
Lecture 3:
Parallel Architectures and

Shared Memory Programming

1

Part I:
Parallel Machines and
Programming Models

2

• Overview of programming models, APIs, and machines*

• Programming models:

• Shared memory

• Shared address space

• Message passing/distributed memory

• Data parallel

• Hybrid

• *Note: Parallel machine may or may not be tightly coupled to
programming model

• Historically, tight coupling

• Today, portability is important

Outline

3

A generic parallel architecture

Proc

Interconnection Network

•Where is the memory physically located?
• Is it connected directly to processors?
•What is the connectivity of the network?

Memory

Proc
ProcProc

Proc Proc

MemoryMemory
Memory Memory

4

Parallel Programming Models

• Programming model is made up of the languages and libraries that
create an abstract view of the machine

• Control

• How is parallelism created?

• What orderings exist between operations?

• Data

• What data is private vs. shared?

• How is logically shared data accessed or communicated?

• Synchronization

• What operations can be used to coordinate parallelism?

• What are the atomic (indivisible) operations?

• Cost

• How do we account for the cost of each of the above?

5

Simple Example

• Consider applying a function 𝑓 to the elements of an array 𝐴
and then computing its sum:

෍

𝑖=0

𝑛−1

𝑓 𝐴 𝑖

• Questions:
• Where does 𝐴 live? All in single memory? Partitioned?
• What work will be done by each processors?
• They need to coordinate to get a single result, how?

𝐴:

𝑓𝑨:
𝑓

𝑠𝑢𝑚

𝐴 = array of all data
𝑓𝐴 = 𝑓(𝐴)
𝑠 = 𝑠𝑢𝑚(𝑓𝐴)

𝑠:

"map"

"reduce"

6

Programming Model 1: Shared Memory

• Program is a collection of threads of control.

• Each thread has a set of private variables, e.g., local stack variables

• Also a set of shared variables, e.g., static variables, shared common
blocks, or global heap.

• Threads communicate implicitly by writing and reading shared
variables.

• Threads coordinate by synchronizing on shared variables

y = ..s ...

PnP1P0

s
s = ...

Shared memory

i: 2 i: 5 Private

memory

i: 8

7

8

Typical Shared Memory Machine Model

P1

bus

$

memory

• Processors all connected to a large shared memory.
• Typically called Symmetric Multiprocessors (SMPs)
• SGI, Sun, HP, Intel, AMD, IBM SMPs
• Multicore chips, except that all caches are shared

• Advantage: uniform memory access (UMA)

• Cost: much cheaper to access data in cache than main memory

• Difficulty scaling to large numbers of processors
• <= 32 processors typical

P2

$

Pn

$

Note: $ = cache shared $

Simple Example

• Shared memory strategy:

• small number 𝑝 ≪ 𝑛 = size(𝐴) processors

• attached to single memory

• Parallel Decomposition:

• Each evaluation of 𝑓 and each partial sum is a task.

• Assign 𝑛/𝑝 numbers to each of 𝑝 procs

• Each computes independent “private” results and partial
sum.

• Collect the 𝑝 partial sums and compute a global sum.

Two Classes of Data:

• Logically Shared

• e.g., original n numbers, the global sum

• Logically Private

• e.g., the individual function evaluations

9

෍

𝑖=0

𝑛−1

𝑓 𝐴 𝑖

Shared Memory "Code" for Computing a Sum

Thread 1

for i = 0, n/2-1

s = s + f(A[i])

Thread 2

for i = n/2, n-1

s = s + f(A[i])

static int s = 0;

• What is the problem with this program?

• A race condition or data race occurs when:

- Two processors (or two threads) access the
same variable, and at least one does a write.

- The accesses are concurrent (not
synchronized) so they could happen
simultaneously

fork(sum(a[0:n/2-1]),

sum(a[n/2,n-1]));

read s (s=0)

read s (s=0)

write
s=s+1=1

read s (s=1)

write
s=s+1=1

T1 T2

10

Shared Memory "Code" for Computing a Sum

Thread 1

….

compute f([A[i]) and put in reg0

reg1 = s

reg1 = reg1 + reg0

s = reg1

…

Thread 2

…

compute f([A[i]) and put in reg0

reg1 = s

reg1 = reg1 + reg0

s = reg1

…

static int s = 0;

• Assume 𝐴 = [3,5], 𝑓 𝑥 = 𝑥2, and 𝑠 = 0 initially

• For this program to work, 𝑠 should be 32 + 52 = 34 at the end

• but it may be 34, 9, or 25

• The atomic operations are reads and writes

• += operation is not atomic

• All computations happen in (private) registers

9 25
0 0
9 25

259

3 5𝐴 = 𝑓 𝑥 = 𝑥2

11

Improved Code for Computing a Sum

Thread 1

local_s1= 0

for i = 0, n/2-1

local_s1 = local_s1 + f(A[i])

s = s + local_s1

Thread 2

local_s2 = 0

for i = n/2, n-1

local_s2= local_s2 + f(A[i])

s = s +local_s2

static int s = 0;

• Most computation is on private variables

• Sharing frequency is also reduced, which might improve speed

• But there is still a race condition on the update of shared s

• The race condition can be fixed by adding locks (only one
thread can hold a lock at a time; others wait for it)

static lock lk;

lock(lk);

unlock(lk);

lock(lk);

unlock(lk);

Why not do lock
Inside loop?

12

Another Machine Model: Multithreaded Processor

• Multiple thread “contexts” without full processors

• Memory and some other state is shared

• Sun Niagra processor (for servers)

• Up to 64 threads all running simultaneously (8 threads x 8 cores)

• In addition to sharing memory, they share floating point units

• Why? Switch between threads for long-latency memory operations

• Cray MTA and Eldorado processors (for HPC)

Memory

shared $, shared floating point units, etc.

T0 T1 Tn

13

Another Machine Model: Distributed Shared Memory

• Memory is logically shared, but physically distributed

• Any processor can access any address in memory

• Cache lines (or pages) are passed around machine

• SGI was canonical example (+ research machines)

• Scaled to 512 procs (SGI Altix (Columbia) at NASA/Ames)

• Limitation is cache coherency protocols – how to keep cached copies of
the same address consistent

P1

network

$

memory

P2

$

Pn

$

memory memory

Cache lines (pages)
must be large to
amortize overhead
➔

locality still critical to
performance

14

Shared Memory Programming APIs

• POSIX threads (pthreads)

• C library

• allows a program to control multiple different flows of work
(threads) that overlap in time

• functions:

• Thread management - creating, joining threads etc.

• Mutexes

• Synchronization between threads using read/write locks
and barriers

• Intel TBB (Thread Building Blocks)

15

Shared Memory Programming APIs

• OpenMP (http://www.openmp.org/)

• supports multi-platform shared-memory parallel programming in
C/C++ and Fortran.

#include <stdio.h>

#include <omp.h>

int main(void)

{

#pragma omp parallel

printf("Hello, world.\n");

return 0;

}

• portable, scalable model with a
simple and flexible interface

• section of code that is meant to
run in parallel is marked
accordingly, with a compiler
directive ("pragma")

16

Programming Model 2: Message Passing

• Program consists of a collection of named processes.

• Usually fixed at program startup time

• Thread of control plus local address space -- NO shared data.

• Logically shared data is partitioned over local processes.

• Processes communicate by explicit send/receive pairs

• Coordination is implicit in every communication event.

• MPI (Message Passing Interface) is the most commonly used SW

PnP1P0

y = … s ...

s: 12

i: 2

Private

memory

s: 14

i: 3

s: 11

i: 1

Network

receive Pn,s
send P1,s

17

Typical Distributed Memory Machine Model

• PC Clusters (like Karlín cluster)

• Most or all of the Top500 are distributed memory machines, but
the nodes are SMPs

• Each processor has its own memory and cache but cannot directly
access another processor's memory.

• Each "node" has a Network Interface (NI) for all communication
and synchronization.

interconnect

P0

memory

NI

. . .

P1

memory

NI Pn

memory

NI

18

Computing 𝑠 = 𝑓(𝐴[1]) + 𝑓(𝐴[2]) on each processor

• First possible solution – what could go wrong?

Processor 1

xlocal = f(A[1])

send xlocal, proc2

receive xremote, proc2

s = xlocal + xremote

Processor 2

xlocal = f(A[2])

receive xremote, proc1

send xlocal, proc1

s = xlocal + xremote

• Second possible solution

Processor 1

xlocal = f(A[1])

send xlocal, proc2

receive xremote, proc2

s = xlocal + xremote

Processor 2

xlocal = f(A[2])

send xlocal, proc1

receive xremote, proc1

s = xlocal + xremote

• If send/receive acts like the (old) telephone system? The post office?

• What if there are more than 2 processors?

19

MPI has become the de facto standard for parallel computing
using message passing (www.mpi-forum.org)

Pros and Cons of standards

• MPI created finally a standard for applications development
in the HPC community → portability

• The MPI standard is a least common denominator building on mid-
80s technology, so may discourage innovation

Programming Model reflects hardware!

“I am not sure how I will program a Petaflops computer,
but I am sure that I will need MPI somewhere”

– Horst Simon 2001

MPI – the de facto standard

20

Message Passing Interface (MPI)

• MPI Standard defines syntax and semantics of a core of library
routines in C, C++, and Fortran

• Many implementations exist, many open source (Open MPI on
Karlín cluster)

• Both "point to point" and "collective" communication supported

• Point to point: communication between two specific processes
(e.g., proc. 1 sends a message to proc. 2, uses MPI_Send(),
MPI_Recv())

• Collectives: communication among all processes (e.g.,
MPI_Reduce())

• Bindings available in higher level languages (e.g., python
implementations of MPI include pyMPI, mpi4py, pypar, MYMPI,
etc.)

21

MPI Collectives

AP0

P1

P2

P3

AP0

P1

P2

P3

A

A

A

Broadcast

A B C DP0

P1

P2

P3

AP0

P1

P2

P3

B

C

D

Scatter

Gather

22

AP0

BP1

CP2

DP3

A B C DP0

P1

P2

P3

A B C D

A B C D

A B C D

Allgather

A0 A1 A2 A3P0

B0 B1 B2 B3P1

C0 C1 C2 C3P2

D0 D1 D2 D3P3

A0 B0 C0 D0P0

P1

P2

P3

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

Alltoall

MPI Collectives

23

AP0

BP1

CP2

DP3

P0

P1

P2

P3

Reduce

A+B+C+D

AP0

BP1

CP2

DP3

P0

P1

P2

P3

Allreduce

A+B+C+D

A+B+C+D

A+B+C+D

A+B+C+D

AP0

BP1

CP2

DP3

P0

P1

P2

P3

Scan

A

A+B

A+B+C

A+B+C+D

MPI Collectives

24

Programming Model 2a: Global Address Space

• Program consists of a collection of named threads.

• Usually fixed at program startup time

• Local and shared data, as in shared memory model

• But, shared data is partitioned over local processes

• Cost models says remote data is expensive

• Examples: UPC, Titanium, Co-Array Fortran

• Global Address Space programming is an intermediate point between
message passing and shared memory

PnP1P0 s[myThread] = ...

y = …s[i] ...

i: 1 i: 5 Private

memory

Shared memory

i: 8

s[0]: 26 s[1]: 32 s[n]: 27

25

Typical Global Address Space Machine

• The network interface supports RDMA (Remote Direct Memory Access)

• NI can directly access memory without interrupting the CPU

• One processor can read/write memory with one-sided
operations (put/get)

• Not just a load/store as on a shared memory machine

• Continue computing while waiting for memory op to finish

• Remote data is typically not cached locally

Global address
space may be
supported in
varying degrees

26

interconnect

P0

memory

NI

. . .

P1

memory

NI Pn

memory

NI

Programming Model 3: Data Parallel

• Single thread of control consisting of parallel operations.

• Parallel operations applied to all (or a defined subset) of a data
structure, usually an array

• Communication is implicit in parallel operators

• Elegant and easy to understand and reason about

• Coordination is implicit – statements executed
synchronously

• Drawbacks:

• Not all problems fit this model

• Difficult to map onto coarse-grained machines

27

𝐴:

𝑓𝑨:
𝑓

𝑠𝑢𝑚

𝐴 = array of all data
𝑓𝐴 = 𝑓(𝐴)
𝑠 = 𝑠𝑢𝑚(𝑓𝐴)

𝑠:

"map"

"reduce"

"SIMD" Data Parallel Machine

• A large number of (usually) small processors.

• A single “control processor” issues each instruction.

• Each processor executes the same instruction.

• Some processors may be turned off on some instructions.

• Originally machines were specialized to scientific computing, few
manufactured

• Programming model can be implemented in the compiler
• mapping n-fold parallelism to p processors, n >> p, but it ’s

hard

interconnect

P1

memory

NI
. . .

control processor

P2

memory

NI P3

memory

NI Pn-1

memory

NI Pn

memory

NI

28

Vector Machines

• Vector architectures are based on a single processor

• Multiple functional units

• All performing the same operation

• Instructions may specify large amounts of parallelism (e.g.,
64-way) but hardware executes only a subset in parallel

• Historically important

• Overtaken by MPPs (massively parallel processors) in the
90s

• Re-emerging in recent years

• At a large scale in the Earth Simulator (NEC SX6) and
Cray X1

• At a larger scale in GPUs

• Key idea: Compiler does some of the difficult work of finding
parallelism, so the hardware doesn't have to

29

Flynn's Taxonomy
• classification of computer architectures, proposed by Michael J. Flynn in 1966.

30

Data stream

In
st

ru
ct

io
n
 s

tr
ea

m

Single Multiple

M
u
lt
ip

le
S
in

gl
e SISD

Uniprocessors

MISD

SIMD
Vector processors,

data parallel
computers

MIMD
Multi-processors,

distributed
systems

Flynn's Taxonomy: MIMD
• MIMD can be further divided into two categories:

• Single program, multiple data streams (SPMD)

• Multiple autonomous processors simultaneously executing the same
program (but at independent points, rather than in the lockstep that
SIMD imposes) on different data.

• The most common style of parallel programming

• Multiple programs, multiple data streams (MPMD)

• Multiple autonomous processors simultaneously operating at least 2
independent programs

• Typical example: one node is "manager", which runs one program that
farms out data to all other nodes which all run a second "worker" program
and return their results to the "manager"

31

Hybrid machines

• Multicore/SMPs are a building block for a larger machine with a
network

• Old name:

• CLUMP = Cluster of SMPs

• Many modern machines look like this (most of Top500)

• What is an appropriate programming model ???

• Treat machine as "flat", always use message passing, even
within a node (simple, but ignores an important part of memory
hierarchy).

• Shared memory within node, but message passing outside of an
node.

• GPUs may also be building block

• June 2022 Top500: 34% have accelerators

32

Programming Model 4: Hybrids

• Programming models can be mixed

• Message passing (MPI) at the top level with shared memory
within a node is common

• For better or worse

• Supercomputers often programmed this way for peak
performance

33

Caution

• Not all programming models work equally well on all machine
architectures

• Not all problems are suited to all programming models

34

What about GPU and Cloud?

• GPU's big performance opportunity is data parallelism

• Most programs have a mixture of highly parallel operations, and
some not so parallel

• GPUs provide a threaded programming model (CUDA) for data
parallelism to accommodate both

• Current research attempting to generalize programming model to
other architectures, for portability (OpenCL)

• Cloud computing lets large numbers of people easily share O(105)
machines

• MapReduce was first programming model: data parallel on
distributed memory

• More flexible models (Hadoop, Spark, …) invented since then

35

Take-Away

• Three basic conceptual models
• Shared memory

• Distributed memory

• Data parallel

and hybrids of these

• All of these machines rely on dividing up work into
parts that are:
• Mostly independent (little synchronization)

• About same size (load balanced)

• Have good locality (little communication)

36

Part II:
Shared Memory
Programming

37

Outline

• Shared memory parallelism with threads

• What and why OpenMP?

• Parallel programming with OpenMP

• Introduction to OpenMP

1. Creating parallelism

2. Parallel Loops

3. Synchronizing

4. Data sharing

Recall Programming Model 1: Shared Memory

• Program is a collection of threads of control.

• Can be created dynamically, mid-execution, in some languages

• Each thread has a set of private variables, e.g., local stack variables

• Also a set of shared variables, e.g., static variables, shared common blocks,
or global heap.

• Threads communicate implicitly by writing and reading shared variables.

• Threads coordinate by synchronizing on shared variables

PnP1P0

s
s = ...

y = ..s ...

Shared memory

i: 2 i: 5 Private

memory

i: 8

What's a thread? A process?

Processes are independent execution units that contain their own
state information and their own address space. They interact via
interprocess communication mechanisms (generally managed by
the operating system). One process may contain many threads.
Processes are given system resources.

All threads within a process share the same address space, and
can communicate directly using shared variables.

What is state?
• instruction pointer
• Register file (one per thread)
• Stack pointer (one per thread)

40

Shared Memory Languages

• pthreads - POSIX (Portable Operating System Interface for
Unix) threads; heavyweight, more clumsy

• PGAS languages - Partitioned Global Address Space: UPC,
Titanium, Co-Array Fortran; not yet popular enough, or
efficient enough

• OpenMP - newer standard for shared memory parallel
programming, lighter weight threads, not a programming
language but an API for C and Fortran

41

OpenMP Overview
OpenMP is an API for multithreaded, shared memory parallelism.

OpenMP = Open specifications for MultiProcessing

• A set of compiler directives inserted in the source program

• pragmas in C/C++ (pragma = compiler directive external to prog. lang.
for giving additional info)

• Library functions

• Environment variables

Goal is standardization, ease of use, portability.

Significant parallelism possible with just 3 or 4 directives.

Works on SMPs (symmetric multiprocessors) and DSMs (distributed shared
memory systems).

Allows fine and coarse-grained parallelism; loop level as well as explicit work
assignment to threads as in SPMD (single program, multiple data).

42

Basic Idea
• Explicit programmer control of parallelization using fork-join model of

parallel execution

• all OpenMP programs begin as single process, the master thread, which
executes until a parallel region construct encountered

• FORK: master thread creates team of parallel threads

• JOIN: When threads complete statements in parallel region construct
they synchronize and terminate, leaving only the master thread.

43

fork join fork join

parallel region parallel region

Basic Idea

• User inserts directives telling compiler how to execute
statements

• which parts are parallel

• how to assign code in parallel regions to threads

• what data is private (local) to threads

• #pragma omp in C and !$omp in Fortran

• Compiler generates explicit threaded code

• Rule of thumb: One thread per core (2 or 4 with
hyperthreading)

• Dependencies in parallel parts require synchronization between
threads

44

The growth of complexity in OpenMP
• OpenMP started out in 1997 as a simple interface for the application programmers

more versed in their area of science than computer science.

• The complexity has grown considerably over the years!

0

50

100

150

200

250

300

350

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

2.5

2.02.0
1.0 1.0 1.1

4.5

4.0

3.1
3.0

Merged C/C++ and Fortran spec

C/C++ spec

Fortran spec

Page counts (not counting front matter, appendices or index) for versions of OpenMP

year

P
a

g
e

 c
o

u
n

ts
 (s

p
e

c
 o

n
ly

)

OpenMP 5.2 (November 2021) is actually 669 pages.

OpenMP pragma, function, or clause

#pragma omp parallel

int omp_get_thread_num()
int omp_get_num_threads()

double omp_get_wtime()

setenv OMP_NUM_THREADS N

#pragma omp barrier
#pragma omp critical

#pragma omp for
#pragma omp parallel for

reduction(op:list)

schedule(dynamic [,chunk])
schedule (static [,chunk])

private(list), firstprivate(list), shared(list)

nowait

#pragma omp single

#pragma omp task
#pragma omp taskwait

The OpenMP Common Core: Most OpenMP programs only use these 19 items

OpenMP basic syntax
• Most of the constructs in OpenMP are compiler directives.

Compiler directives

#pragma omp construct [clause [clause]…]

Example

#pragma omp parallel private(x)

{

}

Function prototypes and types:

#include <omp.h>

• Most OpenMP constructs apply to a structured block.
– Structured block: a block of one or more statements with one point of

entry at the top and one point of exit at the bottom.

Simple Example

#include <stdio.h>

#include <omp.h>

int main(){

#pragma omp parallel

printf("Hello world from thread %d\n", omp_get_thread_num());

return 0;

}

Compile:

gcc -fopenmp helloworld.c

48

Simple Example

carson@r3d3:[~]: export OMP_NUM_THREADS=4

carson@r3d3:[~]: ./helloworld

Hello world from thread 1

Hello world from thread 0

Hello world from thread 2

Hello world from thread 3

carson@r3d3:[~]: ./helloworld

Hello world from thread 0

Hello world from thread 2

Hello world from thread 3

Hello world from thread 1

49

Setting the Number of Threads

Environment Variables:

setenv OMP_NUM_THREADS 2 (cshell)

export OMP_NUM_THREADS=2 (bash shell)

Library call:

omp_set_num_threads(2)

50

Parallel Construct

#include <omp.h>

int main(){

int var1, var2, var3;

...serial Code

#pragma omp parallel private(var1, var2) shared (var3)

{

...parallel section

}

...resume serial code

}

51

Parallel Directives

• When a thread reaches a PARALLEL directive, it becomes the
master and has thread number 0.

• All threads execute the same code in the parallel region (or use
work-sharing constructs to distribute the work)

• There is an implied barrier at the end of a parallel section.
Only the master thread continues past this point.

• If a thread terminates within a parallel region, all threads will
terminates, and the result is undefined.

• Cannot branch into or out of a parallel region.

barrier - all threads wait for each other; no thread proceeds until
all threads have reached that point

52

Parallel Directives

• If program compiled serially, OpenMP pragmas and comments
ignored, stub library for omp library routines

• easy path to parallelization

• One source for both sequential and parallel helps maintenance

53

Work-Sharing Constructs
• work-sharing construct divides work among member threads. Must be done

dynamically within a parallel region.

• No new threads launched. Construct must be encountered by all threads in
the team.

• No implied barrier on entry to a work-sharing construct; Yes at end of
construct.

3 types of work-sharing construct:

• for loop: share iterates of for loop (“data parallelism”) iterates must be
independent

• sections: work broken into discrete section, each executed by a thread
(“functional parallelism”)

• single: section of code executed by one thread only

54

FOR directive schedule example
#include <stdio.h>

#include <omp.h>

#define N 20

int main(){

int sum = 0;

int a[N], i;

#pragma omp parallel for

for (i = 0; i < N; i++){

a[i]=i;

printf("Iterate i=%d by thread %d\n", i,

omp_get_thread_num());

}

return 0;

}

55

FOR directive schedule example

• for loop with 20 iterations and 8 threads:

• 6 threads get 3 iterations, 1 thread gets 2, 1 gets none

56

OMP Directives
All directives:

#pragma omp directive [clause ...]

if (scalar_expression)

private (list)

shared (list)

default (shared | none)

firstprivate (list)

reduction (operator: list)

copyin (list)

num_threads (integer-expression)

Directives are:

• Case sensitive

• Only one directive-name per statement

• Directives apply to at most one succeeding statement, which must be a
structured block.

• Can be continued on succeeding lines with backslash ("\")

57

Default(none) example
#include <stdio.h>

#include <omp.h>

#define N 20

int main(){

int sum = 0;

int a[N], i;

#pragma omp parallel for default(none) private(i)

for (i = 0; i < N; i++){

a[i]=i;

printf("Iterate i=%d by thread %d\n", i,

omp_get_thread_num());

}

return 0;

}

58

Firstprivate example

#include <stdio.h>

#include <omp.h>

int main (void)

{

int i = 10;

#pragma omp parallel private(i)

{

printf("thread %d: i = %d\n", omp_get_thread_num(), i);

i = 1000 + omp_get_thread_num();

}

printf("i = %d\n", i);

return 0;

}

59

thread 0: i = 0
thread 3: i = 32717
thread 1: i = 32717
thread 2: i = 1
i = 10

(another run of the same
program)

thread 2: i = 1
thread 1: i = 1
thread 0: i = 0
thread 3: i = 32657
i = 10

Firstprivate example

#include <stdio.h>

#include <omp.h>

int main (void)

{

int i = 10;

#pragma omp parallel firstprivate(i)

{

printf("thread %d: i = %d\n", omp_get_thread_num(), i);

i = 1000 + omp_get_thread_num();

}

printf("i = %d\n", i);

return 0;

}

60

thread 2: i = 10
thread 0: i = 10
thread 3: i = 10
thread 1: i = 10
i = 10

FOR directive
#pragma omp for [clause ...]

schedule (type [,chunk])
private (list)
firstprivate(list)
lastprivate(list)
shared (list)
reduction (operator: list)
nowait

SCHEDULE: describes how to divide the loop iterates

• static = divided into pieces of size chunk, and statically assigned to
threads. Default is approx. equal sized chunks (at most 1 per thread)

• dynamic = divided into pieces of size chunk and dynamically scheduled as
requested. Default chunk size 1.

• guided = size of chunk decreases over time. (Init. size proportional to the
number of unassigned iterations divided by number of threads decreasing to
chunk size)

• runtime = schedule decision deferred to runtime, set by environment
variable OMP SCHEDULE.

61

FOR example

• Spawning tasks is expensive: reuse if possible.

• nowait clause: minimize synchronization.

62

SECTIONS directive
#pragma omp sections [clause ...]

private (list)

firstprivate(list)

lastprivate(list)

reduction (operator: list)

nowait

{

#pragma omp section

structured block

#pragma omp section

structured block

}

• implied barrier at the end of a SECTIONS directive, unless a NOWAIT
clause used

• for different numbers of threads and SECTIONS some threads get none or
more than one

• cannot count on which thread executes which section

• no branching in or out of sections

63

Sections example

64

SINGLE directive

#pragma omp single [clause ...]

private (list)

firstprivate(list)

nowait

structured block

• SINGLE directive says only one thread in the team executes the enclosed code

• useful for code that isn’t thread-safe (e.g. I/O)

• rest of threads wait at the end of enclosed code block (unless NOWAIT clause
specified)

• no branching in or out of SINGLE block

65

private example
• What is wrong with this code snippet?

#pragma omp parallel for

for (i=0;i<n;i++){

x = i*dx

y(i) = exp(x) * cos(x) * sqrt(6*x+5);

}

66

private example
• What is wrong with this code snippet?

#pragma omp parallel for

for (i=0;i<n;i++){

x = i*dx

y(i) = exp(x) * cos(x) * sqrt(6*x+5);

}

By default, x is shared variable (i is private).

Could have: Thread 0 set x for some i.

Thread 1 sets x for different i.

Thread 0 uses x but it is now incorrect.

67

private example
Instead use:

#pragma omp parallel for private(x)

for (i=0;i<n;i++){

x = i*dx

y(i) = exp(x) * cos(x) * sqrt(6*x+5);

}

What about i,dx,y?

68

private example
Instead use:

#pragma omp parallel for private(x)

for (i=0;i<n;i++){

x = i*dx

y(i) = exp(x) * cos(x) * sqrt(6*x+5);

}

What about i,dx,y?

By default dx,n,y shared.

dx,n used but not changed.

y changed, but independently for each i

69

firstprivate example
What is wrong with this code?

dx = 1/n.;

#pragma omp parallel for private(x,dx)

for (i=0;i<n;i++){

x = i*dx

y(i) = exp(x) * cos(x) * sqrt(6*x+5);

}

70

firstprivate example
What is wrong with this code?

dx = 1/n.;

#pragma omp parallel for private(x,dx)

for (i=0;i<n;i++){

x = i*dx

y(i) = exp(x) * cos(x) * sqrt(6*x+5);

}

• Specifying dx private creates a new private variable for each thread, but it
is not initialized.

• firstprivate clause creates private variables and initializes to the value from
the master thread before the loop.

• lastprivate copies last value computed by a thread (for i=n) to the maser
thread copy to continue execution.

71

Clauses
These clauses not strictly necessary but may be convenient (and may have
performance penalties too).

• lastprivate private data is undefined after parallel construct. This gives it
the value of last iteration (as if sequential) or sections construct (in lexical
order).

• firstprivate pre-initialize private vars with value of variable with same name
before parallel construct.

• default (none | shared). Then only need to list exceptions. (none is better
habit).

• nowait suppress implicit barrier at end of work sharing construct. Cannot
ignore at end of parallel region. (But no guarantee that if have 2 for loops
where second depends on data from first that same threads execute same
iterates)

72

More Clauses
• if (logical expr) true = execute parallel region with team of threads; false =

run serially (loop too small, too much overhead)

• reduction for assoc. and commutative operators compiler helps out;
reduction variable is shared by default (no need to specify).

#pragma omp parallel for default(none) shared(n,a) \

reduction(+:sum)

for (i=0;i<n;i++)

sum += a[i]

• Also other arithmetic and logical ops.

• copyprivate only with single direction. one thread reads and initializes
private vars. which are copied to other threads before they leave barrier.

• threadprivate variables persist between different parallel sections (unlike
private vars). (applies to global vars. must have dynamic false)

73

Synchronization
• Implicit barrier synchronization at end of parallel region (no explicit support

for synch. subset of threads). Can invoke explicitly with

#pragma omp barrier

All threads must see same sequence of work-sharing and barrier regions .

• critical sections: only one thread at a time in critical region

#pragma omp critical [(name)]

• atomic operation: protects updates to individual memory loc. Only simple
expressions allowed. #pragma omp atomic

• locks: low-level run-time library routines (like mutex vars., semaphores)

• flush operation - forces the executing thread to make its values of shared
data consistent with shared memory

• master (like single but not implied barrier at end)

At all these (implicit or explicit) synchronization points OpenMP ensures that
threads have consistent values of shared data.

74

Critical Example
#pragma omp parallel sections
{

#pragma omp section
{

task = produce_task();
#pragma omp critical (task_queue)
{

insert_into_queue(task);
}

}
#pragma omp section
{

#pragma omp critical (task_queue)
{

task = delete_from_queue(task);
}
consume_task(task);

}
}

75

Atomic Examples

76

x = expr binop x x++ x--

Atomic Example

77

Locks
Locks control access to shared resources. Up to implementation to use spin
locks (busy waiting) or not.

• Lock variables must be accessed only through locking routines:

omp_init_lock omp_destroy_lock

omp_set_lock omp_unset_lock omp_test_lock

• In C, lock is a type omp_lock_t or omp_nest_lock_t

• initial state of lock is unlocked.

• omp_set_lock(omp_lock_t *lock) forces calling thread to wait
until the specified lock is available. (Non-blocking version is
omp_test_lock)

Examining and setting a lock must be uninterruptible operation.

78

Lock Example

79

Deadlock
Runtime situation that occurs when a thread is waiting for a resource that
will never be available. Common situation is when two (or more) actions are
each waiting for the other to finish (for example, 2 threads acquire 2 locks in
different order)

work1() { /* do some work */
#pragma omp barrier

}
work2(){ /* do some work */
}
main(){

#pragma omp parallel sections
{

#pragma omp section
work1();

#pragma omp section
work2();

}
}

Also livelock: state changes but no progress is made.

80

Nested Loops
Which is better (assuming m ≈ n)?

#pragma omp parallel for private(i)

for (j=0;j<m;j++)

for (i=0;i<n;i++)

a[j][i] = 0.;

or

for (j=0;j<m;j++)

pragma omp parallel for

for (i=0;i<n;i++)

a[j][i] = 0.;

81

Nested Loops
Which is better (assuming m ≈ n)?

#pragma omp parallel for private(i)

for (j=0;j<m;j++)

for (i=0;i<n;i++)

a[j][i] = 0.;

or

for (j=0;j<m;j++)

pragma omp parallel for

for (i=0;i<n;i++)

a[j][i] = 0.;

• First has less overhead: threads created once instead of m times.

• What about order of indices?

82

OpenMP Runtime

83

Runtime Environment
Can set runtime vars (or query from within program) to control:

• OMP_NUM_THREADS - sets number of threads to use.
(omp_set_num_threads(pos. integer) at runtime)

• OMP_DYNAMIC true/false - to permit or disallow system to dynamically
adjust number of threads used in future parallel regions.
(omp_set_dynamic(flag) at runtime)

• OMP_NESTED to find out if parallel nesting allowed (omp_set_nested or
omp_get_nested at runtime)

• OMP_SCHEDULE to set default scheduling type for parallel loops of type
runtime

Also runtime calls:
omp_get_num_threads(),

omp_in_parallel(),

omp_get_thread_num(),

omp_get_num_procs()

85

Number of Threads

The number of threads is determined in order of precedence by:

• Evaluation of if clause (if evaluates to zero - false- serial
execution)

• Setting the num_threads clause in pragma

• the omp_set_num_threads() library function

• the OMP_NUM_THREADS environment variable

• Implementation default

Threads numbers from 0 (master thread) to N-1.

87

Performance Issues

88

Performance Issues
Use profiling to show where program spends most of its time.

• state of a thread: waiting for work, synchronizing, forking, joining, doing
useful work.

• Time spent in parallel regions and work-sharing constructs

• time spent in user and system level routines

• hardware counter info: CPU cycles, instructions, cache misses

• time spend in communication, message length, number of messages

89

False Sharing
False Sharing = when two threads update different data elements in the same cache line.

• Side effect of cache line granularity.

• Can be problem on shared memory machines

• Any time cache line is modified, cache coherence mech. notifies other caches with copies
that cache line has been modified elsewhere. Local cache line invalidated, even if
different bytes modified. Cache line hops from one cache to the other.

• Solution: Pad arrays so elements you use are on distinct cache lines; eliminate shared
arrays

90

Speedup and Efficiency

• On 𝑝 processors speedup 𝑆(𝑝) = 𝑇1/𝑇𝑝

• Linear (ideal) speedup: on 𝑝 procs code is 𝑝 times faster

• this doesn’t usually happen due to overhead, contention, other
bottlenecks

• however can sometimes observe superlinear speedup due to cache
effects (smaller problem fits more easily in cache)

91

OpenMP Overhead
• Results (selected) of running epcc micro-benchmarks on one node of cluster

at Cornell (results of David Bindel)

92

Typical Bugs

93

*Examples from Using OpenMP, by Chapman, Jost and Van Der Pas

Typical Bugs
Default behavior for parallel variables is shared.

void compute(int n){

int i;

double h,x,sum;

h = 1.0/(double)/n;

sum = 0.0;

#pragma omp for reduction (+:sum) shared(h)

for (i=1; i<=n; i++){

x = h*((double)i - 0.5);

sum += (1.0)/(1.0+x*x));

}

pi = h * sum;

}

94

Race condition due to forgetting to declare x as private.

Typical Bugs

Loop variable j shared by default – data race. Explicitly declare private

95

Default for index variables of parallel for loops is private, but not

for loops at a deeper nesting level.

int i,j;

#pragma omp parallel for

for (i=0;i<n;i++){

for (j=0;j<m;j++){

a[i][j] = compute(i,j)

}

}

Typical Bugs
Problems with private variables:

void main (){

. . .

#pragma omp parallel for private(i,a,b)

for (i=0;i<n;i++){

b++;

a = b+i;

}

c = a + b;

96

• Remember that value of a private copy is uninitialized on entry to parallel
region (unless use firstprivate(b))

• the value of the original variable is undefined on exit from the parallel
region (unless use lastprivate(a,b))

Good habit to use default(none) clause - helps debugging

Typical Bugs
nowait causes problems:

#pragma omp parallel
{

#pragma omp for schedule(static) nowait
for (i=0;i<n;i++)

b[i] = (a[i]+a[i-1])/2.0;

#pragma omp for schedule(static) nowait
for (i=0;i<n;i++)

z[i] = sqrt(b[i]);
}

97

Can’t assume which thread executes which loop iterations.

Second loop might read values of b not yet written in first loop.

Typical Bugs
Illegal use of barrier:

#pragma omp parallel

{

if (omp_get_thread_num()==0)

{ ...

#pragma omp barrier

}

else

{ ...

#pragma omp barrier

}

}

98

barrier must be encountered by all threads in a team. The runtime behavior
of this is undefined.

Typical Bugs
Missing curly braces:

#pragma omp parallel

{

work1(); /* executed in parallel */

work2(); /* executed in parallel */

}

#pragma omp parallel

work1(); /* executed in parallel */

work2(); /* executed sequentially */

Need curly brackets for parallel region more than a single statement.

99

Typical Bugs
How many times is the alphabet printed in each block?

int i;

#pragma omp parallel for

for (i=’a’; i<= ’z’; i++)

printf ("%c",i);

int i;

#pragma omp parallel

for (i=’a’; i<=’z’;i++)

printf("%c",i);

100

Typical Bugs
int i;

#pragma omp parallel for

for (i=’a’; i<= ’z’; i++)

printf ("%c",i);

101

Typical Bugs

int i;

#pragma omp parallel

for (i=’a’; i<=’z’;i++)

printf("%c",i);

102

Resources
• http://computing.llnl.gov/tutorials/openMP/

• very complete description of OpenMP for Fortran and C

• http://www.openmp.org

• https://www.openmp.org/about/openmp-faq/

103

http://computing.llnl.gov/tutorials/openMP/
http://www.openmp.org/
https://www.openmp.org/about/openmp-faq/

