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About me

* https://www.karlin.mff.cuni.cz/™carson/

* Research area: numerical linear algebra, parallel algorithms, HPC

* Brief C.V.
* Ph.D. in Computer Science from U.C. Berkeley, 2015
 Courant Instructor/Assistant Professor, Courant Institute at NYU, 2015-2018
* Since 2018, at MFF...



https://www.karlin.mff.cuni.cz/~carson/

About this course

* Goals:

* Introduction to concepts and tools used in HPC

* Understanding of modern machine architectures, parallel programming
models, and models of parallel performance

* Develop intuition about how to map an algorithm to a parallel
implementation




Overview of the course (not in order)

Basics of computer architecture, memory hierarchies, performance
Parallel Programming Models and Machines (plus some architecture, e.g., caches)

Algorithm/machine model Language / Library skills

Shared memory OpenMP
Distributed memory MPI
Data parallel SPARK

Parallelization Strategies for the "Motifs" of Scientific Computing (and Data)

Dense Linear Algebra
Sparse Linear Algebra
Particle Methods
Structured Grids

Unstructured Grids

Performance models: Roofline, a-B (latency/bandwidth), LogP
Cross-cutting: Communication-avoiding, load balancing, hierarchical algorithms, autotuning,
Moore's Law, Amdahl’s Law, Little's Law



Course syllabus

* Syllabus available on course Moodle site (please sign up and self-enroll if
you haven't been added)

* Link in syllabus




Today's Outline

* Why highperformanee all machines are parallel

Some of the World's Fastest (Parallel) Computers

Why science needs high performance computing (HPC)

Why writing (fast) parallel programs is hard

Measuring, understanding, and reporting performance

If time: Brief preview of other HPC topics for the rest of this class




Units of Measure

* High Performance Computing (HPC) units are:
* Flop: floating point operation, usually double precision unless noted

* Flop/s: floating point operations per second
* Bytes: size of data (a double precision floating point number is 8 bytes)

* Typical sizes are millions, billions, trillions...

Mega Mflop/s = 10° flop/sec Mbyte = 220 = 1048576 ~ 10° bytes
Giga Gflop/s = 10° flop/sec  Gbyte = 239 ™ 10° bytes
Tera Tflop/s = 10'? flop/sec Tbyte = 240 ™ 102 bytes
Peta Pflop/s = 10% flop/sec Pbyte = 250 ™ 10% bytes
Exa Eflop/s = 10!8 flop/sec Ebyte = 2°0 ™ 1018 bytes
Zetta Zflop/s = 10%! flop/sec Zbyte = 270 ™ 102! bytes
Yotta Yflop/s = 10%* flop/sec Ybyte = 280 = 10%* bytes

* Current fastest (public) machine >1 Eflop/s
* Up-to-date list at www.top500.org



Basics of Computer Architecture
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Why high-performanee ALL

machines are parallel




Tunnel Vision by Experts

* "l think there is a world market for maybe five computers.”
- Thomas Watson, chairman of IBM, 1943.
* “There is no reason for any individual to have a computer in
their home”
- Ken Olson, president and founder of Digital Equipment
Corporation, 1977.
* “640K [of memory] ought to be enough for anybody.”
- Bill Gates, chairman of Microsoft,1981.

e “On several recent occasions, | have been asked whether
parallel computing will soon be relegated to the trash heap

reserved for promising technologies that never quite make it.”
- Ken Kennedy, CRPC Directory, 1994

Slide source: Warfield et al.



Technology Trends: Microprocessor Capacity
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2X transistors/Chip Every 1.5 years
Called “Moore’s Law”

Microprocessors have
become smaller, denser,
and more powerful.

Gordon Moore (co-founder of Intel)
predicted in 1965 that the
transistor density of semiconductor
chips would double roughly every
18 months.

Slide source: Jack Dongarra



Microprocessor Transistors / Clock (1970-2000)
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Historical Impact of Device Shrinkage

* What happens when the feature size (transistor size) shrinks by a
factor of x 7

Clock rate goes up by x because wires are shorter
* actually less than x, because of power consumption

Transistors per unit area goes up by x?

Die size has also increased
* typically another factor of ~x

Raw computing power of the chip goes up by ™ x* !
* typically x3is devoted to either on-chip
* parallelism: hidden parallelism such as ILP
* locality: caches

* So most programs x° times faster, without changing them



Power Density Limits Serial Performance

Scaling clock speed (business as usual) will not work

e Concurrent systems are more

. . 10000
power efficient

Source: Patrick Gelsinger,

— Dynamic pOWer is Shenkar Bokar, Intel®
proportional to V3fC

— Increasing frequency (f) also
increases supply voltage (V)

- cubic effect

— Increasing cores increases
capacitance (C) but only
linearly

Nuclear >

Reactor

Hot Plate w=p

10 hooa A

Power Density (W/cm?)

85 Pentium®
— Save power by lowering
clock speed

e High performance serial processors waste power
- Speculation, dynamic dependence checking, etc. burn power
- Implicit parallelism discovery

e More transistors, but not faster serial processors




Revolution in Processors
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* Chip density is continuing increase ~2x every 2 years
* Clock speed is not

* Number of processor cores may double instead

* Power is under control, no longer growing



Moore's Law reinterpreted

* Number of cores per chip can double every two years

* Clock speed will not increase (possibly decrease)

* Need to deal with systems with millions of
concurrent threads

* Need to deal with inter-chip parallelism as well as
intra-chip parallelism

* But Moore's Law is not forever... industry
consortium predicts end in 2020-2030



Parallelism today?

* These arguments are no longer theoretical

 All major processor vendors are producing multicore chips
* Every machine will soon be a parallel machine
* To keep doubling performance, parallelism must double

* Which applications can use this parallelism?
* Do they have to be rewritten from scratch?

* Will all programmers have to be parallel programmers?
* New software model needed
* Try to hide complexity from most programmers — eventually
* In the meantime, need to understand it

« Computer industry betting on this big change, but does not have all the
answers



Memory i1s Not Keeping Pace

Technology trends against a constant or increasing memory per core

* Memory density is doubling every three years; processor logic is every two

» Storage costs (dollars/Mbyte) are dropping gradually compared to logic costs
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The cost to sense, collect, generate and calculate data is declining
much faster than the cost to access, manage and store it

Question: Can you double concurrency without doubling memory?
» Strong scaling: fixed problem size, increase number of processors
* Weak scaling: grow problem size proportionally to number of processors



Supercomputers




What is a supercomputer?

e A computer with a high level
of computing performance

e Performance is measured in

floating-point operations per
second (FLOPS)

* First produced by Cray in the
60s

« play an important role in the field of computational science:
quantum mechanics, weather forecasting, climate research, oil
and gas exploration, molecular modeling, physical simulations,
cryptanalysis



Supercomputing History

First supercomputer: CDC 6600, 1964
First installed at CERN

Performance: 3 Mflop/s
* (iphone 6 does about 1 Gflop/s)

1 CPU, a few "peripheral" processors

80s: ~8 processors

90s: 71000 processors

* Today: millions of cores, augmented with computational accelerators (like
GPUs); high-speed, low-latency interconnects; storage area networks for
persistent data storage with local disks used only for temporary files



Topb00 June 2023

Rmax

Rank
X * Rpeak #
(previous) | petzriops)

, 1,194.00
- 1,679,352
) 442.010
- 537.212
309.10
3 -
42870
238.70
4
304.47
. 143,600
- 200.795
94 640
B =
125.712

Rmax: performance on LINPACK benchmark,

MName #

Frontier

Fugaku

LUMI

Leonardo

Summit

Sierra

Model *

HPE Cray EX235a

Supercomputer
Fugaku

HPE Cray EX235a

BullSequana
AH2000

IEM Power System
ACH22

IEM Power System
S9221LC

CPU
Cores

a»

561,664
(8,776 = 64-
core
Optimized
3nd
Generation
EPYC 64C
@2.0 GHz)
7,630,648
(158,976 =
48-core
Fujitsu
ABAFX
@22 GHz)
150,523
(2,352 = 64-
core
Optimized
3nd
Generation
EPYC 64C
@2.0 GHz)
110,592
(3,456 = 32-
core Xeon
Platinum
8358

@26 GHz)
202,752
(9,216 = 22-
core IBM
POWERS
@3.07 GHz)

190,080
(3,540 = 22-
core IBM
POWERS
@3.1 GHz)

Accelerator
(e.g. GPU) #
COres

36,992 x 220
AMD Instinct
MI250X

158,976 %
Fujitsu AG4FX

9.408 = 220
AMD Instinct
MI250X

15,872 = 108
MNvidia Ampere
A100

27.648 = 80
Nvidia Tesla
V100

17,250 = 80
Nvidia Tesla
V1040

Interconnect ¢ | Manufacturer #

Slingzhot-11 HPE

Tofu

. Fujitsu
interconnect D

Slingzhot-11 HPE

Nvidia HDR100

Alos
Infiniband
InfiniGand EDR 1BM
InfiniGand EDR 1BM

Rpeak: theoretical peak of the

Site
country

0Oak Ridge
Mational
Laboratory
B United
States

RIKEN Center
for
Computational
Science

® Japan

EuroHPC JU

Il European
Union, Kajaani

wfem Finland

EuroHPC JU
Il European

Union, Bologna,

1 1 taly

Oak Ridge
Mational
Laboratory
B United
States
Lawrence
Livermore
Mational
Laboratory
B United
States

2023

2020

2022

2023

2018

2018

Operating
system

Linux {HPE Cray
05-5USE)

Linux {RHEL)

Linux {HPE Cray
05-5USE)

Linux

Linux {RHEL
T.4)

Linux {RHEL)

machine




Czech Republic in Top500

June 2023:

Rmax Rpeak Power
Rank System Cores (PFlop/s) [PFlop/s) (kW]

95 Karolina, GPU partition - Apollo 6500, AMD EPYC 7743 71,424 5.75 908 311
84C 2.45GHz, NVIDIA A100 SXM4 40 GB, Infiniba -.;|

:T;ZZ. HPE

IT4lnn ons National Supercomputing Center, V5B-

echnical University of Ostrava

Czechia

264 Karolina, CPU partition - Apollo 2000, AMD EPYC TH12 44C 72,160 284 383 503
2.6GHz, InfiniBand HDR 100, HPE
IT4lnnovations National Supercomputing Center, V5B-

Technical University of Ostrava

Czechia




The Linpack Benchmark

* Benchmark involves solving nonsingular Ax=b using Gaussian elimination
with partial pivoting (GEPP) (2/3n° + 2n* flops)

* Details about the benchmark
* http://www.netlib.org/benchmark/hpl/
* http://www.netlib.org/utk/people/JackDongarra/fag-linpack.html

* Used as the Benchmark for supercomputers since the start of the Top500
in 1993 (for better or for worse...)

* |s this indicative of typical scientific applications?
* Compute-bound kernel...

* Are supercomputer architectures designed to do well on the LINPACK
benchmark?


http://www.netlib.org/benchmark/hpl/
http://www.netlib.org/utk/people/JackDongarra/faq-linpack.html

Graph500 (Since 2010)

* Two rankings based on breadth-first search (BFS) and single source shortest path (SSSP) algorithms; designed to model
data-intensive workloads

* performance measured in GTEPS (giga-traversed edges per second)

e http://graph500.org/

June 2021 SSSP:

NUMBER NUMBER

INSTALLATION . LOCATION * COUNTRY ¥ YEAR = OF * OF ¥ SCALE = GTEPS =

RANK ¥ MACHINE ¥ VENDOR ¥

SITE NODES CORES
Supercomputer  Fujits RIKEN Center fi obe Hyogo apan 202 158576 7630848 4 102955
Fugak Computationa
Science (R-CCS)
2 SUNWa) MRCPC Mationa L Ching 2015 20768 059568 4 237557
aihulight Supercomputing
3 steria/BDEC Fujits nformation ashiwa Chiba apan 202 768 36804 7 6118
Odyssey) Technology Cente
The University of
Tokyo
- TOKI-S0RA Fujitsu Tok apan 202 576 27648 36 10813
5 LUMI-C HPE EuroHPC/CSC ajaan Finland 202 492 190976 38 34677



http://graph500.org/

HPCG Benchmark (Since 2015)

* Intended to model the data access patterns of real-world applications such as sparse
matrix calculations; test limitations of the memory subsystem and internal
interconnect of the supercomputer on its computing performance

* http://www.hpcg-benchmark.org/

The HPC Conjugate Gradient (HPCG)
benchmark uses a Preconditioned
Conjugate Gradient (PCG) algorithm to
measure the performance of HPC
platforms with respect to frequently
observed, and yet challenging,
patterns of execution, memory access,
and global communication.

The PCG implementation uses a regular 27-point
stencil discretization in 3 dimensions of an elliptic
Partial Differential Equation (PDE). The 3D
domain is scaled to filla 3D virtual process grid of
all available MPI process ranks. The CG iteration
includes a localand symmetric Gauss-Seidel
preconditioner, which computes a forward and a
back solve with a triangular matrix. All of these
features combined allow HPCG to deliver a more
accurate performance metric for modern HPC
hardware architectures.

PRECONDITIOMED COMJUGATE
GRADIENT SOLVER
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http://www.hpcg-benchmark.org/

HPCG Benchmark

TOP500 Rmax HPCG
Rank Rank System Cores [PFlop/s] (TFlep/s)

2 Supercomputer Fugaku - Supercomputer Fugaku 7,630,848 442101 1600450
Ab4FX 48C 2. 2GHz, Tofu interconnect D, Fujitsu \

Japan Rpeak for Fugaku:
537,210 Tflops/s

| POWER® 22C 2,614,592 148.80 2923.73

M | o HPL gets about 80% of

UUE/SL/UBK Rigge Mational Laboraton

United S:date.z o theoretical peak.

3 3 Optimized 3rd Generation 1,110,146 151.90 1935.73 0
. HPCG only gets about 3%

fuoHPC/CSC of theoretical peak!
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Greenb00

e Since 2007

* ranks the top 500 supercomputers in rops0 Rmax  Power Energy Efficiency
.- . Rank Rank System Cores [PFlop/s) (kW) [GFlops/watts)
the world by energy efficiency
29 Frontier TDS - HPEC 120,832 19.20 309 62.684

e https://www.top500.org/green500/

United States

2 ] Frontier - HPE Cr:
About the Green500 List e e
1, HPE

8,730,112 1,102.00 21,100 32.22

=1

The Greenal0 list ranks the top 500 supercomputers in the world

by energy efficiency. The focus of performance-at-any-cost Laboratory

United States

computer operations has led to the emergence of

supercomputers that consume vast amounts of electrical power 3 3 LUMI - HPE Cray 1,110,144 151.90 2942 51.629
and produce so much heat that large cooling facilities must be :t_j_i;hjﬂ M ot

constructed to ensure proper performance. To address this trend, lH;:EH -

the Greend00 list puts a premium on energy-efficient Fnland

performance for sustainable supercomputing. . 0 Adetin HPE O s9072 460 o1 —

Optimized 3rd Gen

2GHz, AMD Instinct M



https://www.top500.org/green500/

National Laboratory

System Performance Each node has The system includes

4608 nodes

I $Qak RIDGE Summit (#5 machine) System Overview /5

e Peak performance of * 21BM POWER3 5 .
processors * Dual-rail Mellanox
200 petaflops for EDR InfiniBand
modeling & * 6 NVIDIA Tesla network
simulation L Gl - 250 PB IBM
* 608 GB of fast Spectrum Scale
* Peak of 3.3.Eanps for memory file system
data analytics and . 1.6TB of NVMe transferring data at

artificial intelligence memory 2.5TB/s




HPC Architectures Today

Summit Node

(2) IBM Power9 + (6) NVIDIA Volta V100 Future architectures:

foace goo.ce * non-uniform memory
4 13sc8s + 13508
CPUO CPU1 dCCess
0 (0-3) 7 (28-31) 14 (56-59) | 22(801) | [200116119) | | 36(144-147) | o GPUS/FPGAS’ other
1(4-7) 8 (32-35) 15 (60-63) | 2310285 | [ s0(120123) | | 37(1484151) |

specialized accelerators

2(8-11) 9 (38-39)

|
|

16(64-67) | 64 GBIs | 24e889) | | 31(124-127) | | 38(152-156) |
J

| | | |

| | | |

| | ] |
3(12.15) | [ 10w043) | [ a7gee7n)

| | | |

| | | |

| | | |

Gl | [Z000109) | 2025100 | [9056759) | ° mu|t|p|e ha rdwa re
4(16-19) 11 (44-47) 18(72.75) | | 28(104-107) | | 3301324135 | | 40(160-163) | ..
5 (20-23) 12 (48-51) 19(7679) | | 27t08111) | [ 34(136-139) | [ 41 (164-167) | preC|5|0n5
6(24-27) 13 (52-55) 20(80-83) | | 28(112:115) | | 35(140-143) | | 42(168-171) |
1T N e 1T N

GPUO (¢m)| GPU 1 GPU 2

GPU3 |¢md| GPU4 |gm)| GPUS

A B A A B

v > 3 v v v
16 GB 16 GB 16 GB 16 GB 16 GB
(HBM2) (HBM2) (HBM2) (HBM2) (HBM2)

WG g CoceN) M CEN) tensor cores for half precision:

4x4 matrix multiply in one clock cycle
https://www.olcf.ornl.gov /for-users /system-user- double: 7 TFLOPS

guides/summit/summit-user-guide

half+tensor: 112 TFLOPS (16x!)




Floating Point Formats

—1)sign (exponent—offset) x .
(—1)%8% x 2 1. fraction

exponent (11 bits) fraction (52 bits)

AN AN
4 ™\
IEEE double (FP64)
exponent (8 bits) fraction (23 bits)
AN
IEEE single (FP32)
exponent (5 bits) fraction (10 bits)
IEEE half (FP16) size perf. (NVIDIA
(bits) | range u H100)
exponent (8 bits) fraction (7 bits) FP64 04 101308 | 1 x 1071 | 60 Tflops/s
( ) +38 -8
FP16 16 10> | 5x107*
2 Pflops/s
bfloat16 16 1038 | 4x 1073
esm2 FP8-e5m2 | 8 | 10%*5 | 3x 107
FP8 4 Pflops/s
FP8-e4m3 8 10%2 1x 1071
e4m3




Hardware Support for Multiprecision Computation

Use of low precision in machine learning has driven emergence of low-
precision capabilities in hardware:

* Half precision (FP16) defined as storage format in 2008 IEEE standard
e ARM NEON: SIMD architecture, instructions for 8x16-bit, 4x32-bit, 2x64-bit

e AMD Radeon Instinct MI25 GPU, 2017:
* single: 12.3 TFLOPS, half: 24.6 TFLOPS
* NVIDIA Tesla P100, 2016: native ISA support for 16-bit FP arithmetic
* NVIDIA Tesla V100, 2017: tensor cores for half precision;
4x4 matrix multiply in one clock cycle
* double: 7 TFLOPS, half+tensor: 112 TFLOPS (16x!)
* Google's Tensor processing unit (TPU)

* NVIDIA A100, 2020: tensor cores with multiple supported precisions: FP16,
FP64, Binary, INT4, INT8, bfloatl6

* NVIDIA H100, 2022: now with quarter-precision (FP8) tensor cores

» Exascale supercomputers: Expected extensive support for reduced-precision
arithmetic (Frontier: FP64, FP32, FP16, bfloat16, INT8, INT4)



The rise of accelerators

1 Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 7,299,072  415,530.0 5138547 28,335
2.2GHz, Tofu interconnect D, Fujitsu
RIKEN Center for Computational Science

Japan

2 Summit - [BM Powe tern AC922, IBM POWER? 22C 2414592  148,600.0  200,794.% 10,096
3.07GH& NVIDIA Volta GV100, Dual-rail Mellanox EDR
Infiniband, IBEM

DOE/SC/Oak Ridge National Laboratory
United States

3 Sierra - IBM Dower System AC922, IBM POWERY 22C3.1GHz, 1572480 944400 1257120 7.438
Dua[—rail Mellanox EDR Infiniband, IBM /
NVIDIA / Mellanox
DOE/NNSA/LLNL
United States

4 Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 10,649,600 23,0146 1254357 15371
1.45GHz, Sunway, NRCPC
National Supercomputing Center in Wuxi
China

5 Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 4,981,760 61,4465  100,678.7 18,482
2.2GHz, TH Express-2, Matrix-2000, NUDT
National Super Computer Center in Guangzhou

China
& HPCS - PowerEdge C4140, Xeon Gold 6252 24C 2.1GHz, 669,760 35,450.0 51,7208 2,252
NVIDIA Tesla V100, Mellanox HDR Infiniband, Dell EMC
EniS.p.A.
Italy

DEAA100 SuperPOD, AMD EPYC 7742 64C 2.25GHz, 272,800 27,580.0 34,5686 1344

NVIDIA A100, Melldnox HDR Infiniband, Mvidia

NVIDIA Corpeoration
United States




From Vector Supercomputers to Massively Parallel Accelerator Systems

Programmed by
“annotating” serial
programs

1 Accelerated
B Cluster x86
B MPP
M Constellation
B SMP

SIMD

M Vector

@
=500

SUPERCOMPUTER SITES
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Share

Accelerator/Co-Processor - Systems Share

2012 2013 2014

[ nviDIA Tesla vioo

|| NVIDIA Tesla V100 SXM2

B nvidia volta vion

[ 1ntel Xeon Phi 51200

. MNone

[7] nviDIA Quadro RTX8000

[l Fezv-sC2 700Mhz

[ nvIDIA Tesla k20m

. NVIDIA Tesla K40/Intel Xeon Phi 7120P

| ] AMD Vega 20

. Deep Computing Processor

[ "] 1ntel xeon Phi 5110P
NVIDIA Tesla K40m

[ 1ntel xeon Phi 7120%

| Irezvsc

2015

2016 2017 2018

| NVIDIA Teslz P100

I nvipia volta Gvioo

[ nviDia Tesls k40

[ nvID1A Teslz k80
NVIDIA 2050

B vin-core

I nviD1A Tesla P1O0 MVLink

[ nvip1a a100

[ 1ntel xeon Phi 3151P

[ ] nvIDIA Teslz k20x

[ matrix-2000

[ intel xeon Phi 7120P

Bl nvIDIA Teslz GP100

[ nvidia Titan Black

[ PEZY-5C2 S00Mhz

2019

41



Mixed precision in NLA

- BLAS: cuBLAS, MAGMA, [Agullo et al. 2009], [Abdelfattah et al., 2019], [Haidar et al., 2018]

* lterative refinement:
* Long history: [Wilkinson, 1963], [Moler, 1967], [Stewart, 1973], ...

* More recently: [Langou et al., 2006], [C., Higham, 2017], [C., Higham, 2018], [C.,
Higham, Pranesh, 2020], [Amestoy et al., 2021]

* Matrix factorizations: [Haidar et al., 2017], [Haidar et al., 2018], [Haidar et al., 2020],
[Abdelfattah et al., 2020]

* Eigenvalue problems: [Dongarra, 1982], [Dongarra, 1983], [Tisseur, 2001], [Davies et al.,
2001], [Petschow et al., 2014], [Alvermann et al., 2019]

 Sparse direct solvers: [Buttari et al., 2008]
* Orthogonalization: [Yamazaki et al., 2015]

* Multigrid: [Tamstorf et al., 2020], [Richter et al., 2014], [Sumiyoshi et al., 2014], [Ljungkvist,
Kronbichler, 2017, 2019]

* (Preconditioned) Krylov subspace methods: [Emans, van der Meer, 2012], [Yamagishi,
Matsumura, 2016], [C., Gergelits, Yamazaki, 2021], [Clark, 2019], [Anzt et al., 2019], [Clark et
al., 2010], [Gratton et al., 2020], [Arioli, Duff, 2009], [Hogg, Scott, 2010]

For survey and references, see [Abdelfattah et al., IJHPC, 2021], [Higham and Mary, 2022]



HPL-MxP Benchmark httes://hpl-mxp.org/

HPL-MXP MIXED-PRECISION BENCHMARK

The HPL-MxP benchmark seeks to highlight the emerging convergence of high-performance computing (HPC) and artificial intelligence (Al) workloads. While traditional
HPC focused on simulation runs for modeling phenomena in physics, chemistry, biology, and so on, the mathematical models that drive these computations require, for
the most part, 64-bit accuracy. On the other hand, the machine learning methods that fuel advances in Al achieve desired results at 32-bit and even lower floating-point
precision formats. This lesser demand for accuracy fueled a resurgence of interest in new hardware platforms that deliver a mix of unprecedented performance levels and
energy savings to achieve the classification and recognition fidelity afforded by higher-accuracy formats.

HPL-MxP strives to unite these two realms by delivering a blend of modern algorithms and contemporary hardware while simultaneously connecting to the solver
formulation of the decades-old HPL framework of benchmarking the largest supercomputing installations in the world. The solver method of choice is a combination of
LU factorization and iterative refinement performed afterwards to bring the solution back to 64-bit accuracy. The innovation of HPL-MxP lies in dropping the requirement
of 64-bit computation throughout the entire solution process and instead opting for low-precision (likely 16-bit) accuracy for LU, and a sophisticated iteration to recover
the accuracy lost in factorization. The iterative method guaranteed to be numerically stable is the generalized minimal residual method (GMRES), which uses application of
the L and U factors to serve as a preconditioner. The combination of these algorithms is demonstrably sufficient for high accuracy and may be implemented in a way that

takes advantage of the current and upcoming devices for accelerating Al workloads.



https://hpl-mxp.org/

HPL-MxP Benchmark

» Supercomputers traditionally ranked by performance on high-performance
LINPACK (HPL) benchmark

* Solves dense Ax = b via Gaussian elimination with partial pivoting

* HPL-MxP: Like HPL, solves dense Ax = b, results still to double precision
accuracy

* But achieves this via mixed-precision iterative refinement




HPL-MxP Benchmark

November 2022

Rank

10

Site

DOE/SC/ORNL

EurocHPC/CSC

RIKEN

EuroHPC/CINECA

DOE/SC/ORNL

NVIDIA

DOE/SC/LENL

FZ)

GENCI-CINES

Pawsey Supercomputing Centre

Computer
Frontier
LUMI
Fugaku
Leonardo
Summit
Selene
Perlmutter
JUWELS BM
Adastra

Setonix - GPU

Cores

8,730,112

2,174,976

7,630,848

1,463,616

2414592

555,520

761,856

449,280

319,072

181,248

HPL-AI (Eflop/s)
7.942
2.168
2.000
1.842
1.411
0.630
0.590

0.470

TOP500 Rank

12

11

15

HPL Rmax (Eflop/s)
1.1020
0.3091
0.4420
0.1682
0.1486
0.0630
0.0709
0.0440
0.0461

0.0272

Speedup
7.2
7.0

4.5

8.5
9.9
8.3
10.0
6.6

6.4




HPL-Al Benchmark

November 2022

Rank

10

Site

DOE/SC/ORNL

EurocHPC/CSC

RIKEN

EuroHPC/CINECA

DOE/SC/ORNL

NVIDIA

DOE/SC/LENL

FZ)

GENCI-CINES

Pawsey Supercomputing Centre

Computer
Frontier
LUMI
Fugaku
Leonardo
Summit
Selene
Perlmutter
JUWELS BM
Adastra

Setonix - GPU

Cores

8,730,112

2,174,976

7,630,848

1,463,616

2414592

555,520

761,856

449,280

319,072

181,248

HPL-AI (Eflop/s)

0.630

0.590

0.470

TOP500 Rank

12

11

15

HPL Rmax (Eflop/s)
1.1020
0.3091
0.4420
0.1682
0.1486
0.0630
0.0709
0.0440
0.0461

0.0272

Speedup
7.2
7.0

4.5

8.5
9.9
8.3
10.0
6.6

6.4




HPL-Al Benchmark

November 2022

Rank

10

Site
DOE/SC/ORMNL
EuroHPC/CSC
RIKEN
EuroHPC/CINECA
DOE/SC/ORNL
NVIDIA
DOE/SC/LENL
FZ)

GENCI-CIMNES

Pawsey Supercomputing Centre

Computer
Frontier
LUMI
Fugaku
Leonardo
Summit
Selene
Perlmutter
JUWELS BM
Adastra

Setonix - GPU

Cores

8,730,112

2,174,976

7,630,848

1,463,616

2414592

555,520

761,856

449,280

319,072

181,248

HPL-AI (Eflop/s)
7.942
2.168
2.000
1.842
1.411
0.630
0.590

0.470

TOP500 Rank

12

11

15

HPL Rmax (Eflop/s)

Speedup

1.1020

0.3091

0.4420

0.1682

0.1486

0.0630

0.0709

0.0440

0.0461

0.0272
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SUPERCOMPUTER SITES

Performance Development
Exascale Achieved in June 2022
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Distribution of supercomputers in the TOP500 list by country (as of November 2022)°%
Country or Territory Systems
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EuroHPC

* EU Declaration on HPC in 2017; project formalized in
2018

3 Billion EUR project "

* Aims to pool European resources to develop top-of-the-
range exascale supercomputers, developing a pan-
European supercomputing infrastructure

* Providing a world-class(p ® and pre-exascale
supercomputing and data infrastructure for Europe's
scientific, industrial and public users, matching their
demanding application requirements in 2020

Ostrava, CR is the
site of one new
machine
 Acquisition in 2023 of two exascale systems, one

post-exascale system, networking and coordination of

HPC Competence Centres, support for the first hybrid

HPC / Quantum computing infrastructure in Europe

* https://eurohpc-ju.europa.eu/index.html



https://eurohpc-ju.europa.eu/index.html

2013
18

M w0

| E5

Cores per Socket - Systems Share

2014 2015 2016
[ 24 [ BE
| 68
& -4

H:

2017
M ::
[Tas
M 250

2018
M
M =z

2019




Science: Gordon Bell Prizes vs Top 500
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Science using

Supercomputers




The "Third Pillar" of Science

Traditional scientific and engineering method:
(1) Do theory or paper design
(2) Perform experiments or build system

Limitations: S aeT
—Too difficult—>build large wind tunnels
—Too expensive—build a throw-away passenger jet
—Too slow—wait for climate or galactic evolution
—Too dangerous—weapons, drug design, climate
experimentation

Computational science and engineering paradigm:
(3) Use computers to simulate and analyze the
phenomenon
Based on known physical laws and efficient numerical
methods
Analyze simulation results with computational tools and
methods beyond what is possible manually



Some Particularly Challenging Computations

* Science

* Global climate modeling

» Biology: genomics; protein folding; drug design

* Astrophysical modeling

» Computational Chemistry

» Computational Material Sciences and Nanosciences
* Engineering

* Semiconductor design

* Earthquake and structural modeling

» Computation fluid dynamics (airplane design)

« Combustion (engine design)

* Crash simulation
* Business

* Financial and economic modeling

» Transaction processing, web services and search engines
* Defense

* Nuclear weapons -- test by simulations

» Cryptography



Global Climate Modeling Problem

* Problem is to compute:
f(latitude, longitude, elevation, time) = “weather” =
(temperature, pressure, humidity, wind velocity)

* Approach:
* Discretize the domain, e.g., a measurement point every 10 km
* Devise an algorithm to predict weather at time t+3dt given t

e Uses:

- Predict major events,
e.g., El Nino

- Use in setting air
emissions standards

- Evaluate global
warming scenarios

Source: http://www.epm.ornl.gov/chammp/chammp.html



Global Climate Modeling Computation

* One piece is modeling the fluid flow in the atmosphere
* Solve Navier-Stokes equations
* Roughly 100 Flops per grid point with 1 minute timestep

* Computational requirements:
* To match real-time, need 5 x 10!! flops in 60 seconds = 8 Gflop/s
« Weather prediction (7 days in 24 hours) = 56 Gflop/s
 Climate prediction (50 years in 30 days) = 4.8 Tflop/s
* To use in policy negotiations (50 years in 12 hours) = 288
Tflop/s
* To double the grid resolution, computation is 8x to 16x

» State of the art models require integration of atmosphere, clouds,
ocean, sea-ice, land models, plus possibly carbon cycle, geochemistry
and more

* Current models are coarser than this



High Resolution _ _ o »
' - limeters/d
Climate Modeling on Wintertime Precipitation (milimeters/day)

NERSC-3 - P. Duffy, As model resolution becomes finer, results
etal., LLNL converge towards observations

model, 300 km resolution model, 75 km resolution
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Extreme Scale Climate Science

Melting of West Antarctic Ice Sheet using

Adaptive Mesh Refinement (AMR) Mathematical model for clouds
Dan Martin, LBNL (BISICLES/E35M) David Romps et al, UCB

Exascale is needed to simulate climate and analyze impacts

Resolve clouds, predict sea level rise, quantify extreme events and model
precipitation and ground water levels




The "Fourth Paradigm" of Science

Data

Simulation analysis




Data Driven Science

 Scientific data sets are growing exponentially

- Ability to generate data is exceeding our ability
to store and analyze

- Simulation systems and some observational
devices grow in capability with Moore's Law

 Petabyte (PB) data sets will soon be common:

* (Climate modeling: estimates of the next IPCC
data is in 10s of petabytes

* Genome: JGI alone will have .5 petabyte of data
this year and double each year

* Particle physics: LHC is projected to produce 16
petabytes of data per year

* Astrophysics: LSST and others will produce 5
petabytes/year (via 3.2 Gigapixel camera)

» Create scientific communities with “Science
Gateways' to data




Data analytics in science and engineering

Wayne Joubert, Dan Jacobson et al,
Gordon Bell Prize (1 of 2) at SC18

High Performance Data
Analytics (HPDA) is used for
data sets that are:

* too big

* too complex

* too fast (streaming)
* too noisy

* too heterogeneous

for measurement alone

Particle from detectors
Sensor data



Machine Learning in Climate Data

Classification Instance
+ Localization

Classification Object Detection

Segmentation

— - 5

Contributors: Prabhat, Thorsten Kurth, Jian Yang, loannis Mitliagkas, Chris Pal, Nadathur Satish, Narayanan
Sundaram, Amir Khosrowshahi, Michael Wehner, Bill Collins.




Deep Learning for Extreme Weather Events

i 4l 27 S 3}
0 200 400 600 800 1000

* Supervised and semi-supervised learning on CAM5 data
« 85-99% accuracy at identifying extreme climate events
* 1 ExaOp (16-bit) on Summit at ORNL; trained in 100 minutes

Thorsten Kurth et al



Why writing (fast)

parallel programs is hard




Parallel Programming Challenges

Finding enough parallelism (Amdahl’'s Law)

Granularity — how big should each parallel task be

Locality — moving data costs more than arithmetic

Load balance — don’t want 1K processors to wait for one slow one

Coordination and synchronization — sharing data safely

Performance modeling/debugging/tuning

‘ All of these things makes parallel programming
even harder than sequential programming.



“Automatic’ Parallelism in Modern Machines

Bit level parallelism
 within floating point operations, etc.

Instruction level parallelism (ILP)
* multiple instructions execute per clock cycle

* Memory system parallelism
 overlap of memory operations with computation

OS parallelism
* multiple jobs run in parallel on commodity SMPs

Limits to all of these -- for very high performance, need
user to identify, schedule and coordinate parallel tasks



Finding Enough Parallelism: Amdahl's Law

* Suppose only part of an application is parallel

e Amdahl’s law

* s = fraction of work done sequentially (Amdahl fraction), so
(1-s) is fraction parallelizable

* P = number of processors

Speedup(P) = Time(1)/Time(P)
<=1/(s + (1-s)/P)
<=1/s

e Even if the parallel part speeds up perfectly
performance is limited by the sequential part

e 1/10%™ of your code's runtime is serial 2 max speedup is 10x



Overhead of Parallelism

* Given enough parallel work, this is the biggest barrier to getting
desired speedup
 Parallelism overheads include:
* cost of creating parallelism (starting a thread/process)
 cost of communicating shared data
* cost of synchronizing
* extra (redundant) computation

* Overheads can be in milliseconds (which is millions of flops)

* Tradeoff:

 Algorithm needs sufficiently large units of work to run fast
in parallel (i.e. large granularity),

e But not so large that there is not enough parallel work



Locality and Parallelism

Conventional
Storage

- Proc Praoc Proc
Hierarchy Cache Cache Cache
| 2 Cache L2 Cache L2 Cache
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* Large memories are slow, fast memories are small

» Storage hierarchies are large and fast on average

 Parallel processors, collectively, have large, fast cache
* the slow accesses to “remote” data we call “communication”

* Algorithm should do most work on local data



Processor-DRAM Gap (latency)

Goal: find algorithms that minimize communication, not necessarily arithmetic

1000 “ uProc
60%l/yr.
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Load Imbalance

* Load imbalance is the time that some processors in the system are idle
due to

* insufficient parallelism (during that phase)
* unequal size tasks

* Examples of the latter
 adapting to “interesting parts of a domain”
* tree-structured computations
* fundamentally unstructured problems

* Algorithm needs to balance load

* Sometimes can determine work load, divide up evenly, before
starting

« "Static Load Balancing"

e Sometimes work load changes dynamically, need to rebalance
dynamically

* "Dynamic Load Balancing", e.g. work-stealing



Parallel Software ... Eventually

* 2 types of programmers = 2 layers of software

» Efficiency Layer (10% of programmers)

* Expert programmers build Libraries implementing kernels,
“Frameworks”’, OS, ....

* Highest fraction of peak performance possible

* Productivity Layer (90% of programmers)

* Domain experts / Non-expert programmers productively build
parallel applications by composing frameworks & libraries

* Hide as many details of machine, parallelism as possible
* Willing to sacrifice some performance for productive programming

* | expect that you may want to work at either level...

* In the meantime, we all need to understand enough of the
efficiency layer to use parallelism effectively



Measuring

Performance




Goal of Parallelism: Decrease Running Time

Runtime
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Reporting Speedup (Strong Scaling)

Speedup
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—Speedup
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Processors (= cores)

Speedup(P) = Time(1)/Time(P)

This is a strong scaling plot: fixed problem size, vary number of processors



Parallel Efficiency

Parallel Efficiency
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Same strong scaling results shown as efficiency (ideally flat)



Parallel Efficiency (Weak Scaling)

Parallel Efficiency
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Weak scaling uses a fixed problem size per processor. Can report as:
* Flop/s (or other rate) per processor; Efficiency based on rate per processor
» Time (if algorithm is linear in data size)



Summary: Strong Scaling versus Weak Scaling

 Strong scaling: concerns the speedup for a fixed problem size with respect
to the number of processors (fixed total problem size)

» governed by Amdahl’'s law

* Weak scaling: concerns the speedup for a scaled problem size with
respect to the number of processors (fixed problem size per processor)

» speedup depends on amount of serial work remaining constant or
increasing slowly as the size of the problem grows

* also depends on how amount of communication between processors is
grows




Limits to Performance Start at Home

(Single Processor Memory Hierarchy)

* Large memories are slow; fast memories are small

* Most programs have a things nearby previous accesses
* temporal locality: reusing an item that was previously accessed

* Memory hierarchy use this to improve average case

processor
control
Main Secondary Tertiary
memory s(tgir:%e storage
arithmetic " (DRAM) (Tape/Cloud)
registers [ oh P
cache
Speed 1ns 100ns 10ms 10sec
Size KB GB B PB




First Assignment: Create Cluster Account

* Go to http://cluster.karlin.mff.cuni.cz/jak-se-stat-uzivatelem/
* Follow instructions there

Jak se stat uzZivatelem

Je to vlastné snadné...

£ Napiste mailem na clusteradmingkarlin.mff.cuni.cz a uvedte nasledujici poloZky:

« |méno a piijmeni:.......

« Doporuéujici osoba:.......

« PoZadavky na Software:........

Pokud nejste zaméstnanec MFF z matematické sekce, uvedte jméno doporufujici osoby

(vedouci diplomové prace, Skolitel, spolupracovnik z MFF z mat. sekce, se kterym v dané oblasti
spolupracujete)


http://cluster.karlin.mff.cuni.cz/jak-se-stat-uzivatelem/

