated before the
corresponding receive is posted on the receiving node, the incoming message is buffered in
temporary space and copied when the receive, which indicates where the message is to be
finally stored, is posted. If, on the other hand, the receive is posted before the send, or the send
blocks until the receive is posted, no such extra copy is required. We will denote the cost per
item transferred by �1 if no extra copy is required and by �2 if it is.

3. COLLECTIVE COMMUNICATION

When the nodes of a distributed-memory architecture collaborate to solve a given problem, in-
herently computation previously performed on a single node is now distributed among the nodes.
Communication is performed when data are shared and/or contributions from different nodes must
be consolidated. Communication operations that simultaneously involve a group of nodes are called
collective communication operations. In our discussions, we will assume that the group includes
all nodes.
The most typically encountered collective communications, discussed in this section, fall into

two categories:

• Data redistribution operations: Broadcast, scatter, gather, and allgather. These operations move
data between processors.

• Data consolidation operations: Reduce(-to-one), reduce–scatter, and allreduce. These
operations consolidate contributions from different processors by applying a reduction
operation. We will only consider reduction operations that are both commutative and
associative.

The operations discussed in this paper are illustrated in Figure 1. In that figure, x indicates a
vector of data of length n. For some operations, x is subdivided into subvectors xi , i = 0, . . . ,
p−1, where p equals the number of nodes. A superscript is used to indicate a vector that must
be reduced with other vectors from other nodes.

∑
j x

(j) indicates the result of that reduction.
The summation sign is used because summation is the most commonly encountered reduction
operation.
We present these collective communications as pairs of dual operation. We will show later

that an implementation of an operation can be transformed into that of its dual by reversing the
communication (and adding to or deleting reduction operations from the implementation). These

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:1749–1783
DOI: 10.1002/cpe

COLLECTIVE COMMUNICATION: THEORY, PRACTICE, AND EXPERIENCE 1753

∑ ∑∑∑

∑
∑

∑
∑

∑

Figure 1. Collective communications considered in this paper.

dual pairs are indicated by the groupings in Figure 1 (separated by the thick lines): broadcast and
reduce(-to-one), scatter and gather, and allgather and reduce–scatter. Allreduce is the only operation
that does not have a dual (or it can be viewed as its own dual).

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:1749–1783
DOI: 10.1002/cpe

1754 E. CHAN ET AL.

4. LOWER BOUNDS

It is useful to present lower bounds on the cost of these operations under our model regardless
of the implementation. In this section, we give informal arguments to derive these lower bounds.
We will treat three terms of communication cost separately: latency, bandwidth, and computation.
Lower bounds are summarized in Table I. It is assumed that p>1 and that subvectors xi and x (j)

i
have equal length.
Latency: The lower bound on latency is derived by the simple observation that for all collective

communications at least one node has data that must somehow arrive at all other nodes. Under our
model, at each step, we can at most double the number of nodes that get the
data.
Computation: Only the reduction communications require computation. The computation in-

volved would require (p − 1)n operations if executed on a single node or time (p − 1)n�. Dis-
tributing this computation perfectly among the nodes reduces the time to ((p − 1)/p)n� under ideal
circumstances. Hence the lower bound.
Bandwidth: For broadcast and reduce(-to-one), the root node must either send or receive n

items. The cost of this is bounded below by n�. For the gather and scatter, the root node must
either send or receive ((p − 1)/p)n items, with a cost of at least ((p − 1)/p)n�. The same
is the case for all nodes during the allgather and reduce–scatter. The allreduce is somewhat
more complicated. If the lower bound on computation is to be achieved, one can argue that
((p − 1)/p)n items must leave each node, and ((p − 1)/p)n items must be received by each node
after the computation is completed for a total cost of at least 2((p − 1)/p)n�. For further details
see [21].

Table I. Lower bounds for the different components of communication cost.

Communication Latency Bandwidth Computation

Broadcast �log2(p)�� n� —

Reduce(-to-one) �log2(p)�� n�
p − 1

p
n�

Scatter �log2(p)��
p − 1

p
n� —

Gather �log2(p)��
p − 1

p
n� —

Allgather �log2(p)��
p − 1

p
n� —

Reduce-scatter �log2(p)��
p − 1

p
n�

p − 1

p
n�

Allreduce �log2(p)�� 2
p − 1

p
n�

p − 1

p
n�

Note: Pay particular attention to the conditions for the lower bounds given in
the text.

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:1749–1783
DOI: 10.1002/cpe

COLLECTIVE COMMUNICATION: THEORY, PRACTICE, AND EXPERIENCE 1755

5. TOPOLOGIES

In this section, we discuss a few topologies. The topology with least connectivity is the linear array.
A fully connected network is on the other end of the spectrum. In between, we consider higher
dimensional mesh topologies. Hypercubes, which have historical and theoretical value, are shown
to be mesh architectures of dimension log(p) with two nodes in each dimension. Many current
architectures have multiple levels of switches that route messages between subnetworks that are
typically fully connected.
Linear arrays: We will assume that the nodes of a linear array are connected so that node i has

neighbors i − 1 (left) and i + 1 (right), 1�i<p − 1. Nodes 0 and p − 1 do not have left and right
neighbors, respectively.
A ring architecture would connect node 0 with p − 1. However, the communication that a ring

facilitates is important to us (e.g. simultaneous sending by all nodes to their right neighbor), yet
this communication can be achieved on a linear array because the message from node p − 1 to
node 0 does not conflict with any of the other messages under our model.
Mesh architectures: The nodes of a mesh architecture of dimension D can be indexed us-

ing a D-tuple, (i0, . . . , iD−1), with 0�i j<d j and p= d0 × · · · × dD−1. The nodes indexed by
(i0, . . . , i j−1, k, i j+1, . . . , iD−1), 0�k<d j , form a linear array.
A torus architecture is the natural extension of a ring to multiple dimensions. We will not need

tori for our discussion for the same reason that we do not need rings.
Hypercubes: In Figure 2 we show how a hypercube can be inductively constructed:

• A hypercube of dimension 0 consists of a single node. No bits are required to index this one
node.

• A hypercube of dimension d is constructed from two hypercubes of dimension d − 1 by
connecting nodes with corresponding index, and adding a leading binary bit to the index of
each node. For all nodes in one of the two hypercubes this leading bit is set to 0 while it is set
to 1 for the nodes in the other hypercube.

Some observations are:

• Two nodes are neighbors if and only if the binary representation of their indices differ in
exactly one bit.

• View the nodes of a hypercube as a linear array with nodes indexed 0, . . . , p − 1. Then,

◦ the subsets of nodes {0, . . . , p/2 − 1} and {p/2, . . . , p − 1} each form a hypercube; and
◦ node i of the left subset is a neighbor of node i + p/2 in the right subset.

This observation applies recursively to the two subsets.

A hypercube is a mesh of dimension log(p) with two nodes in each dimension.
Fully connected architectures: In a fully connected architecture, all nodes are neighbors of all

other nodes. We will see in the remainder of this paper that the primary advantage of a fully
connected architecture is that one can view such architectures as higher dimensional meshes by
factoring the number of nodes, p, into integer factors.

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:1749–1783
DOI: 10.1002/cpe

1756 E. CHAN ET AL.

Figure 2. Construction of hypercubes.

6. COMMONLY USED ALGORITHMS

Depending on the amount of data involved in a collective communication, the strategy for reducing
the cost of the operation differs. When the amount of data is small it is the cost of initiating
messages, �, that tends to dominate, and algorithms should strive to reduce this cost. In other
words, it is the lower bound on the latency in Table I that becomes the dominating factor. When
the amount of data is large it is the costs per item sent and/or computed, � and/or �, that become
the dominating factors. In this case, the lower bounds due to bandwidth and computation in Table I
are the dominating factors.

6.1. Broadcast and reduce

6.1.1. Minimum-spanning tree algorithms

The best-known broadcast algorithm is the minimum-spanning tree algorithm (MST BCAST). On
an arbitrary number of nodes, this algorithm can be described as follows. The nodes {0, . . . , p−1}

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:1749–1783
DOI: 10.1002/cpe

COLLECTIVE COMMUNICATION: THEORY, PRACTICE, AND EXPERIENCE 1757

(a) (b)

(c) (d)

/

//

/

Figure 3. Minimum-spanning tree algorithms.

are partitioned into two (almost equal) disjoint subsets, {0, . . . ,m} and {m + 1, . . . , p − 1}, where
m =�p/2� is the ‘middle’ node. A destination node is chosen in the subset that does not contain the
root. The message is sent from the root to the destination after which the root and the destination
become the roots for broadcasts within their respective subsets of nodes. This algorithm is given
in Figure 3(a). In this algorithm, x is the vector data to be communicated, me and root indicate
the index of the node that participates and the current root of the broadcast, and left and right

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:1749–1783
DOI: 10.1002/cpe

1758 E. CHAN ET AL.

Figure 4. Minimum-spanning tree algorithm for broadcast.

indicate the indices of the left- and right-most nodes in the current subset of nodes. The broadcast
among all nodes is then accomplished by calling MSTBCAST(x, root, 0, p − 1). The algorithm
is illustrated in Figure 4.
It is not hard to see that, in the absence of network conflicts, the cost of this algorithm is

TMSTBCAST(p, n) =�log(p)�(�3 + n�1)

in the generic case when the SEND and RECV routines use a three-pass protocol. This cost achieves
the lower bound for the latency component of the cost of communication.
Under our model, the algorithm does not incur network conflicts on fully connected networks

and on linear arrays, regardless of how the destination is chosen at each step. (The choice of dest
in Figure 3(a) is simply convenient.) On a hypercube, the destination needs to be chosen to be a
neighbor of the current root. This change requires the algorithm in Figure 3(a) to be modified by
choosing dest as

if root�mid
dest = root− left+ (mid+ 1)

else
dest = root+ left− (mid+ 1)

in other words, choose the node in the subset that does not contain the current root that is in the
same relative position as the root.
TheMST REDUCE can be implemented by reversing the communication and applying a reduction

operation with the data that is received. Again, the nodes {0, . . . , p − 1} are partitioned into two
(almost equal) disjoint subsets, {0, . . . ,m} and {m + 1, . . . , p − 1}. This time a source node is
chosen in the subset that does not contain the root. Recursively, all contributions within each subset
are reduced to the root and to the source node. Finally, the reduced result is sent from the source
node to the root where it is reduced with the data that is already at the root node. This algorithm
is given in Figure 3(b) and illustrated in Figure 5.
Comparing the algorithms in Figure 3(a) and (b), we note that the partitioning into subsets of

nodes is identical. For the broadcast, the message is sent by the root after which the broadcast

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:1749–1783
DOI: 10.1002/cpe

COLLECTIVE COMMUNICATION: THEORY, PRACTICE, AND EXPERIENCE 1759

Figure 5. Minimum-spanning tree algorithm for reduce. Notation:

x(j0: j1)
i = ∑

j x
(j)
i where j ∈ { j0, j0+1, . . . , j1}.

proceeds recursively in each subset of nodes. For the reduce, the recursion comes first after which
a message is sent to the root where the data are reduced with the data at the root. In effect, the
communication is reversed in order and direction.
The cost of this algorithm, identical to that of the broadcast except that now a � term must be

added for the reduction at each step, is given by

TMSTREDUCE(p, n) =�log(p)�(�3 + n�1 + n�)

Both algorithms achieve the lower bound of �log(p)�� for the latency component of the cost.

6.2. Scatter and gather

A scatter can be implemented much like MST BCAST, except that at each step of the recursion
only the data that ultimately must reside in the subnetwork, at which the destination is a member,
need to be sent from the root to the destination. The resulting algorithm is given in Figure 3(c) and
is illustrated in Figure 6. The MST GATHER is similarly obtained by reversing the communications
in the MST SCATTER, as given in Figure 3(d).
Under the assumption that all subvectors are of equal length, the cost of these algorithms is

given by

TMSTSCATTER(p, n) = TMSTGATHER(p, n) =
�log(p)�∑
k=1

(�3 + 2−kn�1) =�log(p)��3 + p − 1

p
n�1

This cost achieves the lower bound for the latency and bandwidth components. Under the stated
assumptions, these algorithms are optimal.

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:1749–1783
DOI: 10.1002/cpe

1760 E. CHAN ET AL.

Figure 6. Minimum-spanning tree algorithm for scatter.

6.3. Allgather and reduce–scatter

6.3.1. Bidirectional exchange algorithms

The best known algorithm for allgather assumes that p= 2d for some integer d and use so-called
bidirectional exchanges (BDE), which can be described as follows. Partition the network in two
halves. Recursively perform an allgather of all the data in the respective halves. Next, exchange the
so-gathered data between disjoint pairs of nodes where each pair consists of one node from each
of the two halves. Generally, node i (i<p/2) is paired with node i + p/2, which are neighbors
if the network is a hypercube. This algorithm, called recursive doubling, is given in Figure 7(a)
and illustrated in Figure 8. In the absence of network conflicts (on a hypercube or fully connected
architecture) and assuming all subvectors are of equal length, the cost is

TBDEALLGATHER(p, n) =
log(p)∑
k=1

(�3 + 2−kn�1) = log(p)�3 + p − 1

p
n�1

This cost attains the lower bound for both the latency and bandwidth components and is thus optimal
under these assumptions.
Problems arise with BDE algorithms when the number of nodes is not a power of two. If

the subnetwork of nodes contains an odd number of nodes, one “odd” node does not contain a
corresponding node in the other subnetwork. In one remedy for this situation, one node from the
opposing subnetwork must send its data to the odd node. Unfortunately, this solution requires that
one node must send data twice at each step, so the cost of BDE algorithms doubles when not using
a power of two number of nodes. In practice, BDE algorithms still perform quite well because the
node needing to send data twice is different at each step of recursion, so the communication can
be overlapped between steps. Nonetheless, the result is rather haphazard.
Reduce–scatter can again be implemented by reversing the communications and their order and

by adding reduction operations when the data arrive. This algorithm, called recursive halving, is
given in Figure 7(b) and illustrated in Figure 9. Again assuming all subvectors are of equal length,

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:1749–1783
DOI: 10.1002/cpe

COLLECTIVE COMMUNICATION: THEORY, PRACTICE, AND EXPERIENCE 1761

(a) (b)

/

/

//

/

/

Figure 7. Bidirectional exchange algorithms for allgather and reduce–scatter.

Figure 8. Recursive-doubling algorithm for allgather. In Step 2, bidirectional exchanges occur between the
two pair of nodes 0 and 2, and 1 and 3.

the cost is

TBDEREDUCE–SCATTER(p, n) =
log(p)∑
k=1

(�3 + 2−kn(�1 + �))= log(p)�3 + p − 1

p
n(�1 + �)

We will revisit BDE algorithms as a special case of the bucket algorithms, discussed next, on
hypercubes in Section 7.3.

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:1749–1783
DOI: 10.1002/cpe

1762 E. CHAN ET AL.

Figure 9. Recursive-doubling algorithm for reduce–scater. In Step 1, bidirectional exchanges occur between

the two pair of nodes 0 and 2, and 1 and 3. Notation: x(j0: j1:s)
i = ∑

j x
(j)
i where j ∈ { j0, j0 + s, . . . , j1}.

(a) (b)

,,,,

Figure 10. Bucket algorithms for allgather and reduce–scatter.

6.3.2. Bucket algorithms

An alternative approach to the implementation of the allgather operation views the nodes as a ring,
embedded in a linear array by taking advantage of the fact that messages traversing a link in opposite
direction do not conflict. At each step, all nodes send data to the node to their right. In this fashion,
the subvectors that start on the individual nodes are eventually distributed to all nodes. The bucket
(BKT) algorithm, also called the cyclic algorithm, is given in Figure 10(a) and is illustrated in
Figure 11. Note that if each node starts with an equal subvector of data the cost of this approach is
given by

TBKTALLGATHER(p, n) = (p − 1)

(
�3 + n

p
�1

)
= (p − 1)�3 + p − 1

p
n�1

achieving the lower bound for the bandwidth component of the cost.

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:1749–1783
DOI: 10.1002/cpe

COLLECTIVE COMMUNICATION: THEORY, PRACTICE, AND EXPERIENCE 1763

Figure 11. Bucket algorithms for allgather.

A simple optimization comes from preposting all receives after which a single synchronization
with the node to the left (indicating that all receives have been posted) is required before sending
commences so that a one-pass protocol can be used. This synchronization itself can be implemented
by sending a zero-length message, at a cost of �1 in our model.‡ The remaining sends each also
incur only �1 as a latency cost, for a total cost of

TBKTALLGATHER(p, n) = �1 + (p − 1)�1 + p − 1

p
n�1 = p�1 + p − 1

p
n�1

Similarly, the reduce–scatter operation can be implemented by a simultaneous passing of mes-
sages around the ring to the left. The algorithm is given in Figure 10(b) and is illustrated in
Figure 12. This time, a partial result towards the total reduction of the subvectors are accumulated
as the messages pass around the ring. With a similar strategy for preposting messages, the cost of
this algorithm is given by

TBKTREDUCE–SCATTER(p, n) = p�1 + p − 1

p
n(�1 + �)

6.4. Allreduce

Like the reduce–scatter the allreduce can be also be implemented using a BDE algorithm. This
time at each step the entire vector is exchanged and added to the local result. This algorithm is
given in Figure 13 and is illustrated in Figure 14. In the absence of network conflicts the cost of

‡Recall that short messages incur a latency of �1.

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:1749–1783
DOI: 10.1002/cpe

1764 E. CHAN ET AL.

Figure 12. Bucket algorithm for reduce–scatter. Notation: x(j0: j1)
i = ∑

j x
(j)
i where j0> j1 and j ∈ { j0, j0%

p + 1, . . . , j1}, and per cent denotes the integer modulus operation and p is the total number of nodes.

/

/

/

Figure 13. Bidirectional exchange algorithm for allreduce.

this algorithm is

TBDEALLREDUCE(p, n) = log(p)(�3 + n�1 + n�)

This cost attains the lower bound only for the latency component.

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:1749–1783
DOI: 10.1002/cpe

COLLECTIVE COMMUNICATION: THEORY, PRACTICE, AND EXPERIENCE 1765

Figure 14. Bidirectional exchange algorithm for allreduce. In Step 1, bidirectional exchanges occur between
the two pair of nodes 0 and 2, and 1 and 3.

7. MOVING ON

We now discuss how to pick and/or combine algorithms as a function of architecture, number of
nodes, and vector length. We do so by presenting strategies for different types of architectures,
building upon the algorithms that are already presented.

7.1. Linear arrays

On linear arrays, the MST BCAST and MST REDUCE algorithms achieve the lower bound for the
� term while the BKT ALLGATHER and BKT REDUCE–SCATTER algorithms achieve the lower
bound for the � term. The MST SCATTER and MST GATHER algorithms achieve the lower bounds
for all vector lengths. BDE algorithms are undesirable since they require 2d nodes and because
they inherently incur network conflicts.
The following strategy provides simple algorithms that have merit in the extreme cases of short

and long vector lengths. Figures 15 and 16 summarize this strategy where short and long vector algo-
rithms can be used as ‘building blocks’ to compose different collective communication operations.

7.1.1. Broadcast

Short vectors: MST algorithm.
Long vectors: MST SCATTER followed by BKT ALLGATHER. The approximate cost is

TSCATTER–ALLGATHER(p, n) = �log(p)��3 + p − 1

p
n�1 + p�1 + p − 1

p
n�1

= p�1 + �log(p)��3 + 2
p − 1

p
n�1

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:1749–1783
DOI: 10.1002/cpe

1766 E. CHAN ET AL.

Figure 15. A building block approach to short vector algorithms on linear arrays.

Figure 16. A building block approach to long vector algorithms on linear arrays.

As n gets large and the � term dominates, this cost is approximately �log(p)�/2 times faster than
the MST BCAST algorithm and within a factor of two of the lower bound.

7.1.2. Reduce

Short vectors: MST algorithm.
Long vectors: BKT REDUCE–SCATTER (the dual of the allgather) followed by a MST GATHER (the
dual of the scatter). This time all the receives for the gather can be preposted before the reduce–
scatter commences by observing that the completion of the reduce–scatter signals that all buffers
for the gather are already available. Since the ready-receive sends can be used during the gather,

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:1749–1783
DOI: 10.1002/cpe

COLLECTIVE COMMUNICATION: THEORY, PRACTICE, AND EXPERIENCE 1767

the cost becomes

TREDUCE–sCATTER–GATHER(p, n) = p�1 + p − 1

p
n(�1 + �) + �log(p)��1 + p − 1

p
n�1

= (p + �log(p)�)�1 + 2
p − 1

p
n�1 + p − 1

p
n�

Again, the � term is within a factor of two of the lower bound while the � term is optimal.

7.1.3. Scatter

Short vectors: MST algorithm.
Long vectors: Sending individual messages from the root to each of the other nodes. While the
cost, (p − 1)�3 + ((p − 1)/p)n�1, is clearly worse than the MST algorithm, in practice the �
term has sometimes been observed to be smaller possibly because the cost of each message can be
overlapped with those of other messages. We will call it the simple (SMPL) algorithm.

7.1.4. Gather

Same as scatter, in reverse.

7.1.5. Allgather

Short vectors: MST GATHER followed by MST BCAST. To reduce the � term, receives for the MST
BCAST can be posted before the MST GATHER commences, yielding a cost of

TGATHER–BCAST(p, n) = �log(p)��3 + p − 1

p
n�1 + �log(p)��1 + �log(p)�n�1

≈ �log(p)�(�1 + �3) + (�log(p)� + 1)n�1

This cost is close to the lower bound of �log(p)��.
Long vectors: BKT algorithm.

7.1.6. Reduce–scatter

Short vectors: MST REDUCE followed by MST SCATTER. The receives for the MST SCATTER can
be posted before the MST REDUCE commences, for a cost of

TREDUCE–SCATTER(p, n) = �log(p)��3 + �log(p)�n(�1 + �) + �log(p)��1 + p − 1

p
n�1

≈ �log(p)�(�1 + �3) + (�log(p)� + 1)n�1 + �log(p)�n�

This cost is close to the lower bound of �log(p)��.
Long vectors: BKT algorithm.

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:1749–1783
DOI: 10.1002/cpe

1768 E. CHAN ET AL.

7.1.7. Allreduce

Short vectors: MST REDUCE followed by MST BCAST. The receives for the MST BCAST can be
posted before the MST REDUCE commences, for a cost of

TREDUCE–BCAST(p, n) = �log(p)��3 + �log(p)�n(�1 + �) + �log(p)��1 + �log(p)�n�1

= �log(p)�(�1 + �3) + 2�log(p)�n�1 + �log(p)�n�

This cost is close to the lower bound of �log(p)��.
Long vectors: BKT REDUCE–SCATTER followed by BKT ALLGATHER. The approximate
cost is

TREDUCE–SCATTER–ALLGATHER(p, n) = p�1 + p − 1

p
n(�1 + �) + p�1 + p − 1

p
n�1

= 2p�1 + 2
p − 1

p
n�1 + p − 1

p
n�

This cost achieves the lower bound for the � and � terms.

7.2. Multidimensional meshes

Next, we show that on multidimensional meshes the � term can be substantially improved for long
vector algorithms, relative to linear arrays.
The key here is to observe that each row and column in a two-dimensional mesh forms a linear

array and that all our collective communication operations can be formulated as performing the
operation first within rows and then within columns, or vise versa.
For the two-dimensional mesh, we will assume that our p nodes physically form a r × c mesh

and that the nodes are indexed in row-major order. For a mesh of dimension d , we will assume that
the nodes are physically organized as a d0 × d1 × · · · × dd−1 mesh.

7.2.1. Broadcast

Short vectors: MST algorithm within columns followed by MST algorithm within rows. The
cost is

TBCAST–BCAST(r, c, n) = (�log(r)� + �log(c)�)(�3 + n�1)

≈ �log(p)�(�3 + n�1)

Generalizing to a d-dimensional mesh yields an algorithm with a cost of

d−1∑
k=0

�log(dk)�(�3 + n�1) ≈�log(p)�(�3 + n�1)

Observe that the cost of the MST algorithm done successively in multiple dimensions yields ap-
proximately the same cost as performing it in just one dimension (e.g. a linear array).

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:1749–1783
DOI: 10.1002/cpe

COLLECTIVE COMMUNICATION: THEORY, PRACTICE, AND EXPERIENCE 1769

Long vectors: MST SCATTER within columns, MST SCATTER within rows, BKT ALLGATHER

within rows, BKT ALLGATHER within columns. The approximate cost is

TSCATTER–SCATTER–ALLGATHER–ALLGATHER(r, c, n) = �log(r)��3 + r−1

r
n�1+�log(c)��3 + c−1

c

n

r
�1

+ c�1 + c − 1

c

n

r
�1 + r�1 + r − 1

r
n�1

= (c+r)�1+(�log(c)� + �log(r)�)�3+2
p−1

p
n�1

≈ (c + r)�1 + �log(p)��3 + 2
p − 1

p
�1

As n gets large, and the � term dominates, this cost is still within a factor of two of the lower bound
for � while the � term has been greatly reduced.
Generalizing to a d-dimensional mesh yields an algorithm with a cost of

d−1∑
k=0

dk�1 +
d−1∑
k=0

�log(dk)��3 + 2
p − 1

p
n�1 ≈

d−1∑
k=0

dk�1 + �log(p)��3 + 2
p − 1

p
n�1

7.2.2. Reduce

Short vectors: MST algorithm within rows followed by MST algorithm within columns. The
cost is

TREDUCE–REDUCE(r, c, n) = (�log(c)� + �log(r)�)(�3 + n(�1 + �))

≈ �log(p)�(�3 + n(�1 + �))

Generalizing to a d-dimensional mesh yields an algorithm with a cost of
d−1∑
k=0

�log(dk)��3 +
d−1∑
k=0

�log(dk)�n(�1 + �) ≈ �log(p)�(�3 + n(�1 + �))

Long vectors: BKT REDUCE–SCATTER within rows, BKT REDUCE–SCATTER within columns,
MST GATHER within columns, MST GATHER within rows. The approximate cost is

TREDUCE–SCATTER–REDUCE–SCATTER–GATHER–GATHER(r, c, n)

= c�1 + c − 1

c
n�1 + c − 1

c
n� + r�1 + r − 1

r

n

c
�1 + r − 1

r

n

c
�

+ �log(r)��3 + r − 1

r

n

c
�1 + �log(c)��3 + c − 1

c
n�1

= (c + r)�1 + (�log(r)� + �log(c)�)�3 + 2
p − 1

p
n�1 + p − 1

p
n�

≈ (c + r)�1 + �log(p)��3 + 2
p − 1

p
n�1 + p − 1

p
n�

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:1749–1783
DOI: 10.1002/cpe

1770 E. CHAN ET AL.

Generalizing to a d-dimensional mesh yields an algorithm with a cost of

d−1∑
k=0

dk�1 +
d−1∑
k=0

�log(dk)��3 + 2
p − 1

p
n�1 + p − 1

p
n�

≈
d−1∑
k=0

dk�1 + �log(p)��3 + 2
p − 1

p
n�1 + p − 1

p
n�

As n gets large, and the � term dominates, this cost is within a factor of two of the lower bound
for �. The � term is optimal.

7.2.3. Scatter

Short vectors: MST algorithms successively in each of the dimensions.
Long vectors: SMPL algorithms successively in each of the dimensions.

7.2.4. Gather

Same as scatter, in reverse.

7.2.5. Allgather

Short vectors: MSTGATHER within rows, MST BCAST within rows, MSTGATHER within columns,
MST BCAST within columns. Again, preposing can be used to reduce the � term for the broadcasts,
for a total cost of

TGATHER–BCAST–GATHER–BCAST(r, c, n) = �log(c)��3 + c − 1

c

n

r
�1 + �log(c)��1 + �log(c)�n

r
�1

+�log(r)��3 + r − 1

r
n�1 + �log(r)��1 + log(r)n�1

= (�log(r)� + �log(c)�)(�1 + �3)

+
(
p − 1

p
+ �log(c)�

r
+ �log(r)�

)
n�1

≈ �log(p)�(�1 + �3)+
(
p − 1

p
+�log(c)�

r
+�log(r)�

)
n�1

Generalizing to a d-dimensional mesh yields an algorithm with a cost of

d−1∑
k=0

�log(dk)�(�1 + �3) +
(
p − 1

p
+ �log(dd−1)�

d0d1 · · · dd−2
+ · · · + �log(d1)�

d0
+ �log(d0)�

)
n�1

≈�log(p)�(�1 + �3) +
(
p − 1

p
+ �log(dd−1)�

d0d1 · · · dd−2
+ · · · + �log(d1)�

d0
+ �log(d0)�

)
n�1

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:1749–1783
DOI: 10.1002/cpe

COLLECTIVE COMMUNICATION: THEORY, PRACTICE, AND EXPERIENCE 1771

Note that the � term remains close to the lower bound of �log(p)�� while the � term has been
reduced!
Long vectors: BKT ALLGATHER within rows, BKT ALLGATHER within columns. The cost is

TALLGATHER–ALLGATHER(r, c, n) = c�1 + c − 1

c

n

r
�1 + r�1 + r − 1

r
n�1

= (c + r)�1 + p − 1

p
n�1

Generalizing to a d-dimensional mesh yields an algorithm with a cost of

d−1∑
k = 0

dk�1 + p − 1

p
n�1.

7.2.6. Reduce–scatter

Short vectors: MST REDUCE within columns, MST SCATTER within columns, MST REDUCE

within rows, MST SCATTER within rows. Preposing the receives for the scatter operations yields a
total cost of

TREDUCE–SCATTER–REDUCE–SCATTER(r, c, n)

= �log(r)��3 + �log(r)�n(�1 + �) + �log(r)��1
+ r − 1

r

n

c
�1 + �log(c)��3 + c − 1

c
n(�1 + �) + �log(c)��1 + log(c)n�1

= (�log(r)� + �log(c)�)(�1 + �3) +
(
p − 1

p
+ �log(c)�

r
+ �log(r)�

)
n�1

+
(�log(c)�

r
+ �log(r)�

)
n�

≈ �log(p)�(�1 + �3) +
(
p − 1

p
+ �log(c)�

r
+ �log(r)�

)
n�1 +

(�log(c)�
r

+ �log(r)�
)
n�

Generalizing to a d-dimensional mesh yields an algorithm with a cost of

d−1∑
k=0

�log(dk)�(�1 + �3) +
(

+ �log(d0)�
d1 · · · dd−1

+ · · · + �log(dd−2)�
dd−1

+ �log(dd−1)�
)
n�1

+
(�log(d0)�
d1 · · · dd−1

+ · · · + �log(dd−2)�
dd−1

+ �log(dd−1)�
)
n�

≈�log(p)�(�1 + �3) +
(

+ �log(d0)�
d1 · · · dd−1

+ · · · + �log(dd−2)�
dd−1

+ �log(dd−1)�
)
n�1

+
(�log(d0)�
d1 · · · dd−1

+ · · · + �log(dd−2)�
dd−1

+ �log(dd−1)�
)
n�

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:1749–1783
DOI: 10.1002/cpe

1772 E. CHAN ET AL.

Note that the � term remains close to the lower bound of �log(p)�� while both the � and � terms
have been reduced!
Long vectors: BKT REDUCE–SCATTER within rows, BKT REDUCE–SCATTER within columns.
The cost is

TREDUCE–SCATTER–REDUCE–SCATTER(r, c, n) = r�1 + r − 1

r

n

c
(�1 + �) + c�1 + c − 1

c
n(�1 + �)

= (r + c)�1 + p − 1

p
n(�1 + �)

Generalizing to a d-dimensional mesh yields an algorithm with a cost of

d−1∑
k=0

dk�1 + p − 1

p
n(�1 + �)

7.2.7. Allreduce

Short vectors: MST REDUCE followed by MST BCAST (both discussed above), preposting the
receives for the broadcast. The approximate cost is

TREDUCE–BCAST (d, n) = 2
d−1∑
k=0

�log(dk)�(�1 + �3)

+ 2

(�log(d0)�
d1 · · · dd−1

+ · · · + �log(dd−2)�
dd−1

+ �log(dd−1)�
)
n�1

+
(�log(d0)�
d1 · · · dd−1

+ · · · + �log(dd−2)�
dd−1

+ �log(dd−1)�
)
n�

Long vectors: BKT REDUCE–SCATTER followed by BKT ALLGATHER (both discussed above).
The approximate cost is

TREDUCE–SCATTER–ALLGATHER(d, n) = 2
d−1∑
k=0

dk�1 + 2
p − 1

p
n�1 + p − 1

p
n�

This cost achieves the lower bound for the � and � terms.

7.3. Hypercubes

We now argue that the discussion on algorithms for multidimensional meshes includes all algorithms
already discussed for hypercubes. Recall that a d-dimensional hypercube is simply a d-dimensional
mesh with d0 = · · · = dd−1 = 2. Now, the short vector algorithm for broadcasting successively in
each of the dimensions becomes the MST BCAST on hypercubes. The long vector algorithm for
allgather that successively executes a BKT algorithm in each dimension is equivalent to a BDE

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:1749–1783
DOI: 10.1002/cpe

COLLECTIVE COMMUNICATION: THEORY, PRACTICE, AND EXPERIENCE 1773

algorithm on hypercubes. Similar connections can be made for other algorithms discussed for
multidimensional meshes.
The conclusion is that we can concentrate on optimizing algorithms for multidimensional meshes.

A by-product of the analyses will be optimized algorithms for hypercubes.

7.4. Fully connected architectures

Fully connected architectures can be viewed as multidimensional meshes so that, as noted for
hypercube architectures, it suffices to analyze the optimization of algorithms for multidimensional
meshes.

8. STRATEGIES FOR ALL VECTOR LENGTHS

We have developed numerous algorithms for the short and long vector cases. They have been shown
to be part of a consistent family rather than a bag full of algorithms. The natural next question
becomes how to deal with intermediate length vectors. A naive solution would be to determine the
crossover point between the short and long vector costs and switch algorithms at that crossover
point. In this section, we show that one can do much better with ‘hybrid’ algorithms. Key to this
approach is the recognition that all collective communications have in common the property that
the operation performed among all nodes yields the same result as when the nodes are logically
viewed as a two-dimensional mesh, and the operation is performed first in one dimension and next
in the second dimension. This observation leaves the possibility of using a different algorithm in
each of the two dimensions.

8.1. A prototypical example: broadcast

Consider a broadcast on a r × c mesh of nodes. A broadcast among all nodes can then be imple-
mented as

Step 1: A broadcast within the row of nodes that includes the original root.
Step 2: Simultaneous broadcasts within columns of nodes where the roots of the nodes are in

the same row as the original root.

For each of these two steps, a different broadcast algorithm can be chosen.
Now, consider the case where in Step 1 a long vector algorithm is chosen: MST SCATTER

followed by BKT ALLGATHER. It is beneficial to orchestrate the broadcast as

Step 1a: MST SCATTER within the rows of nodes that includes the original root.
Step 2: Simultaneous broadcasts within columns of nodes where the roots of the nodes are in

the same row as the original root.
Step 1b: Simultaneous BKT ALLGATHER within rows of nodes.

The benefit is that now in Step 2 the broadcasts involve vectors of length approximately n/c. This
algorithm is illustrated in Figure 17.

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:1749–1783
DOI: 10.1002/cpe

1774 E. CHAN ET AL.

Figure 17. Broadcast on a (logical) two-dimensional mesh implemented by (1a) a scatter within the row that
includes the root, followed by (2) a broadcast within the columns, followed by (1b) an allgather within rows.

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:1749–1783
DOI: 10.1002/cpe

COLLECTIVE COMMUNICATION: THEORY, PRACTICE, AND EXPERIENCE 1775

Figure 18. Various approaches to implementing a broadcast on an r × c mesh. The cost analysis
assumes no network conflicts occur.

For fixed r and c, combinations of short and long vector algorithms for Steps 1 and 2 are examined
in Figure 18. Note that:

• Option 2 is never better than Option 1 since �log(r)� + �log(c)���log(p)�.
• Option 4 is never better than Option 3. The observation here is that if a SCATTER–ALLGATHER

broadcast is to be used, it should be as part of Step 1a–1b so that the length of the vectors to
be broadcast during Step 2 is reduced.

• Option 5 is generally better than Option 6 since the � terms are identical while the � term is
smaller for Option 5 than for Option 6 (since n/p�n/r).

• Option 5 is generally better than Option 7 because the � terms are identical while the � term
has been reduced since r + c�p (when p is not prime).

Thus, we find that there are three algorithms of interest:

• Option 1: MST BCAST among all nodes. This algorithm is best when the vector lengths are
short.

• Option 3: MST SCATTER–MST BCAST–BKT ALLGATHER. This algorithm is best when the
vector length is such that the scatter leaves subvectors that are considered to be small when
broadcast among r nodes.

• Option 5: MST SCATTER–MST SCATTER–BKT ALLGATHER–BKT ALLGATHER. This algo-
rithm is best when the vector length is such that the scatter leaves subvectors that are considered
to be long when broadcast among r nodes if multiple integer factorizations of p exist.

In Figure 19(a), we show the predicted cost, in time, of each of these options on a fully connected
machine with p= 256, r = c= 16, �1 ≈ 2× 10−6, �1 ≈ 1× 10−9, and � ≈ 1× 10−10. The graph
clearly shows how the different options trade lowering the � term for increasing the � term, the
extremes being the MST SCATTER–BKT ALLGATHER, with the greatest � term and lowest � term,
and the MST BCAST, with the lowest � term and greatest � term.

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:1749–1783
DOI: 10.1002/cpe

1776 E. CHAN ET AL.

(a) (b)

(c) (d)

(e) (f)

Figure 19. Comparing experimental results with predicted results.

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:1749–1783
DOI: 10.1002/cpe

COLLECTIVE COMMUNICATION: THEORY, PRACTICE, AND EXPERIENCE 1777

Naturally, many combinations of r and c can be chosen, and the technique can be extended to
more than two dimensions, which we discuss next.

8.2. Optimal hybridization on hypercubes

We now discuss how to optimally combine short and long vector algorithms for the broadcast
operation. Our strategy is to develop theoretical results for hypercubes, first reported in [7] for
the allgather operation. This theoretical result will then motivate heuristics for multidimensional
meshes discussed in Section 8.3.
Assume that p= 2d and that the nodes form a hypercube architecture (or, alternatively, are fully

connected). We assume that a vector of length n is to be broadcast and, for simplicity, that n is an
integer multiple of p.
A strategy will be indicated by an integer D, 0�D<d , and two vectors, (a0, a1, . . . , aD−1) and

(d0, d1, . . . , dD−1). The idea is that the processors are viewed as a D-dimensional mesh, that the i th
dimension of that mesh has di nodes that themselves form a hypercube, and that ai ∈ {long, short}
indicates whether a long or short vector algorithm is to be used in the i th dimension.

• If ai = long, then a long-vector algorithm is used in the i th dimension of the mesh. The vector
is scattered among di processors, and each piece (now reduced in length by a factor di) is
broadcast among the remaining dimensions of the mesh using the strategy (ai+1, . . . , aD−1),
(di+1, . . . , dD−1), after which the result is collected via BKT ALLGATHER.

• If ai = short, then MST BCAST is used in the i th dimension of the mesh, and a broadcast among
the remaining dimensions of the mesh using the strategy (ai+1, . . . , aD−1), (di+1, . . . , dD−1)

is employed.

The cost given a strategy is given by the inductively defined cost function

C(n, (a0, . . . , aD−1), (d0, . . . , dD−1))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if D = 0

d0�1 + log(d0)�3 + 2
d0 − 1

d0
n�1

+C

(
n

d0
, (a1, . . . , aD−1), (d1, . . . , dD−1)

)
if D>0 and a0 = long

log(d0)�3 + log(d0)n�1
+C(n, (a1, . . . , aD−1), (d1, . . . , dD−1)) if D>0 and a0 = short

Some simple observations are:

• Assume di>2 (but a power of two). Then,

C(n, (a0, . . . , ai−1, ai ,︸︷︷︸ ai+1, . . . , aD−1), (d0, . . . , di−1, di ,︸︷︷︸ di+1, . . . , dD−1))

�

C(n, (a0, . . . , ai−1,
︷ ︸︸ ︷
ai , ai , ai+1, . . . , aD−1), (d0, . . . , di−1,

︷ ︸︸ ︷
2,

di
2

, di+1, . . . , dD−1))

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:1749–1783
DOI: 10.1002/cpe

1778 E. CHAN ET AL.

This observation tells us that an optimal (minimal cost) strategy can satisfy the restriction that
D = d and d0 = · · · = dd−1 = 2.

• Assume ai = short and ai+1 = long. Then,

C(n, (a0, . . . , ai−1, ai , ai+1,︸ ︷︷ ︸ ai+2, . . . , aD−1), (d0, . . . , di−1, di , di+1,︸ ︷︷ ︸ di+2, . . . , dD−1))

�

C(n, (a0, . . . , ai−1,
︷ ︸︸ ︷
ai+1, ai , ai+2, . . . , aD−1), (d0, . . . , di−1,

︷ ︸︸ ︷
di+1, di , di+2, . . . , dD−1))

This observation tells us that an optimal strategy can satisfy the restriction that a short-vector
algorithm is never used before a long-vector algorithm.

Together these two observations indicate that an optimal strategy exists among the strategies that
view the nodes as a d-dimensional mesh, with two nodes in each dimension, and have the form
(a0, . . . , ak−1, ak, . . . , ad−1) where ai = long if i<k and ai = short if i�k.
An optimal strategy can thus be determined by choosing kopt, the number of times a long vector

algorithm is chosen. The cost of such a strategy is now given by

C(n, k) = 2k�1 + log(2k)�3 + 2
2k − 1

2k
n�1 + log(2d−k)�3 + log(2d−k)

n

2k
�1

= 2k�1 + k�3 + 2
2k − 1

2k
n�1 + (d − k)�3 + (d − k)

n

2k
�1

= 2k�1 + d�3 + (2k+1 − 2 + d − k)
n

2k
�1

Let us now examine C(n, k) vs C(n, k + 1):

C(n, k + 1) − C(n, k) =
(
2k+1�1 + d�3 + (2k+2 − 2 + d − k − 1)

n

2k+1
�1

)

−
(
2k�1 + d�3 + (2k+1 − 2 + d − k)

n

2k
�1

)

= 2k�1 + (1 − d + k)
n

2k+1
�1 (1)

Next, we will show that if C(n, k)�C(n, k + 1) then C(n, k + 1)�C(n, k + 2):

C(n, k + 2) − C(n, k + 1) = 2k+1�1 + (2 − d + k)
n

2k+2
�1

= 2(2k�1) + 2 − d + k

2

n

2k+1
�1�2k�1 + (2 − d + k)

n

2k+1
�1

�2k�1 + (1 − d + k)
n

2k+1
�1 =C(n, k + 1) − C(n, k)

This result shows that C(n, k) as a function of k is concave up. Thus, kopt can be chosen to equal the
smallest non-negative integer k such that C(n, k)�C(n, k + 1), which is equivalent to the smallest
non-negative integer k for which the expression in (1) becomes non-negative.

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:1749–1783
DOI: 10.1002/cpe

COLLECTIVE COMMUNICATION: THEORY, PRACTICE, AND EXPERIENCE 1779

The above analysis supports the following simple observations:

• In each of the log(p) dimensions, it must be decided whether to use the long or short vector
algorithm.

• It makes sense to use the long vector algorithm first since it reduces the vector length for
subsequent dimensions.

• The condition discussed above indicates when the short vector algorithm should be used for
all subsequent dimensions.

Since hybrid algorithms can be composed in much the same way for all the discussed collective
communications, a similar result can be established for the hybridization of all collective commu-
nication algorithms on hypercubes.
In Figure 19(c) we show the predicted cost, in time, of various strategies when the same pa-

rameters were used as the graph on its left. In the graph ‘2-2-2-2-2-2-2-2 Hybrid’ indicates the
strategy that uses the long vector algorithm in all dimensions and ‘Optimal’ indicates the optimal
strategy discussed above. Various other hybrids, which represent different choices for k in the above
discussion, are also plotted.

8.3. A strategy for designing tunable libraries

Developing an optimal strategy, supported by theory, for multidimensional mesh architectures and
fully connected architectures with non-power-of-two numbers of nodes is at the very least non-
trivial and possibly intractable. As a result, we advocate heuristics that are guided by the theory
that were developed for the ideal hypercube architecture in the previous section.
Assuming an architecture with p nodes. The basic hybrid algorithm for the broadcast, motivated

by Section 8.2, is given with:

• Choose d0 × d1 × · · · × dD−1, an integer factorization of p.
• Choose k, 0�k<D.
• Step 1a: MST SCATTER within the first k dimensions.
• Step 2: MST BCAST within the remaining D − k dimensions.
• Step 1b: BKT ALLGATHER within the first k dimensions, in opposite order.

The parameters that need to be chosen, based on the architecture parameters � and � as well as
the vector length n, are the integer factorization, k, and the order in which dimensions are picked.
Depending on the architecture, it may also be necessary to factor in network conflicts. For example,
one could view a linear array with p nodes as a r × c mesh, but then in one of the dimensions
network conflicts would occur.
There are many variants to this theme. For example, one could restrict oneself to three integer

factorizations: 1× p, r × c, and p× 1, for r ≈ c≈ √
p and only consider the three optionsmentioned

in Section 8.1. One could also carefully model all options and pick a strategy based on the minimal
predicted cost. What is important is that our exposition leading up to this section creates a naturally
parameterized family of options.
In Figure 19(e), we show the predicted cost, in time, of various hybrids on a mesh with

p= 2× 3× 5× 7= 256. In that graph ‘2-3-5-7 Hybrid’ indicates the hybrid that executes the
long vector algorithm in each dimension while ‘Optimal’ indicates an exhaustive search through all

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:1749–1783
DOI: 10.1002/cpe

1780 E. CHAN ET AL.

strategies. What the graph demonstrates is that on higher dimensional meshes, or fully connected
architectures that are viewed as higher dimensional meshes, performance similar to that observed
on hypercubes can be attained by picking a reasonable strategy along the lines that we outlined
above.
All other operations can be similarly treated since the general principle behind all algorithms is

the same: hybrids are created by nesting long vector and short vector algorithms.

9. EXPERIMENTS

We now demonstrate briefly that the techniques that have been discussed so far have merit in
practice. Further evidence, from the Intel Touchstone Delta and Paragon systems, can be found
in [20–22]. Rather than exhaustively showing performance for all operations, we focus on the
broadcast and reduce–scatter operations.

9.1. Testbed architecture

The architecture on which experiments were conducted in Figures 19 and 20 is a Cray-Dell Pow-
erEdge Linux Cluster operated by the Texas Advanced Computing Center (TACC). At the time the
experiments were conducted, this cluster contained 768 3.06 and 256 3.2 GHz Xeon/Pentium 4
processors within 512 Dell dual-processor PowerEdge 1750 compute nodes where each compute
node had 2 GB of memory. A Myrinet-2000 switch fabric, employing PCI-X interfaces, intercon-
nected the nodes with a sustainable point-to-point bandwidth of 250 MB/s. The experiments were
conducted with the MPICH-GM library 1.2.5 . . . 12, GM 2.1.2, and Intel compiler 7.0 running Red
Hat Linux 7.1.

Figure 20. Observed performance of various hybrid reduce–scatter algorithms. Left: Performance of hybrids
on 256 nodes viewed as a hypercube or fully connected architecture. Right: Performance on 210 nodes

viewed as a 2× 3× 5× 7 mesh.

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:1749–1783
DOI: 10.1002/cpe

COLLECTIVE COMMUNICATION: THEORY, PRACTICE, AND EXPERIENCE 1781

9.2. Implementation

The algorithms discussed in this paper were implemented using MPI point-to-point send and receive
calls. They are available as part of the InterCol library developed at UT-Austin which is available
at http://www.tacc.utexas.edu/resources/tools/intercol.php

9.3. Results

In Figure 19, we show performance attained by our broadcast implementations. When the data
were collected, it was somewhat noisy. This noise is indicated in the graphs by the ‘thin’ lines and
was removed from the ‘thick’ lines so that the predicted and observed data could be more easily
compared. We note that the machine on which the data were collected was not a dedicated machine,
which explains the noise. Qualitatively the predicted and observed data match quite closely. It is
interesting to note that the pure SCATTER–ALLGATHER algorithm performs better than predicted
relative to the hybrids. This result can be attributed to the fact that the architecture is not a truly fully
connected architecture which means that network conflicts occurred as logical higher dimensional
meshes were mapped to the physical architecture. Clearly, a truly optimal hybrid algorithm would
switch to the SCATTER–ALLGATHER algorithm at some point.
In Figure 20, we show the performance attained by our reduce–scatter implementations. The story

is quite similar to that reported for the broadcast. Most interesting is the performance curve for the
MPICH implementation. That library appears to create a hybrid from two algorithms: BDE and
BKT. However, their implementation of BKT REDUCE–SCATTER appears to be less efficient and
clearly the crossover point was not optimized correctly. We note that such libraries are continuously
improved and that the reported performance may not be indicative of the current implementation.
Despite such continual updates of libraries, nearly all implementations use a combination of algo-
rithms presented in this paper with varying crossover points.
In these figures, the ‘Optimal’ performance curve was obtained by applying the heuristic described

in Section 8.3 with the estimates of � and � that were used for the predicted data in Figure 19.
The performance data that we have reported is representative of data we observed for the other

collective communication operations.

10. CONCLUSION

Many of the techniques described in this paper date back to the InterCom project at UT-Austin in
the early 1990s. That project produced a collective communication library specifically for the Intel
Touchstone Delta and Paragon parallel supercomputers [28], and it was used by MPI implementa-
tions on those platforms. This paper shows that those early algorithms still represent the state of
the art.
The discussion in Section 8.3 is a key contribution of this paper. It provides a framework to

those who pursue automatic optimization of collective communication libraries by providing a
parameterized family of algorithms rather than an ad hoc collection.
Clearly, the model that we use to analyze and describe the algorithms is restricting. For example,

architectures that can send messages simultaneously in multiple directions exist such as the IBM

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:1749–1783
DOI: 10.1002/cpe

1782 E. CHAN ET AL.

Blue Gene/L [29]. It is our belief that the descriptions given in this paper can be easily modified
to take advantage of such architectural features [30].
Collective communication is not just an issue for distributed-memory architectures that are com-

monly used for large scientific applications. As multi-core technology evolves to the point where
there will be many cores on a chip, it is likely that each core will have their own local memory, and
collective communication will be used to reduce memory contention. Thus, the simple algorithms
discussed in this paper may find new uses.

ACKNOWLEDGEMENTS

Some of the material in this paper was taken from an unpublished manuscript by Payne et al. [31]. We gratefully
acknowledge the contributions of these researchers to the original InterCom project and that manuscript. Any
opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science Foundation (NSF).

REFERENCES

1. Fox G, Johnson M, Lyzenga G, Otto S, Salmon J, Walker D. Solving Problems on Concurrent Processors. vol. I.
Prentice-Hall: Englewood Cliffs, NJ, 1988.

2. Ho C-T, Johnsson SL. Distributed routing algorithms for broadcasting and personalized communication in hypercubes.
Proceedings of the 1986 International Conference on Parallel Processing. IEEE: New York, 1986; 640–648.

3. Johnsson SL. Communication efficient basic linear algebra computations on hypercube architectures. Journal of Parallel
and Distributed Computing 1987; 4:133–172.

4. Saad Y, Schultz MH. Data communications in hypercubes. Journal of Parallel and Distributed Computing 1989; 6:
115–135.

5. Saad Y, Schultz MH. Data communication in parallel architectures. Research Report YALEU/DCS/RR-461, Yale
University, 1986.

6. Saad Y, Schultz MH. Topological properties of hypercubes. Research Report YALEU/DCS/RR-289, Yale University,
1985.

7. van de Geijn R. On global combine operations. Journal of Parallel and Distributed Computing 1994; 22:324–328.
8. Ben-Miled Z, Fortes JAB, Eigenmann R, Taylor VE. On the implementation of broadcast, scatter and gather in a

heterogeneous architecture. HICSS’98: Proceedings of the Thirty-First Annual Hawaii International Conference on
System Sciences, vol. 3, Honolulu, HI, 1998; 216–225.

9. Goldman A, Trystram D, Peters J. Exchange of messages of different sizes. Workshop on Parallel Algorithms for
Irregularly Structured Problems, Berkeley, CA, 1998; 194–205.

10. Gupta R, Balaji P, Panda DK, Nieplocha J. Efficient collective operations using remote memory operations on VIA-
based clusters. IPDPS ’03: Proceedings of the 17th International Symposium on Parallel and Distributed Processing,
Washington, DC, U.S.A. IEEE Computer Society: Silverspring, MD, 2003; 46.2.

11. Huse LP. Collective communication on dedicated clusters of workstations. Proceedings of the 6th European PVM/MPI
Users’ Group Meeting on Recent Advances in Parallel Virtual Machine and Message Passing Interface, London, U.K.,
1999; 469–476.

12. Karonis NT, de Supinski BR, Foster I, Gropp W, Lusk E, Bresnahan J. Exploiting hierarchy in parallel computer networks
to optimize collective operation performance. IPDPS ’00: Proceedings of the 14th International Symposium on Parallel
and Distributed Processing, Washington, DC, U.S.A. IEEE Computer Society: Silverspring, MD, 2000; 377–386.

13. Kielmann T, Hofman RFH, Bal HE, Plaat A, Bhoedjang RAF. MagPIe: MPI’s collective communication operations for
clustered wide area systems. PPoPP ’99: Proceedings of the SIGPLAN Symposium on Principles and Practice of Parallel
Programming. ACM: New York, May 1999; 131–140.

14. Tsai Y-J, McKinley PK. An extended dominating node approach to broadcast and global combine in multiport wormhole-
routed mesh networks. IEEE Transactions on Parallel and Distributed Systems 1997; 8(1):41–58.

15. Wang S-Y, Tseng Y-C, Ho C-W. Efficient single-node broadcast in wormhole-routed multicomputers: A network-
partitioning approach. SPDP ’96: Proceedings of the 8th IEEE Symposium on Parallel and Distributed Processing,
Washington, DC, U.S.A. IEEE Computer Society: Silverspring, MD, 1996; 178.

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:1749–1783
DOI: 10.1002/cpe

COLLECTIVE COMMUNICATION: THEORY, PRACTICE, AND EXPERIENCE 1783

16. Wu M-S, Kendall RA, Wright K, Zhang Z. Performance modeling and tuning strategies of mixed mode collective
communications. SC ’05: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing, Washington, DC, U.S.A.
IEEE Computer Society: Silverspring, MD, 2005; 45.

17. Seitz CL. The cosmic cube. Communications of the ACM 1985; 28(1):22–33.
18. NCUBE Company. NCUBE 6400 Processor Manual.
19. Faraj A, Yuan X. Automatic generation and tuning of MPI collective communication routines. ICS ’05: Proceedings

of the 19th Annual International Conference on Supercomputing, New York, NY, U.S.A. ACM Press: New York, NY,
2005; 393–402.

20. Barnett M, Gupta S, Payne D, Shuler L, van de Geijn RA, Watts J. Interprocessor collective communication library
(InterCom). Proceedings of the Scalable High Performance Computing Conference 1994, Knoxville, TN, 1994.

21. Barnett M, Littlefield R, Payne D, van de Geijn R. On the efficiency of global combine algorithms for 2-D meshes with
wormhole routing. Journal of Parallel and Distributed Computing 1995; 24:191–201.

22. Barnett M, Payne D, van de Geijn R, Watts J. Broadcasting on meshes with wormhole routing. Journal of Parallel and
Distributed Computing 1996; 35(2):111–122.

23. Chan EW, Heimlich MF, Purkayastha A, van de Geijn RA. On optimizing collective communication. Proceedings of the
2004 IEEE International Conference on Cluster Computing, San Diego, CA. IEEE: New York, 2004; 145–155.

24. Gropp W, Lusk E, Doss N, Skjellum A. A high-performance, portable implementation of the MPI message passing
interface standard. Parallel Computing 1996; 22(6):789–828.

25. Snir M, Otto S, Huss-Lederman S, Walker DW, Dongarra J. MPI: The Complete Reference (2nd edn), vol. 1, The MPI
Core. The MIT Press: Cambridge, MA, 1998.

26. Thakur R, Rabenseifner R, Gropp W. Optimization of collective communication operations in MPICH. International
Journal of High-Performance Computing Applications 2005; 1(19):49–66.

27. Watts J, van de Geijn R. A pipelined broadcast for multidimensional meshes. Parallel Processing Letters 1995; 5(2):
281–292.

28. Lillevik SL. The Touchstone 30 Gigaflop DELTA Prototype. Proceedings of the Sixth Distributed Memory Computing
Conference. IEEE Computer Society Press: Silverspring, MD, 1991; 671–677.

29. Almasi G, Archer C, Castanos JG, Gunnels JA, Erway CC, Heidelberger P, Martorell X, Moreira JE, Pinnow K,
Ratterman J, Steinmacher-Burow BD, Gropp W, Toonen B. Design and implementation of message-passing services for
the Blue Gene/L, supercomputer. IBM Journal of Research and Development 2005; 49(2/3):393–406.

30. Chan E, Gropp W, Thakur R, van de Geijn R. Collective communication on architectures that support simultaneous
communication over multiple links. Proceedings of the 2006 SIGPLAN Symposium on Principles and Practices of Parallel
Programming, New York, NY, U.S.A. ACM: New York, 29–31 March 2006; 2–11.

31. Payne D, Shuler L, van de Geijn R, Watts J. Streetguide to collective communication, unpublished manuscript.

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:1749–1783
DOI: 10.1002/cpe

