
Lecture 1:
Introduction and Overview

NMNV565: High-Performance Computing for
Computational Science

1

About me

• https://www.karlin.mff.cuni.cz/~carson/

• Research area: numerical linear algebra, parallel algorithms, HPC

• Brief C.V.

• Ph.D. in Computer Science from U.C. Berkeley, 2015

• Courant Instructor/Assistant Professor, Courant Institute at NYU, 2015-2018

• Since 2018, at MFF...

2

https://www.karlin.mff.cuni.cz/~carson/

About this course

• Goals:

• Introduction to concepts and tools used in HPC

• Understanding of modern machine architectures, parallel programming
models, and models of parallel performance

• Develop intuition about how to map an algorithm to a parallel
implementation

3

4

Overview of the course (not in order)

• Basics of computer architecture, memory hierarchies, performance
• Parallel Programming Models and Machines (plus some architecture, e.g., caches)

• Parallelization Strategies for the "Motifs" of Scientific Computing (and Data)

• Performance models: Roofline, α-β (latency/bandwidth), LogP
• Cross-cutting: Communication-avoiding, load balancing, hierarchical algorithms, autotuning,

Moore’s Law, Amdahl’s Law, Little’s Law

Algorithm/machine model Language / Library skills

Shared memory OpenMP

Distributed memory MPI

Data parallel SPARK

CUDA

Dense Linear Algebra

Sparse Linear Algebra

Particle Methods

Structured Grids

Unstructured Grids

Course syllabus

• Syllabus available on course Moodle site (please sign up and self-enroll if
you haven't been added)

• Link in syllabus

5

Today's Outline

• Why high performance all machines are parallel

• Including your laptops and phones

• Some of the World’s Fastest (Parallel) Computers

• Top500 List highlights

• Why science needs high performance computing (HPC)

• Simulation and data analysis

• Why writing (fast) parallel programs is hard

• Measuring, understanding, and reporting performance

• If time: Brief preview of other HPC topics for the rest of this class

6

Units of Measure

• High Performance Computing (HPC) units are:
• Flop: floating point operation, usually double precision unless noted
• Flop/s: floating point operations per second
• Bytes: size of data (a double precision floating point number is 8 bytes)

• Typical sizes are millions, billions, trillions…
Mega Mflop/s = 106 flop/sec Mbyte = 220 = 1048576 ~ 106 bytes
Giga Gflop/s = 109 flop/sec Gbyte = 230 ~ 109 bytes
Tera Tflop/s = 1012 flop/sec Tbyte = 240 ~ 1012 bytes
Peta Pflop/s = 1015 flop/sec Pbyte = 250 ~ 1015 bytes
Exa Eflop/s = 1018 flop/sec Ebyte = 260 ~ 1018 bytes
Zetta Zflop/s = 1021 flop/sec Zbyte = 270 ~ 1021 bytes
Yotta Yflop/s = 1024 flop/sec Ybyte = 280 ~ 1024 bytes

• Current fastest (public) machine >1 Eflop/s
• Up-to-date list at www.top500.org

7

Basics of Computer Architecture

8

Memory Hierarchy

registers

L1 cache

L2 cache

L3 cache

Main memory

Disk

size

sp
eed

on chip

processor

9

CPU

L1 Cache

Core

10

CPU

L1 Cache

Core

CPU

L1 Cache

Core

L2 Cache

Processor

11

CPU

L1 Cache

Core

CPU

L1 Cache

Core

L2 Cache

Processor

CPU

L1 Cache

Core

CPU

L1 Cache

Core

L2 Cache

Processor

System Bus

System
memory

12

Node Node

Node Interconnect

13

Node Interconnect

…

Why high-performance ALL
machines are parallel

14

15

Tunnel Vision by Experts

• “I think there is a world market for maybe five computers.”

- Thomas Watson, chairman of IBM, 1943.

• “There is no reason for any individual to have a computer in
their home”

- Ken Olson, president and founder of Digital Equipment
Corporation, 1977.

• “640K [of memory] ought to be enough for anybody.”

- Bill Gates, chairman of Microsoft,1981.

• “On several recent occasions, I have been asked whether
parallel computing will soon be relegated to the trash heap
reserved for promising technologies that never quite make it.”

- Ken Kennedy, CRPC Directory, 1994

Slide source: Warfield et al.

16

Technology Trends: Microprocessor Capacity

2X transistors/Chip Every 1.5 years

Called “Moore’s Law”

Moore’s Law

Microprocessors have
become smaller, denser,
and more powerful.

Gordon Moore (co-founder of Intel)
predicted in 1965 that the
transistor density of semiconductor
chips would double roughly every
18 months.

Slide source: Jack Dongarra

17

Microprocessor Transistors / Clock (1970-2000)

0

1

10

100

1000

10000

100000

1000000

10000000

1970 1975 1980 1985 1990 1995 2000

Transistors (Thousands)

Frequency (MHz)

18

Historical Impact of Device Shrinkage

• What happens when the feature size (transistor size) shrinks by a
factor of x ?

• Clock rate goes up by x because wires are shorter

• actually less than x, because of power consumption

• Transistors per unit area goes up by x2

• Die size has also increased

• typically another factor of ~x

• Raw computing power of the chip goes up by ~ x4 !

• typically x3 is devoted to either on-chip

• parallelism: hidden parallelism such as ILP

• locality: caches

• So most programs x3 times faster, without changing them

Power Density Limits Serial Performance

4004

8008

8080

8085

8086

286
386

486

Pentium®

P6

1

10

100

1000

10000

1970 1980 1990 2000 2010

Year

P
o

w
er

 D
e

n
si

ty
 (

W
/c

m
2
)

Hot Plate

Nuclear

Reactor

Rocket

Nozzle

Sun’s
SurfaceSource: Patrick Gelsinger,

Shenkar Bokar, Intel

Scaling clock speed (business as usual) will not work

• High performance serial processors waste power
- Speculation, dynamic dependence checking, etc. burn power
- Implicit parallelism discovery

• More transistors, but not faster serial processors

• Concurrent systems are more
power efficient

– Dynamic power is
proportional to V2fC

– Increasing frequency (f) also
increases supply voltage (V)
→ cubic effect

– Increasing cores increases
capacitance (C) but only
linearly

– Save power by lowering
clock speed

19

Revolution in Processors

• Chip density is continuing increase ~2x every 2 years
• Clock speed is not
• Number of processor cores may double instead
• Power is under control, no longer growing

1

10

100

1000

10000

100000

1000000

10000000

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (Thousands)

0

1

10

100

1000

10000

100000

1000000

10000000

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (Thousands)

Frequency (MHz)

0

1

10

100

1000

10000

100000

1000000

10000000

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (Thousands)

Frequency (MHz)

Cores

0

1

10

100

1000

10000

100000

1000000

10000000

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (Thousands)

Frequency (MHz)

Power (W)

Cores

20

Moore's Law reinterpreted

• Number of cores per chip can double every two years

• Clock speed will not increase (possibly decrease)

• Need to deal with systems with millions of
concurrent threads

• Need to deal with inter-chip parallelism as well as
intra-chip parallelism

• But Moore’s Law is not forever… industry
consortium predicts end in 2020-2030

21

Parallelism today?

• These arguments are no longer theoretical

• All major processor vendors are producing multicore chips

• Every machine will soon be a parallel machine

• To keep doubling performance, parallelism must double

• Which applications can use this parallelism?

• Do they have to be rewritten from scratch?

• Will all programmers have to be parallel programmers?

• New software model needed

• Try to hide complexity from most programmers – eventually

• In the meantime, need to understand it

• Computer industry betting on this big change, but does not have all the
answers

22

Memory is Not Keeping Pace
Technology trends against a constant or increasing memory per core

• Memory density is doubling every three years; processor logic is every two

• Storage costs (dollars/Mbyte) are dropping gradually compared to logic costs

Source: David Turek, IBM

Cost of Computation vs. Memory

Question: Can you double concurrency without doubling memory?
• Strong scaling: fixed problem size, increase number of processors
• Weak scaling: grow problem size proportionally to number of processors

Source: IBM

23

Supercomputers

24

What is a supercomputer?

• A computer with a high level
of computing performance

• Performance is measured in
floating-point operations per
second (FLOPS)

• First produced by Cray in the
60s

• play an important role in the field of computational science:
quantum mechanics, weather forecasting, climate research, oil
and gas exploration, molecular modeling, physical simulations,
cryptanalysis

25

Supercomputing History

• First supercomputer: CDC 6600, 1964

• First installed at CERN

• Performance: 3 Mflop/s

• (iphone 6 does about 1 Gflop/s)

• 1 CPU, a few "peripheral" processors

• 80s: ~8 processors

• 90s: ~1000 processors

• Today: millions of cores, augmented with computational accelerators (like
GPUs); high-speed, low-latency interconnects; storage area networks for
persistent data storage with local disks used only for temporary files

26

Top500 June 2023

27

Rmax: performance on LINPACK benchmark, Rpeak: theoretical peak of the machine

Czech Republic in Top500

28

June 2023:

The Linpack Benchmark
• Benchmark involves solving nonsingular Ax=b using Gaussian elimination

with partial pivoting (GEPP) (2/3n³ + 2n² flops)

• Details about the benchmark

• http://www.netlib.org/benchmark/hpl/

• http://www.netlib.org/utk/people/JackDongarra/faq-linpack.html

• Used as the Benchmark for supercomputers since the start of the Top500
in 1993 (for better or for worse...)

• Is this indicative of typical scientific applications?

• Compute-bound kernel...

• Are supercomputer architectures designed to do well on the LINPACK
benchmark?

29

http://www.netlib.org/benchmark/hpl/
http://www.netlib.org/utk/people/JackDongarra/faq-linpack.html

Graph500 (Since 2010)
• Two rankings based on breadth-first search (BFS) and single source shortest path (SSSP) algorithms; designed to model

data-intensive workloads

• performance measured in GTEPS (giga-traversed edges per second)

• http://graph500.org/

30

June 2021 SSSP:

http://graph500.org/

HPCG Benchmark (Since 2015)
• Intended to model the data access patterns of real-world applications such as sparse

matrix calculations; test limitations of the memory subsystem and internal
interconnect of the supercomputer on its computing performance

• http://www.hpcg-benchmark.org/

31

http://www.hpcg-benchmark.org/

HPCG Benchmark

32

Rpeak for Fugaku:

537,210 Tflops/s

HPL gets about 80% of
theoretical peak.

HPCG only gets about 3%
of theoretical peak!

Sparse computations ⇒
communication-bound
performance

33

Power, Top500 June 2021

Green500
• Since 2007

• ranks the top 500 supercomputers in
the world by energy efficiency

• https://www.top500.org/green500/

34

https://www.top500.org/green500/

35

System Performance

• Peak performance of
200 petaflops for
modeling &
simulation

• Peak of 3.3 ExaOps for
data analytics and
artificial intelligence

Each node has

• 2 IBM POWER9
processors

• 6 NVIDIA Tesla
V100 GPUs

• 608 GB of fast
memory

• 1.6 TB of NVMe
memory

The system includes

• 4608 nodes
• Dual-rail Mellanox

EDR InfiniBand
network

• 250 PB IBM
Spectrum Scale
file system
transferring data at
2.5 TB/s

Summit (#5 machine) System Overview

HPC Architectures Today

https://www.olcf.ornl.gov/for-users/system-user-
guides/summit/summit-user-guide

tensor cores for half precision:

4x4 matrix multiply in one clock cycle

double: 7 TFLOPS,

half+tensor: 112 TFLOPS (16x!)

Future architectures:
• non-uniform memory

access
• GPUS/FPGAs, other

specialized accelerators
• multiple hardware

precisions

36

Floating Point Formats

1

exponent (11 bits) fraction (52 bits)

IEEE double (FP64)

IEEE single (FP32)

IEEE half (FP16)

exponent (8 bits) fraction (23 bits)

exponent (5 bits) fraction (10 bits)

−1 sign × 2(exponent−offset) × 1. fraction

size
(bits) range 𝑢

perf. (NVIDIA
H100)

FP64 64 10±308 1 × 10−16 60 Tflops/s

FP32 32 10±38 6 × 10−8 1 Pflop/s

FP16 16 10±5 5 × 10−4
2 Pflops/s

bfloat16 16 10±38 4 × 10−3

FP8-e5m2 8 10±5 3 × 10−1
4 Pflops/s

FP8-e4m3 8 10±2 1 × 10−1

exponent (8 bits) fraction (7 bits)

bfloat16

FP8

e5m2

e4m3

Hardware Support for Multiprecision Computation

2

• Half precision (FP16) defined as storage format in 2008 IEEE standard
• ARM NEON: SIMD architecture, instructions for 8x16-bit, 4x32-bit, 2x64-bit

• AMD Radeon Instinct MI25 GPU, 2017:

• single: 12.3 TFLOPS, half: 24.6 TFLOPS

• NVIDIA Tesla P100, 2016: native ISA support for 16-bit FP arithmetic

• NVIDIA Tesla V100, 2017: tensor cores for half precision;

4x4 matrix multiply in one clock cycle

• double: 7 TFLOPS, half+tensor: 112 TFLOPS (16x!)

• Google's Tensor processing unit (TPU)

• NVIDIA A100, 2020: tensor cores with multiple supported precisions: FP16,
FP64, Binary, INT4, INT8, bfloat16

• NVIDIA H100, 2022: now with quarter-precision (FP8) tensor cores

• Exascale supercomputers: Expected extensive support for reduced-precision
arithmetic (Frontier: FP64, FP32, FP16, bfloat16, INT8, INT4)

Use of low precision in machine learning has driven emergence of low-
precision capabilities in hardware:

The rise of accelerators

39

From Vector Supercomputers to Massively Parallel Accelerator Systems

40

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
1

9
9

3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

Accelerated

Cluster x86

MPP

Constellation

SMP

SIMD

Vector

Programmed by
“annotating” serial
programs

Programmed by
completely rethinking
algorithms and software
for parallelism

41

Mixed precision in NLA

• BLAS: cuBLAS, MAGMA, [Agullo et al. 2009], [Abdelfattah et al., 2019], [Haidar et al., 2018]

• Iterative refinement:

• Long history: [Wilkinson, 1963], [Moler, 1967], [Stewart, 1973], …

• More recently: [Langou et al., 2006], [C., Higham, 2017], [C., Higham, 2018], [C.,
Higham, Pranesh, 2020], [Amestoy et al., 2021]

• Matrix factorizations: [Haidar et al., 2017], [Haidar et al., 2018], [Haidar et al., 2020],
[Abdelfattah et al., 2020]

• Eigenvalue problems: [Dongarra, 1982], [Dongarra, 1983], [Tisseur, 2001], [Davies et al.,
2001], [Petschow et al., 2014], [Alvermann et al., 2019]

• Sparse direct solvers: [Buttari et al., 2008]

• Orthogonalization: [Yamazaki et al., 2015]

• Multigrid: [Tamstorf et al., 2020], [Richter et al., 2014], [Sumiyoshi et al., 2014], [Ljungkvist,
Kronbichler, 2017, 2019]

• (Preconditioned) Krylov subspace methods: [Emans, van der Meer, 2012], [Yamagishi,
Matsumura, 2016], [C., Gergelits, Yamazaki, 2021], [Clark, 2019], [Anzt et al., 2019], [Clark et
al., 2010], [Gratton et al., 2020], [Arioli, Duff, 2009], [Hogg, Scott, 2010]

3

For survey and references, see [Abdelfattah et al., IJHPC, 2021], [Higham and Mary, 2022]

HPL-MxP Benchmark https://hpl-mxp.org/

43

https://hpl-mxp.org/

HPL-MxP Benchmark

• Supercomputers traditionally ranked by performance on high-performance
LINPACK (HPL) benchmark

• Solves dense 𝐴𝑥 = 𝑏 via Gaussian elimination with partial pivoting

• HPL-MxP: Like HPL, solves dense 𝐴𝑥 = 𝑏, results still to double precision
accuracy

• But achieves this via mixed-precision iterative refinement

4

HPL-MxP Benchmark

5

November 2022

HPL-AI Benchmark

5

November 2022

HPL-AI Benchmark

5

November 2022

Performance Development

48

G
ig

af
lo

p
s/

s

Year

1 Exaflop/s

Exascale Achieved in June 2022

49

EuroHPC

• EU Declaration on HPC in 2017; project formalized in
2018

• 3 Billion EUR project

• Aims to pool European resources to develop top-of-the-
range exascale supercomputers, developing a pan-
European supercomputing infrastructure

• Providing a world-class petascale and pre-exascale
supercomputing and data infrastructure for Europe's
scientific, industrial and public users, matching their
demanding application requirements in 2020

• Acquisition in 2023 of two exascale systems, one
post-exascale system, networking and coordination of
HPC Competence Centres, support for the first hybrid
HPC / Quantum computing infrastructure in Europe

• https://eurohpc-ju.europa.eu/index.html

50

Ostrava, ČR is the
site of one new
machine

https://eurohpc-ju.europa.eu/index.html

Science: Gordon Bell Prizes vs Top 500

52

Science using
Supercomputers

53

The "Third Pillar" of Science

54

Theory Experiment

Simulation

Traditional scientific and engineering method:
(1) Do theory or paper design
(2) Perform experiments or build system

Limitations:
–Too difficult—build large wind tunnels
–Too expensive—build a throw-away passenger jet
–Too slow—wait for climate or galactic evolution
–Too dangerous—weapons, drug design, climate

experimentation

Computational science and engineering paradigm:
(3) Use computers to simulate and analyze the

phenomenon
Based on known physical laws and efficient numerical
methods

Analyze simulation results with computational tools and
methods beyond what is possible manually

Some Particularly Challenging Computations

• Science

• Global climate modeling

• Biology: genomics; protein folding; drug design

• Astrophysical modeling

• Computational Chemistry

• Computational Material Sciences and Nanosciences

• Engineering

• Semiconductor design

• Earthquake and structural modeling

• Computation fluid dynamics (airplane design)

• Combustion (engine design)

• Crash simulation

• Business

• Financial and economic modeling

• Transaction processing, web services and search engines

• Defense

• Nuclear weapons -- test by simulations

• Cryptography

55

Global Climate Modeling Problem

• Problem is to compute:

f(latitude, longitude, elevation, time) → “weather” =

(temperature, pressure, humidity, wind velocity)

• Approach:

• Discretize the domain, e.g., a measurement point every 10 km

• Devise an algorithm to predict weather at time t+dt given t

• Uses:

- Predict major events,
e.g., El Nino

- Use in setting air
emissions standards

- Evaluate global
warming scenarios

Source: http://www.epm.ornl.gov/chammp/chammp.html

56

Global Climate Modeling Computation

• One piece is modeling the fluid flow in the atmosphere

• Solve Navier-Stokes equations

• Roughly 100 Flops per grid point with 1 minute timestep

• Computational requirements:

• To match real-time, need 5 x 1011 flops in 60 seconds = 8 Gflop/s

• Weather prediction (7 days in 24 hours) → 56 Gflop/s

• Climate prediction (50 years in 30 days) → 4.8 Tflop/s

• To use in policy negotiations (50 years in 12 hours) → 288
Tflop/s

• To double the grid resolution, computation is 8x to 16x

• State of the art models require integration of atmosphere, clouds,
ocean, sea-ice, land models, plus possibly carbon cycle, geochemistry
and more

• Current models are coarser than this

57

High Resolution

Climate Modeling on

NERSC-3 – P. Duffy,

et al., LLNL

(millimeters/day)

Extreme Scale Climate Science

Exascale is needed to simulate climate and analyze impacts

Resolve clouds, predict sea level rise, quantify extreme events and model
precipitation and ground water levels

Melting of West Antarctic Ice Sheet using
Adaptive Mesh Refinement (AMR)
Dan Martin, LBNL (BISICLES/E3SM)

59

Mathematical model for clouds
David Romps et al, UCB

The "Fourth Paradigm" of Science

60

Theory

Data
analysis

Experiment

Simulation

Data Driven Science
• Scientific data sets are growing exponentially

- Ability to generate data is exceeding our ability
to store and analyze

- Simulation systems and some observational
devices grow in capability with Moore’s Law

• Petabyte (PB) data sets will soon be common:

• Climate modeling: estimates of the next IPCC
data is in 10s of petabytes

• Genome: JGI alone will have .5 petabyte of data
this year and double each year

• Particle physics: LHC is projected to produce 16
petabytes of data per year

• Astrophysics: LSST and others will produce 5
petabytes/year (via 3.2 Gigapixel camera)

• Create scientific communities with “Science
Gateways” to data

61

Data analytics in science and engineering

High Performance Data

Analytics (HPDA) is used for

data sets that are:

• too big

• too complex

• too fast (streaming)

• too noisy

• too heterogeneous

for measurement alone

62

Sensor data
Particle from detectors

Genomes from sequencersImages from telescopes

Wayne Joubert, Dan Jacobson et al,
Gordon Bell Prize (1 of 2) at SC18

Machine Learning in Climate Data

Contributors: Prabhat, Thorsten Kurth, Jian Yang, Ioannis Mitliagkas, Chris Pal, Nadathur Satish, Narayanan
Sundaram, Amir Khosrowshahi, Michael Wehner, Bill Collins.

63

Deep Learning for Extreme Weather Events

• Supervised and semi-supervised learning on CAM5 data

• 85-99% accuracy at identifying extreme climate events

• 1 ExaOp (16-bit) on Summit at ORNL; trained in 100 minutes

Ground Truth vs Prediction Use of deep learning (CNNs)

Thorsten Kurth et al

64

Why writing (fast)
parallel programs is hard

65

Parallel Programming Challenges

• Finding enough parallelism (Amdahl’s Law)

• Granularity – how big should each parallel task be

• Locality – moving data costs more than arithmetic

• Load balance – don’t want 1K processors to wait for one slow one

• Coordination and synchronization – sharing data safely

• Performance modeling/debugging/tuning

All of these things makes parallel programming

even harder than sequential programming.

66

“Automatic” Parallelism in Modern Machines

• Bit level parallelism

• within floating point operations, etc.

• Instruction level parallelism (ILP)

• multiple instructions execute per clock cycle

• Memory system parallelism

• overlap of memory operations with computation

• OS parallelism

• multiple jobs run in parallel on commodity SMPs

Limits to all of these -- for very high performance, need
user to identify, schedule and coordinate parallel tasks

67

68

Finding Enough Parallelism: Amdahl’s Law

• Suppose only part of an application is parallel

• Amdahl’s law
• s = fraction of work done sequentially (Amdahl fraction), so

(1-s) is fraction parallelizable

• P = number of processors

Speedup(P) = Time(1)/Time(P)

<= 1/(s + (1-s)/P)

<= 1/s

• Even if the parallel part speeds up perfectly
performance is limited by the sequential part

• 1/10th of your code's runtime is serial → max speedup is 10x

69

Overhead of Parallelism

• Given enough parallel work, this is the biggest barrier to getting
desired speedup

• Parallelism overheads include:

• cost of creating parallelism (starting a thread/process)

• cost of communicating shared data

• cost of synchronizing

• extra (redundant) computation

• Overheads can be in milliseconds (which is millions of flops)

• Tradeoff:

• Algorithm needs sufficiently large units of work to run fast
in parallel (i.e. large granularity),

• But not so large that there is not enough parallel work

Locality and Parallelism

• Large memories are slow, fast memories are small

• Storage hierarchies are large and fast on average

• Parallel processors, collectively, have large, fast cache
• the slow accesses to “remote” data we call “communication”

• Algorithm should do most work on local data

Proc
Cache

L2 Cache

L3 Cache

Memory

Conventional

Storage

Hierarchy
Proc

Cache

L2 Cache

L3 Cache

Memory

Proc
Cache

L2 Cache

L3 Cache

Memory

p
o
te

n
tia

l

in
te

rc
o
n
n
e
c
ts

70

Processor-DRAM Gap (latency)

µProc

60%/yr.

DRAM

7%/yr.
1

10

100

1000

1
9
8
0

1
9
8
1

1
9
8
3

1
9
8
4

1
9
8
5

1
9
8
6

1
9
8
7

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

DRAM

CPU
1
9
8
2

Processor-Memory

Performance Gap:

(grows 50% / year)

P
e
rf

o
rm

a
n

c
e

Time

“Moore’s Law”

Goal: find algorithms that minimize communication, not necessarily arithmetic

71

Load Imbalance

• Load imbalance is the time that some processors in the system are idle
due to

• insufficient parallelism (during that phase)

• unequal size tasks

• Examples of the latter

• adapting to “interesting parts of a domain”

• tree-structured computations

• fundamentally unstructured problems

• Algorithm needs to balance load

• Sometimes can determine work load, divide up evenly, before
starting

• "Static Load Balancing"

• Sometimes work load changes dynamically, need to rebalance
dynamically

• "Dynamic Load Balancing", e.g. work-stealing

72

Parallel Software ... Eventually

• 2 types of programmers ⇒ 2 layers of software

• Efficiency Layer (10% of programmers)
• Expert programmers build Libraries implementing kernels,

“Frameworks”, OS, ….
• Highest fraction of peak performance possible

• Productivity Layer (90% of programmers)
• Domain experts / Non-expert programmers productively build

parallel applications by composing frameworks & libraries
• Hide as many details of machine, parallelism as possible
• Willing to sacrifice some performance for productive programming

• I expect that you may want to work at either level...
• In the meantime, we all need to understand enough of the

efficiency layer to use parallelism effectively

73

Measuring
Performance

74

Goal of Parallelism: Decrease Running Time

75

0

200

400

600

800

1000

1200

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

Ti
m

e
 (

se
cs

)

Processors (= cores)

Runtime

Runtime

1

10

100

1000

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

Ti
m

e
 (

se
cs

)

Processors (= cores)

Runtime

Runtime

Reporting Speedup (Strong Scaling)

76

Speedup(P) = Time(1)/Time(P)

1

10

100

1000

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

Sp
e

e
d

u
p

Processors (= cores)

Speedup

Speedup

1

10

100

1000

10000

100000

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

Sp
e

e
d

u
p

Processors (= cores)

Speedup

Speedup

Linear Speedup

Amdahl’s Law

This is a strong scaling plot: fixed problem size, vary number of processors

Parallel Efficiency

77

0%

20%

40%

60%

80%

100%

120%

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

Ef
fi

ci
e

n
cy

Processors (= cores)

Parallel Efficiency

Same strong scaling results shown as efficiency (ideally flat)

6

5

4

3

2

1

𝐸 =
𝑇𝑖𝑚𝑒(1)

𝑇𝑖𝑚𝑒 𝑃 × 𝑃

Parallel Efficiency (Weak Scaling)

78

Weak scaling uses a fixed problem size per processor. Can report as:
• Flop/s (or other rate) per processor; Efficiency based on rate per processor
• Time (if algorithm is linear in data size)

0%

20%

40%

60%

80%

100%

120%

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

Ef
fi

ci
e

n
cy

Processors (= cores)

Parallel Efficiency

Weak…

Summary: Strong Scaling versus Weak Scaling

• Strong scaling: concerns the speedup for a fixed problem size with respect
to the number of processors (fixed total problem size)

• governed by Amdahl’s law

• Weak scaling: concerns the speedup for a scaled problem size with
respect to the number of processors (fixed problem size per processor)

• speedup depends on amount of serial work remaining constant or
increasing slowly as the size of the problem grows

• also depends on how amount of communication between processors is
grows

79

80

Limits to Performance Start at Home
(Single Processor Memory Hierarchy)

• Large memories are slow; fast memories are small

• Most programs have a things nearby previous accesses

• temporal locality: reusing an item that was previously accessed

• Memory hierarchy use this to improve average case

on-chip

cache
registers

arithmetic

control

processor

Second

level

cache

(SRAM)

Main

memory

(DRAM)

Secondary

storage

(Disk)

Tertiary

storage

(Tape/Cloud)

Speed 1ns 10ns 100ns 10ms 10sec

Size KB MB GB TB PB

First Assignment: Create Cluster Account
• Go to http://cluster.karlin.mff.cuni.cz/jak-se-stat-uzivatelem/

• Follow instructions there

81

http://cluster.karlin.mff.cuni.cz/jak-se-stat-uzivatelem/

