
Exercises 1:
Getting started

NMNV565: High-Performance Computing for
Computational Science

Today's Tasks

1. Logging on to local cluster

• Properties of the local cluster

2. Terminal/command line basics

• Navigating file system

• Editing a file

• Moving files between machines

3. A brief C tutorial

• Helloworld program

• Simple Addition program

• Compiling and running a C program

• SLURM job submissions system

• Further online tutorials...

The Karlin Cluster

Logging on
• In Linux/Mac, open the Terminal program

• Type

ssh yourusername@r3d3.karlin.mff.cuni.cz

• In Windows, you will need to download the program PuTTY:
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

In this box, put
yourusername@r3d3.

karlin.mff.cuni.cz

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

Logging on

• You will then be asked to
enter your password.

• If it is your first time logging
on, you will be asked if you'd
like to add the hostname to
the list of hosts. Click "yes".

http://cluster.karlin.mff.cuni.cz/pouziti-
clusteru/zaklady-vzdaleneho-pristupu/

http://cluster.karlin.mff.cuni.cz/pouziti-clusteru/zaklady-vzdaleneho-pristupu/

The Karlin Cluster
• Hardware

• The main access point is called r3d3.karlin.mff.cuni.cz
• nodes r3-r5 are Intel(R) Xeon(R) CPU E5-2620 0 @ 2.00GHz, 32GB RAM

• node r6 is Intel(R) Xeon(R) CPU E5-2630 0 @ 2.30GHz, 115GB RAM

• nodes r21-r27 are Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz, 64GB RAM
• nodes r1-r7, r21-r27 connected by InfiniBand with a capacity of 40 Gb / sec

• nodes r31-r40 connected by InfiniBand with a capacity of 100 Gb / sec

• nodes r31-r35 are 2x Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz, 132GB RAM
• nodes r36-r39 are 2x Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz, 132GB RAM

• node r40 is 4x Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz, 512GB RAM

• node g1 is 2x Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz, 64GB RAM, GeForce
RTX 2080 Ti Rev. A

• node g2 is 2x Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz, 64GB RAM, 2x
GeForce RTX 2080 Ti Rev. A

http://cluster.karlin.mff.cuni.cz/snehurka/hardware/

http://cluster.karlin.mff.cuni.cz/snehurka/hardware/

http://cluster.karlin.mff.cuni.cz/snehurka/hardware/

http://cluster.karlin.mff.cuni.cz/snehurka/hardware/

Hardware
• Type

freenodes

to see what is running on the cluster

Command Line
Tutorial

Command Line
• Goal: Learn what is the command line? What is a terminal?

• Resources:

• https://tutorials.ubuntu.com/tutorial/command-line-for-beginners

https://tutorials.ubuntu.com/tutorial/command-line-for-beginners

Location and Working Directory
• When you are in the terminal, you are sitting in some folder in the file system.

When you issue commands, you are issuing them from that folder. This is
called the working directory.

pwd (print working directory)

• You can create a new folder with the command "mkdir". Try it:

mkdir exercises1

• You can see the files and other folders in your current working directory by
typing

ls (list)

• You can change the working directory using the command

cd exercises1 (change working directory to newly created folder)

Location and Working Directory
• Type

cd ..

Where are you now? Type pwd to find out.

The two dots .. is a shortcut to the parent directory

Go back to the exercises1 directory (cd exercises1)

Creating files and folders
• Create a few subdirectories:

mkdir dir1 dir2 dir3

• So far we've only seen commands that work on their own (cd, pwd) or that
have a single item afterwards. But this time we've added three things after
the mkdir command. Those things are referred to as parameters or
arguments, and different commands can accept different numbers of
arguments. The mkdir command expects at least one argument, whereas
the cd command can work with zero or one, but no more.

• See what happens when you try to pass the wrong number of parameters to
a command:

mkdir

cd /etc ~/Desktop

Creating files using redirection
• First, remind yourself what the ls command is currently showing:

ls

• Suppose we wanted to capture the output of that command into a text file.
To do this, add the greater-than character (">") to the end of our
command line, followed by the name of the file to write to:

ls > output.txt

• This time there's nothing printed to the screen. The output is being
redirected to our file instead.

• Run ls again and you should see that the output.txt file has been created.

• We can use the cat command to look at its content:

cat output.txt

Creating files using redirection
• Let's look at another command, echo:

echo "This is a test"

• echo just prints its arguments back out again.

• If you combine it with a redirect, you have a way to easily create small test
files:

echo "This is a test" > test_1.txt

echo "This is a second test" > test_2.txt

echo "This is a third test" > test_3.txt

ls

Concatenation of Files
• You should cat each of these files to check their contents.

• Note that cat is more than just a file viewer - its name comes from
‘concatenate', meaning "to link together".

• If you pass more than one filename to cat it will output each of them, one
after the other, as a single block of text:

cat test_1.txt test_2.txt test_3.txt

Editing a File
• nano

• vi

• emacs

Copying a file
• To copy a file, use the cp command.

• The syntax is

cp [OPTION] Source Destination

cp [OPTION] Source Directory

cp [OPTION] Source-1 Source-2 Source-3 Source-n Directory

• Notice that the second argument can either be the name of a file of a
directory

• What will the following commands do?

mkdir tmp

cp test_3.txt text_3_copy.txt

cp test_3.txt tmp

cp test_3.txt tmp/text_3_copy.txt

cp test_2.txt test_3.txt tmp

Moving a file
• The command mv can be used for moving (or renaming files)

• Syntax:

mv [options] source dest

• What will the following do?

mv test_1.txt test_1_renamed.txt

mv test_1.txt tmp

mv test*.txt tmp

Deleting a File
• The command for deleting files is rm

• To delete a file, e.g.,

rm test_1.txt

• Try deleting a directory with

rm tmp

• What happens?

• You need to use the -r option to recursively delete the whole folder and its
contents:

rm -r tmp

Deleting a File
Important Warning!

• Unlike graphical interfaces, rm doesn't move files to a folder called "trash" or
similar.

• It deletes them totally, utterly and irrevocably!

• You need to be very careful with the parameters you use with rm to make sure
you're only deleting the file(s) you intend to.

• Be especially careful when using wildcards, as it's easy to accidentally delete more
files than you intended.

• An errant space character in your command can change it completely:

rm t*

means "delete all the files starting with t", whereas

rm t *

means "delete the file t as well as any file whose name consists of zero or more
characters — which would be everything in the directory!

• If you're at all uncertain use the -i (interactive) option to rm, which will
prompt you to confirm the deletion of each file; enter Y to delete it, N to keep it,
and press Ctrl-C to stop the operation entirely.

Moving a file to your local machine
Create a file called cpuinfo.txt which has the cpuinfo by typing

cat /proc/cpuinfo > cpuinfo.txt

To move this file to your local machine, you need to work from a directory on
your local machine! (Open new terminal window in Linux/Max, or on Windows,
install pscp and run cmd from the directory where you have pscp.exe)

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

General format: scp [source] [destination]

scp carson@r3d3.karlin.mff.cuni.cz:/usr/users/carson/exercises1/cpuinfo.txt cpuinfo.txt

pscp -scp carson@r3d3.karlin.mff.cuni.cz:/usr/users/carson/exercises1/cpuinfo.txt cpuinfo.txt

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

Moving a file to the cluster
• You should download the ex1.tar file from the Moodle site

• We want to move this file to your directory on the cluster

• Remember: scp [source] [destination]

scp ex1.tar carson@r3d3.karlin.mff.cuni.cz:/usr/users/carson/exercises1/.

pscp -scp ex1.tar carson@r3d3.karlin.mff.cuni.cz:/usr/users/carson/exercises1/.

File Compression/Decompression

• The tar program stores and extracts files from an archive

• To extract files from the ex1.tar file, we want to use the command

tar -xf ex1.tar

If you type ls, you should now be able to see the two files that were in
ex1.tar, helloworld.c and sum.c

Manual pages

• If you are having trouble using any command line programs, there are built-
in manuals that you can use for guidance. Just type "man" + the name of
the command/program

• Examples:

man scp

man tar

man ls

Other Resources
• The Linux Command Line, A Book by William Shotts (Free PDF

download) http://linuxcommand.org/tlcl.php

• There are many Command Line cheat sheets! (Google "linux command line
cheat sheet" and pick your favorite to print and hang above your desk)

http://linuxcommand.org/tlcl.php

C Tutorial

Why C?
• C is a general purpose programming language, which relates closely to the

way machines work.

• Gives us an understanding how computer memory works, fine grained
control over computations and memory management

• C is very commonly used - it is the language of many applications
(Windows, the Python interpreter, Git, etc).

• C is high-level enough to allow us to write and manipulate code easily, but
it is low-level enough to be close to the hardware, allowing us finer-grained
control over how our algorithms perform

• Understanding the "efficiency layer" is important, even if we intend to
work at the "productivity layer"!

Your first C program
• Open helloworld.c in an editor (nano, vi, emacs)

• It should be blank except for comments

https://www.learn-c.org/en/Hello%2C_World%21

https://www.learn-c.org/en/Hello,_World!

Your first C program
• Every C program uses libraries, which give the ability to execute necessary

functions. For example, the most basic function called printf, which prints
to the screen, is defined in the stdio.h header file.

• To add the ability to run the printf command to our program, we must add
the following include directive to our first line of the code:

This is a preprocessor command. That
notifies the compiler to include the header file
stdio.h in the program before compiling the
source-code.

Your first C program

• The second part of the code is the actual code which we are going to write.
The first code which will run will always reside in the main function.

• The int keyword indicates that the function main will return an integer - a
simple number.

• The main() is the main function where program execution begins. Every C
program must contain only one main function.

• Curly braces are used to bound the scope of the main() function

Your first C program
• For this tutorial, we will return 0 to indicate that our program was successful:

• Notice that every line in C must end with a semicolon, so that the compiler knows that
a new line has started.

• Last but not least, we will need to call the function printf to print our sentence.

General Structure of a C Program

//Name of program

//Author

#include <stdio.h>

#define max 100

void myfunc();

int x = 100;

int main(){

int a = 100;

myfunc();

return 0;

}

void myfunc(){

printf("%d\n",max);

}

Documentation section

Preprocessor directives

Definition section

Global declaration section

Main function

Function definition

Your first C program
• Save the file

• We now need to compile the C code into a program that can be run

• For this we will use the gcc tool (GNU Compiler Collection)

gcc -c helloworld.c

This compiles the code into an object file named helloworld.o

Now, we have to tell the linker to take the object file and make it into an executable
program:

gcc -o helloworld helloworld.o

You can do both of these in one step if you prefer:

gcc -o helloworld helloworld.c

Your first C program
• Now run the program. Type

./helloworld

Data Types and Variables

• C has several types of variables, but there are a few basic types:

• Integers - whole numbers which can be either positive or negative.
Defined using char (1 byte), int (4 bytes), short (2 bytes), long (8
bytes)

• Can be signed or unsigned

• Floating point numbers - real numbers (numbers with fractions).
Defined using float (4 bytes) and double (8 bytes)

• Structures - user-defined grouped list of variables. Example:

struct point {

int x;

int y;

};

https://www.learn-c.org/en/Variables_and_Types

https://www.learn-c.org/en/Variables_and_Types

Data Types and Variables
• Note that C does not have a boolean type. Usually, it is defined using the

following notation:

• C uses arrays of characters to define strings, and will be explained later

Defining Variables
• To define the variables foo and bar, we need to use the following syntax:

• The variable foo can be used, but since we did not initialize it, we don't know
what's in it. The variable bar contains the number 1.

• Now, we can do some math. Assuming a, b, c, d, and e are variables, we can simply
use plus, minus and multiplication operators in the following notation, and assign a
new value to a:

Your Second C Program
• Open the file sum.c for editing

• Create a variable sum which gives the sum of the defined variables a, b,
and c.

• Close the file and compile the code into an executable program

• Run the program from the command line

The Makefile
• A makefile is a file that contains instructions on how to compile and link a

program

• When program has many build/link dependencies, the makefile is an easy
place to keep them all organized. Compilation and linking can then be done
with a simple command

• Create a file called Makefile and open it for editing:

In the command line, type:
make all

This will compile and link the two programs you just wrote.

The Makefile
• A slightly more complicated version of the Makefile:

Try it.
What happens when you
type :

make clean

make helloworld

make sum

make all

Submitting a job to the cluster
• You can submit a job to the cluster using SLURM

• For detailed instructions, see https://cluster.karlin.mff.cuni.cz/pouziti-
clusteru/spravce-uloh-slurm/

https://cluster.karlin.mff.cuni.cz/pouziti-clusteru/spravce-uloh-slurm/

SLURM commands

• http://cluster.karlin.mff.cuni.cz/pouziti-clusteru/spravce-uloh-slurm/

http://cluster.karlin.mff.cuni.cz/pouziti-clusteru/spravce-uloh-slurm/

Create a simple job script
Use nano (or vi, emacs) to create a file called job.sh with the following
contents:

Type

sbatch job.sh

to submit the job into the queuing system

Once the job is finished, you should see the file hw_output.txt in your
working directory (type ls to check if it is there yet)

Create a simple job script

• This was a short job, so it probably ran right away.

• Longer jobs might have to wait in the queue longer

• To check the status of your job, you can use the command squeue

squeue -j jobid

squeue -u username

• Type

cat hw_output.txt

to see the output of your job

Pointers in C
• When a variable gets declared, memory to hold a variable of that type is

allocated at an unused memory location

• The location that is allocated is the variable’s memory address

• For a compiler, a variable is a symbol for a starting memory address

• To a compiler all variables are just memory addresses and sizes

• An int holds an integer number, a float holds a floating point decimal
number. A pointer is a variable that holds the memory address of
another variable.

Pointers in C
• Two main operators for working with pointers

• The * operator: used when declaring a pointer and when "dereferencing" a pointer
(gives the value stored in a pointer)

• The & operator: used to get the address of another variable. It is used to assign a
value to a pointer.

• Putting the & operator in front of another variable returns a pointer to that
variable of the type of that variable

#include <stdio.h>

int main(){

int* ptr;

int val = 1;

ptr = &val;

printf("ptr = &val = %p\n",ptr);

int deref = *ptr;

printf("deref = *ptr = %d\n",deref);

*ptr = 2;

printf("val = %d\n", val);

}

dereference the ptr variable to set
the int value at the address stored

dereference the ptr variable to get
the int value at the address stored

get the address of the val variable and
store it in ptr

declare an int with the value of 1

declare an int pointer name ptr

Memory Allocation in C

• In C, you need to manage your own memory

• To allocate memory: malloc()

void* malloc (size_t size)

• size is size of memory block in bytes

• returns a pointer to the allocated memory

• Example:

double* myarray = (double*) malloc(10*sizeof(double));

• the (double *) is called a cast

• To free memory: free()

• Example:

free(myarray);

Malloc vs. Calloc

• void *malloc(size_t n)

• returns a pointer to n bytes of uninitialized storage, or NULL if the
request cannot be satisfied

• takes one argument that is, number of bytes.

• Doesn't initialize memory entries

• void *calloc(size_t n, size_t size)

• returns a pointer to enough free space for an array of n objects of the
specified size, or NULL if the request cannot be satisfied.

• takes two arguments those are: number of blocks and size of each
block.

• Initializes memory entries to 0

Rest of the Session
• Continue working through the C tutorial exercises, starting here:

https://www.learn-c.org/en/Arrays

• You can write code and do the examples in-browser

• Will guide you through pointers, memory allocation

https://www.learn-c.org/en/Arrays

