Exercises b:

Intro to MPI

MPI| on the Karlin cluster

* Open up a terminal and login to the cluster

* SCP the files for today's lab (ex5.tar on Moodle) to your home
directory on the cluster

* In order to load MPI functionality on the cluster, we need to
type

module load openmpi

OpenMPI Implementation

& C & open-mpiorg Tr e

Open MPI:
Open Source High Performance Computing

| Home | Support

KU

Presentations

Open MPI Team A High Performance Message Passing Library

FAQ

Videos The Open MPI Project is an open source Message Passing Interface implementation that is developed and maintained by a consortium

Performance of academic, research, and industry partners. Open MPI is therefore able to combine the expertise, technologies, and resources from
all across the High Performance Computing community in order to build the best MPI library available. Open MPI offers advantages for

Download system and software vendors, application developers and computer science researchers.

Documentation
Source Code Access
Bug Tracking

Features implemented or in short-term development for Open MPI include:

Regression Testing « Full MPI-3.1 standards conformance s Many 0S5's supported (22 and 54 bit)

Version Information + Thread safety and concurrency + Production quality software
« Dynamic process spawning + High parformance on all platforms

Hardware Locality « Metwork and process fault tolerance = Portable and maintainable

Metwork Locality + Support network heterogeneity « Tunable by installers and end-users

MPI Testing Tool = Single library supports all networks = Component-based design, documented APIs

Open MPI User Docs « Run-time instrumentation « Active, responsive mailing list

Open Tool for Parameter + Many job schedulers supported s Open source license based on the BSD license
Optimization

Mailing Lists Open MPI is developed in a true open source fashion by a consortium of research, academic, and industry partners. The Cpen MPI

Getting Help /Support Team page has a comprehensive listing of all contributors and active members.

Contribute

Contact See the FAQ page for more technical information

License

Join the mailing_lists

Recall: Finding Out About the Environment

* Two important questions that arise early in a parallel
program are:

* How many processes are participating in this
computation?

* Which one am I?

* MPI provides functions to answer these questions:

* MPI_Comm _size reports the number of
processes.

* MPlI _Comm _rank reports the rank, a number
between 0 and size-1, identifying the calling process

Example 1: Hello World in MPI

1. Open the file helloworld mpi.c
2. Compile the code

compiling on Karlin cluster:

mpicc -0 helloworld mpi helloworld mpi.c

3. Run the file
Recall: The MPI Standard does not specify how to run an MPI program

On the Karlin cluster (with 4 MPI processes):

mpirun -n 4 ./programname

helloworld mpi.c output

carson@r3d3:[~/ex5]: mpirun -n 3 ./helloworld mpi
Hello World from process 0 of 3
Hello World from process 2 of 3
Hello World from process 1 of 3

carson@r3d3:[~/ex5]: mpirun -n 4 ./helloworld mpi

Hello World from process 2 of 4

Hello World from process 1 of 4

Hello World from process 3 of 4
0

Hello World from process of 4

How many MPI processes to use?

* 1 process per node?

1 process per core?

* Option 1: Can treat the system as “flat” and use only MPI both intra-node

and inter-node (i.e., even though memory is physically shared, treat it as
distributed)

e Option 2: Hybrid approach: 1 MPI process per node, use shared memory
programming for multiple cores within the node (e.g., MPI+OpenMP)

* Recall: If you want to actually run MPI across multiple nodes on the Karlin
cluster, you will need to use the queuing system

 Either write a batch script and submit the job, or use an interactive
shell (see exercises 1)

Recall: MPI Basic (Blocking) Send

Ao

Tl BEY |

MPI_Send(A, 10, MPI_DOUBLE, 1, ...) MPI_Recv(B, 20, MPI_DOUBLE, 0, ...)

MPI Send(address, count, datatype, dest, tag, comm)

* The target process is specified by dest, which is the rank of
the target process in the communicator specified by comm.

* When this function returns, the data has been delivered to the
system and the memory in address can be reused. The
message may not have been received by the target process.

Recall: MPI Basic (Blocking) Receive

A

Tl BRY |

MPI_Recv(B, 20, MPI_DOUBLE, 0, ...)

MPI_Send(A, 10, MPI_DOUBLE, 1, ...)

MPI Recv(address, count, datatype, source,tag, comm, status)

* Waits until a matching (both source and tag) message is received from the
system

* source is rank in communicator specified by comm, or MPI_ANY SOURCE
* tag is a tag to be matched or MPI_ANY TAG

* receiving fewer than count occurrences of datatype is OK, but receiving more is
an error

« status contains further information (e.g., size of message)

Example 2: Basic Send and Recv

Send recv.c is a simple program: send the
number 123456 from process 0 to process 1

1. Open send recv.c and read the file, try to
understand it

A Simple MPI Program: send recv.c

#include <mpi.h>
#include <stdio.h>

int main(int argc, char** argv) {

// Initialize the MPI environment
MPI Init (NULL, NULL);
// Find out rank, size
int mpirank, mpisize; Need an if/else since
MPI Comm rank (MPI COMM WORLD, &mpirank); .
MPT Comm size (MPI COMM WORLD, s&mpisize); GVEry process s
- - - - running the same code

MPI Status status; int message;

//Process 0 sends and process 1 receives
if (mpirank == 0) {
message = 123456;

MPI Send (&message, 1, MPI INT, 1, O, MPI COMM WORLD) ;
} else if (mpirank == 1) {

MPI Recv (&message, 1, MPI INT, O, O, MPI COMM WORLD,

&status) ;
printf ("Process 1 received message %d from process
0\n", message);

}
MPI Finalize();

}

Example 2: Basic Send and Recv

Send recv.c is a simple program: send the
number 123456 from process 0 to process 1

1. Open send recv.c and read the file, try to
understand it

2. Compile it and run it with 2 processes

Task 1: MPI Ping Pong Program

* The next example is a ping pong program.

* In this example, processes use MPl Send and
MPI Recv to continually bounce messages off of each
other until they decide to stop.

* Take a look at ping pong.c.

Task 1: MPI Ping Pong Program

* This example is meant to be executed with only two processes.
The processes first determine their partner with some simple
arithmetic.

* A ping pong count is initiated to zero and it is incremented
at each ping pong step by the sending process.

* As the ping pong count is incremented, the processes take
turns being the sender and receiver.

* Finally, after the limit is reached (10 iterations in the code),
the processes stop sending and receiving.

* Your task: Add an MPI_Send() call and an MPI_Recv()
call to make the program work as described

* Don't look at the solution on the next slide before
you try it yourself!

Solution

MPI Send(&ping pong count, 1, MPI INT, partner rank,
0, MPI COMM WORLD) ;

MPI Recv (&ping pong count, 1, MPI INT, partner rank,
0, MPI COMM WORLD, &status);

or

MPI Recv (&ping pong count, 1, MPI INT, partner rank,
MPI ANY TAG, MPI COMM WORLD, MPI STATUS IGNORE);

Task 2: MPI Ring communication

* Now we will look at an example of MPI Send and
MPI Recv using more than two processes

* In this example, a value is passed around by all
processes in a ring-like fashion.

* Take a look at ring.c.

MPI Ring Communication

* The ring program initializes a value from process zero, and the value
is passed around every single process. (see pseudocode on next slide)

e The program should terminate when process zero receives the value
from the last process.

* Your task: Add the specified MPl Send and MPI_Recv calls
to the program

A 4
[N
A 4
A 4

100 SET

Pseudocode

1f not process 0,
Recv () from process to the left
else (1f process 0)

set the value of the token

Send () to process to the right (or to process 0 1f you
are the rightmost)

1f process 0

Recv () from the rightmost process

MPI Ring Communication

* Note the order in which the Send's and the Recv's are placed!

* Extra care is taken to assure that it doesn't deadlock.

* Process zero makes sure that it has completed its first send
before it tries to receive the value from the last process.

* All of the other processes simply call MPI Recv (receiving
from their neighboring lower process) and then MPI Send
(sending the value to their neighboring higher process) to
pass the value along the ring.

* MPl Send and MPI Recv will block until the message has
been transmitted.

Solution

1f (mpirank !'= 0) {

MPI Recv (&token, 1, MPI INT, mpirank - 1, O,
MPI COMM WORLD, MPI STATUS IGNORE) ;

}
else { token = -1;}

MPI Send(&token, 1, MPI INT, (mpirank + 1) % mpisize, O,
MPT COMM WORLD) ;

1f (mpirank == 0) {

MPI Recv (&token, 1, MPI INT, mpisize - 1, O,
MPI COMM WORLD, MPI STATUS IGNORE) ;

Task 3: Non-blocking Operations

. Non—blockin% operations return (immediately) "request handles" that
can be tested and waited on:

MPI Request request, request2;
MPI:Stg%us sta%gs; ™

MPI Isend(start, count, datatype,
“dest, tag, comm, &request);

MPI Irecv(start, count, datatype,
“dest, tag, comm, &request2);

MPI Wait(&request, &status);
MPI Wait (&request2, é&status);

(each request must be Waited on)

* One can also test without waiting:
MPI Test(&request, &flag, &status);
* Accessing the data buffer without waiting is undefined

Task 3: Nonblocking Operations

* The file nonblocking.c will use nonblocking sends and receives
in order to do unidirectional nearest neighbor communication
on a ring

 send a value to right process, receive a value from left
process

* Add the appropriate calls to MPI Isend, MPI Irecv, and
MPIl Wait to the code to accomplish this

Solution

MPI_Irecv(&leftval, ', MPI_INT, left, ¢, MPI_COMM_WORLD, &request);

MPI Isend(&myval, ', MPI_INT, right, ©, MPI_COMM WORLD, &request2);

MPI_Wait(&request, &status);

MPI Wait(&request2, &status);

Task 4: Bidirectional Nearest Neighbor Exchange

Row of N processors. Each wants to exchange 1 double number with its neighbors.

 — —> ---- >
S — - < <- - - -

//Set neighbors left and right
int left, right;
if (mpirank == 0)

left = MPI_PROC NULL;

else
left = mpirank - 1;
if (mpirank == mpisize -1)
right = MPI PROC NULL;
else

right = mpirank +1;

//Sendrecv with right neighbor
MPI Sendrecv (..);

//Sendrecv with left neighbor
MPI Sendrecv (..);

Recall: MPI Sendrecv()

int MPI Sendrecv (

const void *sendbuf,
int sendcount,

MPI Datatype sendtype,
int dest,

int sendtag,

volid *recvbuf,

int recvcount,

MPI Datatype recvtype,
int source,

int recvtag,

MPI Comm comm,

MPI Status *status)

Task 4: Bidirectional Nearest Neighbor Exchange

* Add the appropriate MPIl Sendrecv() calls to the file neighbors.c to
implement the nearest neighbor data exchange.

Solution

(mpirank == 0)
left = MPI_PROC_NULL;

left = mpirank - 1;
(mpirank == mpisize - 1)
right = MPI_PROC_NULL;

right = mpirank+1;

MPI_Sendrecv(&myval, 1, MPI_INT, right, ©, &rightval,

MPI_Sendrecv(&myval, 1, MPI_INT, left, o, &leftval,

(mpirank != mpisize -1)
printf(

(mpirank != 0)
printf(

» MPI_INT, right,

, MPI_INT, left,

» MPI_COMM_WORLD, MPI_STATUS_IGNORE);

> MPI_COMM_WORLD, MPI_STATUS_IGNORE);

, mpirank, rightval, right);

, mpirank, leftval, left);

Note: you could also send to left and receive from right at the same time, and

then send to right and receive from left

27

Thinking in terms of distributed memory

Problem: want to create an array of size N and set every entry a[i]=i"2

In shared memory with OpenMP, we would still allocate an array of size N,
and then have threads parallelize the setting of the entries

#pragma omp parallel for
for(int 1 = 0; 1 < N; 1++)

al[i] = 1*1;

Now we have distributed memory. There is no global array.

 Each process will have a local array of size my N = N/mpisize
Each process will have to know which entries of the global array they are
responsible for

Distributed Memory

Simple distribution: by contiguous chunks:

rank O rank 1 e rank p-1
0 N/p-1, N/p 2(N/p)-1, 2N/p (p-1)(N/p) N-1

int my N = N/mpisize;
int start = mpirank*my N;

int *local arr = (int*) calloc(sizeof (int), my N);
for (i = 0; 1 < my N; i++)

local arr[1] = (start+i) *(start+1);

Look at arrayex.c and try to understand what is happening

