
Exercises 3:
OpenMP Tutorial

Thanks to Larry Meadows, Mark Bull, Clay Breshears, Tim Mattson (Intel)

Introduction

• This set of slides supports a collection of exercises to be used
when learning OpenMP.

• scp the ex3.tar file downloaded from Moodle to your chosen
directory on the cluster, and extract the files from the archive

2

OpenMP Exercises

Topic Exercise concepts

I. OMP Intro hello_world Parallel regions

II. Creating threads Pi_spmd_simple Parallel, default data
environment, runtime library
calls

III. Synchronization Pi_spmd_final False sharing, critical, atomic

IV. Parallel loops Pi_loop, Matmul For, schedule, reduction,

V. ThreadPrivate Monte Carlo pi Thread safe libraries

VI. Data Environment Mandelbrot set area Data environment details,
software optimization

Compiler notes: Linux and OSX

• Linux and OS X with gcc:

> gcc -fopenmp foo.c

> export OMP_NUM_THREADS=4

OpenMP constructs used in these exercises

• #pragma omp parallel

• #pragma omp for

• #pragma omp critical

• #pragma omp atomic

• Data environment clauses
• private (variable_list)
• firstprivate (variable_list)
• lastprivate (variable_list)
• reduction(+:variable_list)

Exercise 1: Hello world
Verify that your OpenMP environment works

• Copy the file hello.c to file hello_par.c

• Modify hello_par.c to do the following:

• Write a multithreaded program that prints “hello world” with thread
numbers.

• e.g., "Hello World from Thread 0"

• Remember you can change number of threads by, e.g.,

export OMP_NUM_THREADS=16

• You can get the thread number with omp_get_thread_num()

• Compile via

gcc -fopenmp -o hello_par hello_par.c

Solution

7

Exercise 1: Hello world

#include <stdio.h>

#include <omp.h>

int main(){

#pragma omp parallel

{

int ID = omp_get_thread_num();

printf(“Hello World from thread %d\n”, ID);

}

return 0;

}

#include <stdio.h>

#include <omp.h>

int main(){

#pragma omp parallel

printf(“Hello World from thread %d\n”, omp_get_thread_num());

return 0;

}

OpenMP Exercises

Topic Exercise concepts

I. OMP Intro hello_world Parallel regions

II. Creating threads Pi_spmd_simple Parallel, default data
environment, runtime library
calls

III. Synchronization Pi_spmd_final False sharing, critical, atomic

IV. Parallel loops Pi_loop, Matmul For, schedule, reduction,

V. ThreadPrivate Monte Carlo pi Thread safe libraries

VI. Data Environment Mandelbrot set area Data environment details,
software optimization

Exercises 2 to 4: Numerical Integration

Mathematically, we know that:

We can approximate the integral as a sum
of rectangles:

Where each rectangle has width 𝑥 and
height 𝐹 𝑥𝑖 at the middle of interval 𝑖.

4.0

2.0

1.0

X
0.0

න

0

1
4.0

1 + 𝑥2
𝑑𝑥 = 𝜋

෍

𝑖=0

𝑁

𝐹 𝑥𝑖 Δx ≈ 𝜋

Exercises 2 to 4: Serial PI Program

static long num_steps = 100000;

double step;

int main ()

{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

for (i=0; i< num_steps; i++)

{

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

}

See the file pi.c

The SPMD pattern

• The most common approach for parallel algorithms is the SPMD or Single
Program Multiple Data pattern.

• Each thread runs the same program (Single Program), but using the thread
ID, they operate on different data (Multiple Data) or take slightly different
paths through the code.

• In OpenMP this means:
• A parallel region “near the top of the code”.
• Get thread ID and num_threads.
• Use them to split up loops and select different blocks of data to work on.

Exercise 2

• We look at a parallel version of the pi program that uses a
parallel construct in a file called pi_spmd_simple.c

• Pay close attention to shared versus private variables.

• In addition to a parallel construct, the program uses the
runtime library routines

• int omp_get_num_threads();

• int omp_get_thread_num();

• double omp_get_wtime();

• omp_set_num_threads(int);

Time in Seconds since a fixed

point in the past

Thread ID or rank

Number of threads in the

team

SPMD Example
• We will first only the "#pragma omp

parallel" construct

• (pretend we don't know about
"parallel for" construct yet)

• We will first manually define the number
of threads we use, e.g.,

#define NUM_THREADS=2

(not good practice in general)

• We will manually split up the loop based
on how many threads there are

• One way is to do a cyclic
distribution of the steps

4.0

2.0

1.0

X
0.0

Serial PI Program

static long num_steps = 100000;

double step;

int main ()

{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

for (i=0; i< num_steps; i++)

{

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

}

We want to parallelize
this loop, so that
num_steps is distributed
amongst threads in a
cyclic distribution

Serial PI Program

static long num_steps = 100000;

double step;

int main ()

{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

for (i=0; i< num_steps; i++)

{

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

}

We want to parallelize
this loop, so that
num_steps is distributed
amongst threads in a
cyclic distribution

Can you see any potential race conditions?
(if every thread is using the same "x" and "sum", what could happen?)

Serial PI Program

for (i=0; i< num_steps; i++)

{

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

Thread 1: (i = 0, 2) Thread 2: (i = 1, 3)

x= 0.0
sum = 0.0

Serial PI Program

for (i=0; i< num_steps; i++)

{

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

Thread 1: (i = 0, 2)
x = (0+.5)*(.25)=.125

Thread 2: (i = 1, 3)

x= .125
sum = 0.0

Serial PI Program

for (i=0; i< num_steps; i++)

{

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

Thread 1: (i = 0, 2)
x = (0+.5)*(.25)=.125

Thread 2: (i = 1, 3)

x = (1+.5)(.25) = .375

x= .375
sum = 0.0

Serial PI Program

for (i=0; i< num_steps; i++)

{

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

Thread 1: (i = 0, 2)
x = (0+.5)*(.25)=.125

sum+4.0/(1.0+x*x)
= 0 + 4.0/(1.0+.375*.375)=3.507

Thread 2: (i = 1, 3)

x = (1+.5)(.25) = .375

x= .375
sum = 0.0

Serial PI Program

for (i=0; i< num_steps; i++)

{

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

Thread 1: (i = 0, 2)
x = (0+.5)*(.25)=.125

sum+4.0/(1.0+x*x)
= 0 + 4.0/(1.0+.375*.375)=3.507

Thread 2: (i = 1, 3)

x = (1+.5)(.25) = .375

sum+4.0/(1.0+x*x)
= 0 + 4.0/(1.0+.375*.375)=3.507

x= .375
sum = 0.0

Serial PI Program

for (i=0; i< num_steps; i++)

{

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

Thread 1: (i = 0, 2)
x = (0+.5)*(.25)=.125

sum+4.0/(1.0+x*x)
= 0 + 4.0/(1.0+.375*.375)=3.507

sum = 3.507

Thread 2: (i = 1, 3)

x = (1+.5)(.25) = .375

sum+4.0/(1.0+x*x)
= 0 + 4.0/(1.0+.375*.375)=3.507

x= .375
sum = 3.507

Serial PI Program

for (i=0; i< num_steps; i++)

{

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

Thread 1: (i = 0, 2)
x = (0+.5)*(.25)=.125

sum+4.0/(1.0+x*x)
= 0 + 4.0/(1.0+.375*.375)=3.507

sum = 3.507

Thread 2: (i = 1, 3)

x = (1+.5)(.25) = .375

sum+4.0/(1.0+x*x)
= 0 + 4.0/(1.0+.375*.375)=3.507

sum = 3.507

x= .375
sum = 3.507

#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2

void main ()

{

int nthreads; double pi, sum[NUM_THREADS];

step = 1.0/(double) num_steps;

omp_set_num_threads(NUM_THREADS);

#pragma omp parallel

{

int i, id, nthrds;

double x;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

if (id == 0) nthreads = nthrds;

for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {

x = (i+0.5)*step;

sum[id] += 4.0/(1.0+x*x);

}

}

for(int j=0, pi=0.0;j<nthreads;j++){

pi += sum[j] * step;

}

}

Exercise 2: A simple SPMD pi program

Promote scalar to an array

dimensioned by number of

threads to avoid race

condition.

This is a common

trick in SPMD

programs to

create a cyclic

distribution of loop

iterations

Only one thread should copy the

number of threads to the global

value to make sure multiple threads

writing to the same address don’t

conflict.

x is local to

each thread

Exercise 2: A simple SPMD pi program
• Compile and run this program a number of times

• What do you observe?

OpenMP Exercises

Topic Exercise concepts

I. OMP Intro hello_world Parallel regions

II. Creating threads Pi_spmd_simple Parallel, default data
environment, runtime library
calls

III. Synchronization Pi_spmd_final False sharing, critical, atomic

IV. Parallel loops Pi_loop, Matmul For, schedule, reduction,

V. ThreadPrivate Monte Carlo pi Thread safe libraries

VI. Data Environment Mandelbrot set area Data environment details,
software optimization

False sharing
• If independent data elements happen to sit on the same cache line, each

update will cause the cache lines to “slosh back and forth” between threads.

• This is called “false sharing”.

• If you promote scalars to an array to support creation of an SPMD
program, the array elements are contiguous in memory and hence share
cache lines.

• Result … poor scalability

• Solution:

• When updates to an item are frequent, work with local copies of data
instead of an array indexed by the thread ID.

• Or pad arrays so elements you use are on distinct cache lines.

Example: Array Padding

#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2

#define PAD 8

void main ()

{

int nthreads; double pi, sum[NUM_THREADS][PAD];

step = 1.0/(double) num_steps;

omp_set_num_threads(NUM_THREADS);

#pragma omp parallel

{

int i, id, nthrds;

double x;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

if (id == 0) nthreads = nthrds;

for (i=id, sum[id][0]=0.0;i< num_steps; i=i+nthrds) {

x = (i+0.5)*step;

sum[id][0] += 4.0/(1.0+x*x);

}

}

for(int j=0, pi=0.0;j<nthreads;j++){

pi += sum[j][0] * step;

}

}

Assumes 64 byte
cache line size
(x86/x64
architectures)
-> Need to know
cache line size!

…must be a
better way

Synchronization Constructs
• Most common:

• Critical

• Atomic

• Barrier

Synchronization: Barrier
• Barrier: Each thread waits until all threads arrive.

#pragma omp parallel

{

int id=omp_get_thread_num();

A[id] = big_calc1(id);

#pragma omp barrier

B[id] = big_calc2(id, A);

}

Synchronization: Critical
• Mutual exclusion: Only one thread at a time can enter a critical region.

float res;

#pragma omp parallel

{

float B; int i, id, nthrds;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

for(i=id;i<niters;i+=nthrds)

{

B = big_job();

#pragma omp critical

res += consume(B);

}

}

Threads wait their
turn – only one at
a time calls
consume()

Synchronization: Atomic
• Atomic provides mutual exclusion but only applies to the update of a

memory location (the update of X in the following example)

#pragma omp parallel

{

double tmp, B, X;

B = do_it();

tmp = something(B);

#pragma omp atomic

X += tmp;

}

The statements that
can go inside the
atomic are limited,
e.g.,
X++
X- -
X+=

See OpenMP
documentation for
complete list

Exercise 3
• Copy pi_spmd_simple.c to a new file called pi_spmd_final.c

• Now, parallelize the code in pi_spmd_final.c, the file to avoid false sharing
due to the sum array.

• sum will now be a variable local to each thread rather than a global
array

• Use synchronization to accumulate the local sums into shared pi
variable

• We should no longer need to hardcode NUM_THREADS (which we needed
to set the size of the sum array before).

#include <omp.h>

static long num_steps = 100000; double step;

void main ()

{

double pi; step = 1.0/(double) num_steps;

#pragma omp parallel

{

int i, id,nthrds; double x, sum;

sum = 0.0;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

for (i=id;i< num_steps; i=i+nthrds){

x = (i+0.5)*step;

sum += 4.0/(1.0+x*x);

}

#pragma omp critical

pi += sum * step;

}

}

Exercise 3: SPMD Pi without false sharing

Sum goes “out of scope” beyond the parallel

region … so you must sum it in here. Must

protect summation into pi in a critical region so

updates don’t conflict

No array, so

no false

sharing.

Create a scalar local to

each thread to

accumulate partial

sums.

#include <omp.h>

static long num_steps = 100000; double step;

void main ()

{

double pi; step = 1.0/(double) num_steps;

#pragma omp parallel

{

int i, id,nthrds; double x, sum;

sum = 0.0;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

for (i=id;i< num_steps; i=i+nthrds){

x = (i+0.5)*step;

sum += 4.0/(1.0+x*x);

#pragma omp critical

pi += sum * step;

}

}

}

Be careful where you put a critical section!

What would happen if you put the

critical section inside the loop?

Critical vs. Atomic
• An OpenMP critical section is completely general - it can surround any

arbitrary block of code

• The cost is that there is a significant overhead every time a thread
enters and exits the critical section

• Requires OS calls

• Atomic operations have much lower overhead

• Can take advantage of atomic hardware instructions!

#include <omp.h>

static long num_steps = 100000; double step;

void main ()

{

double pi; step = 1.0/(double) num_steps;

#pragma omp parallel

{

int i, id,nthrds; double x, sum;

sum = 0.0;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

for (i=id;i< num_steps; i=i+nthrds){

x = (i+0.5)*step;

sum += 4.0/(1.0+x*x);

}

sum = sum * step;

#pragma omp atomic

pi += sum;

}

}

Exercise 3: SPMD Pi without false sharing - Improved

Change the update to just use a += operation.

Now we can use atomic!

OpenMP Exercises

Topic Exercise concepts

I. OMP Intro hello_world Parallel regions

II. Creating threads Pi_spmd_simple Parallel, default data
environment, runtime library
calls

III. Synchronization Pi_spmd_final False sharing, critical, atomic

IV. Parallel loops Pi_loop, Matmul For, schedule, reduction,

V. ThreadPrivate Monte Carlo pi Thread safe libraries

VI. Data Environment Mandelbrot set area Data environment details,
software optimization

Exercise 4: Pi with loops
• Our solution is pi_spmd_final.c works well, but there is an even simpler

way...

• Try it yourself:

• Copy the serial pi.c program to a file called pi_loop.c

• Edit this file to parallelize it with a loop construct

• Your goal is to minimize the number of changes made to the serial
program.

• Look at your OpenMP cheat sheets

Solution

41

Exercise 4: solution

42

#include <omp.h>

static long num_steps = 100000; double step;

void main()

{ int i;

double pi, sum = 0.0;

step = 1.0/(double) num_steps;

#pragma omp parallel

{

double x;

#pragma omp for reduction(+:sum)

for (i=0;i< num_steps; i++){

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

}

pi = step * sum;

}

Exercise 4: better solution

43

#include <omp.h>

static long num_steps = 100000; double step;

int main ()

{

int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

#pragma omp parallel for private(x) reduction(+:sum)

for (i=0;i< num_steps; i++){

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

} Note: we created a parallel

program without changing

any code and by adding 1

simple lines of text!

i private

by default

For good OpenMP

implementations,

reduction is more

scalable than critical.

Using data environment clauses so parallelization only requires changes to the
pragma

Exercise 4b: Optimizing loops
• Copy the sequential file matmul.c into matmul_par.c

• Parallelize the matrix multiplication program by adding a single OpenMP
pragma

Solution

45

Matrix multiplication

#pragma omp parallel for private(tmp, j, k)

for (i=0; i<Ndim; i++){

for (j=0; j<Mdim; j++){

tmp = 0.0;

for(k=0;k<Pdim;k++){

/* C(i,j) = sum(over k) A(i,k) * B(k,j) */

tmp += *(A+(i*Ndim+k)) * *(B+(k*Pdim+j));

}

*(C+(i*Ndim+j)) = tmp;

}

}
You must declare tmp, j, and k
private! (i is private by default).
Otherwise you will see errors in your
matrix multiplication!

Matrix Multiplication
• Is it better to parallelize the outermost loop (over i)? Or one of the other

loops?

OpenMP Exercises

Topic Exercise concepts

I. OMP Intro hello_world Parallel regions

II. Creating threads Pi_spmd_simple Parallel, default data
environment, runtime library
calls

III. Synchronization Pi_spmd_final False sharing, critical, atomic

IV. Parallel loops Pi_loop, Matmul For, schedule, reduction,

V. ThreadPrivate Monte Carlo pi Thread safe libraries

VI. Data Environment Mandelbrot set area Data environment details,
software optimization

49

Exercise 5: Monte Carlo Calculations
Using Random numbers to solve tough problems

• Sample a problem domain to estimate areas, compute probabilities,
find optimal values, etc.

• Example: Computing π with a digital dart board:

• Throw darts at the circle/square.

• Chance of falling in circle is proportional
to ratio of areas:

𝐴𝑐 = 𝑟2𝜋

𝐴𝑠 = 2𝑟 2 = 4𝑟2

𝑃 =
𝐴𝑐

𝐴𝑠
=

𝜋

4

• Compute 𝜋 by randomly choosing points,
count the fraction that falls in the circle,
compute pi.

2𝑟

𝑁 = 10 𝜋 = 2.8
𝑁 = 100 𝜋 = 3.16
𝑁 = 1000 𝜋 = 3.148

Exercise 5

• There are three files for this exercise
• pi_mc.c: the monte carlo method pi program
• random.c: a simple random number generator
• random.h: include file for random number generator

• Create a parallel version of the pi_mc.c program called
pi_mc_par.c

compiling:

gcc -fopenmp -c pi_mc_par.c

gcc -fopenmp -c random.c

gcc -fopenmp –lm -o pi_mc_par random.o pi_mc_par.o

Solution

51

Parallel Programmers love Monte Carlo algorithms

#include <omp.h>

static long num_trials = 10000;

int main ()

{

long i; long Ncirc = 0; double pi, x, y;

double r = 1.0; // radius of circle. Side of square is 2*r

seed(-r, r); // The circle and square are centered at the origin

#pragma omp parallel for private (x, y) reduction (+:Ncirc)

for(i=0;i<num_trials; i++)

{

x = random(); y = random();

if (x*x + y*y) <= r*r) Ncirc++;

}

pi = 4.0 * ((double)Ncirc/(double)num_trials);

printf("\n %d trials, pi is %f \n",num_trials, pi);

}

Embarrassingly parallel: the parallelism is
so easy its embarrassing.

Add two lines and you have a parallel
program.

OpenMP Exercises

Topic Exercise concepts

I. OMP Intro hello_world Parallel regions

II. Creating threads Pi_spmd_simple Parallel, default data
environment, runtime library
calls

III. Synchronization Pi_spmd_final False sharing, critical, atomic

IV. Parallel loops Pi_loop, Matmul For, schedule, reduction,

V. ThreadPrivate Monte Carlo pi Thread safe libraries

VI. Data Environment Mandelbrot set area Data environment details,
software optimization

Exercise 6: Mandelbrot set area
• The supplied program (mandel.c) computes the area of a Mandelbrot set.

• See, e.g., http://mathworld.wolfram.com/MandelbrotSet.html

• The program has been parallelized with OpenMP, but we were lazy and
didn’t do it right.

• Try to run the program - get a different incorrect answer each
time … there is a race condition!!!!

• Find and fix the errors

http://mathworld.wolfram.com/MandelbrotSet.html

Solution

58

Area of a Mandelbrot set

• A solution is in the file sols/mandel_par.c

• Errors you could have found:

• eps is private but uninitialized. Two solutions:

• It’s read-only so you can make it shared.

• Make it firstprivate

• The loop index variable j is shared by default. Make it private.

• Updates to "numoutside" are a race. Protect with an atomic.

59

Debugging parallel programs

• Find tools that work with your environment and learn to use them. A
good parallel debugger can make a huge difference.

• But parallel debuggers are not portable and you will assuredly need to
debug “by hand” at some point.

• There are tricks to help you. The most important is to use the
default(none) pragma

#pragma omp parallel for default(none) private(c, eps)

for (i=0; i<NPOINTS; i++) {

for (j=0; j<NPOINTS; j++) {

c.r = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;

c.i = 1.125*(double)(j)/(double)(NPOINTS)+eps;

testpoint();

}

}

}

Using
default(none)
generates a
compiler error
that j is
unspecified.

