
Lecture 5:
Intro to Distributed Memory

Programming and MPI

Outline

• Distributed Memory Architectures

• Properties of communication networks

• Topologies

• MPI Intro

2

3

sh
ar

e

1995 2000 2005 2010 2015 2020
cluster

SMP

MPP

Constellations

Single Processor SIMD

Architectures in Top 500 Over Time

Historical Perspective

• Early distributed memory machines were:

• Collection of microprocessors.

• Communication was performed using bi-directional queues
between nearest neighbors.

• Messages were forwarded by processors on path.

• "Store and forward" networking

• There was a strong emphasis on topology in algorithms, in order to
minimize the number of hops = minimize time

4

Network Analogy

• To have a large number of different transfers occurring at once, you need a
large number of distinct wires

• Not just a bus, as in shared memory

• Networks are like streets:
• Link = street.
• Switch = intersection.
• Distances (hops) = number of blocks traveled.
• Routing algorithm = travel plan.

• Properties:

• Latency: how long to get between nodes in the network.
• Street: time for one car = dist (miles) / speed (miles/hr)

• Bandwidth: how much data can be moved per unit time.
• Street: cars/hour = density (cars/mile) * speed (miles/hr) * #lanes
• Network bandwidth is limited by the bit rate per wire and #wires

5

Design Characteristics of a Network

• Topology (how things are connected)

• Crossbar; ring; 2-D, 3-D, higher-D mesh or torus;
hypercube; tree; butterfly; perfect shuffle, …

• Routing algorithm:

• Example in 2D torus: all east-west then all north-south
(avoids deadlock).

• Switching strategy:

• Circuit switching: full path reserved for entire message,
like the telephone.

• Packet switching: message broken into separately-routed
packets, like the post office, or internet

• Flow control (what if there is congestion):

• Stall, store data temporarily in buffers, re-route data to
other nodes, tell source node to temporarily halt, discard,
etc.

6

Performance Properties of a Network: Latency

• Diameter: the maximum (over all pairs of nodes) of the shortest path
between a given pair of nodes.

• Latency: delay between send and receive times
• Latency tends to vary widely across architectures
• Vendors often report hardware latencies (wire time)
• Application programmers care about software latencies (user

program to user program)
• Observations:

• Latencies differ by 1-2 orders across network designs
• Software/hardware overhead at source/destination dominate cost

(1s-10s usecs)
• Hardware latency varies with distance (10s-100s nsec per hop) but

is small compared to overheads
• Latency is key for programs with many small messages

7

Latency on Some Machines/Networks

8-byte Roundtrip Latency

14.6

6.6

22.1

9.6

18.5

24.2

0

5

10

15

20

25

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

R
o

u
n

d
tr

ip
 L

a
te

n
c

y
 (

u
s

e
c

)

MPI ping-pong

8

• Latencies shown are from a ping-pong test using MPI

• These are roundtrip numbers: many people use ½ of roundtrip time to
approximate 1-way latency (which can’t easily be measured)

End to End Latency (1/2 roundtrip) Over Time

6.9745

36.34

7.2755

3.3

12.0805

9.25

2.6

6.905

11.027

4.81

nCube/2

nCube/2

CM5

CM5 CS2

CS2

SP1

SP2

Paragon

T3D
T3D

SPP

KSR

SPP

Cenju3

T3E

T3E18.916

SP-Power3

Quadrics

Myrinet

Quadrics

1

10

100

1990 1995 2000 2005 2010
Year (approximate)

u
s

e
c

• Latency has not improved significantly, unlike Moore’s Law
• T3E (shmem) was lowest point – in 1997

Data from Kathy Yelick, UCB and NERSC

Performance Properties of a Network: Bandwidth

• The bandwidth of a link = # wires / time-per-bit

• Bandwidth typically in Gigabytes/sec (GB/s), i.e., 8* 220

bits per second

• Effective bandwidth is usually lower than physical link bandwidth
due to packet overhead.

Routing

and control

header

Data

payload

Error code

Trailer

• Bandwidth is important for applications

with mostly large messages

10

Bandwidth on Existing Networks

Flood Bandwidth for 2MB messages

1504

630

244

857
225

610

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

P
e

rc
e

n
t

H
W

 p
e

a
k

 (
B

W
 i
n

 M
B

) MPI

11

• Flood bandwidth (throughput of back-to-back 2MB messages)

0

50

100

150

200

250

300

350

400

2048 4096 8192 16384 32768 65536 131072

Message Size (Bytes)

B
a
n

d
w

id
th

 (
M

B
/s

e
c
)

T3E/MPI

T3E/Shmem

IBM/MPI

IBM/LAPI

Compaq/Put

Compaq/Get

M2K/MPI

M2K/GM

Dolphin/MPI

Giganet/VIPL

SysKonnect

Bandwidth Chart

12

Data from Mike Welcome, NERSC

Note: bandwidth depends on SW, not just HW

Exascale Systems

• Gaps will only grow larger

Petascale Systems Exascale Systems
Factor

Improvement

System Peak 1016 flops/s 1018 flops/s 100

Node Memory
Bandwidth

102 GB/s 103 GB/s 10

Interconnect
Bandwidth

101 GB/s 102 GB/s 10

Memory Latency 10−7 s 5 ⋅ 10−8 s 2

Interconnect Latency 10−6 s 5 ⋅ 10−7 s 2

• Movement of data (communication) is much more expensive than floating
point operations (computation), in terms of both time and energy

13

Performance Properties of a Network: Bisection Bandwidth

• Bisection bandwidth: bandwidth across smallest cut that divides
network into two equal halves

• Bandwidth across “narrowest” part of the network

bisection

cut

not a

bisection

cut

bisection bw= link bw bisection bw = sqrt(p) * link bw

• Bisection bandwidth is important for algorithms in which

all processors need to communicate with all others

14

Network Topology

• In the past, there was considerable research in network topology
and in mapping algorithms to topology.

• Key cost to be minimized: number of “hops” between nodes
(e.g. “store and forward”)

• Modern networks hide hop cost, and user-level latency
depends more on overheads than toplogy, so topology less of
a factor in performance of many algorithms

• Need some background in network topology

• Algorithms may have a communication topology

15

Linear and Ring Topologies

• Linear array

• Diameter = 𝑛 − 1; average distance ≈ 𝑛/3.
• Bisection bandwidth = 1 (in units of link bandwidth).

• Torus or Ring

• Diameter = 𝑛/2; average distance ≈ 𝑛/4.
• Bisection bandwidth = 2.
• Natural for algorithms that work with 1D arrays.

16

Meshes and Tori

Two dimensional mesh

• Diameter = 2(𝑛 − 1)

• Bisection bandwidth = 𝑛

• Generalizes to higher dimensions

• Natural for algorithms that work with 2D and/or 3D arrays
(matmul)

Two dimensional torus

• Diameter = 𝑛

• Bisection bandwidth = 2 𝑛

17

Hypercubes

• Number of nodes 𝑛 = 2𝑑 for dimension 𝑑.

• Diameter = 𝑑.

• Bisection bandwidth = 𝑛/2.

• 0d 1d 2d 3d 4d

• Popular in early machines (Intel iPSC, NCUBE).

• Lots of clever algorithms.

• Greycode addressing:

• Each node connected to
d others with 1 bit different.

001000

100

010 011

111

101

110

18

Trees

• Diameter = log 𝑛.

• Bisection bandwidth = 1.

• Easy layout as planar graph.

• Many tree algorithms (e.g., summation).

• Fat trees avoid bisection bandwidth problem:

• More (or wider) links near top.

19

Butterflies

• Diameter = log 𝑛

• Bisection bandwidth = 𝑛

• Cost: lots of wires.

• Used in BBN Butterfly.

• Natural for FFT.

O 1O 1

O 1 O 1

butterfly switch
multistage butterfly network

Ex: to get from proc 101 to 110,

Compare bit-by-bit and

Switch if they disagree, else not

20

Does Topology Matter?

21

Dragonfly Topology
• A hierarchical topology with properties:

• Several “groups” of nodes are connected using all-to-all links

• Topology inside each group can be any topology

[John Kim et al. “Technology-Driven, Highly-Scalable Dragonfly Topology”, 2008]

22

[Teh, Wilke,
Bergman, Rumley,
2017]

Dragonflies

• Motivation: Exploit gap in cost and performance between optical
interconnects (which go between cabinets in a machine room) and electrical
networks (inside cabinet)

• Optical more expensive but higher bandwidth when long

• Electrical networks cheaper, faster when short

• Combine in hierarchy

• One-to-many via electrical networks inside cabinet

• Just a few long optical interconnects between cabinets

• Clever routing algorithm to avoid bottlenecks:

• Route from source to randomly chosen intermediate cabinet

• Route from intermediate cabinet to destination

• Outcome: programmer can (usually) ignore topology, get good performance

• Important in virtualized, dynamic environment

• Programmer can still create serial bottlenecks

• Drawback: variable performance

23

Topologies in Real Machines

24

Cray XT3 and XT4 3D Torus (approx)

Blue Gene/L 3D Torus

SGI Altix Fat tree

Cray X1 4D Hypercube*

Myricom (Millennium) Arbitrary

Quadrics (in HP Alpha

server clusters)

Fat tree

IBM SP Fat tree (approx)

SGI Origin Hypercube

Intel Paragon (old) 2D Mesh

BBN Butterfly (really old) Butterfly

o
ld

e
r

 n

e
w

e
r

Many of these are
approximations:
E.g., the X1 is really a
“quad bristled
hypercube” and some
of the fat trees are not
as fat as they should
be at the top

Topologies in More Modern Machines

• Frontier (#1): Dragonfly

• Fugaku (#2): 6D Torus

• LUMI (#3): Dragonfly

• Summit (#4): Fat tree

• Sierra (#5): Fat tree

• Sunway TaihuLight (#6): Fat tree

• Perlmutter (#7): Dragonfly

• Selene (#8): Fat tree

• Tianhe-2 (#9): Fat tree

25

Evolution of Distributed Memory Machines

• Special queue connections replaced by direct memory access (DMA):

• Network Interface (NI) processor packs or copies messages.

• CPU initiates transfer, goes on computing.

• Wormhole routing in hardware:

• NIs do not interrupt CPUs along path.

• Long message sends are pipelined.

• NIs don’t wait for complete message before forwarding

• Message passing libraries provide store-and-forward abstraction:

• Can send/receive between any pair of nodes, not just along one wire.

• Time depends on distance since each NI along path must participate.

26

Programming
Distributed Memory

Machines

Message Passing Libraries

• Many "message passing libraries" were once available

• Chameleon, from ANL.

• CMMD, from Thinking Machines.

• Express, commercial.

• MPL, native library on IBM SP-2.

• NX, native library on Intel Paragon.

• Zipcode, from LLL.

• PVM, Parallel Virtual Machine, public, from ORNL/UTK.

• Others...

• MPI, Message Passing Interface, now the industry standard.

• Need standards to write portable code.

• All communication, synchronization require subroutine calls

• No shared variables

• Program runs on a single processor just like any uniprocessor program,
except for calls to message passing library

• Subroutines for

• Communication

• Pairwise or point-to-point: Send and Receive

• Collectives all processor get together to

• Move data: Broadcast, Scatter/gather

• Compute and move: sum, product, max, prefix sum, … of data on
many processors

• Synchronization

• Barrier

• No locks because there are no shared variables to protect

• Enquiries

• How many processes? Which one am I? Any messages waiting?

Message Passing Libraries

Novel Features of MPI

• Communicators encapsulate communication spaces for library
safety

• Datatypes reduce copying costs and permit heterogeneity

• Multiple communication modes allow precise buffer
management

• Extensive collective operations for scalable global
communication

• Process topologies permit efficient process placement, user
views of process layout

• Profiling interface encourages portable tools

MPI References

• The Standard itself:

• at http://www.mpi-forum.org

• All MPI official releases, in both postscript and HTML

• Latest version MPI 3.1, released June 2015

• Other information on Web:

• at http://www.mcs.anl.gov/research/projects/mpi/index.htm

• pointers to lots of stuff, including other talks and tutorials, a
FAQ, other MPI pages

http://www.mpi-forum.org/
http://www.mcs.anl.gov/research/projects/mpi/index.htm

Books on MPI

• Using MPI: Portable Parallel Programming
with the Message-Passing Interface (third edition), by Gropp, Lusk,
and Skjellum, MIT Press, 2014.

• Using Advanced MPI: Modern Features of the Message-Passing
Interface, by Gropp, Hoefler, Thakur, and Lusk, MIT Press, 2014

• Using MPI-2: Portable Parallel Programming
with the Message-Passing Interface, by Gropp, Lusk, and Thakur, MIT
Press, 1999.

• MPI: The Complete Reference - Vol 1 The MPI Core, by Snir, Otto,
Huss-Lederman, Walker, and Dongarra, MIT Press, 1998.

• MPI: The Complete Reference - Vol 2 The MPI Extensions, by Gropp,
Huss-Lederman, Lumsdaine, Lusk, Nitzberg, Saphir, and Snir, MIT
Press, 1998.

• Designing and Building Parallel Programs, by Ian Foster, Addison-
Wesley, 1995.

• Parallel Programming with MPI, by Peter Pacheco, Morgan-
Kaufmann, 1997.

Finding Out About the Environment

• Two important questions that arise early in a parallel
program are:

• How many processes are participating in this
computation?

• Which one am I?

• MPI provides functions to answer these questions:
• MPI_Comm_size reports the number of

processes.
• MPI_Comm_rank reports the rank, a number

between 0 and size-1, identifying the calling process

Some Basic Terminology

• Processes can be collected into groups

• Each message is sent in a context, and must be
received in the same context

• A group and context together form a
communicator

• A process is identified by its rank in the group
associated with a communicator

• There is a default communicator whose group
contains all initial processes, called
MPI_COMM_WORLD

helloworld_mpi.c

#include <mpi.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

int mpirank, mpisize;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &mpirank);

MPI_Comm_size(MPI_COMM_WORLD, &mpisize);

printf("Hello World from process %d of %d\n", mpirank, mpisize);

MPI_Finalize();

return 0;

}

Notes on Hello World

• All MPI programs begin with MPI_Init and end with
MPI_Finalize

• MPI_COMM_WORLD is defined by mpi.h and designates
all processes in the MPI "job"

• Each statement executes independently in each process

• including the printf/print statements

• The MPI Standard does not specify how to run an MPI

program

MPI Basic Send/Receive

• Things that need specifying:
• How will "data" be described?

• How will processes be identified?

• How will the receiver recognize/screen messages?

• What will it mean for these operations to complete?

Process 0 Process 1

Send(data)

Receive(data)

API
int MPI_Send(const void *address,

int count,

MPI_Datatype datatype,

int dest_rank,

int tag,

MPI_Comm comm)

int MPI_Recv(void *address,

int count,

MPI_Datatype datatype,

int source_rank,

int tag,

MPI_Comm comm,

MPI_Status *status)

38

MPI Datatypes

• The data in a message to send or receive is described by a triple
(address, count, datatype), where

• An MPI datatype is recursively defined as:

• predefined, corresponding to a data type from the language
(e.g., MPI_INT, MPI_DOUBLE)

• a contiguous array of MPI datatypes

• a strided block of datatypes

• an indexed array of blocks of datatypes

• an arbitrary structure of datatypes

• There are MPI functions to construct custom datatypes, in
particular ones for subarrays

• May hurt performance if datatypes are complex

MPI Tags

• Messages are sent with an accompanying user-
defined integer tag, to assist the receiving process
in identifying the message

• Messages can be screened at the receiving end by
specifying a specific tag, or not screened by
specifying MPI_ANY_TAG as the tag in a
receive

Tags and Contexts
• Separation of messages used to be accomplished by use of tags, but

• this requires libraries to be aware of tags used by other libraries.

• this can be defeated by use of “wild card” tags.

• Contexts are different from tags

• no wild cards allowed

• allocated dynamically by the system when a library sets up a
communicator for its own use.

• User-defined tags still provided in MPI for user convenience in organizing
application

41

MPI Basic (Blocking) Send

MPI_Send(address, count, datatype, dest, tag, comm)

• The target process is specified by dest, which is the rank of
the target process in the communicator specified by comm.

• When this function returns, the data has been delivered to the
system and the memory in address can be reused. The
message may not have been received by the target process.

A(10)
B(20)

MPI_Send(A, 10, MPI_DOUBLE, 1, …) MPI_Recv(B, 20, MPI_DOUBLE, 0, …)

MPI Basic (Blocking) Receive

MPI_Recv(address, count, datatype, source,tag, comm, status)

• Waits until a matching (both source and tag) message is received from the

system

• source is rank in communicator specified by comm, or MPI_ANY_SOURCE

• tag is a tag to be matched or MPI_ANY_TAG

• receiving fewer than count occurrences of datatype is OK, but receiving more is

an error

• status contains further information (e.g., size of message)

A(10)
B(20)

MPI_Send(A, 10, MPI_DOUBLE, 1, …) MPI_Recv(B, 20, MPI_DOUBLE, 0, …)

Retrieving Further Information

• status is a data structure allocated in the user's program.

• In C:

int recvd_tag, recvd_from, recvd_count;

MPI_Status status;

MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, ...,

&status)

recvd_tag = status.MPI_TAG;

recvd_from = status.MPI_SOURCE;

MPI_Get_count(&status, datatype, &recvd_count);

MPI can be simple

• Claim: most MPI applications can be written with only 6 functions

(although which 6 may differ)

• You may use more for convenience or performance

• Using point-to-point:

•MPI_INIT

•MPI_FINALIZE

•MPI_COMM_SIZE

•MPI_COMM_RANK

•MPI_SEND

•MPI_RECV

• (Next class) Using collectives:

•MPI_INIT

•MPI_FINALIZE

•MPI_COMM_SIZE

•MPI_COMM_RANK

•MPI_BCAST

•MPI_REDUCE

Thinking in terms of distributed memory
Problem: want to create an array of size N and set every entry a[i]=i^2

In shared memory with OpenMP, we would still allocate an array of size N,
and then have threads parallelize the setting of the entries

#pragma omp parallel for

for(int i = 0; i < N; i++)

a[i] = i*i;

Now we have distributed memory. There is no global array.

• Each process will have a local array of size my_N = N/mpisize

Each process will have to know which entries of the global array they are
responsible for

46

Distributed Memory

Simple distribution: by contiguous chunks:

47

...rank 0 rank 1 rank p-1

0 N/p-1, N/p 2(N/p)-1, 2N/p (p-1)(N/p) N-1

int my_N = N/mpisize;

int start = mpirank*my_N;

int *local_arr = (int*) calloc(sizeof(int), my_N);

for (i = 0; i < my_N; i++)

local_arr[i] = (start+i)*(start+i);

More on Message Passing

• Message passing is a simple programming model, but there
are some special issues

• Buffering and deadlock

• Deterministic execution

• Performance

Synchronization

• MPI_Barrier(comm)

• Blocks until all processes in the group of the communicator

comm call it.

• Almost never required in a parallel program

• Occasionally useful in measuring performance and load

balancing

Buffers

• When you send data, where does it go? One possibility is:

Process 0 Process 1

User data

Local buffer

the network

User data

Local buffer

Avoiding Buffering

• Avoiding copies uses less memory

• May use more or less time

This requires that MPI_Send wait on delivery, or that
MPI_Send return before transfer is complete, and we wait
later.

Process 0 Process 1

User data

User data

the network

Blocking and Non-blocking Communication

• So far we have been using blocking communication:
• MPI_Recv does not complete until the buffer is full

(available for use).
• MPI_Send does not complete until the buffer is empty

(available for use).

• Completion depends on size of message and amount of
system buffering.

• Send a large message from process 0 to process 1

• If there is insufficient storage at the destination, the
send must wait for the user to provide the memory
space (through a receive)

• What happens with this code?

Sources of Deadlocks

Process 0

Send(1)

Recv(1)

Process 1

Send(0)

Recv(0)

• This is called "unsafe" because it depends on the
availability of system buffers in which to store the data
sent until it can be received

Some Solutions to the "unsafe" Problem

• Order the operations more carefully:

• Supply receive buffer at same time as send:

Process 0

Send(1)

Recv(1)

Process 1

Recv(0)

Send(0)

Process 0

Sendrecv(1)

Process 1

Sendrecv(0)

MPI_Sendrecv()

int MPI_Sendrecv(

const void *sendbuf,

int sendcount,

MPI_Datatype sendtype,

int dest,

int sendtag,

void *recvbuf,

int recvcount,

MPI_Datatype recvtype,

int source,

int recvtag,

MPI_Comm comm,

MPI_Status *status)

55

Example
Row of processors. Each wants to exchange 1 double number with its neighbors.

56

0 1 2 3 4

int left, right;

if (mpirank == 0)

left = MPI_PROC_NULL;

else

left = mpirank - 1;

if (mpirank == mpisize -1)

right = MPI_PROC_NULL;

else

right = mpirank +1;

MPI_Sendrecv(&sendbufR, 1, MPI_DOUBLE, right, 0, &recvbufR, 1,

MPI_DOUBLE, right, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Sendrecv(&sendbufL, 1, MPI_DOUBLE, left, 0, &recvbufL, 1,

MPI_DOUBLE, left, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

More Solutions to the "unsafe" Problem

• Supply own space as buffer for send

• Use non-blocking operations:

Process 0

Bsend(1)

Recv(1)

Process 1

Bsend(0)

Recv(0)

Process 0

Isend(1)

Irecv(1)

Waitall

Process 1

Isend(0)

Irecv(0)

Waitall

MPI's Non-blocking Operations

• Non-blocking operations return (immediately) "request handles" that
can be tested and waited on:

MPI_Request request, request2;
MPI_Status status;

MPI_Isend(start, count, datatype,
dest, tag, comm, &request);

MPI_Irecv(start, count, datatype,
dest, tag, comm, &request2);

MPI_Wait(&request, &status);

MPI_Wait(&request2, &status);

(each request must be Waited on)

• One can also test without waiting:

MPI_Test(&request, &flag, &status);

• Accessing the data buffer without waiting is undefined

Multiple Completions

• It is sometimes desirable to wait on multiple requests:

MPI_Waitall(count, array_of_requests,

array_of_statuses)

MPI_Waitany(count, array_of_requests,

&index, &status)

MPI_Waitsome(count, array_of_requests,

array_of indices, array_of_statuses)

• There are corresponding versions of test for each of
these.

59

Summary: Communication Modes

• MPI provides multiple modes for sending messages:

• Synchronous mode (MPI_Send): the send does not complete
until a matching receive has begun. (Unsafe programs
deadlock.)

• Buffered mode (MPI_Bsend): the user supplies a buffer to the
system for its use. (User allocates enough memory to make an
unsafe program safe.)

• Ready mode (MPI_Rsend): user guarantees that a matching
receive has been posted.

• Allows access to fast protocols

• undefined behavior if matching receive not posted

• Non-blocking versions (MPI_Isend, etc.)

• MPI_Recv receives messages sent in any mode.

• See www.mpi-forum.org for summary of all flavors of send/receive

http://www.mpi-forum.org/

