Exercises 3:

OpenMP Tutorial

Thanks to Larry Meadows, Mark Bull, Clay Breshears, Tim Mattson (Intel)

Introduction

* This set of slides supports a collection of exercises to be used
when learning OpenMP.

* scp the ex3.tar file downloaded from Moodle to your chosen
directory on the cluster, and extract the files from the archive

OpenMP Exercises

—

Topic

Exercise

concepts

. OMP Intro

hello_world

Parallel regions

ll. Creating threads

Pi_spmd_simple

Parallel, default data
environment, runtime library
calls

lll. Synchronization

Pi_spmd_final

False sharing, critical, atomic

V. Parallel loops

Pi_loop, Matmul

For, schedule, reduction,

V. ThreadPrivate

Monte Carlo pi

Thread safe libraries

VI. Data Environment

Mandelbrot set area

Data environment details,
software optimization

Compiler notes: Linux and OSX

* Linux and OS X with gcc:
> gcc -fopenmp foo.c
> export OMP NUM THREADS=4

OpenMP constructs used in these exercises

* #pragma omp parallel
e #pragma omp for

* #pragma omp critical
* #pragma omp atomic

e Data environment clauses

* private (variable list)

* firstprivate (variable list)
* lastprivate (variable list)
* reduction(+:variable list)

Exercise 1: Hello world
Verity that your OpenMP environment works

* Copy the file hello.c to file hello par.c

Modify hello par.c to do the following:

* Write a multithreaded program that prints “hello world” with thread
numbers.

* e.g., "Hello World from Thread 0"

Remember you can change number of threads by, e.g.,

export OMP NUM THREADS=16

You can get the thread number with omp get thread num()

Compile via

gcc —fopenmp -o hello par hello par.c

Solution

Exercise 1: Hello world

#include <stdio.h>
#include <omp.h>
int main () {
#fpragma omp parallel
{
int ID = omp get thread num();
printf (“Hello World from thread %d\n”, 1ID);
}

return 0;

#include <stdio.h>
#include <omp.h>
int main () {
fpragma omp parallel

printf (“Hello World from thread %d\n”, omp get thread num());
return 0;

OpenMP Exercises

Topic

Exercise

concepts

. OMP Intro

hello_world

Parallel regions

: ll. Creating threads

Pi_spmd_simple

Parallel, default data
environment, runtime library
calls

lll. Synchronization

Pi_spmd_final

False sharing, critical, atomic

V. Parallel loops

Pi_loop, Matmul

For, schedule, reduction,

V. ThreadPrivate

Monte Carlo pi

Thread safe libraries

VI. Data Environment

Mandelbrot set area

Data environment details,
software optimization

Exercises 2 to 4: Numerical Integration

Mathematically, we know that:

1

4.0 S 4.0 dy =
SN (1 +x2)
\\ 0
N,
N
— \ We can approximate the integral as a sum
AN
x of rectangles:
= 20
S N
v
.. S P
8 i=0
L
Where each rectangle has width Ax and

0.0 1.0 height F(x;) at the middle of interval i.

Exercises 2 to 4: Serial Pl Program

static long num steps = 100000;

double step;

int main ()

{ int i; double x, pi, sum = 0.0;

step = 1.0/ (double) num steps;

for (i=0; i< num steps; i++)
{
x = (1+0.5) *step;
sum = sum + 4.0/ (1.0+x*x);
}
Pl = step * sum;

See the file pi.c

The SPMD pattern

* The most common approach for parallel algorithms is the SPMD or Single
Program Multiple Data pattern.

 Each thread runs the same program (Single Program), but using the thread

ID, they operate on different data (Multiple Data) or take slightly different
paths through the code.

* In OpenMP this means:

A parallel region “near the top of the code”.
* Get thread ID and num _threads.

* Use them to split up loops and select different blocks of data to work on.

Exercise 2

* We look at a parallel version of the pi program that uses a
parallel construct in a file called pi spmd simple.c

* Pay close attention to shared versus private variables.

* In addition to a parallel construct, the program uses the
runtime library routines

* int omp get num threads () ;—-_
* int omp get thread num(); team

* double omp get wtime () ; \

. omp_set_nug_th;eads (int) ;

Time in Seconds since a fixed
point in the past

SPMD Example

* We will first only the "#pragma omp
parallel" construct

* (pretend we don't know about
"parallel for" construct yet)

4.0

* We will first manually define the number
of threads we use, e.g.,

#define NUM THREADS=2

4.0/(1+x2)

(not good practice in general)

* We will manually split up the loop based
on how many threads there are

* One way is to do a cyclic
distribution of the steps

F(x)

0.0

Serial Pl Program

We want to parallelize
static long num steps = 100000; this loop, so that
double step; num_ steps is distributed
int main () amongst threads in a
{ int 1i; double x, pi, sum = 0.0; | cyclic distribution

step = 1.0/ (double) num steps;

//>for (1=0; 1< num steps; 1++) \\
{

x = (1+0.5) *step;
sum = sum + 4.0/ (1.0+x*x) ;

}

} \\;pi = step * sum; //

Serial Pl Program

We want to parallelize
static long num steps = 100000; this loop, so that
double step; num_ steps is distributed
int main () amongst threads in a
{ int 1i; double x, pi, sum = 0.0; | cyclic distribution

step = 1.0/ (double) num steps;

//>for (1=0; 1< num steps; 1++) \\
{

x = (1+0.5) *step;
sum = sum + 4.0/ (1.0+x*x) ;

}

} \\;pi = step * sum; //

Can you see any potential race conditions?
(if every thread is using the same "x" and "sum", what could happen?)

Serial Pl Program

for (1=0; i< num steps; i++)

{ - x= 0.0
x = (1+0.5) *step; sum =0.0
sum = sum + 4.0/ (1.0+x*x);

}

pli = step * sum;

Thread 1: (i=0, 2) Thread 2: (i=1, 3)

Serial Pl Program

for (1=0; i< num steps; i++)

{ o X= 125
x = (1+0.5) *step; sum = 0.0
sum = sum + 4.0/ (1.0+x*x);

}

pli = step * sum;

Thread 1: (i=0, 2) Thread 2: (i=1, 3)

x = (0+.5)*(.25)=.125

Serial Pl Program

for (1=0; i< num steps; i++)

{ o X= 375
x = (1+0.5) *step; sum = 0.0
sum = sum + 4.0/ (1.0+x*x);

}

pli = step * sum;

Thread 1: (i=0, 2) Thread 2: (i=1, 3)

x = (0+.5)*(.25)=.125 ———
—> x = (1+.5)(.25) = .375

Serial Pl Program

for (1=0; i< num steps; i++)

{ o X= 375
x = (1+0.5) *step; sum = 0.0
sum = sum + 4.0/ (1.0+x*x);

}

pli = step * sum;

Thread 1: (i=0, 2) Thread 2: (i=1, 3)

x = (0+.5)*(.25)=.125
| x=(1+.5)(.25) = .375

sum+4.0/(1.0+x*x) <
=0 +4.0/(1.0+.375*.375)=3.507

Serial Pl Program

for (1=0; i< num steps; i++)

{ o X= 375
x = (1+0.5) *step; sum = 0.0
sum = sum + 4.0/ (1.0+x*x);

}

pli = step * sum;

Thread 1: (i=0, 2) Thread 2: (i=1, 3)

x = (0+.5)*(.25)=.125
x = (1+.5)(.25) = .375

sum+4.0/(1.0+x*x) sum+4.0/(1.0+x*x)
= 0 + 4.0/(1.0+.375*.375)=3.507 =0 + 4.0/(1.0+.375*.375)=3.507

Serial Pl Program

for (1=0; i< num steps; i++)

{ o X= 375
x = (1+0.5) *step; sum = 3.507
sum = sum + 4.0/ (1.0+x*x);

}

pli = step * sum;

Thread 1: (i=0, 2) Thread 2: (i=1, 3)

x = (0+.5)*(.25)=.125
x = (1+.5)(.25) = .375

sum+4.0/(1.0+x*x) sum+4.0/(1.0+x*x)
=0+4.0/(1.0+375*375)=3.507 | | =0+4.0/(L0+375%375)=3.507

sum = 3.507 /

Serial Pl Program

for (1=0; i< num steps; i++)

{ o X= 375
x = (1+0.5) *step; sum = 3.507
sum = sum + 4.0/ (1.0+x*x);

}

pli = step * sum;

Thread 1: (i=0, 2) Thread 2: (i=1, 3)

x = (0+.5)*(.25)=.125
x = (1+.5)(.25) = .375

sum+4.0/(1.0+x*x) sum+4.0/(1.0+x*x)
= 0 + 4.0/(1.0+.375*.375)=3.507 =0 + 4.0/(1.0+.375*.375)=3.507

sum = 3.507 —

sum = 3.507

Exercise 2: A simple SPMD pi program

#include <omp.h>

static long num steps = 100000; double step;
#define NUM THREADS 2
void main ()
{
int nthreads; double pi, sum[NUM THREADS]

step = 1.0/ (double) num steps;
omp set num threads (NUM THREADS) ;
fpragma omp parallel

{

int i, id, nthrds;
double x;
x is local to id = omp get thread num();
each thread nthrds = omp get num threads();
if (1d == 0) nthreads = nthrds;
for (i=id,
x = (1+0.5) *step;
sum[id] += 4.0/ (1.0+x*x);

}
for(int 3=0,
pi += sum[]]

pi=0.0;j<nthreads; j++) {
* step;

Promote scalar to an array
dimensioned by number of

threads to avoid race
condition.

Only one thread should copy the
number of threads to the global
value to make sure multiple threads
writing to the same address don’t
conflict.

sum[1d]=0.0;1< num steps; i=i+nthrds)

This is a common
trick in SPMD
programs to
create a cyclic
distribution of loop
iterations

Exercise 2: A simple SPMD pi program

* Compile and run this program a number of times

* What do you observe?

carson@r3d3:[~/HPC W22/ex3] ./pi_spmd _simple

Number of threads: 2

pi with 100000000 steps 1is 3.141593 in 1.227657 seconds
carson@r3d3:[~/HPC W22/ex3] ./pi_spmd_simple

Number of threads: 2

pi with 100000000 steps 1is 3.141593 in 1.384369 seconds
carson@r3d3:[~/HPC W22/ex3] ./pi_spmd _simple

Number of threads: 2

pi with 100000000 steps is 3.141593 in 0.660179 seconds
carson@r3d3:[~/HPC W22/ex3] ./pi_spmd_simple

Number of threads: 2

pi with 100000000 steps is 3.141593 in 1.242808 seconds

OpenMP Exercises

Topic

Exercise

concepts

. OMP Intro

hello_world

Parallel regions

ll. Creating threads

Pi_spmd_simple

Parallel, default data
environment, runtime library
calls

:> lll. Synchronization

Pi_spmd_final

False sharing, critical, atomic

V. Parallel loops

Pi_loop, Matmul

For, schedule, reduction,

V. ThreadPrivate

Monte Carlo pi

Thread safe libraries

VI. Data Environment

Mandelbrot set area

Data environment details,
software optimization

False sharing

* If independent data elements happen to sit on the same cache line, each
update will cause the cache lines to “slosh back and forth” between threads.

 This is called “false sharing”.

* If you promote scalars to an array to support creation of an SPMD
program, the array elements are contiguous in memory and hence share
cache lines.

* Result ... poor scalability

HW thrd. O HW thrd. 1 HW thrd. 2 HW thrd. 3

L1§ lines :LL, L1 :f%\k—'ﬂ |
1 1
i Sum[0]

um[0]) Sum[1] | Sum[2] | Sum[3] Sum[1] um@) Sum[3]
Core 0 Core 1

Shared last level cache and connection to I/O and DRAM

e Solution:

 When updates to an item are frequent, work with local copies of data
instead of an array indexed by the thread ID.

* Or pad arrays so elements you use are on distinct cache lines.

Example: Array Padding

#include <omp.h>

static long num steps = 100000; double step; Assumes 64 byte

#define NUM THREADS 2 cache line size

#define PAD 8 (x86/x64

void main () .

{ architectures)
int nthreads; double pi, sum[NUM THREADS] [PAD]; -> Need to know
step = 1.0/ (double) num steps; cache line sizel

omp set num threads (NUM THREADS) ;
#pragma omp parallel

{ ...must be a
int i, id, nthrds; better way
double x;
id = omp get thread num();
nthrds = omp get num threads();
if (id == 0) nthreads = nthrds;
for (i=id, sum[id][0]=0.0;1i< num steps; i=i+nthrds) {
x = (1+0.5) *step;

sum[id] [0] += 4.0/ (1.0+x*x);
}

for (int j=0, pi=0.0;j<nthreads;j++) {
pi += sum([J][0] * step;

Synchronization Constructs

* Most common:
e Critical
* Atomic

 Barrier

Synchronization: Barrier

e Barrier: Each thread waits until all threads arrive.

#pragma omp parallel
{

int 1d=omp get thread num();

Alid] = big calcl(1d);

fpragma omp barrier

big calc2(id, A);

Bl1d]

Synchronization: Critical

e Mutual exclusion: Only one thread at a time can enter a critical region.

float res;

#fpragma omp parallel

{
float B; int 1, 1d, nthrds;
id = omp get thread num();
nthrds = omp get num threads();

for (i=id;i<niters;i+=nthrds)

{ Threads wait their
o turn —only one at
B = big Job(); a time calls
#fpragma omp critical consume()

res += consume (B) ;

Synchronization: Atomic

» Atomic provides mutual exclusion but only applies to the update of a
memory location (the update of X in the following example)

#fpragma omp parallel
(The statements that
can go inside the

double tmp, B, X; atomic are limited,

B = do 1t(); e.g.,
tmp = something (B) ; X++
X- -
X+=
#pragma omp atomic
X += tmp;
} See OpenMP

documentation for
complete list

Exercise 3

* Copy pi_spmd simple.c to a new file called pi spmd final.c

* Now, parallelize the code in pi _spmd _final.c, the file to avoid false sharing
due to the sum array.
e sum will now be a variable local to each thread rather than a global
array
» Use synchronization to accumulate the local sums into shared pi
variable

* We should no longer need to hardcode NUM THREADS (which we needed
to set the size of the sum array before).

Exercise 3: SPMD Pi without false sharing

#include <omp.h>

static long num steps = 100000; double step;

void main ()

{ Create a scalar local to
double pi; step = 1.0/ (double) num steps; each thread to

accumulate partial
sums.

#fpragma omp parallel
{
int i, id,nthrds; double x, sum;
sum = 0.0;
id = omp get thread num();
nthrds = omp get num threads();
for (i=1d;i< num steps; i=i+nthrds) {

x = (i+0.5)*step; No array, so
sum += 4.0/ (1.04x%%) ; e no fa_llse
} sharing.

#pragma omp critical
pi += sum * step;

Sum goes “out of scope” beyond the parallel
region ... SO you must sum it in here. Must
protect summation into pi in a critical region so

updates don’t conflict

Be careful where you put a critical section!

#include <omp.h>
static long num steps = 100000; double step;
void main ()
{
double pi; step = 1.0/ (double) num steps;

#fpragma omp parallel

{
int i, id,nthrds; double x, sum;
sum = 0.0;
id = omp get thread num();

nthrds = omp get num threads();
for (i=1id;i< num steps; i=i+nthrds) {
x = (1i+0.5) *step;

sum += 4.0/ (1.04+x*x);

#pragma omp critical

pi += sum * step; ‘Q\\~

What would happen if you put the
critical section inside the loop?

Critical vs. Atomic

* An OpenMP critical section is completely general - it can surround any
arbitrary block of code

* The cost is that there is a significant overhead every time a thread
enters and exits the critical section

* Requires OS calls

» Atomic operations have much lower overhead

» Can take advantage of atomic hardware instructions!

Exercise 3: SPMD Pi without false sharing - Improved

#include <omp.h>
static long num steps = 100000; double step;
void main ()

{
double pi; step = 1.0/ (double) num steps;

#fpragma omp parallel
{
int i, id,nthrds; double x, sum;
sum = 0.0;
id = omp get thread num();
nthrds = omp get num threads();
for (i=1d;i< num steps; i=i+nthrds) {
x = (1i+0.5) *step;
sum += 4.0/ (1.0+x*x) ;
}
sum = sum * step;
#pragma omp atomic
pi += sum;
} Change the update to just use a += operation.

Now we can use atomic!

OpenMP Exercises

Topic

Exercise

concepts

. OMP Intro

hello_world

Parallel regions

ll. Creating threads

Pi_spmd_simple

Parallel, default data
environment, runtime library
calls

lll. Synchronization

Pi_spmd_final

False sharing, critical, atomic

|:> IV. Parallel loops

Pi_loop, Matmul

For, schedule, reduction,

V. ThreadPrivate

Monte Carlo pi

Thread safe libraries

VI. Data Environment

Mandelbrot set area

Data environment details,
software optimization

Exercise 4: Pi with loops

* Qur solution is pi__spmd final.c works well, but there is an even simpler
way...

* Try it yourself:
* Copy the serial pi.c program to a file called pi loop.c
 Edit this file to parallelize it with a loop construct

* Your goal is to minimize the number of changes made to the serial
program.

* Look at your OpenMP cheat sheets

Solution

Exercise 4: solution

#include <omp.h>
static long num steps = 100000; double step;
vold main ()
{ int 1i;
double pi, sum = 0.0;
step = 1.0/ (double) num steps;
fpragma omp parallel
{
double x;
#fpragma omp for reduction (+:sum)
for (1=0;1< num steps; 1++) {

x = (1+0.5) *step;
sum = sum + 4.0/ (1.0+x*x);
}
}
pli = step * sum;

Exercise 4: better solution

Using data environment clauses so parallelization only requires changes to the
pragma

#include <omp.h>
static long num steps = 100000; double step;

For good OpenMP

int main () implementations,

{

reduction Is more
scalable than critical.

int i; double x, pi, sum = 0.0;
step = 1.0/ (double) num steps; ‘(/
fprragma omp parallel for private (x) reduction (+:sum)
1=0;1< num steps; 1i++) {

| private x = (1i+0.5) *step;

by default sum = sum + 4.0/ (1.04+x*x);

step * sum;

Note: we created a parallel
program without changing

any code and by adding 1
simple lines of text!

Exercise 4b: Optimizing loops

* Copy the sequential file matmul.c into matmul par.c

» Parallelize the matrix multiplication program by adding a single OpenMP
pragma

Solution

Matrix multiplication

fpragma omp parallel for private (tmp, 7Jj, k)
for (1=0; i1<Ndim; i++) {
for (73=0; j<Mdim; J++) {
tmp = 0.0;
for (k=0; k<Pdim; k++) {
/* C(i,J) = sum(over k) A(i,k) * B(k,j) */
tmp += * (A+ (1i*Ndim+k)) * *(B+ (k*Pdim+7j));
}
*(C+ (1i*Ndim+7j)) = tmp;

You must declare tmp, j, and k
private! (i is private by default).
Otherwise you will see errors in your
matrix multiplication!

Matrix Multiplication

* |s it better to parallelize the outermost loop (over i)? Or one of the other
loops?

OpenMP Exercises

Topic

Exercise

concepts

. OMP Intro

hello_world

Parallel regions

ll. Creating threads

Pi_spmd_simple

Parallel, default data
environment, runtime library
calls

lll. Synchronization

Pi_spmd_final

False sharing, critical, atomic

V. Parallel loops

Pi_loop, Matmul

For, schedule, reduction,

:> V. ThreadPrivate

Monte Carlo pi

Thread safe libraries

VI. Data Environment

Mandelbrot set area

Data environment details,
software optimization

Exercise 5: Monte Carlo Calculations

Using Random numbers to solve tough problems

* Sample a problem domain to estimate areas, compute probabilities,
find optimal values, etc.

* Example: Computing T with a digital dart board:

2r - Throw darts at the circle/square.
Chance of falling in circle is proportional
o to ratio of areas:
o o A, =71°m
. A, = (2r)? = 4r?
° _Ac_T
° T Ag 4

- Compute m by randomly choosing points,
N =10 =28 count the fraction that falls in the circle,
N =100 m = 3.16 compute pi.

N = 1000 m = 3.148

Exercise 5

* There are three files for this exercise
* pi__mc.c: the monte carlo method pi program
* random.c: a simple random number generator
* random.h: include file for random number generator

* Create a parallel version of the pi mc.c program called
pl_mc_par.c

compiling:
gcc -fopenmp -c pi__mc_ par.c

gcc -fopenmp -c random.c

gcc -fopenmp —Im -0 pi__mc_par random.o pi_mc_par.o

Solution

Parallel Programmers love Monte Carlo algorithms

Embarrassingly parallel: the parallelism is

#include <omp.h> so easy its embarrassing.
static long num_trials = 10000; Add two lines and you have a parallel
int main () program.

{
long i; long Ncirc = 0; double pi, x, Vy;
double r = 1.0; // radius of circle. Side of square is 2*r
seed(-r, r); // The circle and square are centered at the origin
fpragma omp parallel for private (x, y) reduction (+:Ncirc)
for (1=0;i<num trials; 1i++)

{

X = random(); y = random() ;
if (x*x + y*y) <= r*r) Ncirc++;
}
pi = 4.0 * ((double)Ncirc/(double)num_trials);

printf ("\n %d trials, pi is %f \n",num trials, pi);

OpenMP Exercises

Topic

Exercise

concepts

. OMP Intro

hello_world

Parallel regions

ll. Creating threads

Pi_spmd_simple

Parallel, default data
environment, runtime library
calls

lll. Synchronization

Pi_spmd_final

False sharing, critical, atomic

V. Parallel loops

Pi_loop, Matmul

For, schedule, reduction,

V. ThreadPrivate

Monte Carlo pi

Thread safe libraries

:> VI. Data Environment

Mandelbrot set area

Data environment details,
software optimization

Exercise 6: Mandelbrot set area

* The supplied program (mandel.c) computes the area of a Mandelbrot set.
* See, e.g., http://mathworld.wolfram.com/MandelbrotSet.html

* The program has been parallelized with OpenMP, but we were lazy and
didn't do it right.
* Try to run the program - get a different incorrect answer each
time ... there is a race condition!!!!

* Find and fix the errors

http://mathworld.wolfram.com/MandelbrotSet.html

Solution

Area of a Mandelbrot set

* A solution is in the file sols/mandel par.c

* Errors you could have found:
* eps is private but uninitialized. Two solutions:
* |It's read-only so you can make it shared.
* Make it firstprivate
* The loop index variable j is shared by default. Make it private.

* Updates to "numoutside" are a race. Protect with an atomic.

Debugging parallel programs

* Find tools that work with your environment and learn to use them. A

good parallel debugger can make a huge difference.

* But parallel debuggers are not portable and you will assuredly need to

debug “by hand” at some point.

* There are tricks to help you. The most important is to use the

default(none) pragma

fpragma omp parallel for default (none) private(c, eps)
for (i=0; 1i<NPOINTS; i++) {
for (3=0; J<NPOINTS; J++)
c.r = =2.0+2.5* (double) (
c.i = 1.125*(double) (J)/
testpoint () ;
}

{
i)/ (double) (NPOINTS) +eps;
(double) (NPOINTS) +eps;

Using
default(none)
generates a
compiler error
thatj is
unspecified.

