
Exercises 5:
Intro to MPI



MPI on the Karlin cluster

• Open up a terminal and login to the cluster

• SCP the files for today's lab (ex5.tar on Moodle) to your home 
directory on the cluster

• In order to load MPI functionality on the cluster, we need to 
type

module load openmpi

2



OpenMPI Implementation

3



Recall: Finding Out About the Environment

• Two important questions that arise early in a parallel 
program are:

• How many processes are participating in this 
computation?

• Which one am I?

• MPI provides functions to answer these questions:
• MPI_Comm_size reports the number of 

processes.
• MPI_Comm_rank reports the rank, a number 

between 0 and size-1, identifying the calling process



Example 1: Hello World in MPI

1. Open the file helloworld_mpi.c

2. Compile the code

compiling on Karlin cluster: 

mpicc -o helloworld_mpi helloworld_mpi.c

3. Run the file 

Recall: The MPI Standard does not specify how to run an MPI program

On the Karlin cluster (with 4 MPI processes):

mpirun -n 4 ./programname



helloworld_mpi.c output

carson@r3d3:[~/ex5]: mpirun -n 3 ./helloworld_mpi

Hello World from process 0 of 3

Hello World from process 2 of 3

Hello World from process 1 of 3

carson@r3d3:[~/ex5]: mpirun -n 4 ./helloworld_mpi

Hello World from process 2 of 4

Hello World from process 1 of 4

Hello World from process 3 of 4

Hello World from process 0 of 4

6



How many MPI processes to use?
• 1 process per node?

• 1 process per core?

• Option 1: Can treat the system as “flat” and use only MPI both intra-node 
and inter-node (i.e., even though memory is physically shared, treat it as 
distributed)

• Option 2: Hybrid approach: 1 MPI process per node, use shared memory 
programming for multiple cores within the node (e.g., MPI+OpenMP)

• Recall: If you want to actually run MPI across multiple nodes on the Karlin
cluster, you will need to use the queuing system

• Either write a batch script and submit the job, or use an interactive 
shell (see exercises 1)

7



Recall: MPI Basic (Blocking) Send

MPI_Send(address, count, datatype, dest, tag, comm)

• The target process is specified by dest, which is the rank of 
the target process in the communicator specified by comm.

• When this function returns, the data has been delivered to the 
system and the memory in address can be reused.  The 
message may not have been received by the target process.

A(10)
B(20)

MPI_Send( A, 10, MPI_DOUBLE, 1, …) MPI_Recv( B, 20, MPI_DOUBLE, 0, … )



Recall: MPI Basic (Blocking) Receive

MPI_Recv(address, count, datatype, source,tag, comm, status)

• Waits until a matching (both source and tag) message is received from the 

system

• source is rank in communicator specified by comm, or MPI_ANY_SOURCE

• tag is a tag to be matched or MPI_ANY_TAG

• receiving fewer than count occurrences of datatype is OK, but receiving more is 

an error

• status contains further information (e.g., size of message)

A(10)
B(20)

MPI_Send( A, 10, MPI_DOUBLE, 1, …) MPI_Recv( B, 20, MPI_DOUBLE, 0, … )



Example 2: Basic Send and Recv

Send_recv.c is a simple program: send the 
number 123456 from process 0 to process 1

1. Open send_recv.c and read the file, try to 
understand it

10



A Simple MPI Program: send_recv.c
#include <mpi.h>

#include <stdio.h>

int main(int argc, char** argv) {

// Initialize the MPI environment

MPI_Init(NULL, NULL);

// Find out rank, size

int mpirank, mpisize;

MPI_Comm_rank(MPI_COMM_WORLD, &mpirank);

MPI_Comm_size(MPI_COMM_WORLD, &mpisize);

MPI_Status status; int message;

//Process 0 sends and process 1 receives

if (mpirank == 0) {

message = 123456;

MPI_Send(&message, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);

} else if (mpirank == 1) {

MPI_Recv(&message, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, 

&status);

printf("Process 1 received message %d from process 

0\n", message);

}

MPI_Finalize();

}

Need an if/else since 
every process is 
running the same code



Example 2: Basic Send and Recv

Send_recv.c is a simple program: send the 
number 123456 from process 0 to process 1

1. Open send_recv.c and read the file, try to 
understand it

2. Compile it and run it with 2 processes

12



Task 1: MPI Ping Pong Program

• The next example is a ping pong program. 

• In this example, processes use MPI_Send and 
MPI_Recv to continually bounce messages off of each 
other until they decide to stop. 

• Take a look at ping_pong.c.

13



Task 1: MPI Ping Pong Program
• This example is meant to be executed with only two processes. 

The processes first determine their partner with some simple 
arithmetic. 

• A ping_pong_count is initiated to zero and it is incremented 
at each ping pong step by the sending process. 

• As the ping_pong_count is incremented, the processes take 
turns being the sender and receiver. 

• Finally, after the limit is reached (10 iterations in the code), 
the processes stop sending and receiving. 

• Your task: Add an MPI_Send() call and an MPI_Recv() 
call to make the program work as described
• Don’t look at the solution on the next slide before 

you try it yourself!

14



Solution

MPI_Send(&ping_pong_count, 1, MPI_INT, partner_rank, 

0, MPI_COMM_WORLD);

MPI_Recv(&ping_pong_count, 1, MPI_INT, partner_rank, 

0, MPI_COMM_WORLD, &status);

or

MPI_Recv(&ping_pong_count, 1, MPI_INT, partner_rank, 

MPI_ANY_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

15



Task 2: MPI Ring communication

• Now we will look at an example of MPI_Send and 
MPI_Recv using more than two processes

• In this example, a value is passed around by all 
processes in a ring-like fashion. 

• Take a look at ring.c.

16



MPI Ring Communication

• The ring program initializes a value from process zero, and the value 
is passed around every single process. (see pseudocode on next slide)

• The program should terminate when process zero receives the value 
from the last process. 

• Your task: Add the specified MPI_Send and MPI_Recv calls 
to the program 

17

0 1 ... n-1 n



Pseudocode

if not process 0,

Recv() from process to the left

else (if process 0)

set the value of the token

Send() to process to the right (or to process 0 if you 

are the rightmost)

if process 0

Recv() from the rightmost process

18



MPI Ring Communication

• Note the order in which the Send's and the Recv's are placed!

• Extra care is taken to assure that it doesn’t deadlock. 

• Process zero makes sure that it has completed its first send 
before it tries to receive the value from the last process. 

• All of the other processes simply call MPI_Recv (receiving 
from their neighboring lower process) and then MPI_Send
(sending the value to their neighboring higher process) to 
pass the value along the ring. 

• MPI_Send and MPI_Recv will block until the message has 
been transmitted. 

19



Solution
if (mpirank != 0) {

MPI_Recv(&token, 1, MPI_INT, mpirank - 1, 0, 

MPI_COMM_WORLD, MPI_STATUS_IGNORE);

}

else { token = -1;}

MPI_Send(&token, 1, MPI_INT, (mpirank + 1) % mpisize, 0, 

MPI_COMM_WORLD);

if (mpirank == 0) {

MPI_Recv(&token, 1, MPI_INT, mpisize - 1, 0, 

MPI_COMM_WORLD, MPI_STATUS_IGNORE);

}

20



Task 3: Non-blocking Operations

• Non-blocking operations return (immediately) "request handles" that 
can be tested and waited on:

MPI_Request request, request2;
MPI_Status status;

MPI_Isend(start, count, datatype,
dest, tag, comm, &request);

MPI_Irecv(start, count, datatype,
dest, tag, comm, &request2);

MPI_Wait(&request, &status);

MPI_Wait(&request2, &status);

(each request must be Waited on)

• One can also test without waiting:

MPI_Test(&request, &flag, &status);

• Accessing the data buffer without waiting is undefined



Task 3: Nonblocking Operations

• The file nonblocking.c will use nonblocking sends and receives 
in order to do unidirectional nearest neighbor communication 
on a ring

• send a value to right process, receive a value from left 
process

• Add the appropriate calls to MPI_Isend, MPI_Irecv, and 
MPI_Wait to the code to accomplish this

22



Solution

23



Task 4: Bidirectional Nearest Neighbor Exchange

Row of N processors. Each wants to exchange 1 double number with its neighbors. 

24

0 1 2 3 N

//Set neighbors left and right

int left, right;

if (mpirank == 0) 

left = MPI_PROC_NULL;

else

left = mpirank - 1;

if (mpirank == mpisize -1)

right = MPI_PROC_NULL;

else

right = mpirank +1;

//Sendrecv with right neighbor

MPI_Sendrecv(…);

//Sendrecv with left neighbor

MPI_Sendrecv(…);



Recall: MPI_Sendrecv()

int MPI_Sendrecv(

const void *sendbuf, 

int sendcount, 

MPI_Datatype sendtype,

int dest, 

int sendtag,

void *recvbuf, 

int recvcount, 

MPI_Datatype recvtype,

int source, 

int recvtag,

MPI_Comm comm, 

MPI_Status *status  )

25



Task 4: Bidirectional Nearest Neighbor Exchange

• Add the appropriate MPI_Sendrecv() calls to the file neighbors.c to 
implement the nearest neighbor data exchange.

26



Solution

27

Note: you could also send to left and receive from right at the same time, and 
then send to right and receive from left



Thinking in terms of distributed memory
Problem: want to create an array of size N and set every entry a[i]=i^2

In shared memory with OpenMP, we would still allocate an array of size N, 
and then have threads parallelize the setting of the entries 

#pragma omp parallel for 

for(int i = 0; i < N; i++)

a[i] = i*i;

Now we have distributed memory. There is no global array. 

• Each process will have a local array of size my_N = N/mpisize

Each process will have to know which entries of the global array they are 
responsible for 

28



Distributed Memory

Simple distribution: by contiguous chunks:

29

...rank 0 rank 1 rank p-1

0 N/p-1, N/p 2(N/p)-1, 2N/p (p-1)(N/p) N-1

int my_N = N/mpisize;

int start = mpirank*my_N;

int *local_arr = (int*) calloc(sizeof(int), my_N);

for (i = 0; i < my_N; i++)

local_arr[i] = (start+i)*(start+i);

Look at arrayex.c and try to understand what is happening 


