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Abstract 

We discuss the optimal choice of traffic lines with periodic timetables on a railway system. A chosen line system has to 
offer sufficient capacity in order to serve the known amount of traffic on the system. The line optimization problem aims at 
the construction of a feasible line system optimizing certain objectives. We introduce a mixed integer linear programming 
formulation. For real world data we succeed in solving the model by means of suitable relaxations and sufficiently strong 
cutting planes with the commercial LP solver CPLEX 3.0. 
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1. Introduct ion 

Nowadays planning problems of railway systems 
become more manageable due to efficient algorithms 
and better implementations on faster computers. Es- 
pecially solving huge linear programs, which is a sub- 
stantial part of  solving mixed integer problems, be- 
came much more efficient in the last ten years. Nev- 
ertheless a lot of  mathematical work has to be done to 
solve "real-world" instances of a complex problem. 

In this paper we describe a problem which occurs 
in a railway system with periodic timetables. Nearly 
every urban public transportation system (tramway, 
bus) and a growing number of railway companies 
(e.g. Nederlandse Spoorwegen) use periodic timeta- 
bles. In a railway system with periodic timetable a 
junction or line connecting two stations runs several 
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times, in a fixed time interval (e.g. one hour), across 
the network. This number is called the frequency of 
the line. The problem considered in this paper consists 
of choosing some lines with their frequencies to serve 
passenger demand and to optimize a given objective. 
Several different objective functions are proposed. On 
one hand you may try to minimize operational costs 
for a fixed service [4],  on the other hand you may 
wish to maximize service quality for fixed operational 
costs. 

One way to improve the service is to minimize the 
total travel time of all passengers. At this stage of 
planning there is no timetable, hence you cannot de- 
termine the exact waiting period while changing lines. 
Changing of lines itself is a major inconvenience, 
hence one possible way to optimize service is to min- 
imize the total number of changes, or even simpler to 
maximize the total number of travellers on direct con- 
nections (or simply direct travellers). 

Public transportation companies offer several ser- 
vices to meet the requirements of their customers. Typ- 
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Fig. 1. Network transformation for applying usual network design 
techniques. 

ically, the railway companies set up fast far-reaching 
InterCity (Express) trains (IUICE) , InterRegio trains 
(IR) connecting district towns and commuter trains 
(CT). Travellers will be assigned to the different net- 
works by a procedure called system split [ 131. The 
idea of this split is very simple. Assume there are some 
passengers at a small station a who want to travel to 
another far away small station b. No fast train (IC/ICE 
or IR) stops at these stations, hence there is only a 
slight hope for a direct connecting train, and if it ex- 
ists, it will be very slow. Therefore we assume that 
some travellers take a CT train to the next station c, 
where an IC/ICE or IR train stops, use this fast train 
to reach a station d near station b and finally get on 
a CT train to station b. Hence we split journeys from 
a to b in the following way: In the network for CT 
trains we move passengers between a and c, just as 
between d and b. In the IC/ICE respectively IR net- 
work we move passengers between c and d. The exact 
split depends on the assumption on the behaviour of 
the passengers and the topology of the network. 

After this procedure we obtain mostly three dif- 
ferent networks (IC, IR, and CT) with their spe- 
cific data. The data for each network consists of a set 
of stations, the direct connections between two sta- 
tions (links), the travel time and distance for these 
links, and a given amount of traffic between each 
pair of stations. The problem of finding optimal lines, 
in short line optimization, can now be performed in- 
dependently on the different subnetworks like other 
phases of tactical railway planning [ 21. 

In the context of network design [9, lo] the prob- 
lem can be formulated as an optimum network design 
for minimum cost multicommodity flows. The set of 
possible links consists of the connections of tracks in- 
side a station (Fig. 1). If some travellers find a suit- 

able travel path with all tracks connected by these in- 
ner links, then these travellers have a direct connection 
between their origin and destination. Due to a small 
number of suitable travel paths we prefer another for- 
mulation of the line optimization problem. We derive a 
mixed integer linear program (MIP) related to models 
proposed in [ 141 (aircraft) and [ l] (railroad freight 
transportation). Dienst et al. [ 681 consider the prob- 
lem for passenger transport and introduce basic termi- 
nology. They propose a branch-and-bound algorithm 
for solving the line optimization problem. In the next 
section we introduce our model and compare it with 
Dienst’s approach. First experiments are reported in 
Section 3. The results of the experiments lead to some 
changes which are discussed in Section 4. In Section 5 
we take advantage of the integrality of our problem to 
introduce some valid inequalities which help to solve 
the MIP and offer some concluding remarks in Sec- 
tion 6. 

2. Modelling railway networks and lines 

Let us first introduce the basic elements of our prob- 
lem. For reasons of symmetry (we assume that passen- 
gers from a to b come back to a) we model the railway 
network using an undirected graph G = ( YE) , where 
V denotes the set of vertices which describe the sta- 
tions, E is the set of edges which define direct connec- 
tions or links between two stations. Furthermore we 
know some evaluation of the edges, like T : E + Z+, 
the travel time on a single link, or D : E + Z+, the 
travel distance. Possible lines in a railway network are 
modeled by (simple) paths in G. A station in which 
a line may start/end must have a special equipment 
(e.g. sidings to compose trains). Let CY 2 V describe 
these clussijcution yards. Only paths in G with start- 
and endpoint in CY are possible lines. Let Lc denote 
the set of all possible lines, then f : LO -+ Z+ de- 
notes the frequencies of the possible lines in a fixed 
time interval (e.g. in one hour). 

Next we model the behaviour of the travellers. Let 
tr : {{a, b} ) a, b E Vu $6) -+ Z+ denote the vol- 
ume of traffic between the stations. Let 7 := {{a, b} 1 
u, b E Yu $ b,tr({u, b}) $ 0) denote the set of 
origin-destination-pairs with nonzero volume of traf- 
fic. Instead of tr({u, b}) for {a, 6) = t E 7 we 
shortly write @(a, b) or tr( t). Obviously this in- 
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Fig. 2. The German IC/ICE and IR railway network. 

formation is not enough to define the traffic flow 
on the network. Therefore, we have to make certain 
assumptions on the behaviour of the travellers. 

Assumption Travellers between a and b (a,  b E V) 
use a shortest path between a and b in G with re- 
spect to some edge evaluation, i.e.w.r.t, travel time 
T or w.r.t, travel distance D. 

For most of the long-distance networks, this is a re- 
alistic assumption. For very dense local networks, like 
urban bus networks, this will not reflect reality. The 
assumption is sufficient to fix the traffic load through 
the links of  the railway network when we assume that 
all shortest paths are uniquely determined. Let Pt de- 
note the shortest path in G with respect to some edge 
evaluation between a and b (t  = {a, b} E 7"). Then 
the traffic load tl : E ~ Z+ is given by 

t l ( e )  := ~ t r ( t ) .  
{aJ,)=tE'7" 

eEPt 

If  we assume a maximal fixed train capacity C, we 
may compute the minimum number of trains/lines, 
called line-frequency-requirement, which have to run 
along link e to serve the demand for transporta- 
tion. A reasonable calculation of the line-frequency- 
requirement/fr : E --~ Z+ would be 

1 

Due to political, economical and other non-mathemati- 
cal considerations, this calculation is not always used, 
hence in our model we have to treat the line-frequency- 
requirement as a fixed input parameter. 

Since every traveler between t E 7" moves along his 
shortest path Pt, direct travel maximization suggests to 
choose shortest paths or combinations of shortest paths 
as possible lines. Hence we shrink /~0 to Z~ := {l E 
/~0 ] l is a shortest path between some a, b E CY}. 
Although we can handle any combination of lines in 
the model as well, combinations are usually done "by 
hand" at the end of the optimization when further op- 
erational constraints have to be satisfied. 

2.1. The mixed integer linear programming 
formulation 

A feasible solution of the line optimization prob- 
lem is a set of lines with their frequencies satisfying 
the line-frequency-requirement for every edge. An op- 
timal solution maximizes the number of direct trav- 
ellers. Let dt,z E Z+ denote the number of direct trav- 
ellers between t E 7" (t = {a ,b})  using line l. We 
remind that f t  denotes the frequency of some line l E 
£0- Then, we have the following MIP formulation of 
the line optimization problem: 

D* = max ~--~ ~--~ dt,l, 
p~ct 
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Fig. 3. The line-frequency-requirement for the German IC/ICE and IR railway network. 

s.t. ~-~dt,t <_ tr( t)  (forall  t E T ) ,  (1) 
tEL 
/DPt 

d t , t < _ C ' f t  (for a l l e E E ,  l E £ ) ,  (2) 
cET 

eEPtCI 

f t  = lfr(e) (for all e E E) ,  (3) 

eel  

d t , t , f t E Z +  (for a l l t E T ,  lEZ~).  

We will allow fractional travellers, i.e. we relax dt,l E 
Z+ to d,,t > O, for several non mathematical rea- 
sons. If  we choose a feasible set of lines with certain 
frequencies then the remaining smaller maximization 
problem describes the quality of our choice. Now, the 
train capacity C is only a vague estimation of the real 
situation. Moreover, the number of direct travellers is 
huge. Therefore, it seems not to be very important to 
find the exact integral optimum of this subproblem 
just for the comparison of the quality of our choice. It 
may be sufficient to base our evaluation on its linear 
programming relaxation. We refer to the above MIP 
formulation with this relaxation as LOP. 

Inequality (1) restricts the number of  direct trav- 
ellers between t E 7" by the total number of travellers 
between t. By inequality (2) no line can be overloaded 
and Eq. (3) ensures that the edges are covered with a 
sufficient number of  lines/frequencies, f defines a set 
LT := {l 6 /Z0 ] f t  4= 0} with its frequencies. There- 
fore f is called a line partition of G if it fulfills (3). 

To improve the flexibility of the model you may attach 
some weights w(t, l), e.g. travel distances or travel 
times, to dt,l in the objective function. 

2.2. Heuristical approach 

The main difference between our model L O P  and 
the model described in [6,8] is that Dienst et al. as- 
sume an infinite train capacity. Whenever a direct con- 
nection exists for some travellers, they will be able 
to use this line neglecting the actual load. Setting 
C := ~t6~- t r ( t ) ,  our model includes this approach, 
but you can take advantage of the infinite train capac- 
ity and find a more efficient model. In Section 4 we 
come back to this question. In this paragraph we give 
an outline of the method used by Dienst et al. [ 6, 8 ]. 

His algorithm is based on a simple branch-and- 
bound (B&B) method which tries to build a line 
partition by adding lines one after another. Since 
C = ~ ,  the value of the line packing L, i.e. a set of 
lines with their frequencies which fulfills the parti- 
tion equality (3) with "<",  is ~ I c L  ~ t c T , P ,  C I t r( t ) .  
After adding a line l to the line packing we adjust 
the remaining data. In a node of the B&B-tree with 
a feasible line packing you branch on the choice 
of a line l with maximal current direct travellers 
(~--~tET-,p,c_ttr(t)) (Greedy). The remaining parts 
of the algorithm are standard B&B techniques. Due 
to the very slow performance of this method the al- 
gorithm is (usually) interrupted after a fixed time 
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cy={1,2,3},L={1-O-2, l-O-z, 2-O-z) 

Fig. 4. An instance (G,/fr, Z~) with no valid line partition and one 
of its adjustments. 

(e.g. I00000 sec.) or a fixed number of operated 
nodes (e.g. I0000). Two further well-known prob- 
lematic features of the algorithm are listed in the 
following. 

• The current best (or the final optimal) line pack- 
ing L may be infeasible. If we do not succeed in 
completing it by the remaining lines then there 
is no information at all whether the given data 
allow any valid line partition. Either there exists 
no line partition due to faulty problem data, or 
the algorithm missed to find one, or we missed 
to find some completion. All three cases are pos- 
sible. Of course, if no line partition exists for the 
instance (G, Ifr, L), then we have to adjust the 
line-frequency-requirement (Fig. 4). 

• In case of external interruption no information 
about the quality of the current best line packing 
L relative to the optimum line packing L* is 
known. 

Nevertheless, in case of consistent data the algo- 
rithm seems to work quite well in practice, if we pro- 
vide sufficient computer time (Table I, problem in- 
stances described in the next section). For the in- 
stances tested, the gap between solutions generated by 
the B&B method and the optimal solution were always 
< 4.1%. This and all other computational experiments 
were achieved on a HP 9000/715-50 workstation. 

3. The problem instances and first results 

Solving NP-hard problems like the line optimization 
problem (polynomial reducible to EXACT COVER 
BY 3-SETS [7] ) has to be based on the actual struc- 
ture of real-world data. Our current data pool consists 
of five "real-world" railway networks. Three of them 
(NS-IC, NS-IR and NS-CT) come from the Dutch 

railway company (Nederlandse Spoorwegen) and the 
remaining two (DB-IC and DB-IR) are from the Ger- 
man railway company (Deutsche Bahn AG). The pa- 
rameters of the networks and the size of the concern- 
ing MIP formulation can be found in Table 2. 

At the time being, a direct commercial solver of 
MIP's for networks of this size seems not to be avail- 
able. Though using the fast CPLEX 3.0 LP solver [ 5 ], 
even the LP relaxation (replace f l  E Z+ by f l  > O) 
of the larger instances could not be solved on an HP 
9000/715-50 with 212 MB core memory. Bixby [3] 
solved the LP relaxation for all instances with CPLEX 
on a SGI-Power-ChaUenge within 30 hours. Only for 
the smallest network (NS-IC), CPLEX 3.0 MIP solver 
managed to solve the MIP problem (Table 3). 

Even if the solution of the LP-relaxation is found 
in reasonable time, the solution of the MIP remains 
difficult. Due to the large number of fractional vari- 
ables ft  in the optimal solution of the LP-relaxation, 
the successive B&B procedure of the MIP solver fails 
to find the optimal MIP solution. Therefore, we tried 
to ease the computational task in two ways: 

• using a simpler model decreasing the size of the 
resulting MIP formulation, 

• using integrality of variables to develop con- 
straints which eliminate the generated fractional 
values of the variables fl. 

4. Reducing the size of the model 

In the original model LOP travellers between t E 
T using different lines Ii and 12 are counted in dif- 
ferent variables dt,tt and dt,12. If the line-frequency- 
requirement is designed to carry the complete flow of 
travellers then we may try to aggregate the direct trav- 
ellers in different lines. Let Dt := Y~. t~c dt I denote the 

e~C_t ' 
sum of all direct travellers between t E 7" on all us- 
able lines. In this smaller model, we do not take care 
of the exact distribution of the travels on the lines. The 
number of direct travellers Dt is bounded by the total 
number of travellers (4) and capacity of lines con- 
netting t (5).  In the context of multicommodity flows, 
this is a relaxation of the bundle constraints to individ- 
ual capacities. However, we may run into difficulties 
if the relaxed model carries all travellers whereas in 
the original model the line-frequency-requirement is 
too small for the traffic volume. 
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Table 1 
Results of the B&B method (interrupted after 10000 nodes) 

network NS-IC NS-IR NS-CT 

Optimality gap 0.0% 1.9% 4.1% 
Running time 30 sec. 1.5 h 12 h 

59 

Table 2 
Net parameters and MIP formulation size 

network IvI ICYl IEI IZ~I 17-1 LOP 
Variables Constraints Nonzeros 

NS-IC 23 23 31 253 210 2120 1017 6278 
NS-IR 86 86 114 3655 2L47 116974 28487 556131 
NS-CT 385 91 428 4095 11240 583598 96620 3589478 
DB-IC 100 100 118 4950 3136 183235 43200 1038761 
DB-IR 307 199 398 19701 9215 900173 261308 4853878 

Table 3 
Computational results with LOP. 

network running time objective function value I{fi I ¢'/ ~ Z+}I 
LP MIP LP MIP 

NS-IC 10.55 4912.32 9.168.554 8.203.412 141 
NS-IR 5284.34 21.315.607 636 
NS-CT * 25.492.888 
DB-IC 12777.66 9.768.973 1384 
DB-IR * 8.095.734 

- ) no solution after 5h running time. Time in seconds. * computed in 

L) = max ~ Dr, 
tE'T 

s.t. Dt <_ tr(t) (for all t E 7"), (4) 

D t < C . ~ f t  (for a l l t E T ) ,  (5) 
tEL 
Pl C I 

~ fl = lfr(e) (for all e E E),  (6) 
/EL 
eE! 

D t , f t  E Z+ ( f o r a l l t E T ,  l E £ ) .  

As in Section 3 we relax Dt E Z+ to Dt >_ O. The sub- 
stantial smaller size of this model (referred as lop) is 
described in Table 4. The solution time for its LP re- 
laxation for all five networks together decreases below 
190 sec (Table 4). 

Solving the MIP is still time consuming (3950 sec- 
for all instances). All MIP solutions were found using 

[31 

the CPLEX MIP solver based on a branch-and-bound 
algorithm. Before starting the B&B method CPLEX 
did a lot of preprocessing work called CPLEX MIP 
PRESOLVE. Without this preprocessing none of the 
instances could be solved (break after 5h running 
time). Any feasible solution of the original model 
yields a feasible solution of the smaller model. There- 
fore, the smaller model is a relaxation of the origi- 
nal problem. Solving the smaller model does not pro- 
vide enough information to solve LOP. Due to the ne- 
glected capacities of single lines, it may be impossible 
to distribute all direct travellers Ot in an optimal solu- 
tion D* of the smaller model to the lines in the opti- 
mal line partition. Inequality (5) only assures that the 
travellers between one t E T fit into the connecting 
lines. Still, the inequality is tighter than the one used 
in the model of Dienst (Section 3, [ 6, 8 ] ). Therelbre, 
the model of Dienst is a relaxation of the lop. 
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Table 4 
Computational results with lop 

network size running time objective function value I{ f / ]  J) ~ Z+)I 
Variables Constraints Nonzeros LP MIP LP MIP 

NS-IC 463 234 3060 0.18 0.66 9.168.554 8.203.412 122 
NS-IR 5802 2305 153752 11.07 187.50 28.909.033 21.172.411 502 
NS-CT 15335 11763 696630 44.25 2128.47 38.922.436 37.118.270 390 
DB-IC 8086 3276 236923 39.54 103.23 10.071.448 7.625.326 512 
DB-IR 28915 9692 1239870 94.02 1527.92 8.106.707 6.114.448 1347 

for some if- C_ T (Fig. 5). Striving for integrality we 
add or change some corresponding inequalities. 

Lemma 1. Let f be an integral line partition. For all 
t E T ,  

/ t r ( t ) !  
5 optimal  act,ona, integer so,ution Fig. 

tr(a,b) = tr(a,c) =tr(b ,c)  =50,  train capacity C =  100. The L t-- ] ~tec 
optimal fractional solution is fll = fl2 = f13 = 1/2 with value etc_l 
150. The optimal integer solution is e.g. fh  = 1, fb-d = 1 with 
value 50. with A := tr( t ) - ~ tr_~ ~ C, is valid for  lop. 

5. Cutting planes 

In the MIP formulation of LOP and lop we relaxed 
the integrality of dt,l respectively Dt. However, the in- 
tegrality of the frequency variables f t  is essential for 
a railway system with periodic timetable. The results 
reported in Section 4 point out that we should try to 
save computation time in the B&B part. Here, we pro- 
pose some valid inequalities (cutting planes) which 
take advantage of the integrality of the problem. The 
method of using general cutting planes has been pro- 
posed by Chv~tal and Gomory. More powerful for the 
MIP formulation of combinatorial problems (e.g. TSP, 
set partitioning, network design) is the use of prob- 
lem specific cutting planes. Such cutting planes were 
successfully used to solve NP-hard problems [ 12]. 

5.1. Cutting planes induced by (5) 

A close look at the solution of the LP relaxation of 
lop shows that the value of most frequency variables 
f t  is 

f l = ~tE~" tr( t ) 
C ' 

Proof. We show that a solution (D, f )  of lop with 
integral line partition f fulfills (7). Assume first that 
Lt~c-~] = Itrc--~-], hence A = 0  and (7) boils down to 
Dt <_ tr(t)  which is equal to (4) of lop. Now assume 

(1) i < [ ~ 3 :  With (5) in lop we find 

Dt < C . i = C . i - A . i + A . i  

(2) i >_ Itrc--~] = [trc-~- 1 +1: With (4) in lopwef ind  

>_1 

>_ l t ~ J c + A D e f ' = ° f A t r ( t )  >_Dr. [] 

For t E 7" with tr( t)  <_ C we substitute Dr <_ 
C ~ , c c  ft  by 

p~c_t 
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~ i ~ ~ 

Fig. 6. A valid fractional line partition, v E C3L /fr = 1, 

f ( l l )  = f (12)  = ./'(13) = ½. 

D, <_ tr(t) ~-'~.fl, 
lEE 
t'~ c J 

which is obviously tighter than (5). For t E 7- with 
tr(t) > C we add (7) to lop. 

5.2. Cutting planes induced by (6) 

Another class of cutting planes is implied by the 
equation for a valid line partition (6). In Fig. 6 we 
give an example of a valid fractional line partition. 
Obviously, at least one line has to end in station v. 
The following lemma generalizes this observation. 

Lemma 2. L e t V ' C  V, E/C_ {{u,v} E EJ J{u,v}N 
V'I = 1} and ~e~E' lfr(e) be odd. Furthermore let 
at:= [{e E 1} N E' I. Then the following inequality 
holds for every valid (integer) line partition f . 

Cel'fl ~ Z l f r ( e )  - I .  ( 8 )  
fez: eE E' 

~ / e v e n  

Proof. From (6) and the validity of f we have 

Zcelf! = ~ lfr(e), 
IEL eEE t 

~'~ ce, ft< ~-~ Ifr(e). (9) 
te:- eEE / 

t~ I ~ v c n  

Y 

E2.Z 

The left hand side of (9) is even and the right hand 
side is odd, hence we may subtract 1 of the right hand 
side and keep validity. 

o~tfl <_ ~ lfr(e) - I [] 
/EZ: eEE' 

a I c v c n  

For the small example in Fig. 6 we may add 

2f/) + 2 f t 2 + 2 f t 3  < 3 - 1 = 2  

to prohibit the fractional line partition f t t=  fl2 = ft~ = 
1/2. 

5.3. Computational results 

A major difference between the classes of inequal- 
ities derived in Section 5.1 and 5.2 is their number, 
For t E T we get at most one new inequality from the 
first class. However, the second class grows exponen- 
tially with the size of the network. Therefore, we add 
only the following subset of the inequalities to lop: 

Z 2ft <_ Z l f r ( e ) -  1, 
tEZ: e={u,v}EE 

l runs through v 

for v E V with ~e={,,,}~elfr(e) odd. 

After adding both types of inequalities to lop the num- 
ber of fractional frequency variables f t  in the solu- 
tion of the LP relaxation decreases substantially (Ta- 
ble 5). For NS-IC, NS-CT and DB-IC, all frequency 
variables are integral. For all problems, the difference 
between the solution time of the LP relaxation and 
the MIP becomes insignificant. All instances may be 
solved without using the CPLEX MIP PRESOLVER. 

6. Generating upper and lower bounds 

One drawback of the simple B&B algorithm (Sec- 
tion 3) is that there is no information on the quality 
of the "solution". During the B&B algorithm we get 
only lower bound on the optimal solution value. If 
the algorithm is interrupted, due to its time consum- 
ing behaviour, in most cases we obtain a solution but 
no information "how far" it is away from the optimal 
solution. In this section we derive upper and lower 
bounds in our model using lop and a projected version 
of LOP. 

Since lop is a relaxation of LOP the value /~ of 
an optimal solution of lop is an upper bound for the 
value D* of an optimal solution of LOP. Trivially the 
maximum number of travellers through the network is 
an upper bound too. This number can be computed by 
solving 

= max ~ D t ,  T* 
tE'T 

s.t. Dt < tr(t) (for all t E T ) ,  
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Table 5 
Computational results for lop tightened by cutting planes 

network running time objective function value I{ f t  I ft q[ Z+ }l 
LP MIP MIP* MIP LP 

NS-IC 0.38 0,48 0.38 8.203.412 8.203.412 0 
NS-IR 32.73 37.93 30.62 27.175.593,5 27.172.441 8 
NS-CT 143.82 161.87 358.94 37.118.270 37.118,270 0 
DB -IC 50.47 56,28 55.74 7.625.326 7.625.326 0 
DB-IR 312.47 408.92 420.86 6.116.916,5 6.114.448 3 

*) no preprocessing with CPLEX MIP PRESOLVER. Time in seconds. 

Dt <_ C • Ifr(e) (for all e E E) ,  
tET" 

O < D t  (for a l l t E T ) .  

On the other hand, we may take the optimal line 
partition f from some optimal solution of lop and 
insert it into LOP. Remind that L / =  {l E £ I f l  
0} denotes the corresponding set of lines. Then we get 
a lower bound D ( f ) .  

O(/)--max d,,l, 
IEL? t~'T 

eICt 

s.t. ~ dt,t < t r ( t )  (for a l l t E  T ) ,  
leL~ 
~Pi 

dt,l <_ C . / t  (for all e E E, l E L / ) ,  
rE"1" 

e~etC_t 

d r , l > 0  (for a l l t E T - , I E L ] ) .  

The huge size of the complete model LOP is due to 
the number of possible lines and the resulting number 
of variables dt,l .  However, for a fixed line partition the 
size o f L  i is small (here always < 100) and results in 
LP models of small size (e.g. DB-IR: ILfl = 89, 1422 
variables, 1774 constraints, 7246 nonzeros) solvable 
in a few seconds. Hence, we may compute a confi- 
dence interval (Table 6) containing the optimal value 
of the original large model: 

The confidence intervals are small and acceptable. 
For three networks (NS-IC, DB-IC, DB-IR), the best 
upper bound is achieved by /5, but for NS-IR and 
NS-CT the trivial bound T* applies. This behaviour 
becomes clear if we test our assumption when relax- 
ing LOP to lop. The line-frequency-requirement is 
too small to carry the complete traveller flow. Fig. 7 

free capacity on link .......... overloaded link 

Fig. 7. Overcrowded links in NS-IR and NS-CT. 

shows overcrowded arcs in the two networks. In Sec- 
tion 4 the poor performance of the upper bound /9 
is explained. Anyway, the solution generated by lop 
leads to a satisfactorily small confidence interval. 

7. Conclusions 

In this paper we derived a mixed integer linear pro- 
gramming formulation LOP for the line optimization 
problem. Due to its huge size we were forced to con- 
sider a smaller MIP model lop whose LP-relaxation 
could be solved using CPLEX 3.0. Adding suitable 
cutting planes we succeeded in solving the smaller 
MIP for all instances in less than 6 minutes. A solu- 
tion of lop leads to lower and upper bounds for LOP. 
For all instances this gap is less than 3.2%. The use of 
more sophisticated MIP solvers like MINTO [ 11 ] is 
needless since the LP with the derived cutting planes 
is a good approximation for the MIP. Hence the B&B 
tree is very small and most of the computing time is 
spend by solving one LP. In our experiments we ob- 
tain the best results with CPLEX's dual simplex al- 
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Table 6 
Lower and upper bounds on the optimal value D* 
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network D(f )  /) T* gap between lower 
and best upper bound 

NS-IC 8.203.412 8.203.412 9.168.554 0.0% 
NS-IR 20.982.579 27.172.441 21.315.607 1.6% 
NS-CT 25.079.912 37.118.270 25.863.252 3.1% 
DB-IC 7.549.827 7.625.326 9.745.044 1.0% 
DB-IR 6.114.448 6.114.448 8.682.953 0.0% 

gorithm. 
Future work is necessary to improve model  and 

method. In lop  as well as in L O P  we admit only short- 
est path lines. The main reason for this choice in the 
past was the obvious inefficiency o f  former methods. 
The approach described is so efficient that we are quite 
sure that we may admit  further possible,  reasonable 
lines in the optimization.  Similarly, one should re- 
consider the assumption that all travellers move along 
a shortest path. We may admit  other paths, e.g. k- 
shortest paths for a small number k or other reasonable 
paths. One can also consider the addit ion of  some op- 
erational constraints, more flexible and complex linear 
objectives, and the parametric analysis of  two differ- 
ent objectives. 

In these strengthened models,  it may be necessary 
to use all the inequalit ies derived in Section 5.2. Here 
we need some separation rules for the generation of  
violated inequalit ies "on demand" which can be used 
in a branch-and-cut framework. Another  way to speed 
up the algori thm is to start the LP solver with a "good" 
initial solution, for which some efficient heuristic ap- 
proach is missing by now. 
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