
© 2015 OpenMP ARB OMP1115C

OpenMP API 4.5 C/C++ Page 1

Directives and Constructs for C/C++
An OpenMP executable directive applies to the succeeding structured block or an OpenMP construct. Each directive starts with #pragma omp. The remainder of the
directive follows the conventions of the C and C++ standards for compiler directives. A structured-block is a single statement or a compound statement with a single entry
at the top and a single exit at the bottom.

parallel [2.5] [2.5]
Forms a team of threads and starts parallel execution.

#pragma omp parallel [clause[[,]clause] ...]
structured-block

clause:
if([parallel :] scalar-expression)
num_threads(integer-expression)
default(shared | none)
private(list)
firstprivate(list)
shared(list)
copyin(list)
reduction(reduction-identifier: list)
proc_bind(master | close | spread)

for [2.7.1] [2.7.1]
Specifies that the iterations of associated loops will be
executed in parallel by threads in the team in the context
of their implicit tasks.

#pragma omp for [clause[[,]clause] ...]
for-loops

clause:
private(list)
firstprivate(list)
lastprivate(list)
linear(list [: linear-step])
reduction(reduction-identifier : list)
schedule([modifier [, modifier] :] kind[, chunk_size])
collapse(n)
ordered[(n)]
nowait

kind:
• static: Iterations are divided into chunks of size

chunk_size and assigned to threads in the team in
round-robin fashion in order of thread number.

• dynamic: Each thread executes a chunk of iterations
then requests another chunk until none remain.

• guided: Each thread executes a chunk of iterations
then requests another chunk until no chunks remain
to be assigned.

• auto: The decision regarding scheduling is delegated
to the compiler and/or runtime system.

• runtime: The schedule and chunk size are taken from
the run-sched-var ICV.

modifier:
• monotonic: Each thread executes the chunks that it is

assigned in increasing logical iteration order.
• nonmonotonic: Chunks are assigned to threads in any

order and the behavior of an application that depends
on execution order of the chunks is unspecified.

• simd: Ignored when the loop is not associated with
a SIMD construct, otherwise the new_chunk_size
for all except the first and last chunks is chunk_size/
simd_width * simd_width where simd_width is an
implementation-defined value.

sections [2.7.2] [2.7.2]
A noniterative worksharing construct that contains a set
of structured blocks that are to be distributed among and
executed by the threads in a team.

#pragma omp sections [clause[[,] clause] ...]
{
[#pragma omp section]
 structured-block
[#pragma omp section
 structured-block]

 ...
}

clause:
private(list)
firstprivate(list)
lastprivate(list)
reduction(reduction-identifier: list)
nowait

single [2.7.3] [2.7.3]
Specifies that the associated structured block is executed
by only one of the threads in the team.

#pragma omp single [clause[[,]clause] ...]
structured-block

clause:
private(list)
firstprivate(list)
copyprivate(list)
nowait

simd [2.8.1] [2.8.1]
Applied to a loop to indicate that the loop can be
transformed into a SIMD loop.

#pragma omp simd [clause[[,]clause] ...]
for-loops

clause:
safelen(length)
simdlen(length)
linear(list[: linear-step])
aligned(list[: alignment])
private(list)
lastprivate(list)
reduction(reduction-identifier : list)
collapse(n)

declare simd [2.8.2] [2.8.2]
Enables the creation of one or more versions that can
process multiple arguments using SIMD instructions from
a single invocation from a SIMD loop.

#pragma omp declare simd [clause[[,]clause] ...]
[#pragma omp declare simd [clause[[,]clause] ...]]
[...]

 function definition or declaration

clause:
simdlen(length)
linear(linear-list[: linear-step])
aligned(argument-list[: alignment])
uniform(argument-list)
inbranch
notinbranch

for simd [2.8.3] [2.8.3]
Specifies that a loop that can be executed concurrently
using SIMD instructions, and that those iterations will also
be executed in parallel by threads in the team.

#pragma omp for simd [clause[[,]clause] ...]
for-loops

clause:
Any accepted by the simd or for directives with
identical meanings and restrictions.

task [2.9.1] [2.11.1]
Defines an explicit task. The data environment of the task
is created according to data-sharing attribute clauses on
task construct and any defaults that apply.

#pragma omp task [clause[[,]clause] ...]
structured-block

clause:
if([task :] scalar-expression)
final(scalar-expression)
untied
default(shared | none)
mergeable
private(list)
firstprivate(list)
shared(list)
depend(dependence-type : list)
priority(priority-value)

taskloop [2.9.2]
Specifies that the iterations of one or more associated
loops will be executed in parallel using OpenMP tasks.

#pragma omp taskloop [clause[[,]clause] ...]
for-loops

clause:
if([taskloop :] scalar-expression)
shared(list)
private(list)
firstprivate(list)
lastprivate(list)
default(shared | none)
grainsize(grain-size)
num_tasks(num-tasks)
collapse(n)
final(scalar-expression)
priority(priority-value)
untied
mergeable
nogroup

Continued4

OpenMP 4.5 API C/C++ Syntax Reference Guide

C/C++

OpenMP Application Program Interface (API) is
a portable, scalable model that gives parallel
programmers a simple and flexible interface for
developing portable parallel applications. OpenMP

supports multi-platform shared-memory parallel
programming in C/C++ and Fortran on all architectures,
including Unix platforms and Windows platforms.
See www.openmp.org for specifications.

• Text in this color indicates functionality that is new or changed in the OpenMP API 4.5 specification.
• [n.n.n] Refers to sections in the OpenMP API 4.5 specification.
• [n.n.n] Refers to sections in the OpenMP API 4.0 specification.

®

Page 2 OpenMP API 4.5 C/C++

© 2015 OpenMP ARB OMP1115C

Directives and Constructs for C/C++ (continued)

taskloop simd [2.9.3]
Specifies that a loop that can be executed concurrently
using SIMD instructions, and that those iterations will also
be executed in parallel using OpenMP tasks.

#pragma omp taskloop simd [clause[[,]clause] ...]
for-loops

clause: Any accepted by the simd or taskloop directives
with identical meanings and restrictions.

taskyield [2.9.4] [2.11.2]
Specifies that the current task can be suspended in favor
of execution of a different task.

#pragma omp taskyield

target data [2.10.1] [2.9.1]
Creates a device data environment for the extent of the
region.

#pragma omp target data clause[[[,]clause] ...]
structured-block

clause:
if([target data :] scalar-expression)
device(integer-expression)
map([[map-type-modifier[,]] map-type:] list)
use_device_ptr(list)

target enter data [2.10.2]
Specifies that variables are mapped to a device data
environment.

#pragma omp target enter data [clause[[,]clause] ...]

clause:
if([target enter data :] scalar-expression)
device(integer-expression)
map([[map-type-modifier[,]] map-type :] list)
depend(dependence-type : list)
nowait

target exit data [2.10.3]
Specifies that list items are unmapped from a device data
environment.

#pragma omp target exit data [clause[[,]clause] ...]

clause:
if([target exit data :] scalar-expression)
device(integer-expression)
map([[map-type-modifier[,]] map-type :] list)
depend(dependence-type : list)
nowait

target [2.10.4] [2.9.2]
Map variables to a device data environment and execute
the construct on that device.

#pragma omp target [clause[[,]clause] ...]
structured-block

clause:
if([target :] scalar-expression)
device(integer-expression)
private(list)
firstprivate(list)
map([[map-type-modifier[,]] map-type:] list)
is_device_ptr(list)
defaultmap(tofrom : scalar)
nowait
depend(dependence-type : list)

target update [2.10.5] [2.9.3]
Makes the corresponding list items in the device data
environment consistent with their original list items,
according to the specified motion clauses.

#pragma omp target update clause[[[,]clause] ...]

clause is motion-clause or one of:
if([target update :] scalar-expression)
device(integer-expression)
nowait
depend(dependence-type : list)

motion-clause:
to(list)
from(list)

declare target [2.10.6] [2.9.4]
A declarative directive that specifies that variables and
functions are mapped to a device.

#pragma omp declare target
declarations-definition-seq
#pragma omp end declare target

#pragma omp declare target (extended-list)

#pragma omp declare target clause[[,]clause ...]

clause:
to(extended-list)
link(list)

teams [2.10.7] [2.9.5]
Creates a league of thread teams where the master thread
of each team executes the region.

#pragma omp teams [clause[[,]clause] ...]
structured-block

clause:
num_teams(integer-expression)
thread_limit(integer-expression)
default(shared | none)
private(list)
firstprivate(list)
shared(list)
reduction(reduction-identifier : list)

distribute [2.10.8] [2.9.6]
Specifies loops which are executed by the thread teams.

#pragma omp distribute [clause[[,]clause] ...]
for-loops

clause:
private(list)
firstprivate(list)
lastprivate(list)
collapse(n)
dist_schedule(kind[, chunk_size])

distribute simd [2.10.9] [2.9.7]
Specifies loops which are executed concurrently using
SIMD instructions.

#pragma omp distribute simd [clause[[,]clause] ...]
for-loops

clause: Any accepted by the distribute or simd directives.

distribute parallel for [2.10.10] [2.9.8]
These constructs specify a loop that can be executed in
parallel by multiple threads that are members of multiple
teams.

#pragma omp distribute parallel for [clause[[,]clause] ...]
for-loops

clause: Any accepted by the distribute or parallel for
directives

distribute parallel for simd [2.10.11] [2.9.9]
These constructs specify a loop that can be executed in
parallel using SIMD semantics in the simd case by multiple
threads that are members of multiple teams.

#pragma omp distribute parallel for simd [clause[[,]clause]
...]
for-loops

clause: Any accepted by the distribute or parallel for simd
directives.

parallel for [2.11.1] [2.10.1]
Shortcut for specifying a parallel construct containing one
or more associated loops and no other statements.

#pragma omp parallel for [clause[[,]clause] ...]
for-loop

clause: Any accepted by the parallel or for directives,
except the nowait clause, with identical meanings
and restrictions.

parallel sections [2.11.2] [2.10.2]
Shortcut for specifying a parallel construct containing one
sections construct and no other statements.

#pragma omp parallel sections [clause[[,]clause] ...]
{
[#pragma omp section]
 structured-block
[#pragma omp section
 structured-block]
...
}

clause: Any accepted by the parallel or sections
directives, except the nowait clause, with identical
meanings and restrictions.

parallel for simd [2.11.4] [2.10.4]
Shortcut for specifying a parallel construct containing one
for simd construct and no other statements.

#pragma omp parallel for simd [clause[[,]clause] ...]
for-loops

clause: Any accepted by the parallel or for simd directives,
except the nowait clause, with identical meanings
and restrictions.

target parallel [2.11.5]
Shortcut for specifying a target construct containing a
parallel construct and no other statements.

#pragma omp target parallel [clause[[,]clause] ...]
structured-block

clause: Any accepted by the target or parallel directives,
except for copyin, with identical meanings and
restrictions.

target parallel for [2.11.6]
Shortcut for specifying a target construct containing a
parallel for construct and no other statements.

#pragma omp target parallel for [clause[[,]clause] ...]
for-loops

clause: Any accepted by the target or parallel for
directives, except for copyin, with identical meanings
and restrictions.

target parallel for simd [2.11.7]
Shortcut for specifying a target construct containing a
parallel for simd construct and no other statements.

#pragma omp target parallel for simd [clause[[,]clause] ...]
for-loops

clause: Any accepted by the target or parallel for simd
directives, except for copyin, with identical meanings
and restrictions.

Continued4

© 2015 OpenMP ARB OMP1115C

OpenMP API 4.5 C/C++ Page 3

Directives and Constructs for C/C++ (continued)

target simd [2.11.8]
Shortcut for specifying a target construct containing a
simd construct and no other statements.

#pragma omp target simd [clause[[,]clause] ...]
for -loops

clause: Any accepted by the target or simd directives with
identical meanings and restrictions.

target teams [2.11.9] [2.10.5]
Shortcut for specifying a target construct containing a
teams construct and no other statements.

#pragma omp target teams [clause[[,]clause] ...]
structured-block

clause: Any accepted by the target or teams directives
with identical meanings and restrictions.

teams distribute [2.11.10] [2.10.6]
Shortcuts for specifying a teams construct containing a
distribute construct and no other statements.
#pragma omp teams distribute [clause[[,]clause] ...]

for-loops

clause: Any clause used for teams or distribute, with
identical meanings and restrictions.

teams distribute simd [2.11.11] [2.10.7]
Shortcuts for specifying a teams construct containing a
distribute simd construct and no other statements.

#pragma omp teams distribute simd [clause[[,]clause] ...]
for-loops

clause: Any clause used for teams or distribute simd, with
identical meanings and restrictions.

target teams distribute [2.11.12] [2.10.8]
Shortcuts for specifying a target construct containing a
teams distribute construct and no other statements.

#pragma omp target teams distribute [clause[[,]clause] ...]
for-loops

clause: Any clause used for target or teams distribute

target teams distribute simd [2.11.13] [2.10.9]
Shortcuts for specifying a target construct containing a
teams distribute simd construct and no other statements.

#pragma omp target teams distribute simd [clause[[,]
clause] ...]
for-loops

clause: Any clause used for target or teams distribute
simd

teams distribute parallel for [2.11.14] [2.10.10]
Shortcuts for specifying a teams construct containing a
distribute parallel for construct and no other statements.

#pragma omp teams distribute parallel for [clause[[,]
clause] ...]
for-loops

clause: Any clause used for teams or distribute parallel for

target teams distribute parallel for
[2.11.15] [2.10.11]
Shortcut for specifying a target construct containing a
teams distribute parallel for construct and no other
statements.

#pragma omp target teams distribute parallel for
[clause[[,]clause] ...]
for-loops

clause: Any clause used for teams distribute parallel for
or target

teams distribute parallel for simd [2.11.16] [2.10.12]
Shortcut for specifying a teams construct containing
a distribute parallel for simd construct and no other
statements.

#pragma omp teams distribute parallel for simd [clause[[,]
clause] ...]
for-loops

clause: Any clause used for distribute parallel for simd or
teams

target teams distribute parallel for simd
[2.11.17] [2.10.13]
Shortcut for specifying a target construct containing a
teams distribute parallel for simd construct and no other
statements.

#pragma omp target teams distribute parallel for simd
[clause[[,]clause] ...]
for-loops

clause: Any clause used for teams distribute parallel for
simd or target

master [2.13.1] [2.12.1]
Specifies a structured block that is executed by the master
thread of the team.

#pragma omp master
structured-block

critical [2.13.2] [2.12.2]
Restricts execution of the associated structured block to a
single thread at a time.

#pragma omp critical [(name) [hint (hint-expression)]]
structured-block

barrier [2.13.3] [2.12.3]
Specifies an explicit barrier at the point at which the
construct appears.

#pragma omp barrier

taskwait [2.13.4] [2.12.4]
Specifies a wait on the completion of child tasks of the
current task.

#pragma omp taskwait

taskgroup [2.13.5] [2.12.5]
Specifies a wait on the completion of child tasks of the
current task, then waits for descendant tasks.

#pragma omp taskgroup
structured-block

atomic [2.13.6] [2.12.6]
Ensures that a specific storage location is accessed
atomically. May take one of the following three forms:

#pragma omp atomic [seq_cst[,]] atomic-clause [[,]seq_cst]
expression-stmt

#pragma omp atomic [seq_cst]
expression-stmt

(atomic continues in the next column)

#pragma omp atomic [seq_cst[,]] capture [[,]seq_cst]
structured-block

atomic clause: read, write, update, or capture

(atomic continues in the next column)

atomic (continued)

expression-stmt may be one of:
if atomic clause is... expression-stmt:

read v = x;

write x = expr;

update or
is not present

 x++; x--; ++x; --x;
x binop= expr; x = x binop expr;
x = expr binop x;

capture v=x++; v=x--; v=++x; v= --x;
v=x binop= expr; v=x = x binop expr;
v=x = expr binop x;

structured-block may be one of the following forms:
{v = x; x binop= expr;} {x binop= expr; v = x;}
{v = x; x = x binop expr;} {v = x; x = expr binop x;}
{x = x binop expr; v = x;} {x = expr binop x; v = x;}
{v = x; x = expr;} {v = x; x++;}
{v = x; ++x;} {++x; v = x;}
{x++; v = x;} {v = x; x--;}
{v = x; --x;} {--x; v = x;}
{x--; v = x;}

flush [2.13.7] [2.12.7]
Executes the OpenMP flush operation, which makes
a thread’s temporary view of memory consistent with
memory, and enforces an order on the memory operations
of the variables.

#pragma omp flush [(list)]

ordered [2.13.8] [2.12.8]
Specifies a structured block in a loop, simd, or loop SIMD
region that will be executed in the order of the loop
iterations.

#pragma omp ordered [clause[[,] clause]...]
structured-block

clause:
threads
simd

#pragma omp ordered clause[[[,] clause]...]

clause:
depend (source)
depend (sink : vec)

cancel [2.14.1] [2.13.1]
Requests cancellation of the innermost enclosing region of
the type specified. The cancel directive may not be used in
place of the statement following an if, while, do, switch,
or label.

#pragma omp cancel construct-type-clause[[,] if-clause]

construct-type-clause:
parallel
sections
for
taskgroup

if-clause:
if(scalar-expression)

cancellation point [2.14.2] [2.13.2]
Introduces a user-defined cancellation point at which tasks
check if cancellation of the innermost enclosing region of
the type specified has been activated.

#pragma omp cancellation point construct-type-clause

construct-type-clause:
parallel
sections
for
taskgroup

Continued4

Page 4 OpenMP API 4.5 C/C++

© 2015 OpenMP ARB OMP1115C

Runtime Library Routines for C/C++

Execution environment routines affect and monitor threads, processors, and the parallel environment. The library routines are external functions with “C” linkage.

Execution Environment Routines
omp_set_num_threads [3.2.1] [3.2.1]
Affects the number of threads used for subsequent
parallel regions not specifying a num_threads clause, by
setting the value of the first element of the nthreads-var
ICV of the current task to num_threads.

void omp_set_num_threads(int num_threads);

omp_get_num_threads [3.2.2] [3.2.2]
Returns the number of threads in the current team. The
binding region for an omp_get_num_threads region is
the innermost enclosing parallel region.

int omp_get_num_threads(void);

omp_get_max_threads [3.2.3] [3.2.3]
Returns an upper bound on the number of threads that
could be used to form a new team if a parallel construct
without a num_threads clause were encountered after
execution returns from this routine.

int omp_get_max_threads(void);

omp_get_thread_num [3.2.4] [3.2.4]
Returns the thread number of the calling thread within
the current team.

int omp_get_thread_num(void);

omp_get_num_procs [3.2.5] [3.2.5]
Returns the number of processors that are available to
the device at the time the routine is called.

int omp_get_num_procs(void);

omp_in_parallel [3.2.6] [3.2.6]
Returns true if the active-levels-var ICV is greater than
zero; otherwise it returns false.

int omp_in_parallel(void);

omp_set_dynamic [3.2.7] [3.2.7]
Enables or disables dynamic adjustment of the number of
threads available for the execution of subsequent parallel
regions by setting the value of the dyn-var ICV.

void omp_set_dynamic(int dynamic_threads);

omp_get_dynamic [3.2.8] [3.2.8]
This routine returns the value of the dyn-var ICV, which
is true if dynamic adjustment of the number of threads is
enabled for the current task.

int omp_get_dynamic(void);

omp_get_cancellation [3.2.9] [3.2.9]
Returns the value of the cancel-var ICV, which is true if
cancellation is activated; otherwise it returns false.

int omp_get_cancellation(void);

omp_set_nested [3.2.10] [3.2.10]
Enables or disables nested parallelism, by setting the
nest-var ICV.

void omp_set_nested(int nested);

omp_get_nested [3.2.11] [3.2.10]
Returns the value of the nest-var ICV, which indicates if
nested parallelism is enabled or disabled.

int omp_get_nested(void);

omp_set_schedule [3.2.12] [3.2.12]
Affects the schedule that is applied when runtime is used
as schedule kind, by setting the value of the run-sched-var
ICV.

void omp_set_schedule(omp_sched_t kind, int chunk_size);

kind: One of the following, or an implementation-defined
schedule:
omp_sched_static = 1
omp_sched_dynamic = 2
omp_sched_guided = 3
omp_sched_auto = 4

omp_get_schedule [3.2.13] [3.2.13]
Returns the value of run-sched-var ICV, which is the
schedule applied when runtime schedule is used.

void omp_get_schedule(
omp_sched_t *kind, int *chunk_size);

See kind for omp_set_schedule.

omp_get_thread_limit [3.2.14] [3.2.14]
Returns the value of the thread-limit-var ICV, which is the
maximum number of OpenMP threads available.

int omp_get_thread_limit(void);

omp_set_max_active_levels [3.2.15] [3.2.15]
Limits the number of nested active parallel regions, by
setting max-active-levels-var ICV.

void omp_set_max_active_levels(int max_levels);

omp_get_max_active_levels [3.2.16] [3.2.16]
Returns the value of max-active-levels-var ICV, which
determines the maximum number of nested active
parallel regions.

int omp_get_max_active_levels(void);

omp_get_level [3.2.17] [3.2.17]
For the enclosing device region, returns the levels-vars
ICV, which is the number of nested parallel regions that
enclose the task containing the call.

int omp_get_level(void);

omp_get_ancestor_thread_num [3.2.18] [3.2.18]
Returns, for a given nested level of the current thread,
the thread number of the ancestor of the current thread.

int omp_get_ancestor_thread_num(int level);

omp_get_team_size [3.2.19] [3.2.19]
Returns, for a given nested level of the current thread,
the size of the thread team to which the ancestor or the
current thread belongs.

int omp_get_team_size(int level);

omp_get_active_level [3.2.20] [3.2.20]
Returns the value of the active-level-vars ICV, which
determines the number of active, nested parallel regions
enclosing the task that contains the call.

int omp_get_active_level(void);

omp_in_final [3.2.21] [3.2.21]
Returns true if the routine is executed in a final task
region; otherwise, it returns false.

int omp_in_final(void);

omp_get_proc_bind [3.2.22] [3.2.22]
Returns the thread affinity policy to be used for the
subsequent nested parallel regions that do not specify a
proc_bind clause.

omp_proc_bind_t omp_get_proc_bind(void);

Returns one of:
 omp_proc_bind_false = 0
 omp_proc_bind_true = 1
 omp_proc_bind_master = 2
 omp_proc_bind_close = 3
 omp_proc_bind_spread = 4

omp_get_ num_places [3.2.23]
Returns the number of places available to the execution
environment in the place list.

int omp_get_num_places(void);

omp_get_place_num_procs [3.2.24]
Returns the number of processors available to the
execution environment in the specified place.

int omp_get_place_num_procs(int place_num);

omp_get_place_proc_ids [3.2.25]
Returns the numerical identifiers of the processors
available to the execution environment in the specified
place.

void omp_get_place_proc_ids(
int place_num, int *ids);

omp_get_place_num [3.2.26]
Returns the place number of the place to which the
encountering thread is bound.

int omp_get_place_num(void);

omp_get_partition_num_places [3.2.27]
Returns the number of places in the place partition of the
innermost implicit task.

int omp_get_partition_num_places(void);

omp_get_partition_place_nums [3.2.28]
Returns the list of place numbers corresponding to the
places in the place-partition-var ICV of the innermost
implicit task.

void omp_get_partition_place_nums(int *place_nums);

Continued4

Directives and Constructs for C/C++ (continued)

threadprivate [2.15.2] [2.14.2]
Specifies that variables are replicated, with each thread
having its own copy. Each copy of a threadprivate variable
is initialized once prior to the first reference to that copy.

#pragma omp threadprivate(list)
list: A comma-separated list of file-scope, namespace-
scope, or static block-scope variables that do not have
incomplete types.

declare reduction [2.16] [2.15]
Declares a reduction-identifier that can be used in a
reduction clause.

#pragma omp declare reduction(reduction-identifier :
typename-list : combiner) [initializer-clause]

reduction-identifier: A base language identifer (for C),
or an id-expression (for C++), or one of the following
operators: +, -, *, &, |, ^, && and ||

typename-list: A list of type names

combiner: An expression

initializer-clause: initializer (initializer-expr) where
initializer-expr is omp_priv = initializer or
function-name (argument-list)

© 2015 OpenMP ARB OMP1115C

OpenMP API 4.5 C/C++ Page 5

Runtime Library Routines for C/C++ (continued)

omp_set_default_device [3.2.29] [3.2.23]
Controls the default target device by
assigning the value of the default-device-var ICV.

void omp_set_default_device(int device_num);

omp_get_default_device [3.2.30] [3.2.24]
Returns the value of the default-device-var
ICV, which determines default target device.

int omp_get_default_device(void);

omp_get_num_devices [3.2.31] [3.2.25]
Returns the number of target devices.

int omp_get_num_devices(void);

omp_get_num_teams [3.2.32] [3.2.26]
Returns the number of teams in the current teams
region, or 1 if called from outside of a teams region.

int omp_get_num_teams(void);

omp_get_team_num [3.2.33] [3.2.27]
Returns the team number of calling thread. The team
number is an integer between 0 and one less than the
value returned by omp_get_num_teams(), inclusive.

int omp_get_team_num(void);

omp_is_initial_device [3.2.34] [3.2.28]
Returns true if the current task is executing on the host
device; otherwise, it returns false.

int omp_is_initial_device(void);

omp_get_initial_device [3.2.35]
Returns a device number representing the host device.

int omp_get_initial_device(void);

omp_get_max_task_priority [3.2.36]
Returns the maximum value that can be specified in the
priority clause.

int omp_get_max_task_priority(void);

Lock Routines
General-purpose lock routines. Two types of locks are
supported: simple locks and nestable locks. A nestable
lock can be set multiple times by the same task before
being unset; a simple lock cannot be set if it is already
owned by the task trying to set it.

Initialize lock [3.3.1] [3.3.1]
Initialize an OpenMP lock.

void omp_init_lock(omp_lock_t *lock);

void omp_init_nest_lock(omp_nest_lock_t *lock);

Initialize lock with hint [3.3.2]
Initialize an OpenMP lock with a hint.

void omp_init_lock_with_hint(
omp_lock_t *lock,
omp_lock_hint_t hint);

void omp_init_nest_lock_with_hint(
omp_nest_lock_t *lock,
omp_nest_lock_hint_t hint);

hint:
omp_lock_hint_none = 0
omp_lock_hint_uncontended = 1
omp_lock_hint_contended = 2
omp_lock_hint_nonspeculative = 4
omp_lock_hint_speculative = 8

Destroy lock [3.3.3] [3.3.2]
Ensure that the OpenMP lock is uninitialized.

void omp_destroy_lock(omp_lock_t *lock);

void omp_destroy_nest_lock(omp_lock_t *lock);

Set lock [3.3.4] [3.3.3]
Sets an OpenMP lock. The calling task region is suspended
until the lock is set.

void omp_set_lock(omp_lock_t *lock);

void omp_set_nest_lock(omp_nest_lock_t *lock);

Unset lock [3.3.5] [3.3.4]
Unsets an OpenMP lock.

void omp_unset_lock(omp_lock_t *lock);

void omp_unset_nest_lock(omp_nest_lock_t *lock);

Test lock [3.3.6] [3.3.5]
Attempt to set an OpenMP lock but do not suspend
execution of the task executing the routine.

int omp_test_lock(omp_lock_t *lock);

int omp_test_nest_lock(omp_nest_lock_t *lock);

Timing Routines
Timing routines support a portable wall clock timer. These
record elapsed time per-thread and are not guaranteed to
be globally consistent across all the threads participating
in an application.

omp_get_wtime [3.4.1] [3.4.1]
Returns elapsed wall clock time in seconds.

double omp_get_wtime(void);

omp_get_wtick [3.4.2] [3.4.2]
Returns the precision of the timer (seconds between
ticks) used by omp_get_wtime.

double omp_get_wtick(void);

Device Memory Routines
Timing routines support allocation and management of
pointers in the data environments of target devices.

omp_target_alloc [3.5.1]
Allocates memory in a device data environment.

void* omp_target_alloc(size_t size, int device_num);

omp_target_free [3.5.2]
Frees the device memory allocated by the
omp_target_alloc routine.

void omp_target_free(void * device_ptr, int device_num);

omp_target_is_present [3.5.3]
Validates whether a host pointer has an associated device
buffer on a given device.

int omp_target_is_present(void * ptr, int device_num);

omp_target_memcpy [3.5.4]
Copies memory between any combination of host and
device pointers.

int omp_target_memcpy(void * dst, void * src,
size_t length, size_t dst_offset, size_t src_offset,
int dst_device_num, int src_device_num);

omp_target_memcpy_rect [3.5.5]
Copies a rectangular subvolume from a multi-dimensional
array to another multi-dimensional array.

int omp_target_memcpy_rect(
void * dst, void * src, size_t element_size, int num_dims,
const size_t * volume, const size_t * dst_offsets,
const size_t * src_offsets, const size_t * dst_dimensions,
const size_t * src_dimensions, int dst_device_num,
int src_device_num);

omp_target_associate_ptr [3.5.6]
Maps a device pointer, which may be returned from
omp_target_alloc or implementation-defined runtime
routines, to a host pointer.

int omp_target_associate_ptr(void * host_ptr,
void * device_ptr, size_t size, size_t device_offset,
int device_num);

omp_target_disassociate_ptr [3.5.7]
Removes the associated pointer for a given device from a
host pointer.

int omp_target_disassociate_ptr(void * ptr,
int device_num);

Notes

Page 6 OpenMP API 4.5 C/C++

© 2015 OpenMP ARB OMP1115C

Clauses
The set of clauses that is valid on a particular directive is described with the directive. Most clauses accept a comma-separated list of list items. All list items appearing in a
clause must be visible, according to the scoping rules of the base language. Not all of the clauses listed in this section are valid on all directives.

If Clause [2.12]
The effect of the if clause depends on the construct to
which it is applied.

if([directive-name-modifier :] scalar-expression)
For combined or composite constructs, it only applies to
the semantics of the construct named in the directive-
name-modifier if one is specified. If none is specified for
a combined or composite construct then the if clause
applies to all constructs to which an if clause can apply.

Depend Clause [2.13.9]
Enforces additional constraints on the scheduling of
tasks or loop iterations. These constraints establish
dependences only between sibling tasks or between loop
iterations.

depend(dependence-type : list)
Where dependence-type may be in, out, or inout:

in: The generated task will be a dependent task of
all previously generated sibling tasks that reference
at least one of the list items in an out or inout
dependence-type list.

out and inout: The generated task will be a dependent
task of all previously generated sibling tasks that
reference at least one of the list items in an in, out, or
inout dependence-type list.

depend(dependence-type)
Where dependence-type may be source.

depend(dependence-type [: vec])
Where dependence-type may be sink and is the iteration
vector, which has the form:
x1 [± d1], x2 [± d2], . . . , xn [± dn]

Data Sharing Attribute Clauses [2.15.3] [2.14.3]
Data-sharing attribute clauses apply only to variables
whose names are visible in the construct on which the
clause appears.

default(shared | none)
Explicitly determines the default data-sharing attributes
of variables that are referenced in a parallel, teams, or
task generating construct, causing all variables referenced
in the construct that have implicitly determined data-
sharing attributes to be shared.

shared(list)
Declares one or more list items to be shared by tasks
generated by a parallel, teams, or task generating
construct. The programmer must ensure that storage
shared by an explicit task region does not reach the end
of its lifetime before the explicit task region completes its
execution.

private(list)
Declares one or more list items to be private to a task
or a SIMD lane. Each task that references a list item
that appears in a private clause in any statement in the
construct receives a new list item.

firstprivate(list)
Declares list items to be private to a task, and initializes
each of them with the value that the corresponding
original item has when the construct is encountered.

lastprivate(list)
Declares one or more list items to be private to an implicit
task or to a SIMD lane, and causes the corresponding
original list item to be updated after the end of the
region.

linear(linear-list[:linear-step])
Declares one or more list items to be private to a SIMD
lane and to have a linear relationship with respect to
the iteration space of a loop. Clause linear-list is list or
modifer(list). modifier may be one of ref, val, or uval;
except in C it may only be val.

reduction(reduction-identifier:list)
Specifies a reduction-identifier and one or more list items.
The reduction-identifier must match a previously declared
reduction-identifier of the same name and type for each
of the list items.

Operators for reduction (initialization values)
+ (0) | (0)

* (1) ^ (0)

- (0) && (1)

& (~0) || (0)

max (Least representable number in reduction list item type)
min (Largest representable number in reduction list item type)

SIMD Clauses [2.8]
safelen(length)
If used then no two iterations executed concurrently
with SIMD instructions can have a greater distance in the
logical iteration space than its value.

collapse(n)
A constant positive integer expression that specifies how
many loops are associated with the loop construct.

simdlen(length)
A constant positive integer expression that specifies the
number of concurrent arguments of the function.

aligned(argument-list[:alignment])
Declares one or more list items to be aligned to the
specified number of bytes. alignment, if present, must
be a constant positive integer expression. If no optional
parameter is specified, implementation-defined default
alignments for SIMD instructions on the target platforms
are assumed.

uniform(argument-list)
Declares one or more arguments to have an invariant
value for all concurrent invocations of the function in the
execution of a single SIMD loop.

inbranch
Specifies that the function will always be called from
inside a conditional statement of a SIMD loop.

notinbranch
Specifies that the function will never be called from inside
a conditional statement of a SIMD loop.

Data Copying Clauses [2.15.4] [2.14.4]
copyin(list)
Copies the value of the master thread’s threadprivate
variable to the threadprivate variable of each other
member of the team executing the parallel region.

copyprivate(list)
Broadcasts a value from the data environment of one
implicit task to the data environments of the other
implicit tasks belonging to the parallel region.

Map Clause [2.15.5] [2.14.5]
map([[map-type-modifier[,]] map-type:]ist)
Map a variable from the task’s data environment to the
device data environment associated with the construct.
map-type:

alloc: On entry to the region each new corresponding
list item has an undefined initial value.
to: On entry to the region each new corresponding list
item is initialized with the original list item’s value.
from: On exit from the region the corresponding list
item’s value is assigned to each original list item
tofrom: (Default) On entry to the region each new
corresponding list item is initialized with the original
list item’s value, and on exit from the region the
corresponding list item’s value is assigned to each
original list item.
release: On exit from the region, the corresponding list
item’s reference count is decremented by one.
delete: On exit from the region, the corresponding list
item’s reference count is set to zero.

map-type-modifer:
Must be always.

Defaultmap Clause [2.15.5.2]
defaultmap(tofrom:scalar)
Causes all scalar variables referenced in the construct
that have implicitly determined data-mapping attributes
to have the tofrom map-type.

Tasking Clauses [2.9]

final(scalar-logical-expr)
The generated task will be a final task if the final
expression evaluates to true.

mergeable
Specifies that the generated task is a mergeable task.

priority(priority-value)
A non-negative numerical scalar expression that specifies
a hint for the priority of the generated task.

grainsize(grain-size)
Causes the number of logical loop iterations assigned
to each created task to be greater than or equal to the
minimum of the value of the grain-size expression and
the number of logical loop iterations, but less than two
times the value of the grain-size expression.

num_tasks(num-tasks)
Create as many tasks as the minimum of the num-tasks
expression and the number of logical loop iterations.

© 2015 OpenMP ARB OMP1115C

OpenMP API 4.5 C/C++ Page 7

ICV Environment Variable Values
The host and target device ICVs are initialized before any OpenMP API construct or OpenMP API routine executes. After the initial values are assigned, the values of any
OpenMP environment variables that were set by the user are read and the associated ICVs for the host device are modified accordingly. The method for initializing a
target device’s ICVs is implementation defined.

Table of ICV Initial Values (Table 2.1) and Ways to Modify and to Retrieve ICV Values (Table 2.2) [2.3.2-3] [2.3.2-3]

ICV Environment variable Initial value Ways to modify value Ways to retrieve value Ref.

dyn-var OMP_DYNAMIC
Initial value is implementation defined if the
implementation supports dynamic adjustment of the
number of threads; otherwise, the initial value is false.

omp_set_dynamic() omp_get_dynamic() Sec 4.3

nest-var OMP_NESTED false omp_set_nested() omp_get_nested() Sec 4.6

nthreads-var OMP_NUM_THREADS Implementation defined. The value of this ICV is a list. omp_set_num_threads() omp_get_max_threads() Sec 4.2

run-sched-var OMP_SCHEDULE Implementation defined omp_set_schedule() omp_get_schedule() Sec 4.1

def-sched-var (none) Implementation defined (none) (none) ---

bind-var OMP_PROC_BIND Implementation defined. The value of this ICV is a list. (none) omp_get_proc_bind() Sec 4.4

stacksize-var OMP_STACKSIZE Implementation defined (none) (none) Sec 4.7

wait-policy-var OMP_WAIT_POLICY Implementation defined (none) (none) Sec 4.8

thread-limit-var OMP_THREAD_LIMIT Implementation defined thread_limit clause omp_get_thread_limit() Sec 4.10

max-active-levels-var OMP_MAX_ACTIVE_LEVELS The initial value is the number of levels of parallelism
that the implementation supports. omp_set_max_active_levels() omp_get_max_active_levels() Sec 4.9

active-levels-var (none) zero (none) omp_get_active_level() ---

levels-var (none) zero (none) omp_get_level() ---

place-partition-var OMP_PLACES Implementation defined (none)

omp_get_partition_num_places()
omp_get_partition_place_nums()
omp_get_place_num_procs()
omp_get_place_proc_ids()

Sec 4.5

cancel-var OMP_CANCELLATION false (none) omp_get_cancellation() Sec 4.11

default-device-var OMP_DEFAULT_DEVICE Implementation defined omp_set_default_device() omp_get_default_device() Sec 4.13

max-task-priority-var OMP_MAX_TASK_PRIORITY zero (none) omp_get_max_task_priority() Sec 4.14

Environment Variables [4]

Environment variable names are upper case, and the values assigned to them are case insensitive and may have leading and trailing white space.

[4.11] [4.11] OMP_CANCELLATION policy
Sets the cancel-var ICV. policy may be true or false.
If true, the effects of the cancel construct and of
cancellation points are enabled and cancellation is
activated

[4.13] [4.13] OMP_DEFAULT_DEVICE device
Sets the default-device-var ICV that controls the default
device number to use in device constructs.

[4.12] [4.12] OMP_DISPLAY_ENV var
If var is TRUE, instructs the runtime to display the
OpenMP version number and the value of the ICVs
associated with the environment variables as name=value
pairs. If var is VERBOSE, the runtime may also display
vendor-specific variables. If var is FALSE, no information
is displayed.

[4.3] [4.3] OMP_DYNAMIC dynamic
Sets the dyn-var ICV. If true, the implementation may
dynamically adjust the number of threads to use for
executing parallel regions.

[4.9] [4.9] OMP_MAX_ACTIVE_LEVELS levels
Sets the max-active-levels-var ICV that controls the
maximum number of nested active parallel regions.

[4.14] OMP_MAX_TASK_PRIORITY level
Sets the max-task-priority-var ICV that controls the use of
task priorities.

[4.6] [4.6] OMP_NESTED nested
Sets the nest-var ICV to enable or to disable nested
parallelism. Valid values for nested are true or false.

[4.2] [4.2] OMP_NUM_THREADS list
Sets the nthreads-var ICV for the number of threads to
use for parallel regions.

[4.5] [4.5] OMP_PLACES places
Sets the place-partition-var ICV that defines the OpenMP
places available to the execution environment. places is
an abstract name (threads, cores, sockets, or imple-
mentation-defined), or a list of non-negative numbers.

[4.4] [4.4] OMP_PROC_BIND policy
Sets the value of the global bind-var ICV, which sets the
thread affinity policy to be used for parallel regions at
the corresponding nested level. policy can be the values
true, false, or a comma-separated list of master, close, or
spread in quotes.

[4.1] [4.1] OMP_SCHEDULE type[,chunk]
Sets the run-sched-var ICV for the runtime schedule type
and chunk size. Valid OpenMP schedule types are static,
dynamic, guided, or auto.

[4.7] [4.7] OMP_STACKSIZE size[B | K | M | G]
Sets the stacksize-var ICV that specifies the size
of the stack for threads created by the OpenMP
implementation. size is a positive integer that specifies
stack size. If unit is not specified, size is measured in
kilobytes (K).

[4.10] [4.10] OMP_THREAD_LIMIT limit
Sets the thread-limit-var ICV that controls the number of
threads participating in the OpenMP program.

[4.8] [4.8] OMP_WAIT_POLICY policy
Sets the wait-policy-var ICV that provides a hint to an
OpenMP implementation about the desired behavior
of waiting threads. Valid values for policy are ACTIVE
(waiting threads consume processor cycles while waiting)
and PASSIVE.

Page 8 OpenMP API 4.5 C/C++

© 2015 OpenMP ARB OMP1115C

Copyright © 2015 OpenMP Architecture Review Board.
Permission to copy without fee all or part of this material
is granted, provided the OpenMP Architecture Review
Board copyright notice and the title of this document
appear. Notice is given that copying is by permission
of the OpenMP Architecture Review Board. Products
or publications based on one or more of the OpenMP

specifications must acknowledge the copyright by
displaying the following statement: “OpenMP is a
trademark of the OpenMP Architecture Review Board.
Portions of this product/publication may have been derived
from the OpenMP Language Application Program Interface
Specification.” ®

Notes

