Measuring similarity



Scaling

* Sometimes we wonder how we can scale the intensity of a stimulus
to the perceptual level. For one particular threshold level, we can do
this with PF
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FIGURE 5.1 Hypothetical perceptual scale. Left: two pairs of stimuli (¢, d) with the same physical difference
produce different values of perceived difference (b, a). Right: two pairs of stimuli with different physical difference
(c, d) produce equal perceptual differences (b, a).



Discrimination scaling

* We start at some baseline S1, find the JND at level S2, and this is how
we get the whole relationship
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FIGURE 8.2 Constructing a discrimination scale by summing JNDs. 5; ¢ are baselines and AS, 5 are discrim-
ination thresholds.



Weber’s law
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FIGURE 5.5 Left: Weber's Law: AS is proportional to S. Right: Fechner’s Law: « is proportional to the logarithm
of 5. On the right, the intervals on the abscissa between Ss or ASs increase proportionately with 5. When these are
mapped onto equal perceptual intervals via the horizontal lines the function mapped out is logarithmic.



Maximum Likelihood Difference Scaling (MLDS)
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MLDS
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Scaling for complex stimuli
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Which pair is more similar?




How would you measure similarity?




How would you measure similarity?

* ,subjective” — ask about similarity

* ,Objective” — quantify somehow each stimuli and compute similarity
between them



How would you measure similarity?

How similar are these images? (these dogs)

1 - very disimilar 7 - very similar




How would you measure similarity?

(1) Pairwise similarity
judgment

Description Pros

Each pair of items is presented in e Each pair is independently rated (this is
isolation and the subject rates the a pro, if set context is thought to distort
dissimilarity on a scale judgments or a con, if set context is

thought to anchor and inform
judgments)

Cons

e Slow: (n? — n)/2 separate
judgments® required, thus only

feasible for small item sets
» Interpretation of the dissimilarity

scale may drift as previous
judgments are not visible for
comparison



Sidenote - MDS

* We assume that similarity is multidimensional, but it is difficult to
visualize

* We can reduce the complexity for visualization and multidimensional
scaling technique




How would you measure similarity?
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1 comparison



How would you measure similarity?
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How would you measure similarity?

0%1

6 comparisons



How would you measure similarity?

10 items - 45 comparisons

‘ ‘ 100 items — 4950 comparisons



Sorting methods
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Sorting methods

* Subjects sort stimuli into piles based on given criteria

* Q sorting
* Similar/dissimilar piles
* Hierarchical ranking

SORTING

DATA
Colecten aed Auysis

APRM. Coxon

Serins: Quanitatres Applications
Inthe Sockl Scences

(8) a sace unvERsTY PER

Description

(2) Free sorting The subject sorts the items into a

freely chosen number of piles (i.e.,

categories)

Pros

» Quick: requires only n placements®,
thus has essentially linear time
complexity (neglecting the time taken
to decide the categories), thus feasible
for large item sets

Cons

» Gives only binary dissimilarities
(same pile, different pile) for a
single-subject

» Category definition might be
dominated by the first items and
might drift if piles are perceived 10
be represented by the item on top



Single arrangement

 Spatial Arrangement Method (SpAM)
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Alves, H., Koch, A., & Unkelbach, C. (2016). My friends are all alike—the relation between liking
and perceived similarity in person perception. Journal of Experimental Social Psychology, 62, 103-

117.

A SpAM trial of animals that conveys information about four dimensions. The main two dimensions
distinguish mammals (top) from birds (bottom) and wild (left) from domestic (right). Within each

quadrant, animals are also arranged according to size (y-axis) and whether they are commonly eaten

by people (x-axis)

Richie, R., White, B., Bhatia, S., & Hout, M. C. (2020). The spatial arrangement method of
measuring similarity can capture high-dimensional semantic structures. Behavior research

methods, 52, 1906-1928.



Single arrangement

 Spatial Arrangement Method (SpAM)

Description Pros

(3) Single
arrangement

The subject arranges the items in 2D

with the distances taken to reflect the
dissimilarities

» Relatively quick: each placement of an
itern communicates multiple
dissimilarity judgments (superlinear, but
subquadratic time complexity)

e The relationships of multiple pairs are
considered in context

Cons

» Restriction to 2D prevents
communication of

higherdimensional dissimilarity
structures



Multiple arrangement

A initial display mouse drag-and-drop final arrangement
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Kriegeskorte, N., & Mur, M. (2012). Inverse MDS: Inferring dissimilarity structure from multiple item
arrangements. Frontiers in psychology, 3, 245.



Representational dissimilarity matrix (RDM)

* Commonly used to compare behavior and neural response

(A) Stimulus Representational pattern (B) Brain representation
(e.g. images, sounds, other (e.g. voxels, neurons, model units) (e.g. fMRI pattern dissimilarities)
experimental conditions) Q |

& Behavior
i (e.g. disimilarity judgments)

% 3

‘ _) \ )

Compute dissimilari‘tyw

(e.g. 1 - correlation)

|
X

Kriegeskorte, N., & Kievit, R. A. (2013). Representational geometry: integrating cognition,
computation, and the brain. Trends in cognitive sciences, 17(8), 401-412.

-

Activity
Dissimilarity

‘.)
A
' 4
Stimulus description Computational model

(e.g. pixel-based dissimilarity) representation
(e.g. face-detector model)

TRENDS in Cognitive Sciences



Multiple arrangement

(4) Multi-arrangement
iproposed method)

Description

A generalization of (1), (2}, and (3}, in
which multiple item subsets are
arranged in a low-dimensional {e.g.,
2D) space and the dissimilarity
structure is inferred from the
redundant distance information

Pros

¢ Includes methods (1)-(3) as special
cases, so cannot do worse

o Enables us to quickly acquire judgments
reflecting higher-dimensional
dissimilarity structures

e Anytime behavior: process can be
terminated anytime after a first trial
containing all items (=single
arrangement)

# Addresses the cons of methods (1), {2),
and (3)

Cons

# Reguires a method for
constructing subsets (which may
involve assumptions that affect
the results)

o Requires a method for estimating
the dissimilarity structure from
multiple item-subset
arrangements (which may involve
assumptions that affect the
results)



Stimuli in similarity space

* Although we have measured
similarity, there are some
features that could describe
each stimulus

* E.g.: number of sides, colour

e But what should we use for
complex stimuli?



Representational embeddings

* Reduce complex stimuli into several continuous variables
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Embeddings of similarity space

* Pairwise comparisons are
“expensive”

e |dea: measure subset of
data and fill the missing
values

b
Which is the odd one out? Representational
embedding Predicted choice behaviour
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Fig. 1| Task and modelling procedure for the large-scale identification of mental object representations. a, We applied a triplet odd-one-out similarity
task to images of the 1,854 objects in the THINGS database'” and collected a large number of ratings (1.46 million) using online crowdsourcing. The triplet
odd-one-out task measures object similarity as the probability of choosing two objects together. This task evokes different minimal contexts as a basis
for grouping objects together, which in turn emphasizes the relevant dimensions. b, The goal of the modelling procedure was to learn an interpretable
representational embedding that captures choice behaviour in the odd-one-out task and predicts object similarity across all pairs of objects. Since only
a subset of all possible triplets had been sampled (0.14% of 1.06 billion possible combinations), this model additionally served to complete the sparsely
sampled similarity matrix. ¢, The model reflects the assumed cognitive process underlying the odd-one-out task. The embedding was initialized with
random weights and would carry out predictions for which object pair was the most similar, on the basis of the dot product. Predicting the most similar
pair is equivalent to predicting the remaining object as the odd one out. The model predictions were initially at chance (see the example for a prediction
that deviates from the choice) but learned gradually to predict behavioural choices. To allow for error backpropagation to the weights, the model was
implemented as a shallow neural network. For this figure, all images were replaced by images with similar appearance from the public domain. Images
used under a CCO license, from Pixabay: monika1607, OpenClipart-Vectors; Wikimedia: Vita Vilcina.

Hebart, M. N., Zheng, C. Y., Pereira, F., & Baker, C. I. (2020). Revealing the multidimensional mental representations of natural objects

underlying human similarity judgements. Nature human behaviour, 4(11), 1173-1185.
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How to measure pairwise similarity

Stimuli 1 -0.027 -0.001 -0.020 .. -0.023

Stimuli2 . 0.004 0.003 0.002 . -0.014

Any ideas?



Pairwise similarity metrics

Euclidean Cosine Hamming
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Distance Measures. Image by the author.



Pairwise similarity metrics

d(p, Q)2 = (q1 — P1)2 + (q2 — P2)2
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® —
® Al1]of1]1]o]o]
t t
(5] B[1]1[1]ofo]o0]
©
Manhattan Minkowski Chebyshev
QAT ——— ©
\
& ® ®
Jaccard Haversine Sgrensen-Dice
nnnnnnnn Intersection
ap @8
Union
¢0 Q¢

Distance Measures. Image by the author.




Pairwise similarity metrics

Euclidean Cosine Hamming

Cosine Similarity =
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* Often used with text

https://aitechtrend.com/how-cosine-similarity-can-improve-your-machine-learning-models/
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