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Preface

In this second edition I have mainly updated and revised the material presented in the
first edition. For example, the 1998 revision of the physical constants has been used
throughout, and the use of symbols and units conforms more closely to recommended
practice. The level of treatment and spirit of the book have not changed. I still aim
to meet the needs of new students of spectroscopy regardless of their background. I
have restrained myself and have not introduced spherical tensors, for example, because
I believe that too many new concepts at one time are confusing.

A certain amount of new material has been added based on my recent experiences
with what is misleadingly called "quantitative spectroscopy." Spectroscopists are gen-
erally divided into two camps: those who interpret the spectral positions of lines and
bands, and those who concern themselves more with line and band intensities. The
latter camp is populated mainly by analytical chemists, but includes astronomers and
atmospheric scientists as well.

Nothing in spectroscopy causes as much confusion as line intensities. Some of the
problems seem to originate from the degeneracies inherent in atomic and molecular
systems. The usual intensity formulas are derived (as in Chapter 1) for transitions
between nondegenerate quantum states, while measurements are generally made on
transitions between degenerate energy levels. The correct inclusion of this degeneracy
turns out to be a nontrivial problem and is presented in Chapter 5 for atoms, but the
expressions given there also apply to molecular systems. Even the definition of what
constitutes a line can be a source of difficulties.

Line intensities are also confusing because of the dozens of different units used to
report line and band strengths. The best procedure is to derive and cite all formulas
in SI units, and then make any needed conversions to "customary" units in a second
step. It is surprisingly difficult to locate line intensity formulas in SI units, with the
appropriate degeneracies included. The line intensity formulas listed in this book should
prove useful to the modern student.

Other than the addition of material pertaining to line intensities in Chapters 5 to
10, a major change in the second edition is in the discussion of the Raman effect and
light scattering (Chapter 8). The standard theoretical treatment of light scattering and
the Raman effect, as first presented by Placzek in the 1930s, has been added. Although
Placzek's approach is hardly light reading, the diligent student will find the derivations
illuminating. A solid understanding of the classical and quantum mechanical theory of
polarizability of molecules is indispensable in the area of nonlinear spectroscopy.

I am very grateful for the comments and helpful criticism from many people, partic-
ularly F. R. McCourt, R. J. Le Roy, C. Bissonette, K. Lehmann, A. Anderson, R. Shiell,
and J. Hardwick. I also thank my fall 2004 graduate class in molecular spectroscopy
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(M. Dick, D. Fu, S. Gunal, T. Peng, and S. Yu) for their comments and corrections.
The figures for the second edition have been prepared by S. M. McLeod, T. Nguyen,
Y. Bresler, and E. R. Bernath.

Finally, my wife Robin has made the second edition possible through her continuing
encouragement and understanding. My special thanks to her.

Ontario P.F.B.
August 2004



Preface to First Edition

This book is designed as a textbook to introduce advanced undergraduates and, par-
ticularly, new graduate students to the vast field of spectroscopy. It presumes that the
student is familiar with the material in an undergraduate course in quantum mechanics.
I have taken great care to review the relevant mathematics and quantum mechanics as
needed throughout the book. Considerable detail is provided on the origin of spectro-
scopic principles. My goal is to demystify spectroscopy by showing the necessary steps
in a derivation, as appropriate in a textbook.

The digital computer has permeated all of science including spectroscopy. The ap-
plication of simple analytical formulas and the nonstatistical graphical treatment of
data are long dead. Modern spectroscopy is based on the matrix approach to quantum
mechanics. Real spectroscopic problems can be solved on the computer more easily if
they are formulated in terms of matrix operations rather than differential equations.
I have tried to convey the spirit of modern spectroscopy, through the extensive use of
the language of matrices.

The infrared and electronic spectroscopy of polyatomic molecules makes extensive
use of group theory. Rather than assume a previous exposure or try to summarize group
theory in a short chapter, I have chosen to provide a more thorough introduction. My
favorite book on group theory is the text by Bishop, Group Theory and Chemistry, and
I largely follow his approach to the subject.

This book is not a monograph on spectroscopy, but it can be profitably read by
physicists, chemists, astronomers, and engineers who need to become acquainted with
the subject. Some topics in this book, such as parity, are not discussed well in any of
the textbooks or monographs that I have encountered. I have tried to take particular
care to address the elementary aspects of spectroscopy that students have found to be
most confusing.

To the uninitiated, the subject of spectroscopy seems enshrouded in layers of bewil-
dering and arbitrary notation. Spectroscopy has a long tradition so many of the symbols
are rooted in history and are not likely to change. Ultimately all notation is arbitrary,
although some notations are more helpful than others. One of the goals of this book is
to introduce the language of spectroscopy to the new student of the subject. Although
the student may not be happy with some aspects of spectroscopic notation, it is easier
to adopt the notation than to try to change long-standing spectroscopic habits.

The principles of spectroscopy are timeless, but spectroscopic techniques are more
transient. Rather than focus on the latest methods of recording spectra (which will be
out of fashion tomorrow), I concentrate on the interpretation of the spectra themselves.
This book attempts to answer the question: What information is encoded in the spectra
of atoms and molecules?

A scientific subject cannot be mastered without solving problems. I have therefore
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provided many spectroscopic problems at the end of each chapter. These problems have
been acquired over the years from many people including M. Barfield, S. Kukolich, R.
W. Field, and F. McCourt. In addition I have "borrowed" many problems either directly
or with only small changes from many of the books listed as general references at the
end of each chapter and from the books listed in Appendix D. I thank these people and
apologize for not giving them more credit!

Spectroscopy needs spectra and diagrams to help interpret the spectra. Although the
ultimate analysis of a spectrum may involve the fitting of line positions and intensities
with a computer program, there is much qualitative information to be gained by the
inspection of a spectrum. I have therefore provided many spectra and diagrams in this
book. In addition to the specific figure acknowledgments at the end of the appendices, I
would like to thank a very talented group of undergraduates for their efforts. J. Ogilvie,
K. Walker, R. LeBlanc, A. Billyard, and J. Dietrich are responsible for the creation of
most of the figures in this book.

I also would like to thank the many people who read drafts of the entire book or
of various chapters. They include F. McCourt, M. Dulick, D. Klapstein, R. Le Roy, N.
Isenor, D. Irish, M. Morse, C. Jarman, P. Colarusso, R. Bartholomew, and C. Zhao.
Their comments and corrections were very helpful. Please contact me about other errors
in the book and with any comments you would like to make. I thank Heather Hergott
for an outstanding job typing the manuscript.

Finally, I thank my wife Robin for her encouragement and understanding. Without
her this book would never have been written.

Ontario P.F.B.
January 1994
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Chapter 1

Introduction

1.1 Waves, Particles, and Units

Spectroscopy is the study of the interaction of light with matter. To begin, a few words
about light, matter, and the effect of light on matter are in order.

Light is an electromagnetic wave represented (for the purposes of this book) by the
plane waves

or

In this book vectors and matrices are written in bold Roman type, except in certain

figures in which vectors are indicated with a half arrow (e.g., E) for clarity. There
is an electric field E (in volts per meter) perpendicular to k that propagates in the
direction k and has an angular frequency uj = 27rv = 2?r/T. The frequency v (in hertz)
is the reciprocal of the period T (in seconds), that is, v = l/T. The period T and the
wavelength A are defined in Figure 1.1 with k in the z direction. The wavevector k
has a magnitude |k| — k — 2?r/A and a direction given by the normal to the plane of
constant phase. EQ| is the amplitude of the electric field, while k-r — ujt + </>o is the
phase (0o is an initial phase angle of arbitrary value).

The presence of a magnetic field, also oscillating at angular frequency cj and orthog-
onal to both E and k, is ignored in this book. Other "complications" such as Maxwell's
equations, Gaussian laser beams, birefringence, and vector potentials are also not con-
sidered. These subjects, although part of spectroscopy in general, are discussed in books
on optics, quantum optics, lasers, or electricity and magnetism.

Wavelength and frequency are related by the equation \v — c, in which c is the
speed of the electromagnetic wave. In vacuum c = CQ, but in general c = CQ/H with n as
the index of refraction of the propagation medium. Since v has the same value in any
medium, the wavelength also depends on the index of refraction of the medium. Thus
since

we must have

3



1. Introduction

Figure 1.1: The electric field at t = 0 as a function of z is plotted in the upper panel, while
the lower panel is the corresponding plot at z = 0 as a function of time.

Historically, direct frequency measurements were not possible in the infrared and
visible regions of the spectrum. It was therefore convenient to measure (and report) A
in air, correct for the refractive index of air to give AO, and then define v = 1/Ao, with
AQ in cm. Before SI units were adopted, the centimeter was more widely used than the
meter so that v represents the number of wavelengths in one centimeter in vacuum and
as a consequence v is called the wavenumber. The units of the wavenumber are cm"1

(reciprocal centimeters) but common usage also calls the "cm^1" the "wavenumber."
Fortunately, the SI unit for z>, the m"1, is almost never used so that this sloppy, but
standard, practice causes no confusion.

The oscillating electric field is a function of both spatial (r) and temporal (£) vari-
ables. If the direction of propagation of the electromagnetic wave is along the z-axis
and the wave is examined at one instant of time, say t = 0, then for fa — 0,

Alternatively, the wave can be observed at a single point, say z = 0, as a function of
time

Both equations (1.5) and (1.6) are plotted in Figure 1.1 with arbitrary initial phases.

4



1.2 The Electromagnetic Spectrum 5

In contrast to longitudinal waves, such as sound waves, electromagnetic waves are
transverse waves. If the wave propagates in the z direction, then there are two possible
independent transverse directions, x and y. This leads to the polarization of light, since
E could lie either along x or along T/, or more generally, it could lie anywhere in the
xy-plane. Therefore we may write

with i and j representing unit vectors lying along the x- and y-ax.es.
The wave nature of light became firmly established in the nineteenth century, but

by the beginning of the twentieth century, light was also found to have a particle aspect.
The wave-particle duality of electromagnetic radiation is difficult to visualize since there
are no classical, macroscopic analogs. In the microscopic world, electromagnetic waves
seem to guide photons (particles) of a definite energy E and momentum p with

and

The factor of 102 in equation (1.8) comes from the conversion of cm"1 for v into m"1.
In 1924 it occurred to de Broglie that if electromagnetic waves could display prop-

erties associated with particles, then perhaps particles could also display wavelike prop-
erties. Using equation (1.9), he postulated that a particle should have a wavelength,

This prediction of de Broglie was verified in 1927 by Davisson and Germer's observation
of an electron beam diffracted by a nickel crystal.

In this book SI units and expressions are used as much as possible, with the tra-
ditional spectroscopic exceptions of the angstrom (A) and the wavenumber v (cm"1).
The symbols and units used will largely follow the International Union of Pure and
Applied Chemistry (IUPAC) recommendations of the "Green Book" by I. M. Mills et
a/.1 The fundamental physical constants, as supplied in Appendix A, are the 1998 Mohr
and Taylor2 values. Notice that the speed of light in vacuum (CQ) is fixed exactly at
299 792 458 m/s. The atomic masses used are the 2003 Audi, Wapstra, and Thibault3

values and atomic mass units have the recommended symbol, u.1

1.2 The Electromagnetic Spectrum

There are traditional names associated with the various regions of the electromagnetic
spectrum. The radio frequency region (3 MHz-3 GHz) has photons of sufficient energy
to flip nuclear spins (nuclear magnetic resonance (NMR)) in magnetic fields of a few
tesla. In the microwave region (3 GHz-3000 GHz) energies correspond to rotational
transitions in molecules and to electron spin flips (electron spin resonance (ESR)). Un-
like all the spectra discussed in this book, NMR and ESR transitions are induced by



1. Introduction

Figure 1.2: The electromagnetic spectrum.

the oscillating magnetic field of the electromagnetic radiation. Infrared quanta (100
cm"1—13000 cm"1) excite the vibrational motion in matter. Visible and ultraviolet
(UV) transitions (10000 A—100 A) involve valence electron rearrangements in mole-
cules (1 nm = 10 A). Core electronic transitions are promoted at x-ray wavelengths
(100 A—0.1 A). Finally, below 0.1 A in wavelength, 7-rays are associated with nuclear
processes. Chemists customarily use the units of MHz or GHz for radio and microwave
radiation, cm"1 for infrared radiation, and nm or A for visible, UV, and x-ray ra-
diation (Figure 1.2). These customary units are units of frequency (MHz), reciprocal
wavelength (cm"1), and wavelength (A).

It is worth noting that the different regions of the spectrum do not possess sharp
borders and that the type of molecular motion associated with spectroscopy in each
region is only approximate. For example, overtone vibrational absorption can be found
in the visible region of the spectrum (causing the blue color of the oceans). Infrared
electronic transitions are also not rare, for example, the Ballik-Ramsay electronic tran-
sition of G-2-

A further subdivision of the infrared, visible, and ultraviolet regions of the spectrum
is customary. The infrared region is divided into the far-infrared (33-333 cm"1), mid-
infrared (333-3333 cm"1), and near-infrared (3333-13000 cm"1) regions. In the far-
infrared region are found rotational transitions of light molecules, phonons of solids,
and metal-ligand vibrations, as well as ring-puckering and torsional motions of many
organic molecules. The mid-infrared is the traditional infrared region in which the
fundamental vibrations of most molecules lie. The near-infrared region is associated
with overtone vibrations and a few electronic transitions. The visible region is divided
into the colors of the rainbow from the red limit at about 7 800 A to the violet at 4 000
A. The near-ultraviolet region covers 4000 A—2000 A, while the vacuum ultraviolet
region is 2000 A—100 A. The vacuum ultraviolet region is so named because air is
opaque to wavelengths below 2 000 A, so that only evacuated instruments can be used
when spectra are taken in this region.

6



1.3 Interaction of Radiation with Matter 7

It is a spectroscopic custom to report all infrared, visible, and near-ultraviolet
wavelengths as air wavelengths (A), rather than as vacuum wavelengths (Ao). Of course,
below 2000 A all wavelengths are vacuum wavelengths since measurements in air are
not possible. The wavenumber is related to energy, E — IQ2hcv, and is the reciprocal
of the vacuum wavelength in centimeters, v = 1/Ao, but in air v = 1/Ao = 1/nA.
For accurate work, it is necessary to correct for the refractive index of air. This can
be seen, for example, by considering dry air at 15°C and 760 Torr for which n =
1.0002781 at 5000 A.4 Thus A = 5000.000 A in air corresponds to A0 = 5001.391 A
in vacuum and v — 19994.44 cm"1 rather than 20000 cm"1!

1.3 Interaction of Radiation with Matter

Blackbody Radiation

The spectrum of the radiation emitted by a blackbody is important both for historical
reasons and for practical applications. Consider a cavity (Figure 1.3) in a material that
is maintained at constant temperature T. The emission of radiation from the cavity
walls is in equilibrium with the radiation that is absorbed by the walls. It is convenient
to define a radiation density p (with units of joules/m3) inside the cavity. The frequency
distribution of this radiation is represented by the function pv, which is the radiation
density in the frequency interval between v and v + dv (Figure 1.4), and is defined so
that

Therefore, the energy density function pv has units of joule-seconds per cubic meter (J
s m~3). The distribution function characterizing the intensity of the radiation emitted
from the hole is labeled !„ (units of watt-seconds per square meter of the hole). In the
radiometric literature the quantity / = J Ivdv (W m~2) would be called the radiant
excitance and Iv (W s m~2) would be the spectral radiant excitance.5 The recommended
radiometric symbol for excitance is M, which is not used here because of possible
confusion with the symbol for dipole moment. The functions pv and Iv are universal
functions depending only upon the temperature and frequency, and are independent of
the shape or size of the cavity and of the material of construction as long as the hole
is small.

Planck obtained the universal function,

named in his honor. The symbol k = 1.380 650 3x 10~23 J K"1 (Appendix A) in equation
(1.12) represents the Boltzmann constant. Geometrical considerations (Problem 13)
then give the relationship between Iv and pv as

Figure 1.5. shows pv as a function of v and the dependence on the temperature T.



1. Introduction

Figure 1.3: Cross section of a blackbody cavity at a temperature T with a radiation density
pv emitting radiation with intensity !„ from a small hole.

Figure 1.4: The Planck function pv(v) is a distribution function defined by dp/dv = pv(v} or
p = / pvdv.

Einstein A and B Coefficients

Consider a collection of N two-level systems (Figure 1.6) in a volume of 1 m3 with
upper energy E\ and lower energy EQ, all at a constant temperature T and bathed by
the radiation density pv(T). Since the entire collection is in thermal equilibrium, if the
number of systems with energy E\ is TVi and the number of systems with energy EQ is
TVo, then the populations NI and NO (N = NI + NQ) are necessarily related by

8



1.3 Interaction of Radiation with Matter

Figure 1.5: The Planck function at 77 K, 200 K, and 300 K.

Figure 1.6: A two-level system.

in which hv\Q = EI — EQ. This is the well-known Boltzmann expression for thermal
equilibrium between nondegenerate levels.

9



10 1. Introduction

Figure 1.7: Schematic representations of absorption (top), spontaneous emission (middle) and
stimulated emission (bottom) processes in a two-level system.

There are three possible processes that can change the state of the system from EQ
to EI or from E\ to EQ: absorption, spontaneous emission, and stimulated emission
(Figure 1.7). Absorption results from the presence of a radiation density PV(VIQ) of the
precise frequency needed to drive a transition from the ground state to the excited state
at the rate

The coefficient J3i<_o is thus a "rate constant" and is known as the Einstein absorption
coefficient or Einstein B coefficient. Similarly if the system is already in an excited
state, then a photon of energy hv\Q (provided by pv] can induce the system to make
the transition to the ground state. The rate for stimulated emission is given by

in which B\^Q is the stimulated emission coefficient. Finally the system in the excited
state can spontaneously emit a photon at a rate

Since the system is at equilibrium, the rate of population of the excited state by
absorption must balance the rate of depopulation by stimulated and spontaneous emis-
sion, so that
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and hence using (1.14)

Solving for pv in equation (1.19) then yields

However, py(v\Q) is also given by the Planck function (1.12)

For expressions (1.12) and (1.20) both to be valid, it is necessary that

and that

Remarkably, the rate constants for absorption and stimulated emission—two apparently
different physical processes—are identical (1.21). Moreover, the spontaneous emission
rate (lifetime) can be determined from the absorption coefficient (1.22). Note, however,
the VIQ factor in (1.22), which plays an important role in the competition between the
induced and spontaneous emission processes.

Absorption and Emission of Radiation

The interaction of electromagnetic radiation with matter can be described by a simple
semiclassical model. In the semiclassical treatment the energy levels of molecules are
obtained by solution of the time-independent Schrodinger equation

while the electromagnetic radiation is treated classically. Consider a two-level system
described by lower and upper state wavefunctions, ^o and i/Ji (Figure 1.8), respectively.

Electromagnetic radiation that fulfills the Bohr condition, EI — EQ = hv — fauj, is
applied to the system in order to induce a transition from the lower energy state at
^o to the upper energy state at EI . The molecule consists of nuclei and electrons at
positions r^ possessing charges <&. The system as a whole thus has a net dipole moment
/Lt with Cartesian components
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Figure 1.8: Two-level system.

Figure 1.9: Three particles with charges gi, 92, and 93 located at positions ri, r2, and ra.

where (xi, yi, Zi) give the coordinates of particle i relative to the center of mass of the
molecule (Figure 1.9).

The interaction of the radiation with the material system is taken into account by
the addition of the time-dependent perturbation (see Chapter 4 and the first section of
this chapter for definitions),

If the oscillating electric field is in the z direction (Eo = (0,0, J^QZ)) and the system is
at the origin, r = 0 (the wavelength A is greater than the dimensions of the system to
avoid having different electric field strengths at different parts of the molecule), then

The transition probability is obtained by solving the time-dependent Schrodinger equa-
tion
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In the absence of H', the two time-dependent solutions of equation (1.29) are

with ijJi — Ei/h. An uppercase Greek ^ is used for a time-dependent wavefunction,
while a lowercase 0 represents a time-independent wavefunction.

The wavefunction for the perturbed two-level system is given by the linear combi-
nation of the complete set of functions ^o and ^i:

where ao and ai are time-dependent coefficients. Substitution of the solution (1.30) into
the time-dependent Schrodinger equation (1.29) leads to the equation

where the dot notation CLQ = da^/dt is used to indicate derivatives with respect to time.
Multiplication by V'o6"*'0** or '&*eluJlt', followed by integration over all space then

gives two coupled differential equations

using the Dirac bracket notation (f\\A\f3} = f f^Afsdr. At this stage no approxima-
tions have been made (other than the restriction to the two states fa and V'o)? and
the two equations (1.32) are entirely equivalent to the original Schrodinger equation.
Now if H' is taken as — ̂ E cos (ajt) in the electric-dipole approximation, then the time-
dependent perturbation H' has odd parity (i.e., is an odd function of the spatial coordi-
nates, see also Chapters 5 and 9). In other words H' is an odd function since p, = —ez,
while the products l^ i l 2 or |^o|2 are even functions so that the integrands iplH'ipi
and ^o-^Vo are also odd functions. All atomic and molecular states that have definite
parities (either even or odd) with respect to inversion in the space-fixed coordinate
system (see Chapters 5 and 9 for further details) have (^Q\H'\ipQ) = (i^i\H'\i^i) = 0,
and equations (1.32) reduce to

The integral MQI = MIQ = (falnl^o) is the transition dipole moment and is the most
critical factor in determining selection rules and line intensities. In general MIQ is a
vector quantity and the symbol /UIQ (= MIQ) is often used. It is convenient to define
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which is known as the Rabi frequency, and to use the identity

to rewrite equations (1.33a) and (1.33b) as

The physical meaning of the Rabi frequency will become clear later in this section.
At this stage an approximation can be made by noting that a>io ~ u; since the system

with Bohr angular frequency (E\ — EQ)/h — UIQ is resonant or nearly resonant with the
optical angular frequency u = Inv. The terms e*(wio-w)t an(j e-t(wi0-u;)t tmlg represent
slowly varying functions of time compared to the rapidly oscillating nonresonant terms
ei(wio+w)t an(j e-i(w10+w)t>

In what is known as the rotating wave approximation the nonresonant high-
frequency terms can be neglected as their effects essentially average to zero because
they are rapidly oscillating functions of time. Upon defining A as a; — a>io, equations
(1.35a) and (1.35b) become

Equations (1.36a) and (1.36b) can be solved analytically. The difference A is often
referred to as the detuning frequency, since it measures how far the electromagnetic
radiation of angular frequency a> is tuned away from the resonance frequency WIQ. The
solution (see Problem 14) to these two simultaneous first-order differential equations
with initial conditions ao(0) = 1 and ai(0) = 0 for the system initially in the ground
state at t = 0 is

and

in which £1 = ((wR,)2 + A2)1/2. These solutions can be checked by substitution into
equations (1.36).

The time-dependent probability that the system will be found in the excited state
is given by
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Figure 1.10: The probability for finding the driven two-level system in the excited state for
three detunings: A = 0, A = O;R, and A = SCUR.

while the corresponding time-dependent probability that the system will be found in
the ground state is given by

At resonance A = 0 and O == CJR, so that in this case

The transition probability |ai|2 is plotted in Figure 1.10 for three detuning frequencies.
The meaning of the Rabi frequency becomes clear from equations (1.34), (1.41),

and Figure 1.10. The system is coherently cycled (i.e., with no abrupt changes in the
phases or amplitudes of the wavefunctions) between the ground and excited state by the
electromagnetic radiation. At resonance the system is completely inverted after a time
tjf = TT/G/R, while off-resonance there is a reduced probability for rinding the system in
the excited state.

This simple picture of a coherently driven system has ignored all decay processes
such as spontaneous emission from the excited state. Spontaneous emission of a photon
would break the coherence of the excitation and reset the system to the ground state
(this is referred to as a TI process). Similarly, collisions can also cause relaxation in the
system. In fact, collisions can reset the phase of the atomic or molecular wavefunction
(only the relative phases of ipi and I^Q are important) without changing any of the
populations (this is referred to as a TI process). These phase-changing collisions also
interrupt the coherent cycling of the system. Such processes were first studied in NMR
(which is the source of the names TI and T% processes) and are now extensively studied
in the field of quantum optics.
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Figure 1.11: The driven two-level system saturates when relaxation processes (damping) are
included.

The effect of collisions and other relaxation phenomena is to damp out the coherent
cycling of the excited system (called Rabi oscillations). However, Rabi oscillations can
be observed in any quantum system simply by increasing the intensity of the radiation.
This increases the applied electric field E so that at some point the Rabi cycling fre-
quency exceeds the relaxation frequency, WR, ^> a;reiaxation, and coherent behavior will
be observed. This is easily achieved in NMR where spin relaxation processes are slow
and many watts of radio frequency power can be applied to the system. In the infrared
and visible region of the spectrum relaxation processes are much faster and Rabi oscil-
lations are normally damped. For example, a real system would oscillate briefly when a
strong field is applied suddenly to it, but it soon loses coherence and saturates (Figure
1.11). When the system is saturated, half of the molecules in the system are in the lower
state and half are in the upper state. The rate of stimulated emission (down) matches
the rate of absorption (up).

For example, consider a 1-W laser beam, 1 mm in diameter interacting with a two-
level system that has a transition dipole moment of 1 debye (1 D = 3.33564 xlO~30

C m). What is the Rabi frequency? The intensity of the laser beam is 1.3 xlO6 W/m2

and the electric field E = |Eo| is calculated from

with £0 = 8.8541878 x 10~u C2 N"1 m~2 (Appendix A) being the permittivity of free
space, from which the electric field can be obtained as

and
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Recall that £Q appears in Coulomb's law for the magnitude of the force of interaction
between two electrical charges,

The factor 1/2 in equation (1.43) applies when the radiation is polarized and the elec-
tric field is given by equation (1.1). Since a typical electronic transition may have a
natural lifetime of 10 ns (^natural — 6.3 x 108 rad/s), the effects of Rabi cycling are
already present at 1 W. At the megawatt or higher power levels of typical pulsed lasers,
the coherent effects of strong radiation are even more pronounced, provided electri-
cal breakdown is avoided. At these high electric field strengths, however, the simple
two-level model is not a good description of an atomic or molecular system.

There is much confusion between the various terms and symbols used in the subfield
of radiometry. For example, in physics the commonly used term "intensity," / (W m~2)
of a laser beam would be called the "irradiance" in radiometry.5 In radiometry the
terms intensity, / (W sr"1), and spectral intensity /<, = dl/dv (W s sr"1) are instead
used for power per steradian and power per steradian per hertz (respectively). (A
sphere subtends a solid angle of 4?r steradians.) In radiometry a distinction is also
made between the excitance, M (W m~2), of power leaving a surface (e.g., equation
(1.13)) and the irradiance, E (W m~2), of power falling on or crossing a surface (e.g.,
equation (1.43)) although they have the same dimensions. The right subscript v is used
to distinguish between "integrated" quantities such as the irradiance, E = / Evdv and
the spectral irradiance, Ev = dE/dv. In this book we follow the physics custom of using
the single term intensity, / (or /^), for the excitance (or spectral excitance) and the
irradiance (or spectral irradiance), with I = / Ivdv. The term radiance, L = f Lvdv, is
universally reserved for power per square meter per steradian (W m~2 sr"1), and the
spectral radiance, L^, has dimensions W s m~2 sr"1 in SI units. The spectral radiance
of a blackbody is given by

The case of weak electromagnetic radiation interacting with the system is also com-
mon. In fact before the development of the laser in 1960 the weak-field case applied to all
regions of the spectrum except the radio frequency and microwave regions, for which
powerful coherent sources were available. In the weak-field case there is a negligible
buildup of population in the excited state, so that ai PS 0, ao ~ 1> and

Equation (1.45) is readily integrated to give

The probability for finding the system in the excited state after a time t is then obtained
from equation (1.46) as
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This formula is very deceptive because it assumes monochromatic radiation and short
interaction times. These two requirements are inconsistent with one other because the
Heisenberg energy-time uncertainty principle

must always be satisfied. If monochromatic radiation is applied to the system for a time
At, then the system sees radiation of width At/ = l/(2?rAt) in frequency space (this
is certainly not monochromatic!). For example, a pulse of radiation 10 ns long has an
intrinsic width of at least 160 MHz in frequency space.

Before equation (1.47) can be used, the effects of the finite frequency spread of
the radiation must be included. Consider the radiation applied to the system to be
broadband rather than monochromatic and to have a radiation density p = £oE2/2.
The total transition probability is given by integrating over all frequencies, that is, by

in which p(u>) is assumed to be slowly varying near o>io so that it can be removed from
the integration. This is indeed the case as sin2 ((a; — Lo\o)t/1} /(OJIQ — a;)2 is sharply
peaked at aj = OJ\Q (see Figure 1.26). The absorption rate per molecule is thus given by

In order to derive an expression for the absorption coefficient in terms of the tran-
sition dipole moment, equation (1.50) needs to be compared with equation (1.15), with
JVo ~ N for the weak-field case: dividing by N then gives the transition probability per
molecule as

or as

A factor 3 is missing from equation (1.50) because equation (1.51) has been derived
using isotropic radiation traveling in x, y, and z directions, while equation (1.50) has
been derived using a plane wave traveling in the z direction. Since only the z component
of the isotropic radiation is effective in inducing a transition, and since p(v] = 2?r/9(a;),
we have
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and

These equations, (1.52) and (1.53), are key results because they relate the observed
macroscopic transition rates to the microscopic transition dipole moment of an atom or
molecule. Upon substitution of the values of the constants, we obtain AI-^Q = 3.136 x
10~7(£)3//fo) w^h v expressed in cm"1 and //io in debye. Although these equations are
essentially correct, one factor that has been ignored is the possibility of relaxation.

Collisions or the spontaneous radiative lifetime of the upper state have all been
ignored so far. When these losses are considered, the molecular absorption lineshape
changes from a Dirac delta function 5(v — z/io) that is infinitely sharp and infinitely
narrow, but with unit area, to a real molecular lineshape. As described below, the
lineshape function g(y — v\§) is typically either a Lorentzian or a Gaussian function
with unit area but finite width and height, and now equations (1.52) and (1.53) are
replaced by

and

respectively, in which ^(B\^^)vdv — -Bi<_0 and $(Ai-+Q}dv = ^-i-»o- In practice the v
subscripts in equations (1.54) and (1.55) are suppressed and the same symbols AI->Q
and -Bi<_o are used with and without lineshape functions, although the dimensions are
different. In particular, as Av and A are related by Av — Ag(y — J'IQ), A has dimensions
s"1 and g(v — i>iQ} has dimensions s, so that Av is dimensionless. Note also that the two
levels 1 and 0 are assumed to be nondegenerate. The usual cases of degenerate atomic
and molecular energy levels will be considered in later chapters.

Beer's Law

Consider a system (Figure 1.12) with NQ molecules per cubic meter in the ground state
and NI in the excited state. A flux of photons FQ = I^jhv (units of photons m~2 s"1)
is incident upon the system from the left. As these photons travel through the system
they can be absorbed or they can induce stimulated emission. What is the intensity of
radiation after a distance /?

If only absorption and stimulated emission are considered, then at a particular
distance x we can write



Figure 1.12: A system with dimensions 1 m x I m x I m that contains molecules.

in which p — I/c — hvF/c has been used. The absorption cross section is defined in
this way as

with dimensions of m2. The physical interpretation of a is as the "effective area" that
a molecule presents to the stream of photons of flux F. Notice that (1.57) and (1.53)
can be combined to give the convenient equation

which relates the cross section to the "radiative lifetime" rsp = l/Ai_>o of a transition
for a two-level system. The subscript sp on r refers to spontaneous emission.

Care is required when radiative lifetimes are used for real multilevel systems because
any given level n can emit spontaneously to all lower levels, so that

In other words the lifetime is related to the rates of all radiative rates connecting
the upper state \n > to all lower energy states \j >, rather than just rsp = l/Ai^Q.
Any nonradiative processes add additional rate terms to the sum in equation (1.59).
The individual A and B coefficients, however, still obey the equations developed for a
two-level system.

If a flux F is incident to the left of a small element of thickness dx (Figure 1.12)
with cross-sectional area of 1 m2, then the change in flux caused by passing through
the element is

1. Introduction20
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Upon integrating over the absorption path, this becomes

or

Expression (1.61) can also be rewritten in the form

which is equivalent to the commonly encountered decadic version of Beer's law,

It is common to report a in cm2, N in molecules per cm3, and / in cm rather than
the corresponding SI units. The units used in Beer's law (1.63) are customarily moles
per liter for c, cm for /, and liter mole"1 cm""1 for the molar absorption coefficient, e.
Sometimes the cross section and concentration are combined to define an absorption
coefficient a = &(NQ — NI) for a system, in which case we write

rather than (1.62).

Lineshape Functions
A real spectrum of a molecule, such as that for gaseous CC>2 (Figure 1.13), contains
many absorption features called lines organized into a band associated with a par-
ticular mode of vibration. For the spectrum illustrated in Figure 1.13 the lines are
associated with the antisymmetric stretching mode, ^3, of CC>2. At high resolution the
spectrum seems to consist of very narrow features, but if the scale is expanded the lines
are observed to have definite widths and characteristic shapes. What are the possible
lineshape functions g(y — v\§] and what physical processes are responsible for these
shapes?

Lineshape functions fall into one of two general categories: homogeneous and in-
homogeneous. A homogeneous lineshape occurs when all molecules in the system have
identical lineshape functions. For example, if an atomic or molecular absorber in the
gas phase is subject to a high pressure, then all molecules in the system are found
to have an identical pressure-broadened lineshape for a particular transition. Pressure
broadening of a transition is said, therefore, to be a homogeneous broadening.

In contrast, if a molecule is dissolved in a liquid, then the disorder inherent in the
structure of the liquid provides numerous different solvent environments for the solute.
Each solute molecule experiences a slightly different solvent environment and therefore
has a slightly different absorption spectrum. The observed absorption spectrum (Figure
1.14) is made up of all of the different spectra for the different molecular environments;
it is said to be inhomogeneously broadened.
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Figure 1.13: A typical molecular spectrum, the antisymmetric stretching mode of carbon
dioxide. The weak bending hot band (see Chapter 7) is also present.

Figure 1.14: An inhomogeneously broadened line made up of many homogeneously broadened
components.

The most important example of gas phase inhomogeneous broadening occurs be-
cause of the Maxwell-Boltzmann distribution of molecular velocities and is called
Doppler broadening. The different molecular velocities give the incident radiation a
frequency shift of v = (I ± V/C}VQ in the molecular frame of reference. This results in
slightly different spectra for molecules moving at different velocities and results in an
inhomogeneous lineshape.

Natural Lifetime Broadening

Consider a two-level system with an intrinsic lifetime rsp seconds for the level at energy
E\ for the spontaneous emission of radiation (Figure 1.15). The wavefunction that
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Figure 1.15: Spontaneous emission in a two-level system.

describes the state of the system in the absence of electromagnetic radiation is given by

where ao and a\ are simply constants. Should the system be excited into this superpo-
sition state (for example, by a pulse of electromagnetic radiation), the dipole moment
of the system in this state is given by the expectation value of the dipole moment
operator as

assuming that the space-fixed dipole moments (t/>o p>\ipo) and {t/M^IV'i) both vanish
in states |1) and |0). (NB: Nonzero values for the dipole moment are still possible in
the molecular frame.) The dipole moment of the system oscillates at the Bohr angular
frequency UIQ as

if ao and a\ are chosen to be real numbers. A system in such a superposition state has
a macroscopic oscillating dipole in the laboratory frame (Figure 1.16).

Now if the population in the excited state decreases slowly in time (relative to the
reciprocal of the Bohr frequency) due to spontaneous emission, then the amplitude of
the oscillation will also decrease. This corresponds to a slow decrease in a\ (equation
(1.67)) at a rate of 7/2 where 7 = l/rsp = AI^Q. Thus the oscillating dipole moment
is now

as shown in Figure 1.17.
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Figure 1.16: Oscillating dipole moment of a system in a superposition state.

Figure 1.17: Slowly damped oscillating dipole moment.

What frequencies are associated with a damped cosine wave? Clearly the undamped
wave oscillates infinitely at exactly the Bohr frequency U>IQ. The distribution of frequen-
cies F(u) present in a waveform /(£) can be determined by taking a Fourier transform,
i.e., as

Note also that an arbitrary waveform /(£) can be written as a sum (integral) over plane
waves elujt, each with amplitude F(u), as

which is referred to as the inverse Fourier transform. Thus F(u) measures the "amount"
of each "frequency" required to synthesize /(£) out of sine and cosine functions (eiw*
= cos ujt + i sin ut). Taking the Fourier transform of the time-dependent part of M(i)
gives
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for the decay process beginning at t = 0. The nonresonant term, i.e., the term containing
w + wio, is dropped because aj w WIQ and WIG ^> 7, so that it is negligible in comparison
with the resonant term containing o> — o>io (cf. the rotating wave approximation). With
this (rather good) approximation, F(u) becomes

In the semiclassical picture an oscillating dipole moment radiates power at a rate pro-
portional to |//io 2 (i.e., Ai-,0 oc |/^io|2) and the lineshape function, given by

is an unnormalized Lorentzian. Normalization requires that

so that the final normalized Lorentzian lineshape functions are

and

Note that p(o; — CJIQ) and ^(^ — 1/10) are related by

Without spontaneous emission the lineshape function would be 8(v — I/IQ) since the
infinite cosine wave oscillates at a frequency of exactly V\Q. The decaying cosine wave
caused by spontaneous emission gives a Lorentzian function of finite width (Figure
1.18). At the peak center (y = V\Q] we have g(y — v\§) = 4/7, and the function drops
to half this value when

The full width at half maximum (FWHM), represented by Az^/2, is given as

since 7 — l/rsp. The Lorentzian lineshape function (VQ = VIQ) can thus be expressed as
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Figure 1.18: A normalized Lorentzian function.

in terms of the full width at half maximum. Note that some authors use the half width
at half maximum as a parameter rather than the full width.

The important result Ai/i/2 = l/(27rrsp) agrees with the Heisenberg time-energy
uncertainty principle AI?A£ > ft, or

or

The spontaneous lifetime of the excited state means that the atom or molecule cannot
be found at E\ for more than rsp on average. This provides a fundamental limit on
the linewidth arising from the transition between the two states (Figure 1.19). For-
mula (1.79b) has been checked experimentally, for example in the case of the sodium
32-Ps/2 —» 32S'i/2 transition (one of the famous sodium .D-lines) at 5 890 A. The ex-
perimentally measured lifetime rsp — 16 ns and the observed homogeneous linewidth
Az/!/2 = 10 MHz are consistent with equation (1.79b). The uncertainty principle there-
fore requires that if an excited state exists for only rsp seconds on average, then the
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Figure 1.19: The spontaneous lifetime rsp gives the transition E\ —> EQ a finite linewidth.

energy level E\ cannot be measured relative to EQ with an accuracy that is greater
than Az/i/2 Hz.

The expression Az/i/2 = l/(27rr) has widespread use in chemical physics. For ex-
ample, if H2O is excited by vacuum ultraviolet light, it can dissociate very rapidly:

If the H2O molecule exists in a given excited electronic state for only one vibrational pe-
riod (y — 3 600 cm"1 corresponding to an OH stretch), then according to the Heisenberg
uncertainty principle the lifetime r will be given by r — 9.3 x 10~15 s = 9.3 femtosec-
onds (fs). Thus the width (FWHM) of a line in the spectrum will be Az/i/2 = 1.7 x 1013

Hz or A#i/2 = 570 cm"1. A measurement of the homogeneous width of a particular
spectral line can thus provide an estimate of the lifetime of the excited state.

Pressure Broadening

The derivation of the pressure-broadening lineshape is a difficult problem because it
depends on the intermolecular potentials between the colliding molecules. However, a
simplified model within the semiclassical picture gives some estimation of the effect.

Consider the two-level system discussed in the previous section with the wavefunc-
tion written as a superposition state. The dipole moment oscillates at the Bohr fre-
quency except during a collision. If the collision is sufficiently strong, then the phase of
the oscillating dipole moment is altered in a random manner by the encounter. Let the
average time between collisions be T2 (Figure 1.20). The infinite cosine wave is broken
by successive collisions into pieces of average length T2. The effect of collisions will
be to convert the infinitely narrow lineshape associated with an infinitely long cosine
wave into a lineshape function of finite width. The application of Fourier transform
arguments (using autocorrelation functions6) to decompose the broken waveform into
frequency components results in a Lorentzian lineshape with a width (FWHM) given by
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Figure 1.20: The phase of an oscillating dipole moment randomly interrupted by collisions.

Since the average time between collisions is proportional to the reciprocal of the
pressure, p, it therefore follows that the FWHM will be proportional to the pressure, i.e.,

with 6 referred to as the pressure-broadening coefficient. The quantitative calculation of
b without recourse to experiment poses a difficult theoretical problem. Experimentally,
typical values for 6 are about 10 MHz per Torr of the pressure-broadening gas.

In general not only are the lines broadened by increasing pressure but they are also
shifted in frequency. These shifts are generally small, often less than 1 MHz/Torr, but
they become important when very precise spectroscopic measurements are to be made.

Doppler Broadening

Doppler broadening results in an inhomogeneous lineshape function. If the transition
has an intrinsic homogeneous lineshape gn^ ~ ^o) centered at ^Q, then the inhomoge-
neous distribution function 51(^0 — ̂ 0), centered at J/Q, is required to describe the total
lineshape function g(y — VQ) according to the expression

The distribution function gi(yQ — fo) gives the probability that a system has a resonance
frequency in the interval v'Q to v'Q + dv'^ i.e.,

The lineshape integral (1.83) is referred to mathematically as a convolution of the
two functions g\ and #H, as can be made more apparent by making the substitution
x = i/Q- i/o,

Commonly the homogeneous lineshape function gn is Lorentzian, while the inhomoge-
neous function g\ is a Gaussian: the convolution of these two functions is called a Voigt
lineshape function (Figure 1.21).



Figure 1.21: The Voigt lineshape is a convolution of an inhomogeneous Gaussian lineshape
function with a homogeneous Lorentzian lineshape function.

Figure 1.22: Interaction of a plane electromagnetic wave with a moving atom.

The Voigt lineshape function is a general form that can include purely homogeneous
or purely inhomogeneous lineshapes as limiting cases. If the width of the inhomogeneous
part is much greater than that of the homogeneous part, that is, if A^i ^> AZ/H> then

9u(v ~ ^6) ~ s(v - U'Q) and

Conversely if Az/i <C AZ/H, then g\(vQ — VQ) w $(V'Q — VQ) and g(y — Z/Q) = 9n(v — "o)-
Consider an atom with velocity v interacting with a plane wave with a wave vector

k. If k is parallel to v, then the atom sees a Doppler shifted frequency v1 — v(l ± v/c)
depending upon whether the atom is moving in a direction that is the same as (-) or
opposite to (4-) that of the electromagnetic radiation (Figure 1.22). In general, it is
only the component of v along k (i.e., vcosO] that matters, so that

neglecting a small relativistic correction7 ("second-order Doppler effect").
The Doppler effect can be viewed in two equivalent ways. In the frame of the atom

it is the frequency of the electromagnetic wave which has been shifted, with the atom at
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rest at the origin of the atomic coordinate system. Alternatively, in the fixed laboratory
frame the electromagnetic wave is unshifted at z/, but the atomic resonance frequency
VQ (of the atom moving at velocity i>) has been shifted to the new value of

All that is required to obtain a lineshape function is the distribution of velocities.
The distribution of molecular velocity components along a given axis (such as k) in

a gaseous system is given by the Maxwell-Boltzmann distribution function

for particles of mass m at a temperature T. Using equation (1.89) and dv = (c/vo)dvQ
(obtained by taking differentials of equation (1.87)) gives the normalized inhomogeneous
lineshape function

The FWHM, AI/D, is easily shown to be

or

in which T is in K, M in atomic mass units u, VQ in cm"1, and A^D in cm"1. The
Doppler lineshape function is thus given by

in terms of the Doppler FWHM.
The Gaussian function is the bell-shaped curve well known in statistics. The

Gaussian lineshape function is more sharply peaked around v — VQ than the corre-
sponding Lorentzian lineshape function (Figure 1.23). Notice the much more extensive
"wings" on the Lorentzian function in comparison with the Gaussian function.

For example, the Doppler width of the 32P3/2 — 325i/2 transition of the Na atom
at 300 K is already AZ/D = 0.044 cm"1 = 1317 MHz, and is much larger than the
natural linewidth of 10 MHz. In addition, if the Na atom is surrounded by Ar atoms
at 1 Torr total pressure, then pressure broadening contributes 27 MHz to the total
homogeneous linewidth of 37 MHz.8 Visible and ultraviolet transitions of gas phase
atoms and molecules typically display Doppler broadening at low pressure because the
inhomogeneous linewidth greatly exceeds the total homogeneous linewidth.
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Figure 1.23: Normalized Gaussian and Lorentzian lineshape functions.

Figure 1.24: A laser beam interacts with a molecular beam inside a vacuum chamber.

Transit-Time Broadening

Consider the experimental arrangement of Figure 1.24 in which a laser beam of width d
is crossed at right angles with a beam of molecules moving at a speed of v in a vacuum
chamber. The molecules can only interact with the radiation for a finite time, r — d/v,
called the transit time. The time r corresponds to the time required by a molecule
in the molecular beam to cross through the laser beam. If the laser is considered to
be perfectly monochromatic, with frequency i/, then a molecule experiences an electric
field as shown in Figure 1.25, assuming a constant weak light intensity from one side
of the laser beam to the other. If an intense laser beam is used in these experiments,
Rabi oscillations (discussed earlier) are observed.

Suppose an infinitely long (in time) oscillating electric field with an infinitely nar-
row frequency distribution has been chopped into a finite length with a finite frequency
width. The finite time allowed for the laser-molecule interaction has resulted in a broad-
ening of the transition. As far as the observed lineshape is concerned, it does not matter
whether the molecular resonance is broadened or the frequency distribution of the ap-
plied radiation is increased. The result is the same: a broader line.

The frequency distribution associated with the electric field of Figure 1.25 is deter-
mined, as for lifetime broadening, by taking the Fourier transform. Thus we write
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Figure 1.25: A molecule experiences an electromagnetic wave of finite length r.

in which the nonresonant term in UJQ+UJ has, as usual, been discarded. Since the intensity
of the light is proportional to \E\2, the unnormalized lineshape is proportional to

The corresponding normalized lineshape function

or

is shown in Figure 1.26. The FWHM of this function is about Az/1/2 = 0.89/r. For
an atom traveling at 500 m/s through a laser beam of 1 mm width, r = 2 x 10~6 s
and A//!/2 = 0.45 MHz. Although transit-time broadening is relatively small, it is not
negligible for very precise Doppler-free measurements or for microwave-molecular beam
measurements.
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Figure 1.26: A plot of the lineshape function caused by transit-time broadening.

Power Broadening

The high-power laser has become an ubiquitous tool of modern spectroscopy. The ap-
plication of intense electromagnetic radiation to a system will cause the spectral lines
to broaden and even to split. The detailed calculation of a molecular lineshape at high
power is complicated, but a simple estimate of the linewidth is available from the time-
energy uncertainty principle of equation (1.48), i.e.,

At high powers the molecular system undergoes Rabi oscillations at an angular
frequency WR, = iJL\QE/H. The system is thus in the excited state EI only for a period
of about /i/^io-E1, which therefore provides an estimate for A£. Using this estimate for
At in the uncertainty relation (1.48) gives

or equivalently, using /iAi/ = A.E, a frequency uncertainty A*/ of

For example, a 1-W laser beam of 1-mm diameter interacting with a two-level system
with a transition dipole moment of 1 D and a Rabi frequency WR = 9.8 x 108 rad/s
already gives A^ = 25 MHz. Pulsed lasers can easily achieve peak powers of 1 MW
(10 mJ in 10 ns), which will increase E, equation (1.43), by a factor of 1000, to 3.1 x
107 V/m for the preceding example. The power-broadened linewidth is then of the order
25000 MHz or 0.83 cm"1, which is larger than a typical Doppler width for a visible or
UV electronic transition.
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In this chapter the interaction of light with matter has been discussed and key
equations derived. For spectroscopy perhaps the most important equations are (1.57),
(1.58), and (1.62) because they relate the microscopic molecular world to macroscopic
absorption and emission rates. The transition dipole moment

will be used numerous times to derive selection rules. The absorption strength, equation
(1.54), of a transition and the emission rate, equation (1.55), are proportional to the
square of the transition dipole moment. The absorption (///o) associated with a par-
ticular molecular transition depends upon three factors: the absorption cross section cr,
the population difference between the two levels, NQ — JVi, and the optical path length
/ in equation (1.62), namely,

Spectroscopists use these relationships constantly.

Problems

1. The helium-neon laser operates at wavelength 6328.165 A in air. The refractive
index of air is 1.0002759 at this wavelength.

(a) What is the speed of light in air and the vacuum wavelength?

(b) What is the wavenumber v (cm~1) and the magnitude of the wavevector in
air.

(c) What are the frequency and the period of oscillation?

(d) Calculate the energy and momentum of a photon with an air wavelength of
6328.165 A.

(e) What will be the wavelength and frequency in water if the refractive index
is 1.3333?

2. The refractive index of dry air at 15°C and 760 Torr pressure is given by the
Cauchy formula

where A is in A (CRC Handbook of Chemistry and Physics, CRC Press). (The
formula due to Edlen, Metrologia 2, 71 (1966) is slightly more accurate but less
convenient to use.)

(a) Calculate the refractive index of air at 4 000 A, 6 000 A, and 8 000 A.

(b) Convert the air wavelengths into vacuum wavelengths and calculate the cor-
responding wavenumbers (cm"1).

3. (a) What is the momentum and the de Broglie wavelength associated with a
human weighing 150 Ib and walking at 4 miles/hr?
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(b) What is the momentum and the de Broglie wavelength of an electron accel-
erated through a voltage of 100 V?

4. A crystal lattice has a typical spacing of 2 A.

(a) What velocity, momentum, and kinetic energy should be used for the elec-
trons in an electron diffraction experiment? (Hint: X « d (lattice spacing)
for a good diffraction experiment.)

(b) What voltage needs to be applied to the electron gun for the diffraction
experiment?

(c) Answer part (a) if neutrons were used instead of electrons.

(d) If the diffraction experiment were carried out with photons, then what wave-
length, energy, and momentum would be required?

5. (a) Make the necessary conversions in order to fill in the table:

Wavelength (A) 420
Wavenumber (cm"1) 100
Energy (J)
Energy (kJ/mole) 490
Frequency (Hz) 8.21 x 1013

(b) Name the spectral region associated with each of the last four columns of
the table.

6. There are two limiting cases associated with the Planck function

(a) Calculate kT at room temperature (20°C) in J, kJ/mole, eV, and cm"1.

(b) For long wavelengths (microwave frequencies at room temperature) hv <C
kT. In this case, derive a simpler, approximate equation (called the Rayleigh
Jeans law) for pv(T). This is the formula derived using classical arguments
prior to Planck's quantized oscillator approach.

(c) For high-energy photons (near infrared wavelengths at room temperature)
hv ^> kT. In this case, derive a simpler, approximate expression for pv(T]
called Wien's formula.

7. (a) Differentiate the Planck function to determine the frequency at which pv is
a maximum (Figure 1.5).

(b) Convert the Planck law from a function of frequency to a function of wave-
length; that is, derive p\d\ from pvdv.

(c) Derive the Wien displacement law for blackbody radiation

using p\d\.
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(d) What wavelengths correspond to the maximum of the Planck function in
interstellar space at 3 K, at room temperature (20°C), in a flame (2000°C),
and in the photosphere of the sun (6000 K)?

8. The total power at all frequencies emitted from a small hole in the wall of a
blackbody cavity is given by the Stefan-Boltzmann law

where a = 5.670 5 x 10~8 W m~2 K~4 is the Stefan-Boltzmann constant.

(a) Derive the Stefan-Boltzmann law.

(b) Determine an expression for a in terms of fundamental physical constants
and obtain a numerical value. (Hint: /

9. Derive the Wien displacement law (Problem 7) using pv rather than p\.

10. Consider the two-level system (Figure 1.6) at room temperature, 20°C, and in
the photosphere of the sun at 6000 K. What are the relative populations NI/NQ
corresponding to transitions that would occur at 6000 A, 1000 cm"1, 100 GHz,
and 1 GHz?

11. A 100-W tungsten filament lamp operates at 2000 K. Assuming that the filament
emits as a blackbody, what is the total power emitted between 6000 A and
6 001 A? How many photons per second are emitted in this wavelength interval?

12. (a) What is the magnitude of the electric field for the beam of a 1-mW helium-
neon laser with a diameter of 1 mm?

(b) How many photons per second are emitted at 6 328 A?

(c) If the laser linewidth is 1 kHz, what temperature would a blackbody have to
be at in order to emit the same number of photons from an equal area over
the same frequency interval as the laser?

13. Derive the relationship (1.13) between the energy density pv and the intensity Iv

for a blackbody

(Hint: The total power passing through the hole and present in the solid angle
dO is /9t,ccos#(<ifJ/47r).)

14. Solve equations (1.36a) and (1.36b) for the interaction of light with a two-level
system.

(a) First convert the two first-order simultaneous differential equations into a
single second-order equation by substituting one equation (1.36a) into the
other (1.36b).

1
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(b) The general solution for a second-order differential equation with constant
coefficients is

Show that this form for ao(£) implies that ai(i) is given by

(c) To obtain a and /3 substitute the general solution into the second-order
equation and obtain the characteristic equation

The two solutions of this equation are a and (3. Find a and /?, and simplify
your answer using the definition

(d) Determine A and 5 from the initial conditions at t = 0, ao(0) = 1, and
ai(0) = 0, and derive equations (1.37) and (1.38).

(e) Verify that the final answer (1.37) and (1.38) satisfies the differential equa-
tions (1.36a) and (1.36b).

15. The 32P3/2 - 32Si/2 transition of Na (actually the (F = 3) - (F = 2) hyperfine
transition) has a Rabi frequency of 4.15 x 108 rad/s with a laser intensity of 560
mW/cm2. What is the transition dipole moment in debye?

16. The lifetime of the 32P!/2 —> 32Si/2 transition of the Na atom at 5896 A is
measured to be 16.4 ns.

(a) What are the Einstein A and B coefficients for the transition?

(b) What is the transition dipole moment in debye?

(c) What is the peak absorption cross section for the transition in A2, assuming
that the linewidth is determined by lifetime broadening?

17. What are the Doppler linewidths (in cm"1) for the pure rotational transition of
CO at 115 GHz, the infrared transition of CO2 at 667 cm"1, and the ultraviolet
transition of the Hg atom at 2 537 A, all at room temperature (20°C)?

18. Calculate the transit-time broadening for hydrogen atoms traversing a 1-mm
diameter laser beam. For the speed of the hydrogen atoms use the rms speed
(v = (3/cr/ra)1/2) at room temperature (20°C).

19. At what pressure will the Doppler broadening (FWHM) equal the pressure broad-
ening (FWHM) for a room temperature (20°C) sample of CO gas for a pure rota-
tional transition at 115 GHz, a vibration-rotation transition at 2140 cm"1, and an
electronic transition at 1537 A? Use a "typical" pressure-broadening coefficient
of 10 MHz/Torr in all three cases.
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20. What are the minimum spectral linewidths (in cm"1) of pulsed lasers with pulse
durations of 10 fs, 1 ps, 10 ns, and 1 //s?

21. (a) For Na atoms in a flame at 2 000 K and 760-Torr pressure, calculate the peak
absorption cross section (at line center) for the 32Pi/2 — 325i/2 transition
at 5 896 A. Use 30 MHz/Torr as the pressure-broadening coefficient and the
data in Problem 16.

(b) If the path length in the flame is 10 cm, what concentration of Na atoms
will produce an absorption (///o) of 1/e at line center?

(c) Is the transition primarily Doppler or pressure broadened?

(d) Convert the peak absorption cross section in cm2 to the decadic peak molar
absorption coefficient e (see equation (1.63)).

22. For Ar atoms at room temperature (20°C) and 1-Torr pressure, estimate a colli-
sion frequency for an atom from the van der Waals radius of 1.5 A. What is the
corresponding pressure-broadening coefficient in MHz/Torr?

23. A stationary atom of mass m emits a photon of energy hv and momentum hk.

(a) Use the laws of conservation of energy and momentum to show that the shift
in frequency of the emitted photon due to recoil of the atom is given by

(b) What is the shift in frequency due to recoil of the atom for the Na D line at
5890 A?

(c) What is the shift in frequency for a 7-ray of energy 1 369 keV emitted from
24Na?

24. At the top of the earth's atmosphere the solar irradiance is 1 368 W/m2 (the solar
constant). Calculate the magnitude of the electric field, assuming a plane wave
at a single frequency for E.

25. At night, the concentration of the NOs free radical is about 109 molecules/cm3

near the ground. NOs has a visible absorption band near 662 nm, with a peak
absorption cross section of 2.3 x 10~17 cm2 molecule""1 at 298 K. For an absorp-
tion path of 1 km, what will be the change in atmospheric transmission (1 — ///o)
at 662 nm due to NO3?

26. For transit time broadening, consider the typical case (Figure 1.24) of a molecular
beam crossing through a Gaussian laser beam, i.e., the applied electric field is
given as

(a) What is the normalized lineshape function, g(y — i/o)?

(b) What is the full width at half maximum Ai^/2 of g(v — z/o)?
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(c) What is the Az/At product for a Gaussian beam? How does this value com-
pare with that of the corresponding Heisenberg uncertainty principle?

(d) The radial distribution of the electric field of a Gaussian laser beam is pro-
portional to e-(r/w) . What is the relationship between the Gaussian beam
width parameter w and the parameter a denned above?
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Chapter 2

Molecular Symmetry

The language of group theory has become the language of spectroscopy. The concept of
molecular symmetry and its application to the study of spectra of atoms and molecules
(in the form of group theory) has proved to be of great value. Group theory is used
to label and classify the energy levels of molecules. Group theory also provides quali-
tative information about the possibility of transitions between these energy levels. For
example, the vibrational energy levels of a molecule can be labeled quickly by symme-
try type and transitions between energy levels sorted into electric-dipole allowed and
electric-dipole forbidden categories.

The concept of molecular symmetry is more subtle than expected because of the
continuous motion of the atoms. As the molecule vibrates and rotates, which positions
of the nuclei should be chosen as representative? In this book only the symmetry of a
molecule at its equilibrium geometry will be considered in detail. Only in a few isolated
examples, such as in the inversion of ammonia or in bent-linear correlation diagrams,
is the possibility of fluxional behavior considered.

In some areas of spectroscopy, such as the study of hydrogen-bonded and van der
Waals complexes (for example, (H^O^), fluxional behavior is the norm rather than
the exception.1 The weak intermolecular bonds between the monomeric units in these
systems allows many different geometrical isomers to interconvert rapidly. In this case
group theory based on the permutations and inversions of nuclei2 rather than on the
customary symmetry operations is more useful.

2.1 Symmetry Operations

The idea of molecular symmetry can be quantified by the introduction of symmetry
operations. A symmetry operation is a geometrical action (such as a reflection) that
leaves the nuclei of a molecule in equivalent positions. These geometrical operations
can be classified into four types: reflections (<j), rotations (Cn), rotation-reflections
(Sn), and inversions (i). For mathematical reasons a fifth operation, the "do nothing"
operation of identity (E], needs to be added.

Associated with each symmetry operation (except the identity) is a symmetry ele-
ment. For example, associated with a particular reflection symmetry operation (a] is a
plane of symmetry (a) (see Figure 2.1). The distinction between symmetry operators
and symmetry elements is quite important, and is a source of some confusion. The
symmetry operation is the actual action, while the symmetry element is the point, line,

41
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Figure 2.1: For the EbO molecule, the av operation reflects hydrogen atom 1 into hydrogen
atom 2 (and 2 into 1) through the associated plane of symmetry, crv.

or plane about which the action occurs. In this book operators will be marked with
circumflexes (hats) (e.g., a] in order to distinguish between symmetry operators and
symmetry elements.

Operator Algebra
An operator is a mathematical prescription for transforming one function into another.
For example, if A represents an operator and / and g are two functions which are
related by

then A is said to transform / into g. For example, for symmetry operations a reflection
might move an atom (represented by Cartesian coordinates (a:, y, z}} to a new location
(xf, yf, z')\ this operation is represented by the expression

Other examples of operators include the differential operator, D = d/dx, and the expo-
nential operator, exp = e^. Linear operators, such as symmetry operators or differential
operators, obey the rule

in which a and 6 are constants and f\ and /2 are arbitrary functions.
Operators can be combined together by addition, namely

and multiplication:

For multiplication of operators (2.5), the operator on the right operates first. Multiplica-
tion of operators is simply defined as repeated operations, for example, X-X-Y = X2Y.
The inverse of an operator simply undoes the operation, that is
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in which E and 1 are the identity or unit operators. For example, In and exp are an
operator-inverse operator pair since Ine^ = 1().

Although operators always have an implied function / to the right, this function is
usually suppressed. This leads to a compact notation but can also lead to confusion or
fallacious conclusions—for example, for £ = x and D — d/dx,

The addition and multiplication of operators strongly resembles ordinary algebra, with
the exception that AB is not necessarily equal to BA. Operators, in general, do not
commute, so that

The similarity between ordinary algebra and operator algebra occurs because addition
and multiplication are denned, and the associative law,

and the distributive law,

both hold.

E Operator

The identity operator leaves a molecule unchanged. The symbol E comes from the
German word Einheit which means unity.

Cn Operator

The rotation operator rotates a molecule by an angle of 2?r/n radians in a clockwise
direction about a Cn axis (Figure 2.2). A molecule is said to possess an n-fold axis
of symmetry if a rotation of 2?r/n radians leaves the nuclei in equivalent positions.
Although we are able (as a matter of convenience) to label the nuclei in our drawings
of molecules, real nuclei carry no labels. When a molecule has several rotational axes
of symmetry the one with the largest value of n is called the principal axis.

Rotations can be repeated, i.e.,

and C™ = E, since a rotation by n(2?r/n) = 2?r radians corresponds to no rotation at
all. A rotation in the counterclockwise direction C~l (that is, by — 2?r/n radians) has
the effect of undoing the Cn operation, so that



44 2. Molecular Symmetry

Figure 2.2: For the BFs molecule, the 6*3 operator rotates the F atoms by 2?r/3 radians = 120°
in a clockwise direction about the 6*3 axis out of the molecular plane. The clockwise direction
is defined by viewing the molecule from the +z direction toward the xy-plane containing the
molecule.

<r Operator

The reflection operator reflects a molecule through a plane passing through the center
of the molecule. If the nuclei are in equivalent positions after a reflection operation so
that it remains indistinguishable, then the molecule has a plane of symmetry. The use
of the Greek letter a (sigma) originates from the German word Spiegel for mirror. Since
a second reflection undoes the effect of the first reflection, a2 = E: the a operation is
its own inverse.

There are three types of mirror planes. They are labeled by subscripts v, /i, and
d (standing for vertical, horizontal, and dihedral). The vertical av and the horizontal
&h mirror planes are easy to spot because they either contain the principal axis of the
molecule (av) or are perpendicular to it (ah}. Dihedral planes are more difficult to
find and are special cases of vertical planes. A ad plane is a vertical plane that also
bisects the angle between two adjacent twofold axes (62) that are perpendicular to the
principal axis. For example, the two types of vertical planes can be seen in Figure 2.3
for benzene; the av planes bisect atoms, while the ad planes bisect bonds. In the case
of benzene, by convention3 the three C<2 axes that coincide with the three av planes are
chosen to "pass through the greater numbers of atoms."

Sn Operator

The rotation-reflection operator is made up of a clockwise rotation by 2?r/n radians
about a rotation axis, followed by a reflection in a plane perpendicular to that axis, i.e.,

since, in this case, the operations commute (Figure 2.4). If the atomic framework is
unchanged by this operation, then the molecule is said to possess a rotation-reflection
axis of symmetry or an improper axis of symmetry. All molecules that have a Cn axis
of symmetry and a a^ plane of symmetry must also have an Sn axis along the Cn axis.

i Operator

The inversion operation i is a special case of an improper rotation operation. The
inversion operation i inverts all atoms of the molecule through a point. If the molecule
is coincident with itself after inversion, then it is said to possess a center (point) of
symmetry.
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Figure 2.3: The benzene molecule has ah, &v, and ad planes.

Figure 2.4: The CH4 molecule has an 84 axis that coincides with a C% axis but does not have
a C* axis. The C^ operator is not a symmetry operator, but 64 = d^C^ is one.

If the origin of the molecular coordinate system coincides with the center of sym-
metry (as is customary) (Figure 2.5), then the inversion operation changes the signs of
the coordinates of an atom, that is,

The 52 = &hC<2 — Ci&h operation is equivalent to inversion because

where the 2-axis coincides with the C-2 axis. The inversion operator is also its own
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Figure 2.5: The ethylene molecule has a center of symmetry. Note that i = ahC^.

inverse since

Symmetry Operator Algebra

Symmetry operators can be applied successively to a molecule to produce new operators.
For example, consider the ammonia molecule and the rotation and reflection operators.
Figure 2.6 shows that the successive application of a rotation operator and a reflection
operator generates a new reflection operator. Recall that the operator on the right
operates first and that, in general, operators do not commute, for example,

(Figures 2.6 and 2.7).
Although "division" of symmetry operators is not defined, there is always an inverse

operator that serves the same function. The inverse operator is useful in algebraic
manipulations. For example, consider the product

If we operate on the left by the inverse operator C^l, we obtain

or

However, if we operate on the right of equation (2.17) by the inverse operator (&")~1 =
a", we obtain the result
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Figure 2.6: The application of Cz and then a" to the ammonia molecule is equivalent to a'"
((r"C3 = £"')• Notice that the <j'v, a", a'" planes contain the original Hi, Ha, and Ha atoms,
respectively. The application of symmetry operators interchanges atoms, but the symmetry
planes (and their labels) are unaffected.

Figure 2.7: The application of o'^ and then Cs to the ammonia molecule is equivalent to av

(C3&v = <TV).

or

In the preceding examples multiplication from the left by C% (equation (2.18)) or
from the right by <r" = (<?"}~l (equation (2.20)) produces two new equations, (2.19)
and (2.21).

Care must be taken to preserve the order of operators. Taking the inverse of a
product operator reverses the order of the component operators, that is

To illustrate (AB}~1 = B~1A~1 we can use the symmetry operators associated with
the NHa molecule. For instance, from expression (2.17) we obtain
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Multiplying (2.23) by <r" from the right

and then C^1 from the right, we obtain, using equations (2.17) and (2.21),

This expression (2.25) is equivalent to

or

as required.

2.2 Groups

A group is a set of elements along with a combining operation (commonly referred to
as "group multiplication") such that the following four rules are obeyed:

1. Closure. The product of any two elements must also be in the group. If P and Q
are members of the group and PQ = R, then R is also a member of the group.

2. Associative law. As long as the elements are not interchanged, the order of
multiplication is immaterial: (PQ}R = P(QR).

3. Identity element. There is an identity element E in the group, RE — ER = R.

4. Inverse. Every element R has an inverse .R"1 in the group, RR~l = R~1R = E.

This definition of a group is very general. The elements could be, for example, num-
bers, matrices, or symmetry operators and the combining operators could be addition,
multiplication, or matrix multiplication. Note also that the elements of a group do not
necessarily commute—that is, PQ ^ QP. If the group elements do commute with one
another, then the group is called an Abelian group.

An example of a group (with an infinite number of members) is the set of positive
and negative integers, including zero, under the operation of addition. The numbers 1,
—1, i = ^/—l, and —i form a group if the combining operation is multiplication. The
number of elements in the group is called the order, so that { ! ,—l ,z ,—i} forms a group
of order 4 under multiplication.

o r
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Figure 2.8: The elements of symmetry for the ammonia molecule.

Table 2.1: Group Multiplication Table for the
Symmetry Operations Associated with NH3

Point Groups

Point symmetry groups are groups whose elements are the symmetry operations of
molecules. They are called point groups because the center of mass of the molecule
remains unchanged under all symmetry operations and all of the symmetry elements
meet at this point.

For example, the point group associated with the ammonia molecule has six mem-
bers, {E, CsjC^"1,^,^',^7}, associated with the three vertical planes of symmetry
and the C3 axis of symmetry (Figure 2.8). The six symmetry operations can be com-
bined, and the results of all possible products are summarized in the group multiplica-
tion table (Table 2.1). The multiplication table is read by picking the column headed
by the operator applied first (e.g., cr^) and the row with the second operator (e.g., <r")
and finding the symmetry operator CgT1 at their intersection; thus, d-"a'v — C^1. Notice
that each operator appears in a given row or column of the multiplication table just
once but in a different position. This result is known as the Rearrangement Theorem.

Two important terms in group theory are isomorphic and homomorphic. Two groups
are isomorphic if there is a one-to-one correspondence between the elements of the two
groups such that AB = C implies that A'B' — C' (Figure 2.9). The two groups,
therefore, have the same multiplication table except for a change in symbols or in the
meaning of the operators. For example, the two groups G\ and G?
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Figure 2.9: An isomorphic mapping.

Figure 2.10: A homomorphic mapping.

are isomorphic with the combining operations for GI and G<2 being multiplication and
matrix multiplication, respectively. Two groups are homomorphic if there is a many-
to-one relationship between some of the elements of the two groups. The structure of
the two homomorphic groups is no longer identical in form, but the multiplication rules
are preserved since AB = C and A'B' = C'. A homomorphic mapping allows a many-
to-one correspondence between the elements of two groups (Figure 2.10). For example,
there is the trivial homomorphic relationship between any group (e.g., GI) and the
group GS, containing the number 1 as the only element,

Classes

The members of a group can be divided into classes. Two members of a group, P and
.R, belong to the same class if another member Z can be found such that P = Z~1RZ:
P and R are said to be conjugate to each other and they form a class.
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For example, consider all possible classes associated with the symmetry group of
ammonia. Clearly E is in a class by itself since A~1EA — A~1A — E for any A. For
C3 all possible other members of the class are

wiso that C3 and C3 are in the same class. Similarly for a'v all possible other members
of the class are

so that <j^, <j", and <T"' are in the same class. The symmetry group of order 6 for
ammonia thus has three classes: E; C3 and C-f1; a'v, <r", and a"'. Although it is not
obvious from the mathematical definition of a class, the members of a class of a point
group have a geometrical relationship to each other—for example, all involve reflections
or rotations of a certain type.

Subgroups

A subgroup is a subset of the elements of the full group that also forms a group under
the same combination law. For example, the rotational subgroup associated with the
NHa point group is {J5, Cz,C%1}. The order of a subgroup is always a factor of the
order of the full group; that is, if g is the order of the full group and g\ is the order of
the subgroup, then g is exactly divisible by g\.
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Figure 2.11: Flowchart for determining molecular symmetry.

2.3 Notation for Point Groups

In this book the Schoenflies notation is used to label the possible point groups. In the
list below only the essential symmetry elements are specified for the various groups,
except for the tetrahedral (T^), octahedral (Oh], icosahedral (7^,), and spherical (Kh)
groups, which can be recognized by inspection. Notice that the structures are assumed
to be rigid; the possibility of rotation around carbon-carbon single bonds is ignored. A
flowchart is provided (Figure 2.11) as an aid for determining molecular symmetry.

Cs. One symmetry plane.
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Ci. One center of symmetry.

Cn. A simple Cn axis.
C\. No elements of symmetry.

Cs. CCla—CHa. Neither eclipsed nor staggered.

Dn. One Cn axis and nC^ axes perpendicular to it.
DS . CHa—CHa. Neither eclipsed nor staggered.

Cnv. One Cn axis with nav planes.
Csv. Ammonia.
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Cnh- One Cn axis with a a^ plane.
C<2h • irans-Dichloroethylene.

Dnh- One Cn axis, nC^ axes perpendicular to the Cn axis, and one <Jh plane.
D&h- Benzene. -Dooh- Cl—Cl.

n d- One Cn axis, nC^, axes perpendicular to the Cn axis and na^ planes.
Did- Allene.

Sn. One Sn axis.
54. Puckered octagon.
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Td. CH4.

Oh. SF6.

Ih- Bi2H12 .

Kh. Ar.
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Problems

1. Construct the group multiplication table for the symmetry operations of the
H2CO molecule.

2. Construct the group multiplication table for the symmetry operations of the BF3

molecule.

3. Determine the point groups for the following molecules:

(a) CF4

(b) CH2ClBr

(c) CH3Br

(d) PH3

(e) BC13

(f) Cyclohexane, chair

(g) Cyclohexane, boat

(h) Ferrocene, staggered

(i) Acetylene

(j) Ethylene

4. List all of the symmetry operations for the following molecules:

(a) Zrans-Dichloroethylene

(b) CHs-CHs, neither eclipsed nor staggered

(c) SF6

(d) Allene

(e) NC-CN

5. Determine the point groups of the following square planar complexes:

6. Determine the point groups of the following octahedral molecules:

(a) MA6

(b) MA5B

(c) cis-MA4B2

(d) irans-MA4B2

(e) /ac-MA3B3

(f) mer-MA3B3

(a) [Pt(C1)4]2-

(b) [Pt(C1)3CN]2-

(c) cis-[Pt(C1)2(CN)2]2-

(d) trans-[Pt(C1)2(CN)2]2-
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7. It is generally stated that a molecular species is optically active if its mirror image
is not superimposable upon the original structure. A more universally applicable
test is for the presence of an improper rotation axis. When an improper axis is
present, the structure is optically inactive. Using this criterion, determine whether
or not the following structures are optically active:

(a) trans-l,2-Dichlorocyclopropane

(b) Ethane (neither staggered nor eclipsed)

(c) CHFClBr
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Chapter 3

Matrix Representation of
Groups

So far the symmetry operations associated with a molecule have been defined in geo-
metric terms. If the atom locations are represented by their Cartesian coordinates, then
the symmetry operators can be represented by matrices. In general a set of matrices
homomorphic with the point group operations can be found by the methods described
in this chapter. These matrices form a representation of the group. A brief summary of
some properties of matrices is made first. Proofs of these properties are left as exercises
or can be found in various standard references.

3.1 Vectors and Matrices

A point in space can be described by the vector (Figure 3.1)

where in this context the circumflexes are used to denote unit vectors rather than
operators. The magnitude of the vector is given by

and its direction is specified by the angles a, /?, and 7 in the planes containing r and
the o>, y-, and 2-axes, respectively.

If A = Axi + Ayj + Azk and B = Bx\ + Byj + -B2k, then the dot product of two
vectors A and B is the scalar given as

in which 0 is the angle between the two vectors. The cross product of two vectors A
and B gives a third vector, C = A x B, with magnitude |C| given by

and with direction perpendicular to the plane defined by A and B. In terms of compo-
nents C can be written as

58
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Alternatively, C can be expressed in the form of a determinant (denned later) as

Spherical polar coordinates r, 0, <j> are illustrated in Figure 3.2 and r can be repre-
sented by

A matrix is in general an ra x n rectangular array of numbers (real or complex)

with a typical element Aij. A vector is in general a one-dimensional matrix—either an
n x 1 matrix (column vector) or a 1 x n matrix (row vector). However, in this book only
square n x n matrices will be used and vectors will be assumed to be column vectors,
for example

Figure 3.1: Cartesian coordinates.
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Figure 3.2: Spherical polar coordinates.

A row vector x* = (x\x-2 • • • xn) is the transpose of the corresponding column vector.
A number of matrix operations will be employed, including:
• complex conjugation, giving the matrix A*, with

• transposition, giving the transpose matrix A*, with

• Hermitian conjugation defined via A^ = (A*)* = (A*)*, with

• inversion, giving the inverse matrix A"1 (see below), with

• formation of the trace, designated tr(A), with

• formation of the determinant, designated |A|, with

The quantities M^ in equation (3.15) are known as co/actors, and they are obtained
by striking out the ith row and the jth column of the original n x n determinant to
give an (n — 1) x (n — 1) determinant and multiplying by (—1)Z+J:
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The smaller determinants ((n — 1) x (n — 1) in size) in the cofactors can be expanded
in a similar fashion to create in the end after repeated expansion, the sum of n! terms.
For example, consider the simple case of a 3 x 3 determinant:

Matrix addition of two matrices A and B to give a third matrix C, written

is defined only if A and B have the same number of rows and columns, so that

The matrix product C of two matrices A and B is written as

with the matrix element C^ of C given by

As an example, consider the product of two 2 x 2 matrices:

Matrix multiplication, however, is not commutative in general since

In some particular cases these two products will be equal, in which case we say
that these particular matrices commute. The noncommutativity of the product of two
matrices can be illustrated by interchanging the order of multiplication in the example
preceding equation (3.19), resulting in a different product matrix:
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It will also be useful to take another look at the inner product a • b between the two
column vectors a and b in the context of the matrix product defined by equation (3.19).
To utilize this format, in which the elements of the product matrix are determined via
multiplication of the rows of the matrix on the left-hand side of the product with the
columns of the matrix on the right-hand side of the product (by multiplying each pair
of corresponding elements and summing), we write a as a 1 x n (row) matrix, which
we designate as a* (the transpose of the n x 1 column matrix a) and form the matrix
product a*b = J^a^. Notice that this matrix product is equal to the matrix product
b*a = ]T bidi in the reverse order, so that the inner product of two vectors of real
numbers, looked at in this context, is a commutative product. We shall return to this
just below, when we need to generalize this idea to allow for vectors of complex numbers
rather than real numbers, as at present. We shall also introduce here a notation for the
inner product of two vectors that can be generalized readily later: we shall designate
the inner (dot) product between two vectors

If we allow the elements of the (column) vectors a and b to be complex numbers,
we must generalize the definition of the inner product between a and b to

in which a^ is called the adjoint (Hermitian conjugate) vector to a. This generalization
for complex-valued elements is necessitated by the requirement that the length of a
vector be a real number: if a is a vector with complex-valued components, then its
length will be defined via |a|2 — Y^akak, which is a real number (rather than as
^akCLk, which is not a real number). Notice, however, that for complex vectors, the
inner product (a|b) is not the same as the inner product (b|a): they are, in fact,
related by

so that they are complex conjugates of one another.
We shall encounter a number of special types of matrix: in addition to the identity

matrix, designated by 1 and with elements given by

(the Kronecker delta, 5ij, has a value of 1 for i = j and 0 for i ^ j } , we have symmetric
matrices, which have the property that they are equal to their transposes, i.e.,

Hermitian matrices, which have the property that they are equal to their Hermitian
conjugates, i.e.,
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orthogonal matrices, which have the property that their inverses are equal to their
transposes,

and unitary matrices, which have the property that their inverses are equal to their
Hermitian conjugates, i.e.,

Matrices are useful in transforming the magnitude and direction of a vector. Thus
if y is an n x 1 vector and A is an n x n matrix, then a new n x 1 vector y' is related
to y by the matrix equation y' = Ay, or

Unitary (or orthogonal) transformations of vectors do not alter the magnitude of a
vector but do change its direction. Matrices can also be used in inverting a set of linear
equations. Thus, if a set of inhomogeneous linear equations is represented by

with c a column vector of constants, then multiplication from the left by A l gives x
in terms of c via

The inverse matrix can be calculated in a number of ways, such as

or

where My is a cofactor of A defined in equation (3.16).

Matrix Eigenvalue Problem

The n x n matrix A has n eigenvalues and n eigenvectors defined by the equation
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The eigenvectors are special vectors whose directions are unchanged (but are stretched
or shrunk by the factor A) when transformed by A. These n eigenvectors are determined
by solving a set of n linear homogeneous equations

or

These equations have a trivial solution, x = 0, and a set of n nontrivial solutions
obtained from the nth-order polynomial in A (also referred to as the secular determinant
or secular equation),

Each eigenvector x^ associated with each Aj can be determined by substituting A^
in equation (3.34) and solving for the components of x. Usually the eigenvectors are
normalized to unity:

These n eigenvectors, expressed as column vectors, can be arranged in a matrix X =
(xiX2 • • • xn), and the n eigenvalue equations written as

in which A is the diagonal matrix,

made up of the eigenvalues A^. From relation (3.37), we see that A can be determined
from A as

For example, if the matrix A is

then from equation (3.35) the secular determinant is

from which the second degree eigenvalue equation is
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Figure 3.3: A matrix transformation.

with solutions

Substitution of the eigenvalues AI and A2 in turn into equation (3.34) and solving for
the components of xi and X2 gives

If A is Hermitian, A^ = A, then the eigenvalues are real and the eigenvectors can
always be made to be orthogonal to one another. In this case X is a unitary matrix since,
in general, the elements of the x^ will be complex numbers. If A is real and symmetric,
then the x^ will also be real and X is then an orthogonal matrix. The determination of
eigenvectors is equivalent to finding a matrix X which transforms A into the diagonal
form (3.38). Surprisingly, this is a simpler problem (for a computer!) than finding the
zeros of the nth-order polynomial generated by the secular equation (3.35).

Similarity Transformations

The matrix A is transformed into the matrix B via a matrix Z by the relationship

This is a similarity transformation (Figure 3.3). If Z is a unitary (or orthogonal) matrix,
then A and B are related via a unitary (or orthogonal) transformation. Notice that if
A, B, and Z were matrix representations of symmetry operators, then A and B would
be in the same class. If A and B are similar then the eigenvalues of A are the same as B
(but the eigenvectors are different), and |A| — |B , and tr(A) = tr(B). If Z transforms
A into the diagonal matrix B, then the matrix Z diagonalizes A and the eigenvalues
are found in B. A Hermitian (or symmetric) matrix is diagonalized by a unitary (or
orthogonal) transformation.

3.2 Symmetry Operations and Position Vectors

Perhaps the simplest way to generate a matrix representation of a group is to consider
the effect of a symmetry operation on a point
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Figure 3.4: Cartesian coordinate system.

in space. The point is located in real three-dimensional space (Figure 3.4).
It is convenient to replace the familiar X, Y, and Z axes by X\, X2, and ^3,

respectively, as well as the usual cartesian unit vectors i, j, and k by ei, 62, and 63
(Figure 3.4). In this case, we can write p formally as

Reflection

A reflection in the ^1-^X3 (X-Z) plane changes the x2 component of p to — x2, so that

so that <Ti3 may be represented by the matrix

Similarly, matrix representations for a\i and ^23 are
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Figure 3.5: The Ca operation rotates the point p by 9 radians about the Xa-axis.

Rotation

The clockwise rotation by 0 radians about the J^3(Z)-axis produces a new set of coor-
dinates (Figure 3.5):

or

in which

and

These equations can be expressed compactly in matrix form as



with the matrix representation D(C0) of a clockwise rotation by an angle 9 about the
Xa-axis given by

The matrix for C^1 — C-Q is given by

D(C0) is an orthogonal matrix since D(C^T1) = (D(C0))* as required

Inversion

The operation of inversion i changes the signs of all coordinates

so that its matrix representation is

Rotation- Reflection

The improper rotation operation, 50, corresponds to a CQ operation about the ^3-
axis followed by a horizontal reflection <7i2 in the X\~X<2, (X-Y) plane. As the matrix
representations of CQ and 0*12 have already been derived, the matrix for SQ can be
determined simply by matrix multiplication: thus,

3. Matrix representation of Groups68
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Figure 3.6: The coordinate system for the water molecule.

Identity

The "do-nothing" operation E is represented by the unit matrix 1 or

For example, the C^v point group of water (Figure 3.6) has four symmetry operators
{E, C2,<7i3,<723}, so that the corresponding matrix representations of the symmetry
operations are

A multiplication table for the C2,v point group (Table 3.1) is obtained by calculating all
possible products between the four D matrices just given. For example, D(C2)D(<7i3) =
D(<723).

3.3 Symmetry Operators and Basis Vectors
A matrix representation of a group can also be generated by considering the effect of
symmetry operations on basis vectors. For example, CQ, the rotation operation about
the ^s-axis, can occur either by rotating the point p in the clockwise direction or by
leaving p fixed but rotating the coordinate system in the opposite direction (Figure
3.7). For example, the matrix representation for the 63 operation generated from the
rotation of the point p is



a

Table 3.1. Multiplication Table for the C-2V Point
Group

Figure 3.7: The clockwise rotation by 0 radians about the Z-axis, Co, can be accomplished
by rotating the point by +0 or by rotating the coordinate system by —0.

so that x' = D(C3)x has components x\ given in terms of the components Xi by

However, rotation of the basis vectors in the opposite direction requires that the rotated
basis vectors be given in terms of the original basis vectors by

30
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or, expressed in a matrix format, by

For matrix manipulations it is convenient to introduce the basis vectors e\ — i, e2 = j,
and 63 = k. The matrix representation of 63 cannot depend on whether the represen-
tation is generated using the coordinates Xi or the basis functions e^ as the two are
equivalent. This condition requires that we reformat the transformation (3.53) in terms
of a row vector representation, rather than in terms of the more commonly used column
vector representation. That is, we must replace (3.53) by

so that (e;)* = (D(C3~
1)e)t = e*(D(C3-

1))t - e*D(C3). This formulation allows the
matrix representations of the group symmetry operators to preserve the order of mul-
tiplication of the group elements, as required by the homomorphism.

A general operation R can operate equivalently on the point or on the basis func-
tions:
hence, if we write p as

then p' can be expressed either by

or by

These equations can be written more compactly in matrix form as
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Figure 3.8: The o\, operator reflects the twelve basis functions through the plane of the paper
(the plane containing 65 and CG).

The use of row vectors for basis functions seems surprising but, as mentioned above, it
is necessary in order to obtain a consistent matrix representation.

The use of basis functions rather than a single point is very useful for generating
matrix representations of dimension larger than 3. For example, if each atom of NHs is
given a set of three Cartesian basis functions, then a 12 x 12 matrix representation is
generated. Consider the effect of cf'v on the 12 basis functions shown in Figure 3.8: the
matrix representative of a'v is given in this basis by

The derivation and use of such matrix representations will be discussed in Chapter 7
on vibrational spectroscopy.

3.4 Symmetry Operators and Basis Functions

The ordinary three-dimensional Cartesian vector space can be generalized to an n-
dimensional vector space. In the previous section a 12-dimensional vector space was
used with the 12 orthogonal basis functions associated with the four atoms of the NHs
molecule. It is possible to generalize even further by allowing the basis vectors to be
functions. In this case the vector space is usually called a function space. The properties
of a function space parallel those of ordinary vector spaces.

Function Spaces

A function space is a set of functions {/i,/2, • • • ,/n} (^ m&y be infinite) with the
following properties:
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1. The addition of any two functions fa and fj produces a third function fk that
is also a member of the function space. Thus, fi + fj = /& is analogous to the
addition of two vectors a + b = c.

2. Multiplication of any function fi by a constant k produces a new function kfi
that is also a member of the function space. Again, this is analogous to changing
the length of a vector a to ka by multiplication by a constant k.

3. The scalar or inner product of two complex-valued functions is given by

in which dr represents the differential volume element for the independent vari-
ables upon which the functions {fi} depend. This may be compared with the
definition of the dot product of two vectors a and b:

4. If there are n linearly independent functions in the function space, /i, /2, . . . , /n,
then

and any function in the space can be represented by a linear combination of these
n linearly independent functions—that is,

The n linearly independent functions are said to span the function space of di-
mension n. It is always possible to find a set of n orthogonal basis functions—that is,
functions fi, fj—such that

which spans the space. These n basis functions are like the three orthogonal Cartesian
basis functions ei(= i),62(— j), and 63(= k). Any vector in three-dimensional space
can be expressed in terms of these basis functions via

Integrals of the type (fi\fj) are often called overlap integrals because they measure how
much the two functions overlap in space.

Function spaces are commonly used in solving the Schrodinger equation HI/J = Eifj.
For example, a set of degenerate wavefunctions associated with a single energy forms a
function space. More specifically, consider the five degenerate d-orbitals represented by
di, that form a five-dimensional function space associated with an atom. In this case,
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any d-orbital, represented by ^>d, can be expressed in terms of the five orthogonal di
functions via

Gram-Schmidt Procedure
Given a set of n linearly independent (but not orthogonal) basis functions, it is often
desirable to find a set of n orthogonal basis functions. This can always be accomplished
by the Gram-Schmidt procedure. Let {/i, /2, . . . , fn} be a set of linearly indepen-
dent functions: then according to the Gram-Schmidt procedure an appropriate set of
orthogonal functions, represented by {0^}, can be generated as

The set of functions {0^} now has the property that its members are both orthogonal
and normalized, which we express in the form

for all i and j. This procedure works because at each step the new 0j function is made
orthogonal to the preceding i — 1 functions by subtracting the overlap integrals and then
normalizing the new function. The Gram-Schmidt procedure is useful in vector analysis
and in quantum mechanics, where a set of orthogonal functions makes calculations easier
because there are no overlap integrals between the basis functions of an orthogonal set.

Transformation Operators
A set of functions in a function space, like a set of basis vectors, can also be used to
generate a matrix representation of a group. For this purpose it is necessary to define
a set of linear operators {OR,} isomorphic with the group of symmetry operators {R}.
These operators operate on functions and are defined by the equation

in which /$ is a member of the set of n linearly independent basis functions, and x[
results from the operation of R on a^. Since the basis functions span the function space,
this operation must produce a linear combination of the basis functions:

3
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This "backwards" definition of OR is again necessary in order to obtain a consistent
D(R) matrix when the OR operates on functions that are like basis vectors in a vector
space.

As the OR operators are unitary operators, their matrix representations will neces-
sarily be unitary matrices. Consider unitary transformations of two complex vectors,

and examine the dot product between the vectors: as we have seen earlier the dot
product for complex-valued vectors will be given as

since U* = U~! by definition. As required, a unitary transformation leaves the dot
product of two vectors unchanged, and in particular, the length (norm) of a vector
|x| = (x^x)1/2 is unchanged by a unitary transformation.

Similarly, the OR operators work in a function space and they do not change the
scalar product of two functions, so that

The proof is based on the definition of the scalar product

Now the OR operator will move the element dx\dx2dx3 to dx'^dx^dx'^ and
f ( x i , x - 2 , x 3 ] = ORf(xt

l,x
l^xf

3) and g(x\, x2,x3) = dRg(x[,x'2,x3) by definition. There-
fore

since the integration variables are dummy variables. Thus the OR operators are unitary
operators that can be represented by unitary matrices.

As an example of using the OR operators consider the effect of the C3 ' operation
on the function / = xyz = xix^xs. In this case we have

and

3

3

3
) )
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but we already know that

or

Inverting this matrix relation (3.79) gives

or

Substitution of equations (3.80a-c) into equation (3.77) then gives

From this result, we may therefore conclude that

In this way the effect of any symmetry operator on any function can be determined.
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3.5 Equivalent, Reducible, and Irreducible Repre-
sentations

Evidently an infinite number of matrix representations of a point group are possible.
The time has come to limit the possibilities.

Equivalent Representations

If two sets of linearly independent basis functions exist and are related by a linear
transformation g = Af, then the matrix representation generated by f is said to be
equivalent to the matrix representation generated by g. In fact, it is found that the
two representations are related by a similarity transformation. Consider the effect of a
symmetry operator R on the basis functions g, with

However, as g is related to f via

it follows that g* is related to f* via

and that (g')* and (f )* are related by

Thus comparison between equation (3.83) and equation (3.85) gives

or, equivalently,

Now if we define B"1 as

and relate (f )* to f* by

then we see that D^ and D9 are related by

Consequently, the matrix representations generated by f and g are related by a similarity
transformation. Equivalent representation matrices thus have the same eigenvalues,
traces, and determinants so that they cannot really be considered to be "different"
from the point of view of representing symmetry operators.
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Unitary Representations

In general, many different types of matrices could be used to represent symmetry op-
erations. However, if an orthonormal set of basis functions is used in an n-dimensional
function space, then the matrices generated will be unitary. Since it is always possible
to find a set of n orthogonal functions that span the function space for finite groups,
it is always possible to construct a unitary representation of a finite group. It is also
possible to employ unitary matrices for some continuous groups—in particular, the
spherical group, Kh- The properties of unitary matrices are so convenient we shall use
them exclusively to represent symmetry operators.

Reducible and Irreducible Representations

So far the matrix representations of symmetry operators have been nonequivalent and
unitary. However, the dimension of the matrices in a given representation could be very
large. Fortunately, it is always possible to find a similarity transformation that reduces
the representation to block diagonal form where the nonzero elements occur in blocks
along the principal diagonal. For example, the three-dimensional representation of the
group Csv generated by using a point is

Notice that all of the matrices have the same form and that the subblocks (highlighted
in the matrices with dashed lines) also form representations of the group since mul-
tiplication does not change the block structure. In the C%v example, the six matrices
cannot be reduced further (i.e., no extra zero can be introduced) by the application of a
single similarity transformation to all matrices. These simple 2 x 2 and 1x1 blocks are
therefore called irreducible representations, while the three-dimensional representation
is termed reducible.

The conventional symbol for a representation is F, which stands for all members of
a representation. A superscript is used to label different representations:

The decomposition of a reducible representation into irreducible representations is sym-
bolized with a ©. The circle indicates that this is a "direct" sum of the representations



3.6 Great Orthogonality Theorem 79

rather than ordinary addition, such as for numbers or matrices. A given irreducible
representation Tv may occur several (a^) times in the reducible representation. Note
that the superscript on F always serves as a label and never indicates repeated multi-
plication. It turns out that while the number of reducible representations of a group is
infinite, the number of irreducible representations is small. In particular, the number
of irreducible representations of a point group turns out to be equal to the number of
classes in that group.

3.6 Great Orthogonality Theorem
Since all matrix representations can be reduced to the direct sum of a small number of
irreducible representations, these irreducible representations must be very important.
The central theorem about irreducible representations of point groups is appropriately
called the Great Orthogonality Theorem. The Great Orthogonality Theorem requires
that

in which DM(.R) and D"(.R) are matrix representations of two irreducible representa-
tions FM and Yv of the same group, g is the order of the group, and nv is the dimension
of the vth irreducible representation. The sum is over all operations, R, in the group.
As the proof of this theorem is rather involved, it will not be reproduced here.

If unitary matrices are used to represent the group elements, then

from which we see that

The Great Orthogonality Theorem can therefore be restated in the form

This theorem states that the corresponding matrix elements in the various irreducible
representations can be formed into vectors that are orthogonal to one another. This
may best be illustrated with a specific example.

Consider the 3 x 3 matrices which represent the C%v point group generated earlier
(see equations (3.90)). Since the number of symmetry operators (i.e., the order g of the
point group) is six, each vector will be of dimension six. If the matrix element in the
upper left corner is used, then the vector, arbitrarily labeled vi, given by

is obtained; four other vectors can be generated in a similar manner to yield



80 3. Matrix Representation of Groups

We note that the vector YS is associated with a one-dimensional representation of C^v,
while the other four vectors are all associated with the two-dimensional irreducible
representation.
The vectors constructed in this fashion are all orthogonal: if p, =^ v (i.e., the vectors
originate from different irreducible representations), then (in the present case)

as required. If /u = v (i.e., the vectors originate from the same representation), then the
vectors arising from different rows and columns are orthogonal: for example,

Finally the vectors are normalized to the value <?/nM (i.e., the order of the group divided
by the dimension of the irreducible representation from which the vectors originate).

In this example, when JJL = v, i — j, k = m:

while

as required and

while

as required.
If a group is of order g, then each vector will be p-dimensional. The maximum

number of linearly independent vectors in a ^-dimensional vector space is also g. If
an irreducible representation is an nM x n^ matrix it must contribute n^ orthogonal
vectors, and the total number of orthogonal vectors in the vector space cannot exceed
g. Therefore

where the sum is over all irreducible representations. In fact it can be shown that the
equality holds and consequently
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in which r is the number of irreducible representations.

Characters

A character is the trace of a matrix which serves as a representation of a symmetry
operation,

Characters are represented by the symbol x and they serve to represent (i.e., charac-
terize) a matrix. They are convenient because a single number, rather than the entire
matrix, can be used in most applications in spectroscopy.

For example, the characters of the three-dimensional representation of the C^v point
group used previously in (3.90) are:

Notice that although the matrices that represent the E operator, the three reflection
planes, and the two rotation operators are all different, the characters of all symmetry
operators in the same class are the same. This is because the members of a class are
related by a similarity transformation, for example,

)
and the traces (characters) of the matrix representations are unchanged by a similarity
transformation. This is also convenient because the character of just one member of
each class needs to be worked out.

The Great Orthogonality Theorem can be used for characters as well as matrices
since

which allows us to sum over i and j to obtain

Upon employing the definition of the trace of a matrix, we obtain the relation
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so that the characters of the irreducible representations are also orthogonal in the same
sense that the matrix elements of a matrix representation are orthogonal.

For example, the characters of the two irreducible representations generated from
the three-dimensional representation of C%v can be presented in tabular form as

in which the characters of the three-dimensional reducible representation are also listed.
Notice the way in which the characters add, namely,

while the corresponding representations are added using the ® symbol,

Upon checking, we note that

as required by the orthogonality relationship (3.100).
Let the number of classes in a group be k and let the number of members of each

class be ̂ . For the preceding example, k = 3 and g\ = 1, #2 = 2, g% = 3, referring to
the classes {E}, {63, C^1}, and {a'v, a", &"'}, respectively, with

The sum over group operations in the orthogonality theorem can be replaced by a sum
over classes:

This is now an orthogonality relationship in a /c-dimensional (k = number- of classes)
vector space. The maximum number of independent vectors that can be found in a k-
dimensional space is also fc, so that the number of irreducible representations r has to
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be less than or equal to the number of classes, r < k. In fact, it can be proved that r — k
so that the number of classes is identical to the number of irreducible representations.

A reducible matrix representation can be written as a direct sum of irreducible
matrix representations, that is,

There is a parallel equation for characters, namely

for all R where this is now an arithmetic sum. This equation (3.104) for characters
holds true because the sum of the diagonal elements of the reducible matrix must equal
the sum of the diagonal elements of the submatrices of irreducible representations of
the block diagonal form.

The orthogonality theorem for characters can be used to determine quickly the
number of each type of irreducible representation contained within a given reducible
representation, provided that the characters are all known (or have been determined).
Let us examine the following sequence of steps:

from which we can determine the number of times, aM, that the //th irreducible repre-
sentation is contained in the reducible representation. Upon solving for aM, we obtain

3.7 Character Tables

The characters of the irreducible representations of the point groups are used in many
applications of group theory. It is therefore very helpful to have tables of the characters
available (Appendix B). The character table for the C%v point group, in particular, is

Since the number of classes equals the number of irreducible representations, this table
is square. The symmetry operations are listed along the top row with only one character
provided for each class. The number of members ̂  in each class is also provided. Along
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the leftmost column the names of each of the irreducible representations are provided
using Mulliken notation (discussed below).

Character tables can be constructed using various properties of characters without
finding the actual irreducible matrices. The properties include the following:

1. The number of irreducible representations r is equal to the number of classes k,
making a square table.

2. The sum of the squares of the dimensions of the irreducible representations is
equal to the order of the group,

For every group there exists the totally symmetric representation consisting of all
ones. These characters form the first entries along the second row of the table.

3. The rows are orthogonal to each other and normalized according to the equation

4. The columns are also orthogonal and are normalized according to the equation

Equation (3.108) has not been derived here, but proves very useful in the con-
struction of character tables.

Mulliken Notation

Each of the irreducible representations could be numbered in order—for example

ut this labeling scheme is not very informative. Mulliken1 proposed a labeling scheme
that provides some additional information about the symmetry properties of the ir-
reducible representation. A modern compilation of recommended notation for spec-
troscopy and group theory was been published in 1997.2 One-dimensional represen-
tations are labeled A or B, depending on whether the irreducible representation is
symmetric x(Cn or Sn) = +1 or antisymmetric \(Cn or Sn) = — 1 with respect to rota-
tion (or improper rotation) about the highest order symmetry axis in the molecule (ex-
cept for a few highly symmetric groups). If there is no rotational axis of symmetry, then
the one-dimensional irreducible representations are labeled A. All two-dimensional irre-
ducible representations are labeled E (unrelated to the operator E). Three-dimensional
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irreducible representations are labeled T by most workers, except for some infrared
spectroscopists who use F to label triply degenerate vibrations. Finally the fourfold
and fivefold degenerate irreducible representations found in Ih are labeled G and H,
respectively.

If a center of symmetry is present in a molecule, then g or u is used as a subscript to
identify even (g} and odd (u) irreducible representations. The g and u stand for gerade
and ungerade, the German words for even and odd. The irreducible representations are
of g symmetry if x(i) > 0 and u symmetry if x(«) < 0. The point groups that contain i
(Cnh(n even), Dnh (n even), Dnd (n odd), Oh, Ax>/i5 and Ih} can be written as "direct
product" groups G®Ci. The direct product operation is discussed in more detail in the
section on direct product representations in Chapter 4 and below. Each direct product
group G®Ci has a character table twice as large as G. There are twice the number of
irreducible representations (now labeled by g and u} and twice the number of symmetry
operations of G: G — {R}, G <g> Ci = {R, iR}. If the character tables are considered to
be square matrices, then the direct product groups G <g> Ci have character tables that
are direct products (see below) of the character tables for G and C^.

A similar situation arises for point groups with a dh operation but no i operation
(C?2/i and Dnh with n odd). In this case, the group can be written as G ® Cs and all of
the characters are either single prime or double prime depending on whether x(&h) > 0
(single prime) or x(&h) < 0 (double prime). It is useful to recognize direct product
groups because the amount of work can be greatly decreased in most applications. For
example, one trick is to use the appropriate subgroup for a problem, such as O rather
than the full group O^, and then add g and u at the end by inspection. As an example,
consider the character table for the point group of the octahedron Oh — O®Ci. The
subgroup O, made up of the pure rotations of Oh, has the character table

while the character table for d is

From what has been said above about the relationship between the direct product group
character table and the character tables of the component groups, we obtain for Oh the
character table
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The definition of a direct product of two matrices A(nxn) and B(mxm) is

so that A®B is a new super-matrix of dimension (n x ni) x (n x m).
If none of the rules for labeling irreducible representations are sufficient to provide

a unique label, then numeric subscripts are added to distinguish among the irreducible
representations. As an example of this rule, we could take A\ and A% in the C^v point
group.

Some of the character tables contain characters that are complex numbers, such as
the cyclic group Cn. The cyclic group of order n is made up of the rotation operators
{Cn,C^,..., C!£ = E}. Clearly these groups are all Abelian, since any operator com-
mutes with itself and each symmetry operator is in its own class. The number of classes
and the number of irreducible representations are therefore equal to g, the order of
the group. All irreducible representations must be one-dimensional since             1S

satisfied only for nv — 1, v — 1, . . . , g. The characters that are complex must be paired
with their complex conjugates and thereby give rise to a double degeneracy.

As an example, consider the CQ point group, which has the character table

with £ = e
27r*/5 The characters for the irreducible representations that are complex

pairs are labeled as E. The sums of the complex conjugate pairs are real numbers and
can be used in most applications instead of the individual complex components.

The point groups COQV and D^h (— COQV (g) d) for linear molecules are of infinite
order so that the methods discussed so far cannot be used to derive their character
tables. COQV has the rotational symmetry operators C(4>] and their inverses C(—<j>) in
the same class (Figure 3.9). There are an infinite number of pairs each with a different
4> and each pair is in a different class. There are also an infinite number of reflection
operators but they all belong to the same class as shown in the character table

3.

.
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Figure 3.9: The symmetry elements for a linear molecule of Coov symmetry.

used by spectroscopists. They use instead the traditional set of Greek labels, also shown
in the character table above.

Problems

1. For the vectors

(a) Calculate |a|, |b|, a-b, axb.
(b) Convert a and b to spherical polar coordinates.

2. For the matrix

obtain:

(a) A*

(b) |A|
(c) A-1

3. For the Pauli matrices

m
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(a) Verify that (Tx(Ty = icrz.

(b) Obtain the product matrix (Ty(rx, and evaluate the commutator [crx,<Ty].

4. If

obtain A + B, A - B, AB, and BA.

5. Show that

(a) (AB)4 = B*A*

(b) (AB)t = Bt At

6. Show that At A and AAt are Hermitian for any matrix A.

7. Verify that

is an orthogonal matrix.

8. Find A"1 for

and verify that A A"1 = A"1 A = 1.

9. Solve the set of linear equations

4x-3y + z = 11,

2x + y-4z = -1,

x + 1y-2z = 1,

using matrix methods.

10. From the characteristic polynomial show that:

(a) The product of the eigenvalues of a matrix equals the determinant, |A| =
A i A 2 . . . An.

(b) The sum of eigenvalues equals the trace of a matrix, tr(A) = AI + A2 H An.
(Hint consider an equivalent diagonal matrix.)

11. Show that the eigenvalues of a Hermitian matrix are real and that the eigenvectors
can be made orthogonal to each other.

,
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12. Find the eigenvalues and normalized eigenvectors of the matrix

13. (a) Find the eigenvalues and normalized eigenvectors of the matrix

(b) Construct the matrix X that diagonalizes A and verify that it works.

14. (a) Construct the nine-dimensional matrix representation generated by the unit
Cartesian vectors associated with each atom of the H2O molecule. (Choose
Xi out of the plane.)

(b) What are the characters of the reducible representation?

(c) How many times does each irreducible representation occur in this reducible
representation?

15. Consider the four out-of-plane pz orbitals of cyclobutadiene.

(a) Assuming D^h symmetry, construct the four-dimensional matrix representa-
tion of the 1)4 subgroup with the pz orbitals.

(b) What are the characters of this reducible representation?

(c) How many times does each irreducible representation occur in this represen-
tation?

16. Given the set of polynomials {!,£, x2,x3,...} construct the first three members
of a new set of orthonormal polynomials on the interval — 1 < x < 1 using the
Gram- Schmidt procedure. They are proportional to the Legendre polynomials.

17. (a) For the point group D^h construct a three-dimensional matrix representation
using the set of three real p orbitals.

(b) To what irreducible representations do these orbitals belong?

18. Construct the character table for the C±v point group, without consulting tables.

19. For the D3h point group verify equations (3.106), (3.107), and (3.108).

20. Construct the Z>2/i character table by taking a direct product of the Ci and D%
character tables.

21. One matrix representation that can easily be constructed for any group is called
the regular representation. This representation is obtained by writing the group
multiplication table in such a form that the identity element E lies along the
main diagonal. Then the matrix representative for a particular group element R
is obtained by replacing that element everywhere in the multiplication table by
unity and all other group elements by zero.

(a) Do so for the group C^v and obtain the corresponding reducible matrix
representation group.

(b) What are the characters of this representation?
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(c) What irreducible representations make up the regular representation of C%vl
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Chapter 4

Quantum Mechanics and
Group Theory

4.1 Matrix Representation of the Schrodinger Equa-
tion

The application of quantum mechanics to spectroscopic problems involves solving the
appropriate time-independent Schrodinger equation, Hip = Etp. The solutions of this
eigenvalue problem are a set of wavefunctions { î} and a corresponding set of energy
eigenvalues {Ei}. Although a solution of the Schrodinger equation is, in general, a
difficult mathematical problem, steady progress has been made over the years. Spec-
troscopists, however, do not suffer from such mathematical difficulties—they simply
measure the difference between two eigenvalues, Ei — Ej — hv, and the intensity of the
transition.

The most appropriate formulation of quantum mechanics for spectroscopy is based
upon the Heisenberg matrix mechanics approach. Although simple spectroscopic mod-
els, such as the rigid rotor and the harmonic oscillator, are customarily solved using
differential equations, any application of quantum mechanics to real systems is usually
best handled by matrix mechanics. The general spectroscopic problem is handled by
selection of an appropriate Hamiltonian operator and selection of a basis set, followed
by diagonalization of the Hamiltonian matrix to obtain the wavefunctions and energy
levels.

The solution of Hijj = Etjj (after selection of H} proceeds by expanding the wave-
function in terms of a set of appropriate basis functions—that is,

or using Dirac notation,

For example, if H represents an anharmonic molecular oscillator then {\fi}} might be
the harmonic oscillator wavefunctions. Using this basis set, arbitrary wavefunctions \ijj)
and |0) are represented by column vectors of expansion coefficients, such as

91
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In vector notation the basis functions can be represented by

and so on. The scalar product of two wavefunctions is expressed in the form

The operation of Hermitian conjugation converts the ket vectors (|^)) to bra vectors
((•01), that is,

so that the scalar product can be interpreted as a matrix product, as in (4.3).
Dirac notation is particularly useful for algebraic manipulations. Notice, for exam-

ple, (fi\fj) = Sij is a number, but P^ = \fi)(fj is a matrix operator. If i = j then, for
example, in a five-dimensional space

for i = j = 3, and so PU = Pi is represented by a matrix with a 1 in the ith position
on the diagonal and zeros elsewhere. This is an example of a projection operator, since

Pi projects the ith component out of an arbitrary vector |6). A useful identity is that
of completeness of the basis set, namely that

which can be used to derive the expansion coefficients (/i|t/>) of a wavefunction. Thus,
we can write

so that if
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then

An operator such as # has an eigenvalue equation H\I/J) = Ety), in which H is
represented by a matrix in terms of the basis set {/i}. Although it is not necessary, the
{fi} are assumed to be orthogonal functions ((fi\fj) = <%) and the matrix elements of
H are given as

In quantum mechanics the operators associated with observables are Hermitian (A* =
A) so that the corresponding matrices, including H, are also Hermitian (H^ = H). The
solution of the Schrodinger equation thus requires that the orthogonal eigenvectors and
the real eigenvalues of the Hamiltonian matrix H be determined.

The solution of the secular equation

provides a set of n energies, while the associated n eigenvectors can be determined from
the corresponding set of homogeneous equations. These eigenvectors can be used as the
columns of a unitary matrix X and the eigenvalue equation written as

or

The matrix X corresponds to a coordinate transformation of the original basis func-
tions {fi},

or

The matrix E has the energy eigenvalues along the diagonal and zeros elsewhere. In
the representation provided by the new set of basis functions the Hamiltonian matrix
is diagonal, that is,

Exact and approximate solutions for a 2 x 2 Hamiltonian matrix prove to be very
useful in providing an example, and for simple applications. Let H be a two-dimensional
matrix represented by
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in terms of the basis set {|/i}, /2)}- Then the solution of the secular equation,

leads to the eigenvalues

The transformation matrix X which diagonalizes H can be represented as a rotation
of the basis functions, namely

The angle 0 of this orthogonal matrix is chosen in order to satisfy the condition that
H'12 — -#21 = 0 f°r the transformed Hamiltonian matrix,

This condition is satisfied if 0 is such that

The new basis functions are hence given by

or

In terms of this new basis set the transformed Hamiltonian matrix H' is diagonal:

The two energies E\ and £^2 are the two solutions of the secular equation (4.17).
Perturbation theory is also often used to solve a spectroscopic problem approxi-

mately. In the 2 x 2 example just given, the Hamiltonian matrix is written as a sum of
a zeroth-order term plus an interaction term, so that

with
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and

with

and

with /i = V4 and /2 = V4 • According to perturbation theory the energy for the
nth eigenvalue is given by the zeroth-order energy plus an infinite sum of successive
corrections, that is,

in which

and

with higher-order contributions being defined similarly.
A corresponding expansion is used for the wavefunctions, namely

in which the first-order correction is given by

with higher-order corrections being defined analogously. Since the diagonal elements of
H^1) are zero in this example, the first-order correction to the energy E^ — 0, and the
second-order correction to the energies are given by

and

The corresponding wavefunctions (not normalized) are



96 4. Quantum Mechanics and Group Theory

Figure 4.1: The interaction of two states using second-order perturbation theory.

and

The effect of the interaction

is thus to mix the wavefunctions and shift the energy levels E® and E® in opposite
directions by the amount +V2/AE for E® and — F2/AE for E^, as shown in Figure
4.1. The degree to which the two wavefunctions can mix depends on both the magnitude
of V and the initial energy difference AE = E® — E® as indicated by equations (4.37)
and (4.38).

The perturbation theory result can be compared to the exact result for the two-level
system by expanding the square root in the expression for the exact solution (4.18),
first by rewriting it in the form

and then expanding the square root to obtain

The two energies are therefore

and

Comparing equations (4.35) and (4.36) with equations (4.42) and (4.43) indicates that
second-order perturbation theory gives accurate results if the terms ±V4/(A.E)3 can
be neglected.
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4.2 Born-Oppenheimer Approximation

The central approximation in molecular spectroscopy is the separation of electronic and
nuclear motion. The nonrelativistic molecular Hamiltonian operator is given by

in which Greek subscripts in equation (4.44) refer to the nuclei in a molecule, while
Roman subscripts refer to the electrons. The various terms in this expression are:

• the nuclear kinetic energy

• the electronic kinetic energy

• the nuclear-nuclear repulsion energy

• the electron-nuclear attraction energy

• the electron-electron repulsion energy

The Schrodinger equation HI/J = Eip with this Hamiltonian operator is much easier to
write down than it is to solve. The solution of the appropriate Schrodinger equation
can in principle explain all of chemistry and spectroscopy. The first step in solving the
Schrodinger equation is to invoke the Born-Oppenheimer approximation.1

The Coulombic forces acting on the nuclei and on the electrons are similar in mag-
nitude, but the electrons are much lighter. The electrons therefore move much faster
than the nuclei and, as a consequence, the electronic motion can be separated from the
nuclear motion. The electronic structure is solved by "clamping" the nuclei at fixed
positions and solving the purely electronic equation
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in which

If the nuclei are fixed in space, then

is just a constant that can be added in at the end to form the total electronic energy

The separation of the Schrodinger equation into electronic and nuclear motion
(vibration-rotation) parts means that tjj can be approximated as the product function

and that two equations

and

now need to be solved. In equation (4.56) the value of the total electronic energy depends
in a parametric way on the particular nuclear positions, ra. Clamping the nuclei at dif-
ferent positions will result in different numerical values for U and different functions
for i/)e\. As the nuclei move, the electrons move so quickly that the U(ra) derived from
(4.56) serves as the potential energy for the nuclear motion (4.57). The vibrational and
rotational motions can also be approximately separated in equation (4.57). Although
the vibration-rotation separation is conceptually similar to the Born-Oppenheimer ap-
proximation, it is a separate step that is not part of the Born-Oppenheimer separation
of nuclear and electronic motion.

The terms neglected in the Born-Oppenheimer approximation can be examined by
substituting the equation

into the full Schrodinger equation and remembering that XN depends only upon the
nuclear coordinates (ra), while ^e\ depends upon the electronic coordinates (r$) and,
parametrically, also upon the nuclear coordinates, so that

By employing the identity

we see that (4.59) becomes
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By neglecting the first and second terms in equation (4.61), the remaining terms can
be separated to yield equations (4.56) and (4.57). The neglect of these two terms is
equivalent to neglecting the first and second derivatives of the electronic wavefunction
with respect to the nuclear coordinates, Va^e\ and V2i0ei. Indeed, the first-order cor-
rection (diagonal correction) for the effects of the breakdown of the Born-Oppenheimer
approximation requires that these derivatives be evaluated and used to deduce the en-
ergy correction from E^ = (ijj^\H^ V^X in which T/;(°) is the Born-Oppenheimer
wavefunction and H^ represents the two neglected terms.

4.3 Symmetry of the Hamiltonian Operator
The application of symmetry in quantum mechanics makes use of a key theorem: if the
operators for two observables A and B commute, then it is possible to find a common set
of orthogonal eigenfunctions. In mathematical terms if [A, B] = 0, then Aip = a^ and
Btjj = bijj, where [A, B] — AB — BA, and the functions t/> in the two eigenvalue equations
are the same. This abstract theorem has far-reaching consequences. For example, if the
two observables are the total energy and the square of the total angular momentum,
then it can be proven that [H, J2] = 0. Therefore a set of common wavefunctions can be
found for the two equations H^nj — Ei/jnj and J2fjjnj — Ejijjnj and, most importantly,
the energies and wavefunctions of the system can be labeled with J : {Enj}, {i/Jnj}. The
"good quantum number" J is very useful in characterizing the eigenstates of molecular
or atomic systems.

An "almost good quantum number" is associated with an observable of the system
that "almost" commutes with the Hamiltonian operator: Hipn = En^n and Aifjn ss aijjn

(i.e., the wavefunction of the system is an approximate eigenfunction of some other
observable). For example, spin-orbit coupling can couple the spin S and orbital angular
momentum L in an atom. Although J(J = L+S) is still a good quantum number, L and
S are only approximate quantum numbers so that, for example, S2/0 « S(S + l)^2^-
Although spin is no longer a good quantum number, it is almost good for light atoms
and it is still useful to speak of, for example, triplet states.

The Hamiltonian operator for a system, H = T -f V", has certain symmetry prop-
erties. For example, the kinetic energy part of the Hamiltonian operator always has
the symmetry of a sphere, K^ because the Laplacian operator V2 is invariant under
all reflections and rotations which contain the origin. This can be verified by applying
the transformation operators, such as Ocd, to the Laplacian. The potential energy part
of the Hamiltonian operator therefore displays the particular point group symmetry of
the molecule.

Since the operators OR leave the Hamiltonian operator unchanged, they must com-
mute with the Hamiltonian operator, that is, OnHf — H&RJ or [H, OR] = 0. In fact
it is possible to show that OR commutes with Te, TV, and V individually. This means
that a common set of eigenfunctions for Htp = EIJJ and ORIJ) = ai/} can be found. The
wavefunctions can therefore be classified by their behavior with respect to the set of
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symmetry operators {OR}- The wavefunctions have the same symmetry properties as
the irreducible representations, which can thus be used to label the wavefunctions. For
example, if the molecule has a center of symmetry, then Hei^ = Ee\ij) and ii/)e\ = i^ei
have a common set of eigenfunctions. Thus t/^i behaves either like the Ag row or like
the Au row of the Ci character table

The electronic wavefunction is either even or odd, so that g and u can be used to classify
the wavefunctions as i/je\t9 or T/>ei,u-

For degenerate wavefunctions the symmetry operator OR changes one wavefunction
into a linear combination of the members of the degenerate set. If there is an n-fold
degeneracy, that is, if

then {ipi^ip2 • • -VVi} will form an n-dimensional function space spanned by the n or-
thogonal wavefunctions. Thus the action of OR on a single member ̂  of the set of n
degenerate wavefunctions can be represented by

in which D(/2) is the matrix representation of R in the n-dimensional wavefunction
space. The new wavefunction

produced by the action of a symmetry operator is also a solution of the Schrodinger
equation having the same energy eigenvalue. The n degenerate wavefunctions form a
basis for the matrix representation of the point group operations of the molecule. Thus,
for example, the electronic wavefunctions of the NHa molecule may be totally symmetric
with respect to the six symmetry operators (and have A\ symmetry), may behave like
the AI line of the character table, or may be doubly degenerate (with E symmetry). The
electronic states of ammonia are thus said to belong to the A\, AI, or E representations.
Basis functions that possess these symmetries are said to be symmetry-adapted basis
functions.

4.4 Projection Operators

Projection operators are useful in generating functions of the proper symmetry for the
solution of a molecular problem. Since a wavefunction must belong to a particular irre-
ducible representation, it is very helpful to construct solutions of the correct symmetry
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for the problem. Consider a set of nv orthogonal functions {/f, f% ... f%u} that belongs
to a function space that forms the ^th irreducible representation in a point group. The
result of operating with the operator OR on an arbitrary member of this set of functions
can be written as

in which Tv = {D"(/2)} is the unitary matrix representation. Let us define the projec-
tion operator

and apply P£ to a member of the function space { f v } . We obtain the result

by employing the Great Orthogonality Theorem. Notice that if// =^ ^, then               if

j =£ &, then                  but      This means that if one member of a set of
basis functions belonging to an irreducible representation is known, then it is possible
by using projection operators to generate all other members of that representation.
The only catch with this type of projection operator is that the representation matrices
(DM(/2)} are needed, not just their traces or characters.

A simpler, but still useful, projection operator can be defined using only the char-
acters of the matrix representation. Let the projection operator PM be defined as

or

since the summation over the diagonal elements of DM(/2) simply represents the char-
acter of DM(J?). Thus we see that when PM acts on a member of the z/th function space,
we obtain
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ttfi^v, then P^// = 0, and if /i = i/ andi = j, then P^// = (0/nM)/j*.
At first sight the PM operators do not seem to be very useful. Notice, however,

that PM annihilates all functions, or parts of functions, that do not belong to the
//th irreducible representation and leaves behind a function that possesses the correct
symmetry.

For example, consider a set of Is functions on the hydrogen atoms of NHa and
suppose that a linear combination of the three atomic hydrogen orbitals is needed to
make approximate molecular orbitals to bond with the nitrogen atomic orbitals (Figure
4.2). Individually the three hydrogen orbitals do not have the correct symmetry since,
for example, C^(!SA) — Isc- However, projection operators can be used to construct
a set of symmetry-adapted linear combinations of the hydrogen Is orbitals. As we
have seen earlier the appropriate symmetry point group is C^v, so that the projection
operators, given by

can be applied to a typical Is function, say ISA, with the result being

If the hydrogenic basis functions are assumed to be orthogonal to one another, then
we obtain the orthonormalized symmetry-adapted basis functions

with AI symmetry and
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Figure 4.2: The three Is hydrogen functions in the NHs molecule.

with E symmetry. Notice that there is a missing linear combination since the application
of a single PE operator generates only a single function of E symmetry and to complete
the E representation a second basis function is needed. This second function can be
generated by applying PE to another atomic orbital, say the !SB orbital, to obtain

This second function can then be made orthogonal to the original E function by sub-
tracting out the overlapping part using the Gram-Schmidt procedure (see section 3.4).
The new function has the form

which becomes upon normalizing,

The functions 0i, </>2, and ^3 have the appropriate symmetry for the NHs molecule.
Although these simple functions may not be the best functions for a realistic calcula-
tion of the electronic energy of NHs, they are the appropriate functions to use within
the simple linear combination of atomic orbitals model. Since the final electronic wave-
function must belong to the A\, A%, or E irreducible representations, the calculation is
simplified if the initial trial wavefunctions also belong to one of these representations.

4.5 Direct Product Representations

The total wavefunction is often written as a product tjj — ̂ eiXA^ m which tjje\ and XN
each belong to particular irreducible representations of the molecular point group. To
which representation does the product t/> = ipeiXN belong? In order to determine this,
let [fi/2 • •' f n v } be a set of nv functions belonging to the z/th representation P", while
{ f i ' " f n } belongs to FM. A new function space with nv x nM members can be formed
by taking all possible products
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These product functions form a new representation F1"8^ = Tv ® FM, in which the
symbol <8> is used to represent the direct product in order to distinguish the operation
from ordinary multiplication. A new set of matrices, nvn^ x nvn^, in dimension, is
formed by taking direct products of the matrix representatives in F" and FM—that is,
j)i/®M = D" <g> DM. For example, the direct product of two 2 x 2 matrices A and B is
represented by

The characters of the direct product matrices

are just the product of the characters of the individual matrix representations in FM

and F". Of course, these direct product representations are reducible in terms of the
irreducible representations of the point group, that is,

in which the a, are determined from

For example, consider the product E ® E obtained for the product wavefunction
tjj = i^e\^EXN,E- The appropriate characters are given by

a
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so that the direct product representation is decomposed as

4.6 Integrals and Selection Rules

The intensity / of a transition between two states, designated by \i) and \j), is propor-
tional to the square of a transition dipole moment, that is,

so that integrals of the type

or, more generally,

with / as an arbitrary function, are of interest. The integrand is a product of three
functions, each of which belongs to a particular irreducible representation. What is the
overall symmetry of the integrand? If ̂  belongs to the FM irreducible representation,
t^j to F", and / to FA, then the triple product Vi/V'j belongs to the direct product
representation

which can be reduced to the direct sum of the irreducible representations of the point
group. If this reduction does not contain the A\ irreducible (totally symmetric) repre-
sentation, then the integral over all space is exactly zero. This is just a generalization of
the fact that the integral over all space of an odd function, f(—x) — —/(a;), is zero, or

The proof of the assertion that a nonzero integral

must have an integrand that belongs to a direct product representation that contains
AI requires the use of the projection operator
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If ^ifij^j does not contain a function of A\ symmetry, then

The OR symmetry operators have no effect on the integral

since the integration is over all space. Thus, summing over all R, we find that

with g the order of the group, and hence

Thus, if PAl(tp*ftpj) = 0, then the integral must vanish, and it is a necessary (but
not sufficient) condition that the integrand contain a function of A\ symmetry in order
that the integral not vanish.

An important application of this rule (in addition to deriving selection rules) is in
the construction of Hamiltonian matrices. It is possible to let / be an operator such as
H, which belongs to the AI irreducible representation, since the Hamiltonian operator
is unchanged under all symmetry operations. Therefore

will be nonzero depending on the symmetry properties of ̂  and tpj. The number of
times that the direct product representation contains an irreducible representation of
AI symmetry is given by

since FM and F" are irreducible representations. This means that matrix elements be-
tween functions belonging to different irreducible representations (JJL ^ v] will be iden-
tically zero. The Hamiltonian matrix becomes block diagonal with each block corre-
sponding to a different irreducible representation. Each block can now be diagonalized
separately since there are no matrix elements connecting blocks of different symmetry

4
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Problems

1. Given the matrices A and B as

Show that A and B commute. Find their eigenvalues and eigenvectors, and obtain
a unitary transformation matrix U which diagonalizes both A and B.

2. Obtain eigenvalues to second order and eigenvectors to first order of the matrix

using the small parameter a.

3. A particle of mass ra is confined to an infinite potential box with potential

Calculate the ground and fourth excited-state energies of the particle in this box
using first-order perturbation theory. Obtain the ground and fourth excited-state
wavefunctions to first order, and sketch their appearance. How do they differ from
the corresponding unperturbed wavefunctions?

4. A matrix representation of the Hamiltonian operator for a two-dimensional system
is given by H = H(°> + H^, with

(a) Obtain eigenvectors to first order and eigenvalues to second order for the
problem

using perturbation theory.
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(b) For comparison solve the problem exactly, first for H^0) and then for H.

5. Consider the Hamiltonian matrix constructed in the {&} basis (a, (3 are real
numbers):

Obtain the eigenvalues, their corresponding eigenvectors, and the unitary trans-
formation that brings H to diagonal form. (Hint: There is a trigonometric solution
to certain cubic equations.)

6. Write out the characters for the following direct products and then determine
which irreducible representations they decompose into:

7. Consider the transition dipole moment integral

(a) For the C2v point group, if t/>o belongs to the AI irreducible representation
and ILZ, p,x, and {JLy have AI, B\, and B2 symmetry, respectively, what are
the possible symmetries of ̂ i in order to make the integral nonzero?

(b) Repeat (a) for DQ^ where IJLZ and (nx, {iy) have A2u and E\u symmetry, and
•00 has Aig symmetry.

(c) Repeat (a) for Td where (IJLX, //y, fiz] have T2 symmetry and IJJQ has E
symmetry.

8. Show that the eigenvalues and eigenvectors of a symmetric 2 x 2 matrix (4.16)
are given by equations (4.18), (4.21), and (4.23).
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Chapter 5

Atomic Spectroscopy

5.1 Background
Historically, atomic spectroscopy was developed before molecular spectroscopy. The dis-
covery of the Fraunhofer absorption lines in the spectrum of the sun and the observation
by Herschel of the colors emitted when metal salts are introduced into flames occurred
in the early 1800s. It was not, however, until the 1850s that Kirchhoff and Bunsen
clearly established that each atom had a characteristic spectral signature. These ideas
led to the identification of the elements rubidium and cesium by emission spectroscopy,
and in the discovery of helium in the sun in advance of its isolation on earth.

Atomic spectroscopy was used simply as a diagnostic tool in these early measure-
ments, although Balmer noted mathematical regularities in the spectrum of the hydro-
gen atom in 1885. It was not until the work of Bohr in 1913 that the spectrum of the
hydrogen atom was explained. The Bohr model was unable to account for the spectra
of atoms with more than one electron and was soon superseded by the development of
quantum mechanics in the 1920s. In fact the desire to explain atomic spectra was one
of the primary motivations for the development of quantum mechanics.

When the hydrogen molecule is excited in an electrical discharge, a regular series
of atomic hydrogen emission lines is observed (Figure 5.1). The line positions seem to
converge to a limit for the Balmer series. This pattern repeats itself in other regions
of the spectrum, for example, in the near infrared (Paschen) series and the vacuum
ultraviolet (Lyman) series. These lines are customarily labeled with the series name
and with a Greek letter to indicate the member of the series (Figure 5.2). For example,
Balmer a (Ha) and Balmer /? (H^) denote the first and second members of the Balmer
series at 15233 cm"1 (6562.7 A) and 20565 cm"1 (4861.3 A), respectively.

Balmer discovered that the wavelengths of the series that now bears his name could
be represented by the empirical formula,

109
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Figure 5.1: The Balmer series of the hydrogen atom.

Figure 5.2: Energy levels of the hydrogen atom.
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in which 3645.6 A is the series limit. In terms of cm"1 the formula becomes

with RH called the Rydberg constant (in cm 1). The other series were found to obey
formulas similar to the Balmer formula (5.1), with each transition given as the difference
between two terms, but with no = 1,3,4,5, . . . .

Remarkably, the spectra of the alkali atoms provided similar patterns in both emis-
sion and absorption. Although the emission and absorption spectra had some lines in
common, the emission spectra were more complex. The emission spectra could also
be organized into series which were given the names sharp (S), principal (P), diffuse
(D), and fundamental (F). The names sharp and diffuse were based on the appearance
of the lines, while the principal series appeared in both absorption and emission. The
fundamental series was thought to be more fundamental because it occurred to the red
(to longer wavelength) of the others and was most like the hydrogen series. Moreover,
simple formulas similar to equation (5.2) were found to represent the various series of
lines, namely

in which T is the series limit, R is the Rydberg constant, and n is an integer. Unfortu-
nately, a small non-integer 6, referred to as the quantum defect, had to be introduced,
since the use of integer quantum numbers could not reproduce the series of alkali line
positions. Elements other than hydrogen and the alkalis had even more complex spectra.

5.2 Angular Momentum

The interpretation of atomic spectra is closely related to the concept of angular momen-
tum. The classical angular momentum L = r x p can be transformed into a quantum
mechanical operator by the usual substitution

This leads to the following expressions for the components and square of L in Cartesian
coordinates, as well as in terms of the polar angle 0 and the azimuthal angle </> associated
with the position of the electron in spherical polar coordinates:
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With the use of the definition for the commutator, [A, B] = AB — BA, one obtains

so that a simultaneous set of eigenfunctions for L2 and Lz can be found. These eigen-
functions are the spherical harmonics YLM(#, </>) where

and

The YLM can be further separated into a product of two functions

where OLM(#) is an associated Legendre function, and $M(#) is given by

The first few spherical harmonics for L < 2 as well as a formula for generating the YLM
for L > 2 are provided in Table 5.1, using the "Condon and Shortley" phase convention.

A simple geometric interpretation of the L2 and Lz operators is of a quantized
vector of length \/L(L + l)h units precessing about the 2-axis so that Lx and Ly have
undefined values, but a definite projection of Mh units along the z-axis (see below).
The z-axis is arbitrarily chosen as the reference axis appropriate to the experimental
situation in which observations are made.

Raising and lowering operators, defined as

and

are so named because they raise and lower the M values for a given value of L. Specif-
ically, their actions on the YLM(&', 0) are represented by
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Table 5.1: Spherical Harmonics

The spherical harmonics YLM(#) <^) can also be represented in Dirac notation simply
as \LM}. The set of spherical harmonic functions {YLM(^-,<!>)•> — L < M < L} for a
given value of L provide a convenient set of basis functions for the construction of a
matrix representation of the angular momentum operators. In this basis L2 and Lz are
represented by diagonal matrices with matrix elements

The raising and lowering operators L+ and L_ are represented in this basis by non-
Hermitian matrices with matrix elements

Since L+ and L_ do not correspond to observables, they do not require Hermitian
representations. The L+ and L_ matrices can be used to construct Lx and Ly matrices
from the relationships
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and

Ly = -i(L+-L-)/2. (5.20)

For the specific case when L = 1,M = 1,0, —1, we can choose for the three basis
functions the unit vectors for the three Cartesian directions, i.e.,

In terms of these basis vectors the matrix representations of I/2, L2, I/+, L_, I/x, and
L,, are

and

Electron orbital angular momentum in the hydrogen atom depends on the 0 and <f>
spherical polar coordinates of the electron. In this case, L is restricted to integral values
but, in general, angular momentum can assume half-integral values as well. For example,
the spin angular momentum of an electron is found to be ^h. In this case, the angular
momentum of the electron is defined in terms of the commutation relations (5.8) and the
associated matrices. The letter S is used to designate electron spin angular momentum.
More generally, the preceding equations must be transformed by L —» J and M —> Mj,
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where J and Mj always symbolize the total electronic angular momentum (spin plus
orbital) in a system and its projection on the laboratory z-axis.

For the simple spin-^ case let

The corresponding matrix representations are

and

The matrices <rx, o-^, and az are known as the Pauli spin matrices.
Matrix representations of operators are vital in spectroscopy because they provide

a quantitative description of the system. The Hamiltonian operator H for the system is
expressed in terms of various operators such as the spin and orbital angular momentum
operators. To transform the Schrodinger equation into a matrix equation, we choose
a basis set and evaluate the matrix elements of H. Finally, the matrix form of the
Schrodinger equation in this basis, Ht/> = Eij), is solved by transforming H to diagonal
form in order to find the eigenvalues {En} and the associated eigenvectors {i/Jn}.

5.3 The Hydrogen Atom and One-Electron Spectra

The energy level structure of the hydrogen atom and hydrogen-like ions can be explained
by solving the Schrodinger equation
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with [L the reduced mass of the hydrogen atom or the hydrogen-like ion. This differ-
ential equation is most easily solved in terms of spherical polar coordinates. Thus, the
wavefunction is written as ij) = i/>(r, 0, <f>) and the Schrodinger equation becomes

or

This form of the Schrodinger equation is used because the partial differential equation
(5.34) can then be separated into three ordinary differential equations involving r, 0, and
<£> alone. As usual, boundary conditions force quantization and the energy eigenvalues
are found to be

in SI units, and for cm"1 units, R = RU = 109677.4212 cm"1 for the hydrogen atom.
Note that most tables (Appendix A) report RQQ , appropriate for a stationary, infinitely
heavy nucleus, rather than RU. In fact RQQ and RU are connected by the relationship

which is obtained from the definition of the reduced mass of two particles, namely
/JL = memp/(rae + rap). The solution of the Schrodinger equation yields three quantum
numbers: the principal quantum number n, the azimuthal quantum number /, and the
magnetic quantum number ra, that can only assume the values

and

The / values of 0, 1, 2, 3, . . . are usually labeled s ,p ,d, / ,g,h, i ,k , / , ra ,n ,o, etc., for
the historical reasons that were touched upon in the introduction to this chapter. The
wavefunction is a product of a radial part and an angular part, namely

in which the radial part Rni(r) is an associated Laguerre function and Yjm(0, (f>) is a
spherical harmonic. A few of the l/m(0,</>) and Rni(r] functions are listed in Tables
5.1 and 5.2. The constant a in Tables 5.2 and 5.3 is the Bohr radius ao, which can be
expressed in terms of fundamental constants (Appendix A) as
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Table 5.2: Radial Functions of the Hydrogen Atom

Normalization: J

Note that if // replaces me in the definition of the Bohr radius, then one obtains an,
the actual Bohr radius of the hydrogen atom.

The angular parts of the hydrogen eigenfunctions Yim(0:0) are complex when |m| >
0. These complex functions are not very useful when one tries to visualize the shape of
the orbitals in real space. Since the energy does not depend on the magnetic quantum
number m, the wavefunctions are degenerate and any linear combination of them is
also a solution to the Schrodinger equation. Hence, the linear combinations

are used when plotting the orbitals in real space. These real linear combinations give
the Cartesian forms for the solutions (referred to as orbitals). Some of the real-valued
hydrogen orbitals are listed in Table 5.3 and their plots are illustrated in Figure 5.3.

/V> ^

The orbital angular momentum operators / and lz commute with the hydrogenic
Hamiltonian operator, so that

From now on, the customary notation of lowercase letters will be used to represent
one-electron properties and uppercase letters will be used to represent many-electron
properties. Simultaneous eigenfunctions can be constructed for the three equations

and
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Table 5.3: Some of the Real Hydrogen Wavefunctions

The complex form of the l^m(^, ^>) functions listed in Table 5.1 satisfy equations (5.40)
- (5.42) and the corresponding quantum numbers n, /, and ra are used to label the
wavefunctions ipnim-

Vector Model

Since angular momenta are so widely used in spectroscopy, it is useful to have a simple
pictorial model (Figure 5.4). This model summarizes the mathematical results of quan-
tum mechanics. An angular momentum J is represented in this picture by a vector of
length \/«7(J + l)fi units. While J has a definite projection Mjh along the laboratory
z-axis, the components along the x- and 7/-axes do not have definite values. This means
that the vector J is inclined at an angle
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Figure 5.3: The angular part of the real forms of the Is, 2p, and 3d orbitals.

with respect to the z-axis and precesses at a constant angular velocity. This precessional
motion ensures that the x and y components of J have undetermined values (until an
external measurement forces one of these components to have a definite value). The
different values of Mj thus correspond to different spatial orientations of J. If space isj
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Figure 5.4: The vector model for angular momentum.

isotropic (i.e., there are no electric or magnetic fields present), then the energy cannot
depend on the orientation of the total angular momentum in space so that there must
be a (2J + l)-fold degeneracy corresponding to all allowed Mj values.

Spin-Orbit Coupling

Because the electron is a charged particle, the orbital motion of an electron produces a
current. Associated with this current is a magnetic field which affects the orientation of
the magnetic moment of the electron associated with the presence of electron spin. This
phenomenon is known as spin-orbit coupling and is responsible for the "fine structure"
in the spectrum of the hydrogen atom.

The strength of the magnetic field at the electron is proportional to 1, while the
magnitude of the electronic spin magnetic moment is proportional to s, given by

Ms = -&/JBS,

in which ge is a numerical constant and /IB is the Bohr magneton (see section 5.8 on
Zeeman effects later in this chapter). Since the energy of interaction of a magnetic
moment with a magnetic flux density B is

the spin-orbit coupling is written as

The function £(r) is defined by
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in which

is the potential energy due to the Coulombic attraction between the electron and the
nucleus. A detailed derivation of equations (5.45) and (5.46) requires the use of rela-
tivistic quantum electrodynamics,1 which is beyond the level of this book.

The inclusion of spin-orbit coupling transforms the eigenvalue equation into

where H^ is the simple hydrogenic Hamiltonian operator. Provided that the spin-orbit
coupling term is small, first-order perturbation theory can be applied to solve equation
(5.48) approximately. Letting the perturbation Hamiltonian operator H' be

leads to the energy having the form

to first order. Degenerate perturbation theory must be used, however, to find the correct
/n~\ *.

V4 , as spin-orbit coupling removes some of the 1 and s degeneracy in the hydrogen
atom.

The quantum numbers / and s are no longer good when spin-orbit coupling is
taken into account since the operators lz and sz do not commute with the Hamiltonian
operator due to the presence of the term £(r)l • s. However, the total vector angular
momentum

is still a constant of motion which means that j"2 and jz must commute with the full
Hamiltonian operator. The matrix elements of the £(r)l • s term can be evaluated by
using the simple direct product basis set

This basis set is referred to as the uncoupled representation because 1 and s are not
coupled to give j. For example, consider the set of 2p functions for the hydrogen atom:
/ — 1, s = i, which yield a total of six basis functions, namely

The diagonal matrix elements of H, written for convenience as

are
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in which E^J = — -Rn/4 gives the energy of a 2p electron in the absence of spin-orbit
interactions, and

represents the spin-orbit interaction energy. The integral over r comes from the radial
parts of the Vn/mfo #> </*) eigenfunctions.

The off-diagonal matrix elements are due to the /+s_ term which connects basis
functions with the same rrij = mi + ms — \->\->—\,—\i resulting in a matrix with
mostly zeros. Diagonalizing the 2 x 2 blocks yields two energy levels with energies
&2p ~ C2p, and E%p + C2p/2 from the Hamiltonian matrix, H:

An alternative and easier way to solve the problem involves the use of the coupled
basis functions \lsjmj) where j and mj are the good quantum numbers. For the 2p
functions j = 1 + s, corresponding to j = | and j = \- Notice that the two va
of j correspond to a vector addition of 1 and s (see Figure 5.5). Note that the usua
(confusing) shorthand notation of using / = 1, s = ̂ , and j = | to represent the length
of vectors is used. In the coupled basis there are again six 2p functions:

In this coupled basis set the Hamiltonian matrix is already diagonal since

commutes with the Hamiltonian operator. The spin-orbit operator can be expressed in
terms of j2, f2, and s2 as
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Figure 5.5: Vector addition of 1 and s.

First-order perturbation theory now gives

using the definition of £, equation (5.55). When s = ^, then j = I db | and the energy
levels are

or

For the case of the hydrogen 2p states (/ = 1) the energy levels are

and

where the good quantum number j is now used to label the wavefunctions. Notice that
the 2p energy levels do not depend on whether the coupled or the uncoupled basis set
is chosen to construct the Hamiltonian matrix. This is due to the fact that the coupled
\jiJ2JMj) and uncoupled Ijim^ljzm?) basis sets are related by a linear transformation

in which the coupling coefficients O'i, ji2; mi, m2| JM) are known as the Clebsch-Gordan
coefficients. For the 2p hydrogen atom orbitals the transformation is
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and

The transformation can be derived by using the operators

and the orthogonality of the wavefunctions.

5.4 Many-Electron Atoms
The nonrelativistic Schrodinger equation for an AT-electron atom with a nucleus of
charge Z at the origin is

By invoking the orbital approximation, the wavefunction is represented by a Slater
determinant, namely

In shorthand notation a bar represents a /5 or spin-down (ms = — ̂ ) electron,
while the absence of a bar represents an a or spin-up (ms = +5) electron. The Slater
determinant automatically satisfies the Pauli exclusion principle since the interchange of
any two columns, which corresponds to the exchange of two electrons, changes the sign
of the determinant. Since electrons are fermions the Pauli exclusion principle requires
that
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hold for the exchange of two electrons, where Pi2 is the permutation operator that
exchanges the coordinates of two electrons.

The Pauli exclusion principle requires that each orbital fa can contain, at most, two
electrons with opposite spin. The orbitals are approximated by the product function

By choosing this form we are assuming that the orbitals possess a hydrogen-like angular
shape, but the radial functions need not be the associated Laguerre polynomials of
the hydrogen atom. Instead, the radial functions associated with each fa are usually
determined by minimizing the total energy of the atom using the variational principle.

The configuration of a multi-electron atom is constructed by placing electrons in
the lowest energy orbitals in accordance with the Aufbau principle. For example, the
lowest energy configuration of the Li atom is (ls)22s which corresponds to the Slater
determinant

The tasks of either calculating atomic energy levels and wavefunctions or experi-
mentally measuring energy level differences by atomic spectroscopy are active areas of
research. Calculation or measurement of atomic energy levels can be a complex task,
but the labeling of atomic energy levels using the theory of angular momentum coupling
is relatively straightforward.

All the various orbital and spin angular momenta of an atom must add vectorially
to make J the total angular momentum, which must remain a constant of the motion.
For light atoms where spin-orbit coupling is small, it is convenient to use the Russell-
Saunders coupling scheme. A coupling scheme is no more than a prescription that
describes the order in which angular momenta are coupled. In the Russell-Saunders
scheme the orbital angular momenta of all electrons are coupled to give a total orbital
angular momentum of the atom, that is,

Similarly, for electron spin,

and the total angular momentum is given by their vector sum, namely

The usual convention in which capital letters are used to designate many-electron an-
gular momenta and lowercase letters are used to designate single electron angular mo-
menta is also employed here.

As required by equations (5.68), (5.69), and (5.70), the individual operator compo-
nents add to give the total component, for example
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and

>. A

The components of L and S all commute with the nonrelativistic Hamiltonian operator
in equation (5.64). The commutation of the spin operators with the atomic Schrodinger
equation is obvious since there are no spin variables present in equation (5.64). For the
multi-electron atom Lz and H are

and

with

Lz commutes with the kinetic energy operator because the fa variables appear as simple
second derivatives in the Laplacian and as simple first derivatives in Lz. The Coulomb
attraction term is only a function of r^, so it also commutes with Lz. Finally, the
electron-electron repulsion term is an implicit function of fa because of the presence of
Tij. Consideration of Figure 5.6, however, leads one to the conclusion that ri2 depends
only on fa — fa so

using the chain rule. Thus Lz commutes with ̂  e2/rij since all of the azimuthal angles
occur as differences, fa — fa.

Notice that although individual electron quantum numbers m/ cannot be denned
because the individual lz% operators do not commute with .#, i.e.,

so that

but ML given by
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Figure 5.6: Polar coordinates of two electrons in an atom.

is a good quantum number in the absence of spin-orbit coupling, since Lz operating on
i/j has the property

Analogous equations hold for the electron spins, so that

with

Because an atom is spherically symmetric, the orientation of the z-axis is arbitrary
so that if

then

Further, if [LZ,H] = 0, so does

then

by the properties of commutators. A comparison between the properties of multi-
electron atoms and one-electron atoms is presented in Table 5.4.
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Table 5.4: One-electron and Multi-electron Atoms

Multi-electron Atoms One-electron Atoms

Figure 5.7: Vector addition of two / = 1 angular momenta.

The operators H, L2, S2, Lz, Sz all commute with one another so that the wave-
function ijj is a simultaneous eigenfunction of all five operators. The corresponding
quantum numbers n, Z/,5, ML, and MS can therefore be used to label the wavefunc-
tions, and one can write t/> = \nLMi,SMs}. In the absence of external electric fields,
magnetic fields, and spin-orbit coupling the energy levels associated with i/j possess a
(2S + l)-fold degeneracy due to the different MS states and a (2L + l)-fold degeneracy
due to the different ML states. It is therefore convenient to label these energy levels by
the term symbol 2S+1L, which gives rise to a total degeneracy

The angular momenta L and S are vector quantities, made up of individual lj and
8j vectors: this means that when any two angular momenta, for example, li and $2, are
coupled together, they must be added vectorially. The possible values of the quantum
number L are then given by l\ + £ 2 , ^ 1 + /2 — 1? • • • ? KI — h\ from the vector coupling
rules. The vector coupling of li and 1% can be visualized with the aid of vector coupling
diagrams, as shown in Figure 5.7 for the case of l\ = 1 and /2 = 1-

Consider the carbon atom with configuration Is22s22p2. What terms arise from
this configuration? Filled orbitals such as Is2 or 2s2 have no net spin or orbital an-
gular momentum, hence they may be ignored. The possible terms can be derived by
considering all possible distributions of the two p electrons among the six spin-orbitals
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Table 5.5: Slater Determinants for Configuration p2

(pia,pQa,p-ia,pi(3,poP,p-ifl) in a manner consistent with the Pauli exclusion prin-
ciple (Table 5.5). These possible states are often referred to as microstates and, in fact,
correspond to individual Slater determinants.

A microstate designated as |1,0| means mji = l,msi = ^,m/2 = 0, mS2 = —^ with
the orbitals arranged in some standard (arbitrary) order. Starting with the maximum
values of ML and MS, one deduces that there are nine microstates corresponding to
3P, five microstates corresponding to 1D, and one microstate corresponding to 1S,
consistent with the (2S + 1)(2L + l)-fold total degeneracy of each Russell-Saunders
term.

The microstate 1,1| clearly belongs to 1D while |1,0 belongs to 3P, but to which
terms do 1,0| and |1,0 belong? Neither one is a proper eigenfunction of L2 and Lz. The
correct linear combination of determinants can be deduced, however, by the application
of the lowering operator L_ to \1D, ML = 2) = |1,1|, i.e., via

where the final determinant has been put in standard order. Similarly, the state

is orthogonal to \1D, ML = 1, MS = 0).
The different terms arising from a configuration have different energies because of

the electron-electron repulsion term in the Hamiltonian operator. If
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Table 5.6: Atomic Terms Arising from the pn and dn Configurations

were the only terms present in the Hamiltonian operator, then the orbital approximation
would be exact because the electronic coordinates would be separable. Since HQ is
comprised of one-electron, hydrogen-like operators, the wavefunction associated with
HQ is a product of one-electron orbitals. The electron-electron repulsion term

in the complete Hamiltonian operator prevents the separation of the total wavefunction
into a product of one-electron orbitals. Nevertheless, it is still conceptually useful to
retain the orbital approximation.

A set of empirical rules first proposed by Hund in 1927 is useful in predicting the
lowest energy term arising from a configuration. Hund's first rule states that the term
with the highest multiplicity 25+1 lies lowest in energy. If this rule does not select
a unique term, then Hund's second rule comes into play: of terms of having the same
(maximum) multiplicity, the term with the highest L value lies lowest in energy. For
example, Hund's rules predict that from a p2 configuration the 3P term lies lower in
energy than the 1D and 1S terms. Experimentally the ground state of the carbon atom
is indeed found to be 3P. Hund's third rule is given below in the discussion of spin-orbit
coupling.

The terms for many common configurations with equivalent electrons are given in
Table 5.6. Notice that an electron (e.g., p1) in a subshell (charge —e) has the same
terms as a hole (charge +e) in a full subshell (e.g., p5). Similarly the terms arising from
dn and d1Q~n are the same.

The enumeration of all of the microstates arising from a d5 configuration is quite
a task (/7 is even worse!), but the direct application of Hund's rules will give the
lowest energy term without having to determine all remaining terms. As a pictorial
representation of the method, 2/ +1 boxes are drawn to represent the different orbitals.
Each box is labeled with an m/ value, and the electrons are placed into the boxes to
maximize ML = X^m/ anc^ MS — ]Cms- The term that has these maximum ML and
MS values can then be written down by inspection. For example d4 has a diagram
(Figure 5.8) corresponding to ML (max) = 2 and MS (max) = 2 arising from a 5D
term. The 25+1 multiplicity of a term such as 5D is read as "quintet" rather than as
"five." By custom all multiplicities in term symbols for atoms and molecules are read
in this way (Table 5.7).

A term symbol also indicates the parity of an atomic state by the presence of a
small following superscript "°" for an odd-parity term. The behavior of an atomic
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Table 5.7: Names for the First Ten Multiplicities

2S+I Name 25 + 1 Name

1
2
3
4
5

Singlet
Doublet
Triplet
Quartet
Quintet

6
7
8
9
10

Sextet
Septet
Octet
Nonet
Decet

Figure 5.8: The microstate of d4 with maximum Ms and ML values.

wavefunction under the operation of inversion can be determined from the parity of the
orbitals since

where the inversion operator E* inverts the coordinates of all of the electrons through
the origin. The parity of a state is determined simply by adding all of the li values
of the configuration from which the state arises. Thus, for example, the lowest energy
term of nitrogen with a configuration Is22s22p3 is written as 45°.

The effects of spin-orbit coupling must be incorporated into the Hamiltonian op-
erator of the multi-electron atom. The spin-orbit term in the Hamiltonian operator is
just the sum of the one-electron terms,

This form is not very convenient because of the presence of the individual \i and Sj
angular momenta. For a given term, however, an equivalent Hso can be derived using
the properties of vector operators2 (Wigner-Eckart theorem):

The numerical factor £ = £(S, L) (typically with units of cm l ) is referred to as the
spin-orbit coupling constant of the L-S term. This form of the spin-orbit interaction
is only applicable within a single, isolated 2S+1L term and assumes that there are no
interactions with other terms.

When //so = £L • S is added to the atomic Hamiltonian operator (5.64), the com-
ponents of L and S no longer commute with H. The components of the total angular
momentum J = L + S commute with H, however, as do L2 and 52. The set of com-
muting observables is now {H, L2, S2, J2, Ja
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Table 5.8: Eigenvalue Equations for the Multi-electron Atom when Spin-Orbit Coupling
Is Included

Sz} used in absence of the spin-orbit coupling term, £L • S (Table 5.8). In fact, as £
increases the various terms begin to interact with each other, since the full spin-orbit
Hamiltonian operator ]P£(r)li -Sj has additional matrix elements with AL = 0, ±1 and
A5 = 0, ±1. The individual terms can no longer be considered isolated when spin-orbit
coupling becomes large. This then means that the true wavefunctions are no longer
eigenfunctions of I/2 and 52. Nevertheless they are approximately so, i.e.,

and hence it is useful to retain the approximate quantum numbers L and 5. The term
symbol 2S+1L is also often used for heavy atoms with large spin-orbit coupling, but
then J is always added as a subscript, 2S+lLj.

The permissible values of J determined by vector coupling of L and S are L + 5,
L + 5 — 1, • • • , \L — S\. For example, the states of the p2 configuration are 3P2, 3^i5
3Po) 1D<2, and 15o from the 3P, 1.D, and 1S terms. The energy separation of the J = 2,
J = 1, and J = 0 levels of the 3P term (referred to as the multiplet splitting) is readily
determined from the relationship

derived from

If L and 5 are nearly good quantum numbers (in an isolated term), then perturba-
tion theory gives

The intervals are given by
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Figure 5.9: The multiple! splittings for the lowest energy term of the C, O, and F atoms.

This is the Lande interval rule: the spin-orbit splitting between sequential J levels in
a term is proportional to the larger of the J values. Whether the level with the largest
value of J lies highest in energy or lowest in energy is determined by the sign of £
(Figure 5.9). If C > 0, then the term is said to be regular (as for C), and if £ < 0 then,
the term is inverted (as for O). Hund's third rule predicts whether the lowest energy
term will be regular or inverted. If the ground term arises from an electron configuration
for which the valence electrons make up a less than half-filled subshell (e.g., C), then
the lowest energy term will be regular, while if the configuration is more than half-filled
(e.g., O), then the lowest energy term will be inverted. Both C and O have ground 3P
terms arising from Is22s22p2 and Is22s22p4 configurations, respectively; therefore the
3P term of C is regular while the 3P term of O is inverted (Figure 5.9). If an incomplete
subshell is exactly half full (e.g., p3), then the lowest energy term is always S and no
spin-orbit splittings are possible.

The total degeneracy 2 J +1 of a level J arises from the Mj degeneracy. For a term
such as 3D the total degeneracy g = (2L + 1)(25 + 1) = 5(3) = 15. The presence of
spin-orbit coupling lifts this degeneracy and gives rise to the levels 3D%, 3£>2, and 3Di;
the total degeneracy remains 15 (Figure 5.10).

In summary, if only the hydrogen-like terms HQ (equation (5.91)) are retained in the
atomic Hamiltonian operator, then the terms in a given configuration are degenerate
(Figure 5.11). If the electron-electron repulsion term Hee (equation (5.92)) is added,
then the orbital approximation begins to break down and the different terms in a
configuration split (Figure 5.11). Finally, when the spin-orbit term -fiTso (equation (5.95))
is added, the degeneracy of the levels in a term is lifted.
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Figure 5.10: Degeneracy in the 3D term.

Figure 5.11: The qualitative effect of the f/o, -f/ee, and //so terms on the energy level pattern
of the Is22s22p2 configuration of the C atom.

5.5 Selection Rules
Explaining the appearance of a spectrum requires detailed knowledge of the energy-
level structure and selection rules that govern transitions between levels. To begin, the
one-electron selection rules of the hydrogen atom3 are determined from the transition
moment integral (Chapter 1)

Because the parity of an atomic wavefunction is determined by / and the dipole
moment operator is of odd parity, the selection rule for one-electron atomic transitions
requires that A/ be odd. More restrictive selection rules can be derived by considering
the atomic wavefunctions. With the nucleus at the origin of the coordinate system
(Figure 5.12), the electric dipole moment operator p, can be written as fl — —er, in
which case Mn'j'm/,njm is given by
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Figure 5.12: Coordinate system for the hydrogen atom.

Each coordinate can be considered separately with

For the z component we have

(with N a collection of constants from normalization) so that for Mz ^ 0, ra' = m or
Am = 0. Also from the properties of associated Legendre polynomials, we can show
that

and from the orthogonality of these polynomials, as expressed by

it is required that A/ = ±1. For the x component of the transition moment, we find
that

but since

we see that Am = ±1 for nonzero Mx. In addition we can show that
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Figure 5.13: Energy-level diagram for the K atom, with wavelengths (in A) of transitions.

so that once again A/ = ±1. The y component of M gives the same selection rules as
Mx. Further, no restriction arises for n' and n so that An — 0, ±1, ±2,... transitions
are possible.

Thus single-photon, electric-dipole-allowed selection rules in hydrogenic atoms are
A/ = ±1, Am = 0, ±1, and An = any integer. In reality, restrictions on An do exist
for /' <— I transitions, due to the decreasing overlap between the Rn'i> and Rni radial
wavefunctions with increasing An. Values of the radial part of equation (5.103) and of
the transition probabilities are tabulated, for example, in Condon and Shortley.4

Selection rules for multi-electron atoms are much more difficult to derive than are
the one-electron selection rules, and consequently, only the results will be quoted here.
Within the orbital approximation only a single electron can make a jump from one
orbital to another, with A/ = ±1 during an electronic transition. All electrons other
than the one making the transition remain in their original orbitals.

The parity selection rule of even <-> odd applies to multi-electron atoms. This parity
of a multi-electron atomic state can easily be determined by evaluating (—l)Ei i. The
parity selection rule, often referred to as the Laporte rule, remains valid in all cases for
electric-dipole transitions, even when the li are no longer good quantum numbers.
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The selection rule for J, AJ = 0, ±1 but J' = 0 /» J" = 0, also always remains
valid for one-photon, electric-dipole-allowed transitions. The selection rules AL = 0, ±1
and AS — 0 for L and S only remain valid for small spin-orbit coupling. For the heavier
elements the Russell-Saunders coupling scheme is no longer useful because the large
spin-orbit coupling allows mixing between terms with different L and S values so that
these selection rules break down. For example, the Hg 3Pi —xSo transition at 253.7 nm
becomes quite strong, while the analogous transition for He is very weak.

It would seem that the multi-electron selection rule AL = 0 conflicts with the one-
electron selection rule A/ = ±1. The Ti atom transition 3F°(3d24s4p] - 3F(3d24s2) is
an example that illustrates that a AZ, = 0, A/ = 1 transition is possible.

5.6 Atomic Spectra

The alkali atoms Li, Na, K, Rb, and Cs, as well as hydrogen, are the prototypes for
one-electron atom transitions. In Figure 5.13 the energy levels and transitions of K are
displayed. In atomic spectroscopy, energy-level diagrams are called Grotrian diagrams.

The 2P3/2 -
2Si/2 (5890 A) and 2P1/2 -

2S1/2 (5896 A) transitions of Na are known
as the Na D lines. The letter designation was made by Fraunhofer when he first ob-
served them in absorption in the sun. (Fraunhofer began at the red end of the visible
spectrum and the A-band at 7619 A turned out to be the 0-0 band of the forbidden
61£+ — X3Y,~ transition of O2 in the earth's atmosphere, the B-band at 6892 A is
the corresponding 1-0 band, while the C line is the solar Balmer Ha line at 6 563 A.)
The corresponding transitions of potassium are at 7664.90 A and 7698.96 A (Figure
5.13). They are examples of "resonance lines" because they originate from the ground
state and are strongly allowed transitions. They are also the so-called persistent lines
used for analytical purposes because they are readily observed in emission even when
the K atom concentration is very low. There are several series of potassium transitions
in Figure 5.13 that converge to the ionization limit of 4.34 eV.

He (Figure 5.14) and Ca (Figure 5.15) are examples of atoms with two valence
electrons. The spectra are organized into separate singlet and triplet manifolds of states
with only weak intercombination transitions connecting them.

Spin-orbit interaction causes many atomic lines to split into multiplets such as the
Na D lines or the six-line pattern of the Ca 3D —3P transition at 442.5 — 445.6 nm
(Figure 5.16). The splitting into multiplets is called fine structure.

The transition elements, lanthanides, and actinides have very complex energy-level
patterns because of the many terms and levels arising from open d and / subshells.

Hyperfine Structure

The presence of nuclear spin produces further splittings in the lines of many elements.
Since the splittings caused by electron spin are called fine structure, the much smaller
splittings due to the nuclear spin are called hyperfine structure.

The nuclear spin I couples with J to form the total angular momentum F via vector
coupling, namely

When nuclear spin is present, the only strictly good quantum number is F. Splittings
due to hyperfine structure are relatively small, typically less than 1 cm"1, so J remains
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a nearly good quantum number. The selection rules for F are the same as for J,
AF = 0, ±1, but F' = 0 /» F" = 0, and AMF = 0, ±1.

For example, consider the energy-level pattern5 for the 87Rb 52P3/2 — 525i/2 tran-
sition (one of the resonance lines) of 87Rb at 7800 A displayed in Figure 5.17. 87Rb
has a nuclear spin of 3/2. The separation between the two lowest hyperfine levels in the
ground electronic state of Rb is used for a frequency standard. The similar ground-state
hyperfine transition at 9192.631770 GHz in 133Cs (/ = 7/2) is used in an atomic clock
to provide the national time standard in many countries.6

Hydrogen Atom

The hydrogen atom continues to fascinate scientists. For example, precise frequency
measurements in the hydrogen atom spectrum have led to a refinement in the value of
the Rydberg constant as well as practical applications such as a hydrogen maser (mi-
crowave laser) that can also serve as an atomic clock. The Rydberg constant is the most
accurately known fundamental physical constant,7 with a value R^ = 109737.315685
cm"1 (Appendix A).

Figure 5.14:: Energy-level diagram for the He atom
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Figure 5.15: Energy-level diagram for the Ca atom.

When spin-orbit coupling is included,8 the Lyman a line is comprised of two compo-
nents, 22P3/2 - l25i/2 and 22Pi/2 - !2Si/2- Dime's relativistic model of the hydrogen
atom, however, predicts that the 22Pi/2 and 225i/2 levels have the same energy. In
fact Lamb and Retherford experimentally determined that these two levels are split by
about 1058 MHz. The theory of quantum electrodynamics, developed by Feynman and
others, is able to account for this Lamb shift.

In addition to spin-orbit coupling, hyperfine structure8 is also present in the spec-
trum of the hydrogen atom because the proton has a nuclear spin of 1/2. Hyper-
fine structure doubles all of the energy levels (Figure 5.18). In the ground state the
F = I — F — 0 splitting is 1 420 MHz, which corresponds to a wavelength of 21 cm.
This 21-cm radiation was first detected in interstellar space, leading to the development
of radio astronomy. The hydrogen maser also oscillates on this 1420 MHz hyperfine
transition, which is electric-dipole forbidden but magnetic-dipole allowed.
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Figure 5.16: Multiple! structure of a 3D — 3P transition.

Figure 5.17: The hyperfine energy-level pattern of the 52P3/2 - 52S>i/2 transition of 87Rb near
7800 A.

5.7 Intensity of Atomic Lines

The intensity of a dipole-allowed transition between two atomic energy levels labeled by
1 and 0 (Figure 1.8) is governed by the equations developed in Chapter 1. For emission,
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Figure 5.18: Fine and hyperfme structure of the n = 1 and n = 2 levels of the hydrogen atom.

the rate (equation 1.17) in photons per second is determined entirely by the upper
state population density (atoms/m3) and the Einstein AI_»O factor, which depends on
the transition dipole moment. For absorption, the analogous equation (1.56) exhibits a
similar dependence on transition dipole moment but is proportional to the population
difference NQ — NI between the levels. In spite of these simple governing equations,
line intensities can be a confusing subject, mainly because of the usual degeneracy of
energy levels.

The key point is that the equations of Chapter 1 apply to a transition between
quantum states | J'M' > and | J"M" >, while measurements are generally made, in
the absence of magnetic and electric fields, between the energy levels | J' > and J" >.
Hyperfine structure does not alter this situation because each line is then split into
hyperfine components whose relative strength is determined by angular momentum
coupling rules.4 The sum of the intensities of the hyperfine components equals the
intensity of the hypothetical unsplit line. As long as the expressions in this section are
applied to the integrated intensity of the hyperfine components of a line, then no errors
result.

The upper level (with population density NI — Nf) of an atomic transition has an
Mj-degeneracy of 2Jf + 1 and the lower level (population 7V0 = N") a degeneracy of
2J" + 1. Each | JMj > state has a population density NI /(2J' + 1) or N0/(2J" + 1) for
the upper or lower state, respectively, because the Mj-components are equally occupied.
For emission, equation (1.17) becomes

and

The double sum over Mj-states appearing in (5.111) is defined as the atomic line
strength, Sj>j», i.e.,
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The Einstein A factor in equation (1.17) can also be written in terms of the atomic line
strength as

If a lineshape function is to be included, then Sj> j» /(2 J' + 1) replaces n\0 in equation
(1.55). The // operator in equation (5.111) is just

for an atom with N electrons, with the origin of the coordinate system at the nucleus.
For absorption (including the stimulated emission term) equation (1.56) becomes

when degeneracy is included. Using the definition of atomic line strength leads to

with F the photon flux.
The absorption cross section, given by equation (1.57), becomes

in terms of the atomic line strength, so that the absorption equation is

and Beer's law becomes

The relationship between the cross section a and the Einstein A value from equations
(5.113) and (5.118) becomes

The degeneracy of atomic energy levels also alters the relationship between absorp-
tion and stimulated emission. Thermodynamic equilibrium now demands that equations
(1.14) and (1.21) be replaced by
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and

Further, the Einstein relationship (1.22) between emission and absorption is altered to

with the Einstein absorption and stimulated emission coefficients now expressed by

and

The expressions for B (equations (5.125) and (5.126)) depend on the form of the asso-
ciated energy density pv used in the defining equations (1.15) and (1.16). In particular,
equations (5.125) and (1.126) imply the use of pv for the energy density at frequency
z/, rather than pw or p^.

If thermodynamic equilibrium applies, then the population density A^o of the lower
state can be replaced by the total population density N. First take the natural logarithm
of equation (5.120) to give

The term in parentheses on the right-hand side of equation (5.127) is called the stim-
ulated emission correction and can be ignored if there is negligible population in the
excited state. At equilibrium the population NO can be calculated from equation:

in which N is the total population of the system, q = ̂ (2Jj + l)e~£'i/fcT is the partition
function, and the energy level at EQ with degeneracy 2 J" + 1 has a population density
NQ. Thus the absorbance, — ln(///o), becomes

in SI units.
Atomic spectroscopists and astronomers9 are fond of a concept called the oscillator

strength / for a transition, defined by comparison with the radiation emitted by a
classical electron oscillator. The /-value for absorption (we will not consider negative
/ emission values9) for a transition is defined as
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so the Einstein B coefficient is

in terms of the oscillator strength, and the Einstein A value is

The absorption cross section <j can also be related to the oscillator strength / as

Note also that, as in Chapter 1, the Einstein A and B coefficients might also include
a lineshape function g(v—VIQ), and the cross section a might have the lineshape function
integrated over frequency to unity. It would be less confusing if the symbol for a quantity
that included a lineshape function always had a subscript v, e.g., (AI-^Q}U = AI_>Q g(y—
i/io) because (Ai-^o)^ and AI_»O have different dimensions. The unfortunate custom,
however, is often to suppress the subscript v and use the same symbol for quantities
that include a lineshape function as for "integrated" quantities (i.e., integrated over
frequency so that g(y — V\Q) has been suppressed because Jg(v — v§)dv — 1). Even
more confusing is the occasional use of formulas in which g(y — I/Q) has been evaluated
for v — vo for a particular lineshape function.

The Einstein A, Einstein B, line strength 5, integrated absorption cross section
J adv, and oscillator strength / are all related:
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SI units are used in equations (5.134) to (5.138), and the Einstein stimulated emission
coefficient BJ>-+J" can be added to the list of interrelated quantities with

obtained from equation (5.123).

Oscillator strengths, /, are dimensionless, A has units of s"1, B has dimensions of
j-i ms s-2 usmg ̂  while the integrated cross section J adv is measured in m2 Hz
= m2 s"1. The line strength 5j'j" has SI units of coulomb2 meter2 (C2 m2) and the
conversion to debye2 (D2) and atomic units (e2ag) is given by

One debye is defined in cgs units as 10~18 esu cm. The separation of +e and -e by 1 A
results in a dipole moment of 4.803 204 2 D in magnitude. The separation of ±e by 1
Bohr radius, GO? gives the atomic unit of dipole moment (eao) as 2.5417462 D.

In terms of numerical values equations (5.134) to (5.138) become
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In equations (5.141) to (5.145) v is in cm"1, AJ>->J» is in s"1, £?j'<-j" in J"1 m3

s^2 using pv, Sj>j» in D2, /j'*-j" is dimensionless, and / adv is in HITRAN units (see
Chapter 7) of cm2 cm"1/molecule or cm/molecule. The conversion from HITRAN units
of cm/molecule (or cm/atom) to SI units of m2 s"1/molecule requires multiplication
by 10~2co = 2997924.58 (section 7.6).
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Oscillator strengths obey a sum rule, namely

for the i <— 0 series of transitions (including an integral for the continuum) involving
electronic transitions associated with a single electron connected to the ground state
| 0> .

Consider the 32P3/2 -* 32Sr
1/2 D line of Na at 5890 A with a lifetime of about 16

ns (or A = 6.25 x 107 s"1). This corresponds to a line strength of S — 1.81 x 1057

C2 m2 = (12.7 D)2 (1 debye = 3.335 641 0 x 10~30 C m) and an absorption oscillator
strength of 0.65. Atomic data compilations often list "<?/"= (2J" + l)/abs values and
the accepted gf value9 is 1.27 or /abs = 0.635 for this transition of Na.

In this book only electric dipole transitions are considered, and the intensities and
selection rules are based on the use of the electric dipole operator as the perturbation
operator, equation (1.26), and in the transition dipole moment integral (1.99). In fact,
the interaction of electromagnetic radiation with a molecule generates a number of ad-
ditional terms in the Hamiltonian operator, of which the dipole moment part, equation
(1.26), is the largest. Also present are a magnetic dipole interaction term and an electric
quadrupole term: these terms are typically 10~~5 and 10~6 times smaller, respectively,
than the electric dipole term. Magnetic dipole transitions obey the same selection rules
on J and M as do electric dipole transitions (i.e., AJ = 0, ±1 but J = 0 <** J — 0
and AM = 0, ±1 ), but the parity selection rule is + *-> + and — <-> — because
the magnetic dipole operator has even parity. Electric quadrupole selection rules allow
AJ = 0, ±1, ±2 (but J - 0 </> J = 0, J = 1/2 ̂  1/2, and J = 1 «/» 0), AM = 0,
±1, ±2, and the parity selection rule is also + <-> + and — < - » — . Atomic spectra are
dominated by electric dipole transitions (called El), but weaker lines due to magnetic
dipole and electric quadrupole transitions (called Ml and E2, respectively) can also be
seen. Indeed even higher-order atomic transitions such as magnetic quadrupole (M2)
and electric hexadecapole (J53) have been detected, particularly in astronomical sources
and the earth's atmosphere.9 For example, the famous "green line" (5 577 A) of atomic
oxygen seen in atmospheric aurora is due to the J5o — l D^ quadrupole transition (E2),
and the "red line" at 6300 A is the 1D% —3 PI magnetic dipole transition (Ml).

5.8 Zeeman Effect
Associated with the various angular momenta of atoms are magnetic moments. The
theory begins with orbital angular momentum since there is a classical analogy. The
orbit of a negatively charged electron around the nucleus is equivalent to a small current
loop that creates a magnetic moment. If the constant of proportionality between the
orbital angular momentum L and the magnetic moment fiL is 7, the magnetogyric
ratio, so that

then 7 can be shown to be given by —e/(2me) in SI units or —e/(2mec) in cgs units.
The magnitude of L is

and consequently the magnitude of the associated orbital magnetic moment is given by
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It is convenient to define a quantity /UB referred to as the Bohr magneton, as

in SI units. The Bohr magneton is the magnitude of the magnetic moment that one
unit of orbital angular momentum produces in an atom.

Other angular momenta such as spin also have associated magnetic moments, but
there are no classical analogies to draw upon. In the case of the electron it is possible
to write, by analogy with the orbital angular momentum, the expression

in which the numerical factor ge is defined via this equation. The ge value for a single
free electron is found to be 2.0023. In the absence of quantum electrodynamics, the
value of ge is precisely 2. The negative sign of the magnetogyric ratio indicates that
fis and S point in opposite directions (notice that £LL and L also point in opposite
directions). Recent custom10 (Appendix A) is to include the negative sign in equation
(5.151) in the ge value, i.e., to take ge as —2.0023.

Similarly, for nuclear spin a nuclear moment jij can be described by the equation

in which 77 is the nuclear magnetogyric ratio and //N is the basic unit for nuclear
magnetic moments, called the nuclear magneton. For nuclei, the <?/ values can be either
positive or negative. The nuclear magneton

is defined by analogy with the Bohr magneton, but with the mass of the proton (mp)
rather than the mass of the electron. This means that (Appendix A)

so that nuclear magnetic moments are typically two to three orders of magnitude smaller
than are electronic moments, as <?/ ~ 1 (e.g., gi = 5.585 for 1H).

When an atom is placed in a magnetic field, its magnetic moments interact with
the field and, as a consequence, an interaction energy term

must be included in the Hamiltonian operator. This is called the Zeeman interaction
Hamiltonian operator and leads to the Zeeman effect. When 5 = 0, the Zeeman effect
is called "normal" and when S ^ 0 it is called "anomalous" since, historically, the
Zeeman effect was discovered before electron spin was known.

The normal Zeeman effect applies to singlet states, for which only (JLL is present. If
B is aligned along the laboratory z-axis, then the Zeeman Hamiltonian operator takes
the form
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Figure 5.19: The Zeeman pattern for 1S, 1P, and 1D states.

Simple perturbation theory gives the Zeeman energy as

The energy levels are thus split into the 2L + 1 states (Figure 5.19) characterized by
individual ML values. The energy of each state varies linearly with the strength of the
magnetic field, and hence the interval between adjacent ML values is ^iB, which is
independent of L. The selection rules for electronic transitions are AM/, = 0 for light
polarized along z and parallel to B, AM/, = ±1 for light polarized perpendicular to B.

When a magnetic field is applied to atomic transitions between singlet (S — 0)
states, the atomic line is split into three components (Figure 5.20). The line coinciding
with the zero-field position is a AM = 0 transition, the line shifted to higher frequency
is a AM = -\-l transition, while the line shifted to lower frequency is a AM = — 1
transition. Classically, one can view the orbital magnetic moment as precessing (Figure
5.21) at a frequency called the Larmor frequency around the direction of the applied
field. The Larmor frequency is given by hv\^ — H&B or

The case with S ^ 0 is more complex, since L and S couple first to give J, while
fis and fJLL interact to give the corresponding f i j . By analogy with f t L one writes

and

so that the problem reduces to finding an expression for gj. According to the classical
vector coupling picture L and S precess rapidly about J, so that only those components
of L and S parallel to J contribute to the total magnetic moment (Figure 5.22).

The total magnetic moment fjij can be written, according to what has been previ-
ously said, as

j
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Figure 5.20: The three-line pattern of the "normal" Zeeman effect.

Figure 5.21: The precessional motion of L = 2 with the possible ML — 2, 1, 0, -1, and -2
values.
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Figure 5.22: The rapid precessional motion of L and S about J.

from which we see that the appropriate ^j-factor is

Notice that gj is not a simple number but is technically a scalar operator which
will give rise to different numerical values for different levels. Now since

we can solve for L • S in terms of J2, L2, and S2 as

to obtain for gj the expression

Because gs « 2, the expression for gj can also be written in the form

In the corresponding energy expression (analogous to equation (5.157)), we would re-
place J2, L2, and 52 by their magnitudes J(J -f 1), L(L + 1), and 5(5 + 1) to obtain
for gj (now a number),



152 5. Atomic Spectroscopy

Figure 5.23: Zeeman energy-level pattern for the first three states of an alkali atom.

By applying a magnetic field B along the z-axis of an atom, one obtains an energy
splitting of

with gj given by equation (5.167). This "anomalous" Zeeman effect has proved to be
of great value in atomic spectroscopy, since the number of components is related to the
J value, and the measured gj value allows L, 5, and J to be determined (Figure 5.23).

Paschen-Back Effect

As the applied magnetic field becomes very large, the splitting between the Mj com-
ponents becomes larger than the splitting between the spin-orbit components. The
coupling of L and S with the magnetic field is then stronger than the spin-orbit cou-
pling. Spin-orbit coupling breakdown then occurs because of the decoupling of L and
S from J by the magnetic field. As the magnetic field increases, the complex pattern of
the anomalous effect is replaced by the simple three-line pattern of the normal Zeeman
effect. This is called the Paschen-Back effect.
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5.9 Stark Effect
The application of an electric field to an atom is called the Stark effect. In this case
the atomic levels split into their (L + 1) values of \Mj\ and the (2J + l)-degeneracy is
only partly removed. While the Stark effect is widely used in molecular spectroscopy
to obtain dipole moments, it has rarely been used in atomic spectroscopy. The laser
cooling and trapping of atoms11 and the spectroscopy of Rydberg states,12 however,
often make use of the Stark effect and the Zeeman effect. The application of an electric
field to the n — 2 states of the hydrogen atom results in a space-fixed dipole moment
in the laboratory coordinate system (see Problem 17).

Problems

1. Positronium is an atom-like system formed from an electron and a positron. Pre-
dict the energy-level pattern and the wavelengths of some of the electronic tran-
sitions of positronium.

2. Show that if the parity operator is given in spherical polar coordinates by

then the spherical harmonics obey

Note that E* inverts all spatial coordinates through the origin.

3. (a) Plot the RIQ, #20 > and R^i radial functions for the hydrogen atom.

(b) Plot the angular part of the real form of the hydrogen function for the 2s,
2px, 2py, and 2pz orbitals. What are the shapes of the orbitals?

4. Derive the spin matrices for S2, Sx, Sy, and Sz for the case S = 3/2.

5. Verify the relationship

where the components of a are the Pauli matrices, and a and b are any two
vector operators that commute with <r.

6. (a) Construct the table of microstates and derive the terms for the atomic con-
figurations p3 and d2.

(b) For p3 and d2 atomic configurations, what are the lowest energy terms and
energy levels?

7. Without using microstates, derive the ground-state terms and energy levels for
the transition elements of the third row (Sc through Zn) of the periodic table.
(Remember Cr and Cu are exceptions to the regular Aufbau filling of electrons
into orbitals.)

8. For the three configurations nsn's, nsn'd, and npn'pn"p,
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(a) What are the possible terms?

(b) For each term, what are the possible energy levels?

9. For the He+ atom calculate the vacuum wavelength and wavenumber of the tran-
sition corresponding to the red Balmer Ha transition in the H atom.

10. The spectrum of He+ contains transitions at 303.780 A, 256.317 A, 243.027 A,
and 237.331 A. Assign principal quantum numbers to these transitions.

11. (a) What are (r) and (1/r) for the Is orbital of hydrogen?

(b) What is the transition dipole moment in debye for the 1pz <— Is transition
of hydrogen?

12. The air wavelengths for the Balmer series are 6562.72 A and 6562.852 A (Ho,),
4861.33 A (H/3), 4340.47 A (H7), and 4101.74 A (H5). Derive a value for the
Rydberg constant ROQ. Why are two wavelengths listed for Ha?

13. Plot the angular dependence of the square magnitude of the spherical harmonics
\Yi}Tni

 2 for / = 0,1, and 2.

14. (a) For the hydrogen atom in n = 2 evaluate the ^2P integral.

(b) Calculate the splitting in cm"1 for the 2Pa/2 —2Pi/2 interval for n = 2 of H.

15. In the atomic spectrum of neutral Ca there is a normal multiplet of six lines at 0,
14, 36, 106, 120, and 158 cm"1 above the lowest frequency line of the multiplet.
What are the quantum numbers of the states involved in the transition?

16. For the two Na D lines calculate the spectral patterns for emission lines at a
magnetic field strength of 0.25 tesla (T). What are the Zeeman splittings of the
lines in cm"1?

17. An electric field along the laboratory z-axis is applied to the hydrogen atom.

(a) If the interaction energy is represented by H' = eEz — eEr cos 0, evaluate
the Hamiltonian matrix for n — 2 using the complex form of the hydro-
gen wavefunctions. (Ignore the effects of the Lamb shift, fine, and hyperfine
structure.) Hint: Parity considerations will simplify the problem.

(b) What is the energy-level pattern?

(c) For an applied electric field of 1000 V/m, what are the energy splittings in
cm-1?

18. The following wavenumbers are listed in Moore's tables for the n2P° — 32S tran-
sitions of Na.

(a) Correct the line positions for the effects of spin-orbit coupling and determine
£ for the excited n2P terms of Na.

(b) Devise an extrapolation procedure to determine the ionization potential and
the quantum defect for this Rydberg series.
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5
5
6
6
7
7
8
8
9
9
10

0.5
1.5
0.5
1.5
0.5
1.5
0.5
1.5
0.5
1.5
0.5 and 1.5

35040.27
35042.79
37296.51
37297.76
38540.40
38541.14
39298.54
39299.01
39794.53
39795.00
40137.23

19. On the basis of first-order perturbation theory, the hyperfine structure of the
ground electronic state of the H atom involves the interaction of the spins of the
electron and proton with one another, and with any applied magnetic fields. It
is possible to integrate out the spatial coordinates and to consider the system as
two spins S = I = 1/2 governed by the spin Hamiltonian operator

in which 6/r, kg, and ki are given by

and <7e, #/, /J.Q, /UN are the #-factors and magnetons for the electron and the proton.
The spin Hamiltonian operator can be split into two parts, bpl • S/ti2 (referred
to as the hyperfine structure (hfs) Hamiltonian operator), and (ksSz + k/Iz)/fi
(referred to as the Zeeman Hamiltonian operator). SI units are used and /J,Q =
4?r x 10~~7 N A~2 is the permeability of vacuum.

(a) Calculate the values of 6^, ks, and ki (the latter two as multiples of the
field strength BQ) for the hydrogen Is state.

(b) Now consider an isolated H atom (with no applied magnetic field). Show
that the matrix of Jf^hfs with respect to the m^m/} basis is

n j Wavenumber/cm-1

k
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Find the energies and eigenstates in this basis and construct the matrix X
that diagonalizes Hhfs- What will the eigenstates \FMp) of //hfs be in terms
of the \msTni) states? Give a discussion of this in terms of vector coupling.

(c) Determine (in terms of bp, ks, &/) the matrices with elements
(m'gin'jlHspin m'gm'j) and (F1 M'F\Hsp\n\F"Mp} in the general case when
an applied field BQ is present.

(d) From the results of part (c) show how the zero-field \FMp) levels split in a
weak magnetic field. In this case it is necessary to treat the magnetic field
as a perturbation, namely

Give a plot of the splitting of these levels as calculated earlier for fields BQ
from 0 to 0.2 T (put your energy scale in MHz).

(e) Determine the energy levels in a strong magnetic field of 1 T, regarding the
hyperfine interaction as a small perturbation, that is,

In this case show explicitly that the first-order perturbation spin functions are

The electron spin resonance (ESR) spectrum for hydrogen atoms has only two
equally intense lines, because the magnetic moment of the proton is too small to
contribute to the intensity, and because the mixing of the m^m/} states in the
strong field is small. Show explicitly with numerical results that this is indeed the
case for the problem that you are considering. Calculate the splitting of the two
ESR lines in MHz, and compare your result with the experimentally observed
value of 1420.4 MHz. What is the corresponding wavelength? How could you
use this calculation to substantiate the existence of interstellar clouds of atomic
hydrogen?

w
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20. Consider the 2p13of1 electron configuration of an atom.

(a) What terms are possible?

(b) Construct wavefunctions for one ML component of the total L = 2 states
for all possible total S values.

21. The lifetime of the 2p level of hydrogen is 1.6 ns. Estimate the lifetime of the 2p
level of the hydrogenic ion, O+7.

22. A heated sodium vapor cell of 10 cm length is prepared. When a laser beam is
tuned to the center of the 32P3/2 — 325i/2 D line at 5 890 A, the cell transmission
is 50%. Assume that the line is Doppler broadened at a temperature T and ignore
hyperfine structure. The vapor pressure of Na is given by the equation logiop =
-5652/T- 1.11 logi0T + 8.217 with p in bar (1 bar = 105 Pa) and T in K. What
is the number density of Na atoms and the temperature of the cell?

23. The Lyman La transition (22P3/2 - !25r
1/2) at 1215.338 A has a gf value of

0.5549.

(a) Calculate the atomic line strength in debye2.

(b) What are the Einstein A and B coefficients (integrated over the lineshape
function)?

(c) What is the lifetime of the transition?

(d) What is the absorption cross section at line center assuming only lifetime
broadening?

24. Verify the numerical values in equations (5.141) to (5.145).

25. The Hubble Space Telescope observed interstellar absorption of starlight by O
atoms towards the star HD 75309 using the STIS spectrograph. The observed
equivalent width of the forbidden oxygen line (552 — ̂ P-2] at 1 356 A was 9.3 mA.
The equivalent width W\ is a measure of the area under an absorption line. It
is the width that the line would have if the line had 100% absorption, i.e., if the
lineshape was a rectangle with I/!Q — 0 for A between line center and ±Wx/2,
and I/Io = 1 elsewhere. The definition of equivalent width, W\ is thus

(a) Convert the equivalent width, W\, in mA into SI units (W^ in s"1) for the
oxygen line.

(b) For weak absorption (i.e., when 7//o is small) derive a relationship between
Wv and the oscillator strength, /abs-

(c) If /abs = 1.161 x 10~6 for the O transition at 1 356 A, what is the column
density (atoms/cm2) of interstellar O atoms towards HD 75 309 (assuming
that the line is only weakly absorbing)?

(d) In the astronomical literature, the relationship between column density, Nl,
and equivalent width is given in SI units as
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Show that this equation is correct for a weak line (and assuming no popula-
tion in the excited state).

26. The potential V(r) for the hydrogen atom is not given exactly by Coulomb's
law because the proton has a finite size. Assume that the nuclear charge of the
proton is distributed uniformly in a sphere of radius 10~13 cm. Use first order
perturbation theory to find the shift in the hydrogen Is energy due to the finite
nuclear size. Assume that the potential energy of the electron inside the nucleus
at a distance r is given by V(r) = — eQ/(47T£or) with Q equal to the amount
of charge enclosed by the sphere of radius r. Notice also that ijjis has a nearly
constant value inside the nucleus.
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Chapter 6

Rotational Spectroscopy

6.1 Rotation of Rigid Bodies
The classical mechanics of rotational motion of a rigid body remains a relatively mys-
terious subject compared to that for linear motion. In order to dispel some of the
mystery it is useful to note the extensive correspondence between linear motion of a
point particle of mass ra and rotational motion of the same particle (Figure 6.1 and
Table 6.1). For simplicity the vector natures of most of the quantities are suppressed.
The correspondences between the analogous linear and angular quantities in Table 6.1
are quite striking. The linear and angular variables are related by various equations,

in which the full vector forms are listed in parentheses. For a single particle, the angular
velocity u: and the angular momentum L are vectors that point out of the plane of the
rotation. In this case, the u) and L vectors point in the same direction (Figure 6.2). If
an extended object is rotating, then L and u> need not point in the same direction
(Figure 6.3). This behavior is represented mathematically by the matrix product

where I is represented by a symmetric 3 x 3 matrix with equation (6.1) written explic-
itly as

The matrix I is called the moment of inertia tensor in classical mechanics.

161
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Figure 6.1: Linear and circular motion of a particle of mass m.

Table 6.1: The Correspondence between Linear and Angular Motion

Linear Motion "Property" Angular Motion

Distance, x

Velocity, v = x = dx/dt

Acceleration, a = x = d2x/dt2

Mass, m

Linear momentum, p = mv

Ek = -mv2 = p2/2m

Force, F

F = ma = dp/dt

Position

Velocity

Acceleration

Mass

Momentum

Kinetic energy

Force

Angle, 6

Angular velocity, cj = 6 = dO/dt

Angular acceleration, a = 9 = d20/dt2

Moment of inertia, / = mr2

Angular momentum, L — lu

Ek = ±Iu>2 = L2/2I

Torque, T

Newton's 2nd law T — la, = dL/dt

Figure 6.2: The circular motion of a particle of mass m.

The derivation of the form of the moment of inertia tensor for a collection of nuclei
rotating together requires the use of some vector identities and the definition of angular
momentum. Consider a collection of nuclei of mass ma located at positions ra relative
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Figure 6.3: For an extended object u? and L can point in different directions.

Figure 6.4: A typical molecule with nuclei located by ra vectors.

to the origin in a Cartesian coordinate system (Figure 6.4) and all rotating with angular
velocity cu, so that the angular momentum is given by

in which

The cross product identity

gives



164 6. Rotational Spectroscopy

Writing out the vector components gives

which can also be expressed in matrix form as

Let us now identify the diagonal matrix elements of the matrix I as

These elements are referred to as the moments of inertia. Similarly, let us identify the
nondiagonal matrix elements as

These elements are referred to as products of inertia. Notice that the moment of inertia
with respect to an axis involves the squares of the perpendicular distances of the masses
from that axis, for example, r^. j_ from the x-axis.

In classical mechanics the motion of a collection of objects can be broken into the
center of mass translational motion (see below) and the rotational motion about the
center of mass. If a rigid rotor is assumed, the 3N — 6 internal vibrations are ignored.
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The natural origin for the molecular coordinate system is the center of mass of the
molecule.

The location of the center of mass (given by a vector R) for a system of total mass

made up of a collection of particles is given by

If the origin of the coordinate system is at the center of mass, then R = 0 and

The moment of inertia tensor is a real symmetric matrix, so it is always possible
to find an orthogonal transformation matrix X that transforms the moment of inertia
tensor I (in equation (6.7)) into diagonal form. The matrix X represents a rotation of
the coordinate system, which can be written as

The columns of the matrix X are made up of the normalized eigenvectors of I.
As discussed in Chapter 3, the diagonalized matrix I' is related to the original

matrix I by a similarity transformation—that is,

or

The I' matrix is a diagonal matrix whose elements are the eigenvalues of I. This new
coordinate system is called the principal axis system and I' has the form

In most work the use of the principal axis system is assumed so that the primes will
 dropped and I In the principal axis system we
write

or Lx = Ix^xi Ly — lyUy, and Iz ~ Izu}z. The kinetic energy expression also has the
very simple form

,

.
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Figure 6.5: The F^O molecule.

The a;-, T/-, and z-axes are chosen by some set of geometrical conventions. For exam-
ple, the z-axis of a molecule is always chosen to be the highest order axis of rotational
symmetry, and the x-axis is out of the plane for a planar molecule. For example, the
moments of inertia for the H^O molecule (Figure 6.5) are

For any planar molecule the out-of-plane moment of inertia is equal to the sum of the
two in-plane moments of inertia. There is another labeling scheme for the axes in a
molecule based upon the magnitude of the moments of inertia. In this case, the axes
are labeled a, 6, and c with

and
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Figure 6.6: Linear molecule.

so that Ic is always the largest moment of inertia and I A is the smallest. The a-, 6-,
and c-axes are chosen in order to ensure that this inequality holds.

For example, using r = 0.958 A, 0 — 104.5°, mn = 1.00 atomic mass unit (u), and
m0 = 16.00 u for H2O results in / = 0.757 5 A, g = 0.5213 A, and h = 0.065 2 A using
the center of mass definition (6.12). Thus from equations (6.19), (6.20), and (6.21) we
obtain

and z = b, y = a, and x = c. There are six possible ways that (x, y, z) can be mapped
into (a, 6, c) depending on the particular values of the moments of inertia. The x-, ?/-,
z-axes are picked by a customary set of rules, such as z is along the highest axis of
rotational symmetry, but a, 6, and c are chosen to make equation (6.22) true.

Molecules can be classified on the basis of the values of the three moments of inertia.
The five cases are as follows:

1. Linear molecules, IB = IC,!A = 0; for example, HCN (Figure 6.6).

2. Spherical tops, I A — IB — Ic', for example, SFe and CH4 (Figure 6.7).

3. Prolate symmetric tops, I A < IB = /c; for example, CHaCl (Figure 6.8).

4. Oblate symmetric tops, I A — IB < Ic', for example, BFs (Figure 6.9).

5. Asymmetric tops, I A < IB < Ic] for example, H2O (Figure 6.10).

Group theory can be used to classify the rotational properties of molecules. The
spherical tops (0^,7^, and Ih point groups) and linear molecules (Coou and DOC/I)
are readily recognized. All symmetric tops have a Cn-axis, with n greater than 2. For
example, the symmetric tops CHaCl and benzene have €3- and Ce-axes, while the
asymmetric top H^O has only a C2-axis. But what about allene (Figure 6.11)? By
symmetry allene has IB = /c» and hence it must be a prolate symmetric top. Allene
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Figure 6.7: Spherical top.

Figure 6.8: Prolate symmetric top.

Figure 6.9: Oblate symmetric top.

has only a C2-axis, but it does have an ^-axis. The complete rule is, therefore, all
molecules with a Cn-(n > 2) or an SVaxis are symmetric tops. Note that the presence
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Figure 6.10: Asymmetric top.

Figure 6.11: Allene, a symmetric top.

of an S^-axis with n > 4 implies the presence of a Cn-axis, n > 2, so this case need not
be explicitly stated.

The symmetry properties of a molecule are also helpful in locating the principal
axes. For example, if there is a Cn-axis with n > 1, then one of the principal axes lies
along it (e.g., H^O). Any molecule with a plane of symmetry has one of the principal
inertial axes perpendicular to the plane (e.g., F^O).

6.2 Diatomic and Linear Molecules
For a rigid linear molecule with no net orbital and spin angular momentum the classical
expression for the rotational kinetic energy is, from equation (6.18),
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Figure 6.12: Rotational angular momentum in a linear molecule.

since Iz = 0, Ix = Iy = I for a linear molecule, and the customary symbol J is used
to represent the total angular momentum (exclusive of nuclear spin) (Figure 6.12). For
a rigid rotor in isotropic (field-free) space the rotational Hamiltonian operator for a
linear molecule is

The Schrodinger equation can be solved immediately, since ijj must be one of the
spherical harmonics, ^LM = YJM- The specific Schrodinger equation for this case is

so that

Thus we see that the energy eigenvalue F(J) is

in which

with B in the SI units of joules. In spectroscopy it is customary to use F ( J ) to represent
the rotational energy-level expression and the value of B is usually given in MHz or
cm"1 rather than in joules. Since E = hv = hc/X = W2hcv, the value of B in Hz is

or in MHz,

or in cm 1,
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Convenient explicit expressions for B are

and

For a diatomic molecule A—B we have

with /j, the reduced mass

The use of a single symbol B for the rotational constant to represent a number which
may be in units of joules, MHz, or cm"1 is an unfortunate but common practice. This
convention will nonetheless be followed in this book.

Selection Rules

The intensity of a pure rotational transition is determined by the transition dipole
moment

For a linear molecule the wavefunction ̂ JM can be written explicitly as

and the dipole moment is oriented along the internuclear axis of the molecule, so that
its components in the laboratory axis system can be expressed in the form

so that equation (6.35) becomes
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If we now employ the relationships
a recursion relationship for the associated Legendre polynomials, namely

in which z = cosO and BJM(^) = ATP™ (cos 0), the selection rules AM = 0,±1 and
AJ = ±1 are obtained.

In addition, if the molecule has no permanent dipole moment (//o = 0), then there
are no allowed transitions. Thus, symmetric molecules O=C=O, Cl—Cl, H—C=C—H
have no pure rotational transitions, if only one-photon electric-dipole selection rules
are considered. Molecules such as (>2 (J^3S~) undergo weakly allowed magnetic-dipole
pure rotational transitions. Molecules such as H—C=C—D or H—D, for which the
center of mass is displaced from the center of charge when the molecule is vibrating,
possess a small dipole moment (8 x 10~4 D for HD1) and also undergo weak rotational
transitions.

The above derivation of selection rules has also assumed that there is no additional
vibrational, orbital, or spin angular momentum present (i.e., E vibronic states are
assumed). If there is additional angular momentum, then Q branch (AJ = 0) rotational
transitions are possible, such as for a II vibrational or electronic state, in which case
the Q transitions are between the two nearly degenerate levels with the same J value
but opposite total parity. The energy levels of II vibrational states of linear molecules
are considered later in this chapter.

The selection rule AJ = ±1 for a linear molecule results in transitions with fre-
quencies

Customarily, transitions are written with the upper state, indicated by primes (J'), first
and the lower state, indicated by double primes (J"), second with an arrow to indicate
absorption J' <— J" or emission J' —> J". The first transition J = 1 <— 0 occurs at
2B, and the other transitions are spaced by multiples of 2B from one another (Figure
6.13). This is illustrated by the pure rotational transitions of hot HF (Figure 6.14) and
the far-infrared absorption spectrum of CO (Figure 6.15).

The intensity of a rotational transition is determined both by the dipole moment
and the population difference between the two levels (Chapter 1). The rotational pop-
ulations can be calculated from statistical thermodynamics. If the total concentration
of molecules is N, then the concentration of molecules Nj with the rotational quantum
number J is

here q r is the rotational partition function

with cr, the symmetry number, equal to 2 or 1 for a symmetric or nonsymmetric mole-
cule, respectively. The expression (6.41) assumes that only the ground vibrational and

and
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Figure 6.13: Transitions of a linear molecule.

Wavenumber /cm'1

Figure 6.14: Pure rotational emission of hot HF molecules. The spectrum also contains weaker
lines due to t^O and LiF molecules.

electronic states are populated at temperature T. This distribution is plotted in Figure
6.16 for CO (B = 1.9225 cm"1) at room temperature (298 K). The rotational state
with maximum population Jmax is determined by setting dNj/dJ — 0 and solving for
J. This gives

For CO at room temperature the state with maximum population has a J value of 7.
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Figure 6.15: Far-infrared absorption spectrum of CO showing transitions J = 4 <— 3 at 15.38
cm"1 to J = 10 <- 9 at 38.41 cm"1.

Centrifugal Distortion

A molecule is not strictly a rigid rotor. As a molecule rotates, the atoms experience a
centrifugal force in the rotating molecular reference frame that distorts the internuclear
positions (Figure 6.17). For a diatomic molecule one can obtain an expression for the
stretching of the internuclear separation r by allowing the bond to stretch from re to
rc under the action of the centrifugal force

The centrifugal force is balanced by the Hooke's law restoring force

in the bond, and after some algebra (Problem 14) one finds that

The constant D is called the centrifugal distortion constant and, in fact, there are addi-
tional higher-order distortion corrections that lead to the rotational energy expression

A useful expression for D is given by the Kratzer relationship (Problem 14)
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Figure 6.16: Distribution of population among rotational states of CO at room temperature.

Figure 6.17: Nonrigid diatomic rotor with mi and m? connected by a spring.

in which ue is the equilibrium vibration frequency. The negative sign in front of D in
(6.46) and (6.47) has been introduced in order to make D a positive number. Equation
(6.47) applies to both diatomic and linear polyatomic molecules.

Centrifugal distortion increases the internuclear separation r, which decreases the
effective rotation constant "Beff" = B — DJ(J + 1) of a pure rotational transition, so
that the transition frequency can be written as
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Figure 6.18: Each vibrational level of a diatomic molecule has its own rotational constant Bv.

For example, the values of B and D for CO in the vibrational ground state are B(v =
0) = 57.6359683 GHz, D(v = 0) = 0.1835055 MHz, H(v = 0) = 1.725 x 10~7 MHz,
and L(v = 0) = 3.1 x 10~13 MHz.2

The rotational constant also depends on the vibrational and electronic state (Figure
6.18). For a diatomic molecule, as v increases the molecule spends more of its time at
large r where the potential energy curve is flatter (Figure 7.5). Thus, the average
internuclear separation (r) increases with v while

decreases. This vibrational dependence is customarily parameterized3 by the equations

and

The rotational energy level expression also becomes dependent on v, namely

At room temperature the pure rotational spectrum of a small molecule will not usually
display the effects of vibration because the excited vibrational energy levels have lit-
tle population. For a more floppy molecule with low-frequency vibrations, "vibrational
satellites" appear in the pure rotational spectrum (Figure 6.19) since each vibrational
level has its own set of rotational constants. Including the effects of centrifugal distor-
tion and the vibrational dependence of the rotational constants results in transition
frequencies given by
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Figure 6.19: The microwave spectrum of H—C=C—C=C—C=N showing vibrational satel-
lites.

Vibrational Angular Momentum

The total angular momentum J in a linear molecule is given by

in which R, L, S, and 1 are the rotational, electronic orbital, spin, and vibrational
angular momenta, respectively. In spectroscopy it is customary to associate different
standard symbols4'5 with different types of angular momenta. Most common molecules
(O2(-X"3£~) and NO (X^H) are exceptions) have no unpaired spins or electronic orbital
angular momenta (L = S = 0) and only 1 needs to be considered in addition to
R for linear polyatomic molecules. In recent years the sensitivity of pure rotational
spectroscopy has improved, particularly with the development of submillimeter wave
technology, so that microwave spectroscopy of free radicals and ions,6 often with L and
S not equal to zero, is now an important area of research. However, it is beyond the
scope of this book.

Vibrationally-excited linear polyatomic molecules can display the effects of vibra-
tional angular momentum. A molecule like H—C=N or H—C=C—Cl has doubly de-
generate bending modes, since the molecule could bend in plane or out of plane (Figure
6.20). For example, HCN has 3N — 6 = 4 vibrational modes with
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Figure 6.20: The doubly degenerate bending mode of a linear molecule.

VI((T+) 3311 cm""1 for the H—C stretching mode,

f2(vr) 713cm"1 for the H—C=N bending mode,

i>3(er) 2097cm l for the C=N stretching mode,

with i/2 being a doubly degenerate bending mode.
The degenerate bending mode 1/2 is modeled by a two-dimensional harmonic

oscillator7 with a Hamiltonian operator given by

(6.56)

in which fj, and k are the effective mass and force constant, respectively. The x and
y parts are separable, so the Schrodinger equation is solved by writing the wavefunc-
tions as

and splitting the total energy into two parts as

with v = vx + vy, and each level v has a degeneracy of v + I. In general for the
d-dimensional harmonic oscillator

with d = 1,2,3, . . . , depending on the number of degenerate oscillators, each contribut-
ing hvjl of zero-point energy.

The two-dimensional harmonic oscillator Hamiltonian operator7 can be converted
to plane polar coordinates in which p = (a;2 +y2)1//2 and <j) = ta,n~l(y/x) (Figure 6.21).
The Hamiltonian operator becomes
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Figure 6.21: Plane polar coordinates.

In this coordinate system the problem is also separable and results in a wavefunction

in which I is a new quantum number associated with vibrational angular momentum
of ±|/|ft. The operator for vibrational angular momentum about z is

since

The possible values7 of |/| are v, v — 2, . . . , 0 or 1.
Following the usual custom in spectroscopy, a single positive value of |/| is used

although ±|/| are possible. The double degeneracy for each value of / is associated with
clockwise or counterclockwise motion of the nuclei in a linear molecule (Figure 6.22).
As before, the total degeneracy for the level v is v + 1. Classically, the two oscillators
in the x and y directions can be phased such that the nuclei execute circular motion of
small amplitude about the z-axis. In quantum mechanics this motion is quantized and
only ±/ft units of angular momentum are possible. Sometimes Greek letters are used
to designate vibrational angular momentum (in analogy to the use of E, II, A, and so
forth, to represent A = 0,1,2, . . . for the component of the orbital angular momentum
about the internuclear axis of a diatomic molecule, see Chapter 9) and / is often written
as a superscript, w2 (Figure 6.23).

Although the different / values for a given v are degenerate for the two-dimensional
harmonic oscillator, they become split if the oscillator is anharmonic. Since real mole-
cules are always anharmonic oscillators, the different |/| values are split by typically a
few cm""1. The twofold degeneracy for each / value (±|/|) remains in the nonrotating
molecule (Figure 6.23).
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Figure 6.22: Classical picture of vibrational angular momentum.

Figure 6.23: Vibrational energy-level pattern for the bending mode of a linear molecule.

When only vibrational and rotational angular momentum (Figure 6.24) are present,
we have

The possible values of the quantum number J are |/|, |/| + 1
be shorter than its projection on the z-axis (Figure 6.25).

., since a vector cannot
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Figure 6.24: The rotational R and vibrational 1 angular momenta couple to give J.

Figure 6.25: Rotational structure (not to scale) of the first few bending vibrational and
rotational energy levels of a linear triatomic molecule.

There is a different rotational constant for each vibrational level, which is custom-
arily expressed as

(6.65)

with di the degeneracy of the ith mode. For example, the vibrational dependence of
the rotational constant for BeF2 is8

BVlV2V3 = 0.235356 - 0.000794(1;! + |) + 0.001 254(w2 + 1) - 0.002 446(u3 + ̂ c

This Be value gives an re = 1.374971 A for the Be—F bond length while the
value of 0.234990 cm"1 gives an r0 value of 1.374042 A (see section 6.6).
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6.3 Line Intensities for Diatomic and Linear Mole-
cules

In quantitive applications of spectroscopy for astronomy, remote sensing, or analytical
chemistry, one seeks to determine the amount of material by application of the equations
governing absorption or emission of radiation presented in Chapters 1 and 5. For the
case of pure rotational emission of diatomic and linear molecules, the value of /ZIQ in
equation (1.53) for the Einstein A coefficient needs to be found. For the transition
| J'M') <-> \J"M") between two quantum states, the transition dipole moment (6.35) is

or equation (6.38) in spherical polar coordinates. The integrals in (6.38) for the x, y,
and z (GI, 62, and 63) directions will be evaluated separately to obtain an explicit
expression for M.

For the z component, the selection rule on M is AM = 0 and the <j) part of the
integral is 27r, leaving only the 0 part to be evaluated as

(6.67)

From the definition of the spherical harmonics, YJM, and the associated Legendre
functions, Pj*, in Table 5.1, one finds

and the recursion relationship (6.39) becomes

or

Substituting equation (6.70) into equation (6.67) yields

For the case of \J + 1, M) <- \J,M), AJ = +1 or J' - I = J" the integral becomes

and for the | J — 1, M) <— | J, M), AJ = — 1 transition,
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Similarly using equation (5.108) yields

for the | J + 1, M + 1) <— | J, M) transition and

for the | J + 1, M - 1} <— |J, M) transition.
Starting from | JM) there are thus three possible transitions to | J + 1), i.e., to

|J+1,M + 1), |J + 1, M) and | J + 1 , M — 1 ) — so the square magnitude of the transition
dipole moment from | J, M) to | J + 1} is

However, there are 2 J + 1 values of M to be counted for the lower state so the final
expression is

For emission from state |7 + 1, M) to state | J), a similar calculation gives

but now there are 2 J + 3 values of M in the upper state so the final expression (6.77)
is the same as for emission or absorption.

The upper state has a total population 7Vj+i and a population density JV/+1/(2 J+3)
per M' state so the rate of emission, equation (1.17) (which applies to a single | J'M )
state) becomes

and

so
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If a lineshape function g(y - 1/10) is included, then the Einstein A coefficient becomes

As noted earlier, the same symbols are often used with (6.82) and without (6.81) the
lineshape function so care with units is required. All of the equations for A, B, a, and
/ derived for atoms in section 5.7 apply with 27' + 1 = 2 J + 3 and Sj'j» replaced by
//0( J + 1). The ( J + l)-part of the square of the transition dipole moment is an example
of a rotational line strength factor, commonly called a Honl-London factor (see Chapter
9).

The absorption cross section for the transition J + 1 <— J for a linear molecule is
thus

and Beer's law, equation (1.62), including the stimulated emission correction, is

with the absorption coefficient a (units of m"1) given as

In equation (6.85) it is convenient to replace NQ and N\ by the total concentration, N.
For a system at temperature T, the absorption coefficient a becomes

with q = <?ei<?vib<Jrrot as the partition function and assuming that

i.e., that the state J has (2 J + l)-fold rotational degeneracy, but no additional vibra-
tional or electronic degeneracy.

At low frequencies, Doppler broadening is generally negligible relative to pressure
broadening so the molecular line shape g(v — t/io) is typically given by the Lorentzian
function (1.78). Interestingly, for high precision work at low frequency, the "antires-
onant" term containing ui + WIQ neglected in going from (1.71) to (1.72) needs to be
included and the lineshape function is then approximately

which is called the Van Vleck-Weisskopf lineshape function.9 The Af parameter is
given as (TiT^)"1, equation (1.81), with T? the average time between collisions. For
large 1/10 (in the infrared and optical regions) the second term on the right-hand side
of equation (6.88) can be neglected and the usual Lorentzian line shape is recovered
with Af = Ai^/2, the full width at half maximum. The Van Vleck Weisskopf line
shape agrees well with experimental observations of pure rotational transitions in the
microwave and millimeter wave spectral region.
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6.4 Symmetric Tops
The classical energy-level expression for a rigid symmetric top is

or

For simplicity the treatment will be limited to a prolate top, but the results also apply
to an oblate top by interchanging the labels a and c. Since

or

then

The corresponding quantum mechanical Hamiltonian operator to equation (6.93) is

The solution of the symmetric top Schrodinger equation requires a small digression into
quantum mechanics.

Molecule and Space-Fixed Angular Momenta
The symmetric top molecule is described in two coordinate systems — the space-fixed
laboratory system, X, Y, Z, and the molecular coordinate system, x, y, z (or a, 6, c) —
both with origins at the center of mass (Figure 6.26). The orientation of the molecular
system relative to the laboratory system is described by three Euler angles, 0, <f>, and x,
defined in different ways by various authors. Our convention10 is illustrated in Figure
6.27. The angles 0 and cj) correspond to the usual polar and azimuthal angles of the
molecular z-axis in the X, Y. Z frame, while x describes the internal orientation of the
molecule relative to the molecular 2-axis. In the example of CHaCl, x ls the angle which
describes the rotation of the CH3 group around the molecular 2-axis (Figure 6.26).

The laboratory and molecular coordinate systems are related by the transformation
matrix S, that is,
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Figure 6.26: The laboratory and molecular coordinate systems for CHaCl.

Figure 6.27: The Euler angles 0, 0, and x that relate the space-fixed coordinate system
(X,Y,Z) to the molecular coordinate system ( x , y , z ) .

The elements of S are just the direction cosines of vector algebra (Figure 6.28) with

and so forth, where x, y,z, and X, Y, Z are sets of unit vectors for the molecular and
laboratory coordinate systems, respectively.
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Figure 6.28: The direction cosine angles for the molecular x-axis in the laboratory frame.

The S matrix can be derived using the description of the Euler angles as rotations
about axes (Figure 6.27):

1. Rotate X and Y by an angle <j> about Z into X' and Y'\

2. Rotate X' and Z by an angle 9 about Y1 into X" and z\

3. Rotate X" and Y' by an angle x about z into x and y.

Thus,

in which S is an orthogonal matrix (S-1 = S*), since S represents a rotational trans-
formation of the coordinate system. The angular momenta can be measured in the
laboratory frame (Jx,JY, Jz) or in the molecular frame (Jx, Jy,Jz} with

Usin g the matrix elements of S and the operator expressions for Jx, Jy, and Jz one
obtains10 a set of expressions for J^, Jy, and Jz, namely
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The corresponding expressions in the laboratory frame10 are

Checking the commutation relationships gives the surprising result

in contrast to the usual commutation relation

All of the commutation relationships have a minus sign in the molecular frame when
compared to the corresponding equation in the laboratory frame. The "anomalous"
commutation relationships in the molecular frame, equation (6.107), are due entirely to
the direction cosine terms. Note that the molecular Jz operator commutes with J2 and
that the space-fixed and molecular frame operators commute with each other, that is,

Consider now the rigid rotor symmetric top Hamiltonian operator

in the molecular frame. Clearly J2, J2, and Jz all commute with H so that a set of
simultaneous eigenfunctions can be found, namely

and
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in which Kh is defined as the projection of J along the molecular z-axis. Furthermore,
since

and

the symmetric top wavefunctions JKM) must have the form11

The OMK functions are hypergeometric functions of sin2(0/2) and are also related to
the rotation matrices of angular momentum theory. The symmetric top functions are
rarely listed since the explicit functions are not needed for calculations.

The anomalous commutation relationships in the molecular frame mean that J+ =
Jx + iJy is a lowering operator and J~ = Jx — iJy is a raising operator. (Note that J+

and J~ are in the molecular frame, but J_ and J+ are in the laboratory frame.) The
effects of the raising and lowering operators on the symmetric top eigenfunctions are
given by the equations

Returning to the symmetric top Hamiltonian operator, equation (6.111), one can
solve the Schrodinger equation using the symmetric top wavefunctions as
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The rotational constants in energy units (joules) are defined by

and equations analogous to equations (6.29) to (6.32) are valid for nonlinear molecules.
As expected, the energy-level expression is not a function of M so that the Mj degen-
eracy of 2 J + 1 remains. The degeneracy of states with the 2 J + 1 possible values of K
is partially lifted; however, states with ±K still have the same energy. The energy of
the symmetric top is the same for clockwise and counterclockwise rotation around the
molecular z-axis so that a twofold K degeneracy remains.

It is convenient to classify the energy levels of symmetric tops by the K quantum
number. For a given K, we have J > K and the energies have a simple linear molecule
structure apart from &(A- B)K2(> 0) or (C - B)K2(< 0) offset (Figure 6.29). Note
that levels of a given J value increase in energy with increasing K for a prolate top
while they decrease in energy for an oblate top. For example, CHal has A = 5.11 cm"1

and B = 0.250 cm"1 so12

Rotational Spectra

The pure rotational spectra of symmetric tops are determined by the application of
selection rules to the energy-level pattern in Figure 6.29. The derivation of selection
rules for the symmetric top is somewhat involved since the transformation from the
laboratory frame to the molecular frame needs to be considered. The selection rules are
AJ = ±1, AM = 0, ±1 and AK = 0, and they result in very simple pure rotational
spectra (Figures 6.30 and 6.31). The transitions are confined to lie within a K -stack so
the transition frequencies are given by the diatomic expression, that is,

Centrifugal Distortion

As a molecule rotates, it also distorts under the effects of centrifugal forces resulting in
an energy-level expression

in which there are now three centrifugal distortion constants Dj, DK, and DJK- The
transition frequencies are then given by
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Figure 6.29: Energy levels of a prolate and an oblate symmetric top.

Figure 6.30: The allowed electric dipole transitions of a prolate symmetric top.

The constant DJK splits out the transitions with different K for a given J + 1 <— J
transition, as shown in Figure 6.32.
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Figure 6.32: The J = 11 *— 10 transition of a CFsC=P showing /f-structure. The intensity
pattern is affected by nuclear spin statistics.

Line Intensity

All of the intensity equations for atoms in Section 5.7 apply with the atomic line
strength factor Sj'j» replaced by the appropriate expression for a symmetric top. The
derivation for a symmetric top is more involved than for an atom or a linear molecule
because the wavefunctions i/JjKM(Q,<t>,x) more complicated. The final result is

and

Figure 6.31 : Pure rotational emission spectrum of a symmetric top.
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for a symmetric top with dipole moment /J,Q and the selection rules are AJ = dbl, A/f =
0. These factors (6.131 and 6.132), apart from //Q, are given as Honl-London factors in
Table 9.4 with K replacing A. The primary complication is the effect of nuclear spin
statistics13 on populations as displayed in Figure 6.32.

6.5 Asymmetric Tops
For an asymmetric top, I A ^ IB ^ Ic, the classical energy for a rigid rotor is given by

This results in the rigid asymmetric rotor Hamiltonian operator

The Schrodinger equation for the asymmetric top has no general analytical solutions
and therefore must be solved numerically with the help of a computer. For certain
special values of J, however, analytical solutions are available for the rigid rotor.

The asymmetric top Schrodinger equation can be solved using a symmetric top basis
set, changing the form of the terms in the Hamiltonian operator for convenience. Let

and

so that

The following symmetric top matrix elements14 are useful
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remembering that J+ is a lowering operator and J is a raising operator. With the
symmetric top basis functions the asymmetric top Hamiltonian operator has matrix
elements with AK = 0 and A/f = ±2.

For example, the basis set for J = 1 has three members \J = 1,K = 1), |1,0), and
1, —1), and the Hamiltonian is the 3 x 3 matrix

The  eigenvalues of this equation are easily determined by first exchanging the second
and third rows and columns to give

and then solving the secular equation (Chapter 4) for the 2 x 2 block

to give

or

The three solutions for J = 1 are thus A + B, A + C, and B + C. Labeling of the energy
levels is carried out by considering the correlation diagram that connects the energy
levels of a prolate top with those of an oblate top in Figure 6.33 and the requirement
that IA<IB<IC-

The energy levels of prolate and oblate symmetric tops are
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Figure 6.33: Prolate-oblate correlation diagram useful for labeling asymmetric top levels.

Notice that by definition (A — B] > 0 and (C — B) < 0, so that for a given value
of J the Ka levels increase in energy as Ka increases for a prolate top, while the Kc

levels decrease in energy as Kc increases for an oblate top. As is typical in correlation
diagrams, the energy levels are not to scale and the lines connecting the prolate levels
with the oblate levels correspond to a hypothetical distortion of a molecule from a
prolate to an oblate top. The levels are labeled by JKaKc-> where J is a good quantum
number, but Ka and Kc are just labels for the asymmetric top. Clearly, Ka and Kc

become good quantum numbers only in the prolate or oblate symmetric top limits.
Note that the sum of Ka and Kc is J or J + 1.

It is sometimes convenient to define a label r = Ka—Kc, which runs from r = + J to
r — — J in order of descending energy. The label r emphasizes that for the asymmetric
top there are 2 J +1 distinct energy levels corresponding to the 2 J +1 different possible
values of r or "K" for every J. The degree of asymmetry can be quantified by an
asymmetry parameter ("Ray's asymmetry parameter") K, which runs from —1 for a
prolate top to +1 for an oblate top. The asymmetry parameter is defined as

The asymmetric top labels Ka = Kp and Kc = K0 are sometimes called K^\ and K+i
because of the values of the asymmetry parameter for the prolate and oblate symmetric
top limits. The notation JKPKO allows the three energy levels associated with J = 1 to
be labeled £(lio) = A + B, E(ln) = A + C, and E(101) = B + C, since IA < IB < IG
means A > B > C. The explicit energy level expressions for a rigid asymmetric rotor
are provided in Table 6.2 for J — 0,1,2, and 3.

Selection Rules

The asymmetric top selection rules are more complicated than those of a linear mole-
cule or a symmetric top. In general, an arbitrary molecule has three dipole moment
components //a, /^, and fic along the principal axes (Figure 6.34). Each nonvanishing
dipole moment component makes a certain set of transitions possible and leads to a set
of selection rules. The selection rules on J and M are AJ = 0, ±1 and AM = 0, ±1.
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Table 6.2: Rigid Asymmetric Rotor Energy Levels for J = 0,1,2,3

Figure 6.34: An arbitrary molecule has three components of the dipole moment in the principal
axis system of the molecule.

a-Type Transitions

If p,a ^ 0 and //6 = IJLC = 0, then a molecule such as H^CO is said to obey a-type
selection rules (Figure 6.35), AKa = 0(±2,±4.. .) and A/fc = ±1(±3,±5...); the
transitions in parentheses are much weaker than the main ones. Thus, for example,
the loi — OQO transition of formaldehyde is allowed, but the transitions lio — OQO and
In — OQO are forbidden because they require //c ^ 0 and //& ^= 0, respectively.
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Figure 6.35: Formaldehyde has /xa ^ 0.

k

Figure 6.36: a-, 6-, and c-type transitions.

b-Type Transitions
If Hb 7^ 0, then transitions with the selection rules

are allowed.

c-Type Transitions
If fic ^ 0, then transitions with the selection rules

are allowed. The three possible types of transitions are illustrated in Figure 6.36. Note
that for molecules of low symmetry, all three types could occur together.
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Figure 6.37: Bv and rv values for a diatomic molecule.

Line Intensity

Again the basic intensity equations in section 5.7 apply, but the line strength factor
Sj'j" is difficult to relate back to the dipole moment components and the rotational
quantum numbers. The problem of intensity of lines for an asymmetric rotor is compli-
cated by the lack of analytical expressions. In practice, the dipole moments //a, //&, and
He along the principal axes are used with an asymmetric top computer program to cal-
culate numerically the line strengths Sj>j». The eigenvectors needed to diagonalize the
rotational Hamiltonian matrix, e.g., equation (6.143), give the amount of mixing of the
symmetric top basis functions for each asymmetric rotor state. Analytical expressions
for the rotational line strength factors for transitions between symmetric top levels are
known (the Honl-London factors of Table 9.4 with K replacing A). When combined
with the mixing coefficients and the selection rules (previous section), these symmetric
top expressions give the needed asymmetric top line strengths as numerical values. Var-
ious computer programs15'16 are freely available for the calculation of asymmetric rotor
line positions and line intensities using the standard Watson17 Hamiltonian operator.

6.6 Structure Determination

One of the main applications of molecular spectroscopy is the determination of molec-
ular structures. The moments of inertia are related to bond lengths and bond angles.
For a diatomic molecule the determination of r from B is simple, but each vibrational
level has a different Bv value so that there are numerous corresponding rv values (Fig-
ure 6.37). Each Bv = (H2/2^)(v\l/r'2\v) corresponds to an average over a different
vibrational wavefunction. Perhaps the "best" value of r is re, which is computed by
extrapolating Bv down to the bottom of the potential well, that is,

Given at least B\ and BQ, Be is easily computed as BQ — B\ = ae and Be = BQ + ae/2,
and hence re is determined. This is usually possible for diatomic molecules, so that re

values are customarily reported.
The determination of molecular structures in polyatomic molecules is much more

difficult. The first problem is that there are now 3N — 6 (or 5) Q'S for each A, B, and C:
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Table 6.3: Rotational Constants19 for H^2CO and
H^3CO (in MHz)

H12CO H^3CO

A 281 970.572

B 38836.0455

C 34002.2034

281993.257

37811.0886

33213.9789

where di is the degeneracy of the ith mode. The determination of so many a's is a
tedious task even for a triatomic molecule, so very few re structures are known. For
most polyatomic molecules TO structures are computed from AQ, BQ, and CQ.

Another difficulty is that there are at most three moments of inertia (even for
the largest molecules!), but usually more than three structural parameters need to be
determined. Consider the case of formaldehyde (H^CO) for which the three structural
parameters are rco, ^CH? and #HCH- At first sight it seems that there is no difficulty,
since A, B, and C allow I A, IB, and Ic to be determined. Formaldehyde is a planar
molecule, however, so that Ic — IA + IB and three structural parameters need to be
determined from only two independent moments of inertia.

In fact Ic is not exactly equal to I A + IB because of several effects including
vibrations.18 It is useful to define the inertial defect A = Ic — I A — IB, which gen-
erally has a small positive value (e.g., A = 0.05767 u A2 for formaldehyde19) for planar
molecules. Any deviation from the empirically expected value of A is taken as evidence
of nonplanarity, or fluxional behavior, or the presence of low frequency out-of-plane
vibrations18 in the molecule.

A solution to the structural problem in formaldehyde lies in making use of data
from isotopic molecules (Table 6.3). It is necessary to assume that all isotopic vari-
ants of formaldehyde have the same rco> ^CH, and #HCH values. This is a good ap-
proximation because the potential surface is independent of nuclear mass within the
Born-Oppenheimer approximation. From the pure rotational spectrum of, for example,
13C-substituted H^CO a set of two additional independent moments of inertia can be
derived. Now four independent moments of inertia (from the six total) are available to
determine the three structural parameters by least squares fitting20 (Problem 8).

An TO structure is very useful, but some of the geometrical parameters, particularly
C—H bond lengths, are not very reliable in that they lie far from equilibrium re val-
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ues. A "better" structure can be derived by isotopic substitution using Kraitchman's
equations20 or other, more sophisticated, techniques. Kraitchman's equations allow the
distance between the center of mass and the isotopically substituted atom to be calcu-
lated (see Gordy and Cook20 or Domenicano and Hargittai21). Structures determined
by substituting a different isotope for every atom in a molecule (in turn, one at a time)
are called rs structures20 (s stands for substitution). A complete rs structure is very
tedious to determine because a large number of isotopic forms of a molecule must be
synthesized and rotationally analyzed. For example, for formaldehyde, HDCO, H2

3CO,
H2C18O, and H2CO are needed. In the case of formaldehyde an equilibrium or re struc-
ture has been determined19 with re(CH) = 1.100 A, re(CO) = 1.203 A, and 0e(HCH)
= 116°8'.

Problems

1. Classify each of the following molecules as spherical, symmetric, or asymmetric
top molecules:

(a) CH4

(b) CH3F

(c) CH3D

(d) SF6

(e) SF5Br

(f) £rcms-SF4Br2

(g) cis-SF4Br2

(h) HCN

(i) H2S
(j) CsHg, spiropentane.

2. (a) Show for a linear triatomic molecule made of atoms with masses mi, m2,
and ma that

with M the total mass of the molecule.

(b) The lowest frequency microwave transitions of 1H12C14N and 2H12C14N oc-
cur at 88631 and 72415 MHz, respectively. (These are for the ground vibra-
tional state.) Calculate the bond distances in HCN.

3. A triatomic molecule has the formula A2B. Its microwave spectrum shows strong
lines at 15, 30, 45, . . . GHz, and no other lines. Which of the following structures
is (are) compatible with this spectrum?

(a) linear AAB

(b) linear ABA

(c) bent AAB

(d) bent ABA
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4. For the 12C32S molecule the following millimeter wave pure rotational transitions
have been observed (in MHz):

Transition

J = 1-0
.7 = 2-1
J = 3-2
J = 4-3

v = Q

48 990.978
97980.950

146969.033
195954.226

v = 1

48635.977
97270.980

145904.167
194534.321

v = 2

48280.887
96560.800

144838.826
193113.957

(a) For each vibrational level derive a set of rotational constants by fitting the
data.

(b) From results of (a) derive an expression (by fitting) for the vibrational de-
pendence of B.

(c) From BQ calculate TO; from Be calculate re.

5. The F2O molecule of C^v symmetry has an O—F bond length of 1.405 A and a
FOF bond angle of 103.0°.

(a) Calculate A, B, and C for F2O.

(b) Will the microwave spectrum of F2O show a-, b-, or c-type transitions?

(c) Predict the frequency of the J = 1 — 0 microwave transition.

6. For the BF3 molecule of D%h symmetry the B—F bond length is 1.310 A. Calculate
A, B, and C. What is the rotational energy-level expression?

7. The J = 2 <— 1 microwave absorption is observed near 42 723 MHz for 14NF3 and
42 517 MHz for 15NF3.

(a) Derive the rotation constants for 14NF3 and 15NF3.

(b) Determine the N—F bond length and the F—N—F bond angle.

8. The following is a complete list of observed transitions involving levels J = 0, 1,
and 2 for two isotopic forms of formaldehyde in their vibrational ground states:

H2
2C160

(MHz)

71.14
4829.66

14488.65
72837.97

140839.54
145602.98
150498.36

H*3C160
(MHz)

4593.09
13778.86
71 024.80

137449.97
141 983.75
146635.69
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(a) Assign these microwave transitions for both isotopologue. Assume that
H2CO belongs to the C^v point group and estimate a molecular geometry
using bond-length tables. Assign the spectrum by prediction of the expected
rotational spectrum.

(b) What are A, B, and C for the two isotopic species? Since we have neglected
centrifugal distortion, it will not be possible to fit all transitions exactly with
only three rotational constants. Devise a procedure that gives a "best fit" to
all lines.

(c) Explain why the inertial defect

is a good test for planarity. Why does H^CO not have A = 0?

(d) Obtain a best possible geometry for H^CO using your A, B, C values for the
two isotopologues.

(a) Calculate the rotational constants.

(b) Predict the pattern (be quantitative) of the microwave spectrum.

10. The 820 molecule is a bent triatomic molecule isovalent with ozone. The S—S
bond length is 1.884 A, the S—O bond length is 1.465 A, and the SSO bond angle
is 118.0°.

(a) Locate the center of mass and set up the moment of inertia tensor. Pick the
z-axis out of the plane and the a;-axis parallel to the S—S bond.

(b) Diagonalize the moment of inertia tensor to find I A, IB, and Ic-

(c) Predict frequencies of the possible transitions from the OQO rotational state.

11. The HC1 molecule has a BQ value of 10.4 cm"1.

(a) What are the J values of the levels with maximum population at 300 K and
2 000 K?

(b) Graph the populations of the J levels as a function of J for 300 K and
2000K.

12. What is the moment of inertia of a cube of uniform density p and sides of length a?

13. For the HC1 molecule with a BQ value of 10.4 cm"1 and J = 1, treat the rotational
motion classically.

(a) What is the period of rotation?

(b) What is the linear velocity of the H atom?

(c) What is the angular momentum?
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14. Derive equation (6.46) by showing that the total energy of the distorted molecule

gives rise to a centrifugal distortion term of approximately Ecd = —DJ4 —
—H4 J4/(2jU2rg/c) for a nonrigid rotor. Show that this term gives the Kratzer for-
mula (6.48) for D. (Hint Remember to replace the classical J by hJ at the end.)

15. Check the commutation relationships (6.107) and (6.108) using the differential
form of the operators.

16. The rotational constants for the ground vibrational state of CHal are found to be
B = 0.25022cm"1, A = 5.1739cm-1, Dj = 2.09xlO-7cm~1, DJK = 3.29xlO~6

cm"1, and DK = 87.6 x 10~6 cm-1.

(a) Predict the microwave spectrum of the J = 1 <— 0 and J = 4 <— 3 transitions.
(Ignore the possibility of hyperfine structure.)

17. (a) Show that the rigid rotor Hamiltonian operator (6.138) is equivalent to
(6.134).

(b) Derive the matrix elements (6.141) and (6.142).

(c) Construct the Hamiltonian matrix for J — 2 and derive the equations (for
J = 2) in Table 6.2. It is helpful to transform the Hamiltonian matrix to
a new basis set defined by \JK±) = (\JK) ±\J - K}}/^ via the Wang
transformation matrix

18. Consider the HOD (partially deuterated water) molecule with bond length r =
0.958 A and bond angle 0(HOD) = 104.5°.

(a) Find the moment of inertia tensor in u A2 in any convenient coordinate
system with the origin at the center of mass.

(b) Find the principal axis moments of inertia, rotational constants (MHz), and
transformation from the original axis system to the principal axis system.

19. For the symmetric top wavefunction | J, K, M) = Ceixe~2i(t> sin 0(3 sin2 0+1 cos 0-
2), find J, K, and M.

20. The application of an electric field to a molecular system partially lifts the Mj
degeneracy. This Stark effect may be treated as a perturbation of the rotational
energies. The perturbation Hamiltonian operator H' — —/J,ZEZ, where z is a
laboratory frame coordinate and Ez is the electric field along the laboratory pr-
axis.

(a) Show that there will be no first-order Stark effect for a linear molecule.
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(b) Develop a formula for the second-order Stark effect of a linear molecule.

21. Fill in the missing steps between equations (6.74) and (6.75), and between (6.75)
and (6.76).

22. The typical volume mixing ratio for CO in the earth's atmosphere is 0.12 ppm.
For the J = 1 — 0 transition, what is absorption coefficient, a, per kilometer at line
center? The dipole moment is 0.1101 D and the pressure broadening coefficient
for air is 3.14 MHz/Torr. Assume 1 atm pressure and 20°C. Repeat the calculation
for pure CO at the same concentration and temperature, but in the absence of air.
In this case, the pressure broadening coefficient is 3.43 MHz/Torr for pure CO.
(You will need to check whether Doppler or pressure broadening predominates.)

23. A convenient catalog of pure rotational line positions and line intensities is main-
tained by H. Pickett and coworkers (http://spec.jpl.nasa.gov/). The line intensi-
ties are given as an effective integrated absorption cross sections (i.e., to remove
g(y — ̂ 10)) in units of nm2 MHz at 300 K obtained by dividing equation (6.86)
by JV, and reported as a logarithm to the base ten.

(a) For the CO molecule (//o = 0.1101 D) verify that the tabulated value of
—4.119 7 for the J = 2 <— 1 transition is correct.

(b) Why does the value obtained in (a) differ from the integrated cross section
obtained using equation (6.83)? What is the Einstein ^2—>i coefficient and
the oscillator strength /abs for the J = 2—1 transition?

(c) Derive the conversion factor from "JPL units" of nm2 MHz to "HITRAN
units" (see Chapter 7) of cm/molecule for line intensities.

24. Radio astronomers measure the intensity of their lines by the "antenna temper-
ature," Ta. At long wavelengths the Rayleigh-Jeans approximation applies and
the power detected is directly proportional to the source temperature. Assume
that the source emitting the line is optically thin, i.e., negligible reabsorption of
the emitted radiation occurs.

(a) Show that the radiance Lv (see Chapter 1, equation (1.44)) detected by a ra-
dio telescope can be converted into an equivalent temperature of a blackbody
by the equation

(b) If the antenna temperature is integrated over frequency to obtain the area
of the line, show that

with AI^Q the Einstein A factor for emission from the upper state | 1 > to
| 0 > and N\l is the upper state column density (molecules/m2).

(c) Assuming that the upper state | 1 > is in thermodynamic equilibrium with
an excitation temperature Tex, derive the expressions for the total column
density Nl,
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or converting from frequency units v to velocity units v using the Doppler
formula,

with E\ the energy of the upper state, g\ the upper state degeneracy, and
q the partition function. Radio astronomers like to measure line widths and
line shifts in velocity units. Thus spectra are usually displayed with units
of Ta for the y-axis and velocity, v, rather than frequency, ^, for the x-axis,
with the zero of the re-axis set at the laboratory rest frequency of the line.

(d) Emission from the C 1 8 OJ:=1—>0 transition is observed at a rest frequency
of 109782.173 MHz. This emission was detected in a molecular cloud DR21
with an integrated line intensity of 12 K km s"1. Assuming thermodynamic
equilibrium with an excitation temperature of 25 K, what is the column
density of C18O in the source? (See question 23.)
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Chapter 7

Vibrational Spectroscopy

7.1 Diatomic Molecules

The solution of the Schrodinger equation for a diatomic molecule plays an important
role in spectroscopy. The study of the vibration-rotation spectra of diatomic molecules
is an area of spectroscopy with many practical applications. In addition the vibrational
spectra of diatomics serve as models for polyatomic molecules.

Consider a diatomic molecule A—B rotating and vibrating in the laboratory co-
ordinate system X, Y, Z (Figure 7.1). The motion of the two nuclei can always be
exactly separated into a center-of-mass part and an internal part by using the internal
coordinates

and the definition for the center-of-mass position,

with

These two equations can be solved for rA and rB in terms of R and r to give

and

The corresponding velocities are given by the time derivatives of rA and rB, that is, rA

and rB. If the velocities obtained from equations (7.3) and (7.4) are substituted into
the kinetic energy expression, it becomes

208
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Figure 7.1: Center-of-mass transformation of a two-particle system.

which simplifies to

with // the reduced mass given by

The kinetic energy has thus been split in equation (7.6) into an overall center-of-mass
term and an equivalent one-particle (mass fj,) term (Figure 7.1). Note that the usual
atomic masses (not the masses of bare nuclei) are used in equation (7.7) because the
electrons are considered to be bound to the nuclei during vibrational motion.

By expressing the kinetic energy in terms of the momentum rather than velocity,
one obtains the classical Hamiltonian for the two-particle system,

in which the potential energy depends only upon the distance r between the atoms. The
center-of-mass contribution to the kinetic energy is ignored, since it only represents a
shift in the total energy of the system. The quantum mechanical Schrodinger equation
for a vibrating rotor is therefore
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Upon replacing the Cartesian coordinates x, y, and z for the location of the equivalent
mass in equation (7.9) by the spherical polar coordinates r, $, and </>, one obtains

in which J2 is the operator representing the square of the angular momentum. Substi-
tution of

in which YJM is a spherical harmonic, into equation (7.11) yields the one-dimensional
radial Schrodinger equation,

Let us define

as the centrifugal potential, and the sum

as the effective potential. Only a specific functional form of V(r) is needed in order to
obtain the energy levels and wavefunctions of the vibrating rotor by solving equation
(7.13). The substitution

into equation (7.13) leads to the equation

In general V(r] = Ee\(r) + VNN (Chapter 4) where Ee\ is obtained by solving the
electronic Schrodinger equation

For the electronic Schrodinger equation (7.18) the energy depends on the particular
value of r chosen for the calculation. As a result, Ee\ is a parametric function of r, so
that no simple analytical form for Ee\(r) exists in general. Instead, considerable effort
has been devoted to developing empirical forms for V(r), the typical shape of which
is shown in Figure 7.2. One of the most general forms, often denoted as the Dunham
potential,1 is a Taylor series expansion about re, namely

or
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Figure 7.2: Potential energy curve for a diatomic molecule.

By setting V(re) — 0, the bottom of the well is arbitrarily chosen as the point of zero
energy. In the expansion of V(r) about its minimum at re, the first derivative is zero,

and therefore

with

and

By retaining only the leading term ^k(r — re)
2 in this expansion for the nonrotating

molecule (J = 0), one obtains the harmonic oscillator solutions

with

The functions Hv(Tjax} are the Hermite polynomials listed in Table 7.1. The corre-
sponding eigenvalues for the nonrotating harmonic oscillator are



212 7. Vibrational Spectroscopy

Table 7.1: The Hermite Polynomials Hv(x)

with

Another popular choice for a simple form for the potential function is the Morse
potential2

The Morse potential, unlike the harmonic oscillator, asymptotically approaches a dis-
sociation limit V(r) = D as r —» oo. Moreover, the Schrodinger equation can be solved
analytically for the Morse potential. Specifically, one can show2 that the eigenvalues
for the Morse potential (plus the centrifugal term) can be written as (customarily with
E in cm""1, rather than joules):

with

and
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When using equations (7.28) to (7.33), some care with units is required since all spectro-
scopic constants and the Morse potential parameter /? (equation (7.27)) are in cm"1,
while SI units are used for the physical constants. Note that in these equations De

denotes the centrifugal distortion constant (equation (7.28)) as opposed to D, which
denotes the dissociation energy, equation (7.27). The equation De — 45s./a;2,, equa-
tion (7.32), applies to all realistic diatomic potentials and is known as the Kratzer
relationship. The equation for ae, equation (7.33), applies only to the Morse potential
and is often referred to as the Pe.ke.ris relationship. Notice that the vibrational energy
expression

for the Morse oscillator has exactly two terms, and G(v] is the customary symbol for
the vibrational energy levels. In contrast, the rotational parts of the Morse oscillator
energy-level equation (7.28) are only the leading terms of a series solution.

An even more general form than the Morse potential is the Dunham potential1

with

The Dunham potential is just the Taylor series expansion (7.21) with some minor
changes in notation such as

Although exact analytical forms for the wavefunctions and eigenvalues are impossible
to derive for the Dunham potential, approximate analytical forms are relatively easy
to obtain.

Dunham obtained an analytical expression for the energy levels of the vibrating rotor
by using the first-order semiclassical quantization condition3 from WKB (Wentzel-
Kramers-Brillouin) theory, specifically

in which r_ and r+ are the classical inner and outer turning points for V(r) at the
energy E. The approximate wavefunctions are given by

and the energy levels are given by
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Dunham1 was able to relate the coefficients Yjk back to the potential energy parameters
di by a series of equations listed, for example, in Townes and Schawlow.4 The customary
energy-level expressions5

allow the relationships4 between the Dunham Yjk parameters and the conventional
spectroscopic constants to be derived:

The various isotopic forms of a molecule have different spectroscopic constants be-
cause the reduced mass is different. The pattern of isotopic mass dependence for a
few of the spectroscopic constants can be seen in equations (7.29) to (7.33)—that is,
oje oc /Li~1//2, Be oc /x"1, u}exe oc /Li"1, De oc /Lt~2, and ae oc /u~3/2. In general the isotopic
dependence of the Dunham Yjk constants is given by

Defining a set of mass-independent constants C/^fc using the relationship

enables one to combine spectroscopic data from different isotopic forms of a molecule
using the single equation

When the Born-Oppenheimer approximation breaks down and the first-order WKB
condition of equation (7.38) is inadequate, small correction terms6'7 must be added to
equation (7.47).

Although the Dunham energy level formula (7.40) is widely used to represent energy
levels, the Dunham relationships4 between the V's and the potential parameters (a's)
are used more rarely. For diatomic molecules, V(r) potentials are typically derived from
the G(v), equation (7.42), and Bv, equation (7.43), polynomials by application of the
Rydberg-Klein-Rees (RKR) method using readily available computer programs.8 The
RKR method starts with the WKB quantization, equation (7.38), which is manipulated
extensively8'9 to give the two Klein integrals (in SI units),
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in which the vibrational quantum number v is taken as a continuous variable, as is
possible in the semiclassical world. The Klein integrals are evaluated numerically8 from
the semiclassical vm-in = —1/2 at the bottom of the well to the v of interest and give the
difference between the classical turning points, equation (7.48), or the difference of the
reciprocals of the classical turning points, equation (7.49). The two equations, (7.48)
and (7.49), can be solved to give the two unknown classical turning points r+ and r_
at integer values of v, and additional points can be generated by using noninteger u's.

The RKR procedure generates the diatomic potential V(r) as pairs of classical turn-
ing points that can be interpolated and used to solve the one-dimensional vibration-
rotation Schrodinger equation (7.17). Rather than use the semiclassical quantization
condition (7.38) to solve equation (7.17) analytically, the differential equation (7.17)
is numerically integrated10 to obtain the vibration-rotation energy levels Evj and the
corresponding wavefunctions ^w(r), represented as points on a grid. These numerical
energy levels and wavefunctions can be used for a variety of purposes such as the com-
putation of rotational constants, centrifugal distortion constants, and Franck-Condon
factors (see Chapter 9).10

Wavefunctions for Harmonic and Anharmonic Oscillators

The harmonic oscillator wavefunctions are given in Table 7.2 and are plotted in Figure
7.3. There are several notable features of these wavefunctions, including a finite proba-
bility density outside the walls of the confining potential. As the vibrational quantum
number v increases, the probability for the oscillator being found near a classical turning
point increases.

A diatomic molecule behaves like an anharmonic oscillator because the inner wall
of a realistic potential is steeper than the harmonic oscillator potential, while the outer
wall is much less steep than the harmonic oscillator (Figure 7.4). For small values of
i>, the harmonic oscillator model provides a reasonable approximation and the differ-
ences between the harmonic and anharmonic oscillator wavefunctions are small. As v
increases, however, the amplitude of the wavefunction for the anharmonic oscillator
increases at the outer turning point relative to its value at the inner turning point be-
cause the system spends most of its time at large r (Figure 7.5). The harmonic oscillator
approximation is then no longer realistic.

Table 7.2: The Harmonic Oscillator Wavefunctions



216 7. Vibrational Spectroscopy

Figure 7.3: The harmonic oscillator wavefunctions.

Figure 7.4: A harmonic oscillator potential (dots) as compared to a realistic diatomic potential
(solid).

Vibrational Selection Rules for Diatomics

To predict a spectrum from the energy levels, selection rules are required. The intensity
of a vibrational transition is governed by the transition dipole moment integral,

in which single primes refer to the upper level of a transition and double primes to
the lower. The dipole moment of a diatomic molecule is a function of r and the func-
tional dependence of p, on r can be determined from Stark effect measurements, from
the intensities of infrared bands, or from ab initio calculations. As an example, the
dipole moment function11 calculated for the X2II ground state of OH is illustrated in
Figure 7.6.

Since any well-behaved function can be expanded as a Taylor series, let us expand
fj,(r} about r = re as
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Figure 7.5: The intermolecular potential and the square of the vibrational wavefunctions for
Kr2.

so that

The first term on the right-hand side of equation (7.52) is exactly zero because different
vibrational wavefunctions of the same potential curve are orthogonal to each other.
The second term makes the dominant contribution to the intensity of most infrared
fundamental transitions and it depends on the value of the dipole moment derivative
at the equilibrium distance, dp,/dr\r . More precisely, the intensity of a vibrational
emission or absorption transition is given by

This approximation neglects quadratic and higher power terms in equation (7.51) and
assumes that the electrical dipole moment function is a linear function of r in the region
close to r = re.

According to equation (6.83), the intensity of pure rotational transitions depend
on |/x 2, rather than on the square of the derivative given in equation (7.53), as is
the case for vibrational transitions. Since homonuclear diatomic molecules such as Cl2
have n = 0 and dp,/dr — 0, they do not have electric dipole-allowed pure rotational
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Figure 7.6: The ab initio dipole moment function of the X2U state of OH.

or vibrational spectra. However, homonuclear diatomic molecules do have very weak
electric quadrupole vibrational transitions that can be detected with very long path
lengths.12 These electric quadrupole transitions are about a factor of 10~6 weaker than
typical electric dipole-allowed infrared transitions.

The intensity of an infrared vibrational transition also depends upon the value of
the integral

with x = r — re. If harmonic oscillator wavefunctions (Table 7.2) are used to represent
the wavefunctions in equation (7.54), and if the recursion relationship

between Hermite polynomials is employed, the result

is obtained. The vibrational selection rule is thus At) = ±1 for harmonic oscillator
wavefunctions since vf = v + 1 or v — 1 in the Kronecker 8 of equation (7.56).

If anharmonic wavefunctions are used, then transitions with Aw = ±2, ±3,... also
become allowed because each anharmonic wavefunction can be represented by an ex-
pansion of harmonic oscillator wavefunctions, ̂ t,HO:

Although this mechanical anharmonicity allows overtone transitions to occur, the in-
tensities of such transitions drop with increasing Ai>. Typically an increase in Av by
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Figure 7.7: Names for infrared vibrational transitions.

one unit diminishes the intensity of an overtone band by a factor of 10 or 20 in infrared
absorption spectroscopy. If the dipole moment function, equation (7.51), is not trun-
cated after the linear term, then integrals of the type (v1 (r — re}

2\v) and (v'\(r — re)
3 v)

are also present in the transition moment expression, equation (7.52). These terms give
rise to matrix elements with Av — ±2, ±3,... so that they also give overtones of appre-
ciable intensity. The oscillator is said to be "electrically anharmonic" if terms higher
than linear are used to represent //(r). Thus both electrical (equation (7.51)) and me-
chanical (equation (7.21)) anharmonic terms contribute to the appearance of overtones
in a spectrum.

The various types of infrared transitions have specific names associated with them
(Figure 7.7). The v — I <— 0 transition is called the fundamental, while any transition
with v" 7^ 0 is called a hot band. The name hot band originates from the experimental
observation that the intensities of these bands increase upon heating the sample. The
first overtone is the v = 2 *— 0 transition, the second overtone has v = 3 +— 0, and so
on.

The mechanical anharmonicity of a diatomic oscillator results in an energy-level
expression (7.42)

so that a transition between vibrational levels characterized by v + 1 and v has an
associated energy given by

As an example, for H35C1, the vibrational energy expression is13

while for D35C1 the expression is13
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Notice that the anharmonicity constants decrease rapidly in magnitude with \u>exe\ »
I^e2/e| ^> \ueze\ in the case of HC1 and DC1.

Dissociation Energies from Spectroscopic Data
Under favorable circumstances it is possible to deduce the dissociation energy from
spectroscopic data. Indeed, this is usually the most accurate of all methods for deter-
mining dissociation energies for diatomic molecules. In principle, if all of the vibrational
intervals AG^+i/2 are available, then the dissociation energy DO (measured from v = 0)
is given by the sum of the intervals

as illustrated in Figure 7.8. Graphically this can be represented by a Birge-Sponer
plot14 of AGv+i/2 versus v + | with the dissociation energy given by the area 
the curve (see Figure 7.9). If the vibrational energy expression has only two terms
G(v) = uje(v + \] — uexe(v + ^)2 (e.g., for the Morse oscillator), then AGw+i/2 =
ue — 1ujexe — 1ujexev. Thus the Birge-Sponer plot is linear over the entire range of v
and the equilibrium dissociation energy De (Figure 7.8) for a Morse oscillator is

This result is derived from equations (7.29) and (7.30). Note that the same symbol
De is customarily used for the equilibrium centrifugal distortion constant (equation
(7.32)) and for the equilibrium dissociation energy (e.g., equation (7.61)) and needs to
be distinguished by the context.

If all of the vibrational levels of a molecule are known, then the simple application
of equation (7.60) gives the dissociation energy. Only rarely, however, are all of the
vibrational levels associated with a particular electronic state of a molecule known ex-
perimentally (e.g., H2).15 In practice an extrapolation from the last few observed levels

Figure 7.8: The vibrational intervals of a diatomic molecule.
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Figure 7.9: A Birge-Sponer plot for the ground state of H2. Notice the curvature at high
vibrational levels.

Figure 7.10: A Birge-Sponer plot for the B state of ly. The highest observed vibrational level
is VH = 72.

to the unobserved dissociation limit (I>D) is necessary. A simple linear extrapolation has
often been used, but this typically introduces considerable uncertainty into the exact
location of the dissociation limit even when the extrapolation is short (Figure 7.10).
The number UD is the effective vibrational "quantum number" at dissociation and can
be noninteger. It corresponds to the intercept of the Birge-Sponer curve (Figure 7.9)
with the v-axis of the plot.

A more reliable procedure makes use of a Le Roy-Bernstein16 plot in which the
extrapolation is based on the theoretical long-range behavior of the potential. It has
been shown that the vibrational spacings and other properties of levels lying near
dissociation depend mainly on the long-range part of the potential, which is known to
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Figure 7.11: A Le Roy-Bernstein plot for the B state of \2-

have the form

in which D is the dissociation energy, n is an integer (typically 5 or 6 for a neutral mole-
cule), and Cn is a constant. Substitution of equation (7.62) for V(r) into the semiclassi-
cal quantization condition (equation (7.38)) followed by mathematical manipulation,17

yields the approximate equation

in which L(n,Cn) is a constant. A Le Roy-Bernstein plot of (AG^+1/2)
(n 2)/(n+2)

versus v is a straight line at long range, so that linear extrapolation gives the dissociation
limit marked by VD in Figure 7.11. In essence the Le Roy-Bernstein procedure corrects
for the curvature of the Birge-Sponer extrapolation (Figure 7.10) by making use of
the known form (7.62) of the long-range interaction of two atoms.17 For the case of
the B state of I2 this plot shows that the last bound vibrational level is v' = 87,
which contrasts markedly with the uncertainty of the intercept on the conventional
Birge-Sponer plot of Figure 7.10.

The leading long-range interaction term Cn/r
n depends upon the nature of the

two interacting atoms. All atom pairs have at least a Ce/r6 term from the fluctuating
induced dipole-induced dipole interaction. For I2, however, the leading long range term
is C5/r

5 (this is associated with the quadrupole-quadrupole interaction17 between the
two open-shell 2Pa/2 atoms). Indeed, the leading long-range interaction terms are known
for all possible combinations of atoms.17 For the B state of I2 the Le Roy-Bernstein plot
of (AG^+i/2)3/7 versus v predicts I'D = 87.7 from the old vibrational data of Brown18

measured in 1931. More recent data,19 including observations of levels up to v — 82,
have confirmed this value of v&.
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Vibration-Rotation Transitions of Diatomics
Molecules vibrate and rotate at the same time, thus giving rise to vibration-rotation
spectra. The selection rules for a diatomic molecule are obtained simply by combining
the pure rotational selection rules AJ = ±1 with the vibrational selection rules (Av =
±1). The selection rules AJ — ±1 apply to molecules with no net spin or orbital angular
momentum (i.e., XE+ states). For molecules such as NO (X2TT), and free radicals in
which L or S are nonzero, weak Q branches (AJ — 0) are also possible (Chapter 9).

Transitions are organized into branches on the basis of the change in J value. For
one-photon, electric-dipole-allowed transitions only AJ = 0, ±1 are possible, but for
Raman transitions (Chapter 8), multiphoton transitions, or electric quadrupole transi-
tions, there are additional possibilities. Magnetic dipole transitions like electric dipole
transitions have only AJ = 0, ±1. Transitions with AJ = —3, —2, —1,0,1,2,3 are la-
beled JV, O, P, Q, PL, S, and T, respectively.

For a molecule such as HC1 (X1E+) the spectrum contains only P and R branches.
The energy of a given v, J level is

so that (ignoring the effect of centrifugal distortion) the line positions for R and P
branch transitions are given by

in which VQ, the band origin, is G(v'} — G(v"). The P and R branch formulas can be
combined into the single expression,

by defining ra = J + 1 for the R branch and m = —J for the P branch. By convention
upper state quantum numbers and spectroscopic constants are labeled by single primes,
while lower state quantum numbers and constants are labeled by double primes.

The fundamental band of HC1 is the v = 1 *— 0 transition and from equation (7.58)
the band origin is given by

From expressions (7.59a) and (7.59b) we can obtain the band origin for H35C1 as
2885.977 cm"1, while the band origin for D35C1 is 2091.061 cm"1. The vibration-
rotation transitions are illustrated in Figure 7.12 for the DC1 infrared spectrum. The
labeled peaks in Figure 7.12 are due to the more abundant D35C1 isotopologue, while
the weaker satellite features are due to transitions of D37C1. The relative intensities of
the D35C1 and D37C1 lines with the same J value seem to change with J because the
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Wavenumber (cm"1)

Figure 7.12: The fundamental vibration-rotation band of D35C1 and D37C1.

stronger D35C1 lines saturate before the weaker D37C1 lines. For DCI the vibrational
dependence of B is given by13

so that BQ = 5.392263 cm"1 and B\ = 5.279890 cm"1. Thus, even for a light hydride
BQ w B\. One can use equation (7.67) to show that for lines near the band origin, the
spacing between consecutive lines is approximately B' + B" = 2B, with the average
rotational constant given by B — (B'+B"}/1. Notice that there is a gap at the band ori-
gin where a Q branch would be present if A J = 0 transitions were allowed. This "band
gap" between the first lines R(0) and P(l) of the two branches is approximately 4B.

Combination Differences

In general, a transition energy depends on the constants of both the upper and lower
states as shown in equation (7.67) so that the two sets of rotational constants cannot
be treated independently. The differences between lines that share a common upper or
lower level are known as combination differences (Figure 7.13). These differences of line
positions are very useful because they depend only on upper or lower state spectroscopic
constants. The lower state combination differences (Figure 7.13) are

while the upper state combination differences are



Figure 7.13: Ground-state and excited-state combination differences.

Figure 7.14: Ground-state combination differences v(R(J — 1)) — v(P(J + 1)) for the funda-
mental band v = 1 — 0 of HC1.

In equations (7.70) and (7.71) the A indicates a difference between line positions rep-
resented by the standard F(J] formulas, and the subscript 2 signifies that AJ = 2 for
the differences. A plot of A2F"(J) versus J yields approximately a straight line with
a slope of 4B" as shown in Figure 7.14 for HC1.20 The slight curvature is due to the
neglect of centrifugal distortion, which gives

when it is included. The combination differences thus allow the rotational constants of
the upper and lower states to be determined independently.

7
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Figure 7.15: Coordinate system for a molecule with N (=3) atoms.

7.2 Vibrational Motion of Polyatomic Molecules

Classical Mechanical Description

The classical Hamiltonian for the vibrational motion of a nonrotating molecule (Figure
7.15) with N atoms is given by H = T + V where the kinetic energy T is

in which the dot notation has been used for derivatives with respect to time, as for
example, Xi = dxi/dt.

This expression can be rewritten by introducing mass-weighted Cartesian displace-
ment coordinates. Let

in which the Qi coordinate is proportional to the displacement from the equilibrium
value. The set of equilibrium nuclear coordinates, {rie}, describes the location of the
nuclei for the absolute minimum in the potential energy. In terms of the qi coordinates
the kinetic energy of nuclear motion takes the particularly simple form
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In general the potential energy V(rj) is a complicated function of the Cartesian
coordinates of the atoms. Expanding the potential V in a Taylor series about the equi-
librium nuclear positions using the mass-weighted Cartesian displacement coordinates
gives

The potential energy is arbitrarily chosen to be zero at equilibrium, that is, V(qi —
0) = 0. At the same time we also have by definition dV/dqi\ 0 = 0 at equilibrium.

The present discussion is based on the harmonic approximation for the potential
energy, according to which terms in the expansion (7.76) with order greater than two
are neglected. The second derivatives of the potential are force constants fij defined by

so that

The qi form a set of generalized coordinates for which Newton's laws of motion are best
formulated using Lagrange's equations. Lagrange's equations are equivalent to

but are valid for any coordinates, not just the Cartesian coordinates implicit in equation
(7.79). Lagrange's formulation of the classical equations of motion is based on the
construction of the Lagrangian L,

which is a function of the generalized coordinates and velocities qi and <jt- Newton's
second law of motion, equation (7.79), is equivalent to Lagrange's equation

It is easy to verify this equivalence for a single particle moving in one dimension x, for
a conservative system in which the potential is independent of time (V ^ V(t))- In this
case the Lagrangian is

and Lagrange's equation (7.81) becomes

Taking the derivatives with respect to x and x gives
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However, since force is also related to the potential function by

we also have, in this one dimensional case,

As expected Lagrange's equation is equivalent to F = ma — p. In Lagrangian mechanics
the generalized force is (dL/dqi)^ and the generalized momentum is

Applying Lagrange's equation to the vibrations of polyatomic molecules gives

but since

the equations of motion become

or

This is a set of 3JV coupled second-order differential equations (7.91) with constant
coefficients. Such a system of equations can be solved by assuming a solution of the
form

in which ^f\ is an angular frequency associated with the vibration of the nuclei about
their equilibrium positions. Substitution of equation (7.92) into equation (7.91) con-
verts the set of second-order differential equations into a set of 3N homogeneous linear
equations:

or
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or

The set of 3N equations has only the trivial solution for the amplitudes A\ — A? =
• • • ASM — 0 unless the determinant of the coefficients is zero or

The secular equation (7.95) is a polynomial of order 3AT so that there exist 3N values
of A for which equation (7.95) is satisfied. The 3JV x 3AT force constants can be arranged
in a force constant matrix f, and the 3./V values of A are the eigenvalues of f. It turns
out that six of the eigenvalues are zero for a nonlinear molecule, and five are zero for a
linear molecule. Three degrees of freedom are associated with the translation (rr, ?/, z]
of the center of mass and three (or two for a linear molecule) with rotational motion
of the molecule as a whole (0, </>, x)- Since there is no restoring force acting on these
degrees of freedom, their frequencies are zero.

Associated with each eigenvalue A^ is a coordinate called a normal mode coordinate,
Qi. The normal modes represent a new set of coordinates related to the old QJ by a
linear transformation,

or

with 1 being a real orthogonal matrix (I"1 = 1*) so that

In matrix notation the original 3JV differential equations (7.91) are written as

Substituting equation (7.98) gives

so that multiplication by 1 from the left gives

The transformation matrix 1 is chosen to diagonalize f, that is,

so that the eigenvalues of f are the diagonal elements of A. Since f is a real sym-
metric matrix, there are 37V real eigenvalues. Furthermore, an orthogonal matrix can
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always be constructed from the orthonormal eigenvectors of f. We see that the linear
transformation has uncoupled the 37V equations so that now

or written out as

Applying the same normal coordinate transformation to T and V gives

or

and

or

Thus, both the kinetic and potential energy terms of the Hamiltonian have no cross-
terms that connect different coordinates. The system therefore behaves like a set of
37V—6 (or 37V—5) independent harmonic oscillators, each oscillating without interaction
with the others. Naturally, a real system has cubic and quartic terms (and higher!)
in the potential energy expansion. For a real molecule, the 1 matrix and the normal
coordinates are still defined in the way outlined above, using only the harmonic terms,
but the 1 matrix transformation no longer completely uncouples the 37V differential
equations. The anharmonic terms in the potential energy expansion are then said to
couple the normal modes, so that the normal mode approximation is not completely
valid.

e
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Quantum Mechanical Description
With the classical Hamiltonian available, the transition to quantum mechanics is (de-
ceptively) simple. First the classical Hamiltonian is written in terms of the generalized
coordinates, the normal modes Qi, and the associated generalized momenta Pi with

The resulting classical Hamiltonian is

with the summations running from 1 to 3JV — 6 (or 3AT — 5). The classical Hamiltonian
is converted to a quantum mechanical operator by making the usual substitutions
Qi —> Qi and

which gives

In terms of the normal coordinates the Hamiltonian operator equation (7.112) is just
a sum of 3]V — 6 (or 3./V — 5) independent harmonic oscillator Hamiltonian operators.
Consequently, the total wavefunction ip for the Schrodinger equation HI/J = Eip is just
a product of 3N — 6 (or 3JV — 5) harmonic oscillator wavefunctions

with

The 3N — 6 (or3JV — 5) fictitious harmonic oscillators all have unit mass since the
actual atomic masses were already used to mass-weight the Cartesian displacement
coordinates. The square of the angular frequency (a; = 2vrz/) is a;2 = k/m — A so that
(jj = A1/2. The total energy is thus the sum of the energies of 3JV — 6 (or 3JV — 5 for a
linear molecule) harmonic oscillator energies, namely
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Figure 7.16: Internal coordinates of the IrhO molecule.

The preceding treatment is valid within the harmonic oscillator approximation and
assumes that the molecule is not rotating. Real molecules, however, are rotating, an-
harmonic oscillators. The approximate vibrational wavefunction (7.113) is nevertheless
a very good starting point for the description of true molecular vibrations. Thus, the
vibrational wavefunctions of the true vibrational Hamiltonian operator, which contains
anharmonic terms in V, can be represented as linear combinations of harmonic oscilla-
tor functions. The anharmonic terms in the potential cause the true wavefunctions to
be mixtures of harmonic oscillator wavefunctions.

The effect of rotation is much more difficult to handle because the vibrational and
rotational motions are not separable. The use of a noninertial (accelerated) coordinate
system (internal molecular coordinates) rotating with the molecule introduces Coriolis
terms into the classical Hamiltonian. Special techniques are then required to trans-
form the classical Hamiltonian to an appropriate quantum mechanical form and, of
course, there are additional terms in the Hamiltonian operator. The coupling of vibra-
tion with rotation introduces vibrational angular momentum and prevents the exact
separation of vibrational and rotational motion. These additional terms can mix the
normal-mode wavefunctions by Coriolis coupling and can mix the vibrational and ro-
tational wavefunctions. Despite these problems the simple normal mode picture is a
remarkably successful model. Only for highly excited modes, such as the fifth overtone
of the OH stretching motion of HQO, is a different, non-normal mode picture (the local
mode approximation) commonly used.

Internal Coordinates

The use of force constants fij associated with mass-weighted Cartesian coordinates is
very convenient mathematically, but they are difficult to associate with specific internal
motions such as bond stretching. Modern ab initio quantum chemistry programs do, in
fact, use Cartesian force constants because they can be computed easily by displacing an
atom and computing the change in energy, or by using analytical derivatives, equation
(7.77). To obtain physical insight, however, it is preferable to describe the vibrational
motion of a molecule in terms of readily recognizable structural features—namely, bond
lengths and angles. For example, in the water molecule three internal coordinates (ri,
r2, and 0) are required to describe the relative positions of the atoms (i.e., Figure 7.16).
There are also 3N — 6 = 3 vibrational modes which must be related in some manner to
changes in n, r2, and 6. It is convenient to define the internal displacement coordinates
Ari, Ar2, and A0 to correspond to bond-stretching and bond-bending motions. It is
also convenient to use (rir2)1//2A# = rA# as the bending coordinate so that all internal
coordinates have the same dimensions.
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Symmetry Coordinates

Even more preferable than internal coordinates are symmetry coordinates, since the
vibrational Hamiltonian operator is unchanged by the symmetry operations associated
with the molecule. This also means that the vibrational wavefunctions can be labeled
with the irreducible representations of the molecular point group. The best plan is to
utilize as much symmetry information as possible.

Symmetry coordinates can be obtained by inspection or more systematically with
the aid of projection operators (Chapter 4). From the character table all possible projec-
tion operators are constructed and applied to the internal coordinates until the required
37V — 6 symmetry coordinates are generated. For example, using the H2O molecule, the
totally symmetric projection operator

when applied to Ari gives

Similarly, the application of PB* to Ari and PAl to rAd gives

Let the three symmetry coordinates si, s2, and 53 be defined by

Ari + Ar9

The or-axis is defined to be out of plane (i.e., perpendicular to the plane of the water
molecule). The three symmetry coordinates (si, s2, and 53) have symmetry appropriate
to a molecule belonging to the C^v point group.

Using internal coordinates the harmonic potential energy function of H2O is

and /n = /22, /is = /23 by symmetry. This potential energy function (7.123) is derived
by considering the three possible quadratic terms (/n, /22, and /sa) and the three
possible cross-terms (/i2, /is, and f^z] obtained from the three internal coordinates.
Converting to symmetry coordinates by using
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and

gives

Notice that there are no si$3 terms present in equation (7.127) because si and 53 have
different symmetry, so that no terms in the Hamiltonian operator can connect them (see
Chapter 4). If a term such as siSs were present, it would have A\ (&Bi = BI symmetry
and thus would be changed by a symmetry operation such as C2 or crv, contradicting
the principle that the Hamiltonian operator is unchanged by the symmetry operations
of the molecule.

The transformation to symmetry coordinates, equations (7.120) to (7.122), can be
written in matrix form,

or

Upon inversion equation (7.128) gives

or

in which s is the vector of symmetry coordinates, r is the vector of internal coordinates,
and U is the orthogonal transformation matrix defined in equation (7.129).

In matrix notation the potential energy V for the f^O molecule is
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In terms of the symmetry coordinates, the potential energy is

Equations (7.132) and (7.133) are two different ways of representing the same quantity
so we must have

Thus, the internal coordinate force constant matrix Fr is related to the symmetry
coordinate force constant matrix Fs by the equation

The change of basis affects the force constant matrix via a similarity transformation.
Let the symmetry-adapted force constants of H2O be defined by the equation

with Fn = /ii + /i2, Fi2 = A/2/13» and F33 = fu - /12. The force constant matrix Fs

is thus block factored into a 2x2 A\ block and a 1x1 B2 block. The uppercase F^s are
symmetry-adapted force constants, while lowercase /^'s are internal coordinate force
constants.

The water molecule is described at the harmonic oscillator level by four force con-
stants and three normal modes. There is not enough information in an infrared spectrum
of H2<D to determine the force field since there are four unknowns to be derived from
three vibrational frequencies. This is a general problem that gets worse as the molecule
becomes larger and less symmetric. One experimental solution is to use vibrational
frequencies from isotopic molecules such as D2O. Although the nuclear masses are dif-
ferent, it is generally assumed that the equilibrium geometries and force constants are
unaffected by isotopic substitution. For larger molecules, modern ab initio calculations
are often used to compute some or all of the force constants.

The major problem with using internal coordinates or symmetry coordinates is
that the kinetic energy operator becomes more complicated21 than when Cartesian
coordinates are used. In terms of the mass-weighted Cartesian coordinates T has the
simple form given previously:

When Cartesian coordinates are used, the classical kinetic energy operator contains no
cross-terms between coordinates. When internal or symmetry coordinates are used, T
has the more general form
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where G-1 is the inverse of the matrix G, the elements of which can be derived for a
given molecular geometry using the methods described in Wilson, Decius, and Cross.21

There are cross-terms Si(G~l)ijSj connecting the various coordinates. Of course, if
symmetry coordinates are used, there can be no terms with Si and Sj of different
symmetry. This means that the matrix forms of T and V have the same block structure
and are factored into blocks belonging to the same irreducible representations.

The classical normal modes of vibration can be derived using symmetry coordinates
in just the same way as for mass-weighted Cartesian displacement coordinates. The
kinetic energy T is

which is just equation (7.138) written in matrix notation. The classical Hamiltonian
can be written as

A solution of the form

will be assumed. The Lagrangian is

and Lagrange's equations are

Using equations (7.133), (7.136), and (7.139) in equation (7.142) results in

or

Substitution of equation (7.141) into (7.145) gives

or
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Figure 7.17: The H2O molecule.

In matrix form equation (7.147) is written as

Multiplying by G from the left gives

Thus equation (7.149) is a set of 3JV — 6 homogeneous linear equations that has a
nontrivial solution only if the determinant of the coefficients is zero, that is,

This is the celebrated GF matrix solution for the vibrational modes of a polyatomic
molecule.

The G matrix is easier to derive than G"1, but still requires some work. The
technique of deriving G matrix elements is given in the classic book by Wilson, Decius,
and Cross.21 For example, the G matrix for EkO is22

with /UH = I/ran, Ato = l/mo for ^H = 1-008 u, mo = 16 u, 0 = 104°, and r = 0.958
A (Figure 7.17).

A typical force constant analysis proceeds by selecting initial values for the force
constants FH, Fi2, F22, and Fa3, and then calculating AI , A2, and AS, the three eigen-
values of the GF matrix for both E^O and D2O. The G matrix is different for H^O and
D2O, but the F matrix is the same. The six calculated vibrational frequencies are then
compared with the experimentally measured frequencies, and the values of the four force
constants are adjusted through iterative refinement to improve the agreement between
observed and calculated frequencies.22 The iterative refinement involves a nonlinear
least squares fitting procedure to minimize the sum of the squared deviations between
the observed and calculated vibrational frequencies.

Force constants23 for some bent XY2 molecules are provided in Table 7.3 in tradi-
tional units of millidynes/A (1 millidyne/A = 100 N/m).
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Table 7.3: Force Constants (in millidyne/A) for Some XY2 Molecules

VTerm Interaction H2O F2O O3 SO2

/i i ( X Y stretch)

hi
/33

/13

(stretch-stretch interaction)
(bend)
(bend-stretch interaction)

7.
-0
0.
0.

684
.082
707
169

3.
0,
0,
0.

.97

.83
,70
,15

5,
1,
1,
0,

,74
.57
.26
.39

10.33
0
0
0

.08

.82

.23

Figure 7.18: The EbO molecule oriented is space relative to the center-of-mass vector R.

Symmetry of Normal Modes

As an example, consider the H2O molecule. Three Cartesian coordinates are required
to specify the position of each atom in space (Figure 7.18). Of the resulting nine degrees
of freedom, however, three coordinates are required to locate the center of mass and
three additional coordinates—for example, the Euler angles 0, <fi, and x—specify the
orientation of the molecule in space. The spherical polar coordinates 0 and 0 specify
how the molecular z-axis is oriented relative to the laboratory Z-axis. The Euler angle
X specifies the relative angular position of the plane containing the two hydrogen atoms
and the O atom with respect to the molecular z-axis (Figure 7.19).

For a linear molecule the angle x ls replaced by another vibrational coordinate.
Only two angles, 0 and </>, are required to specify the orientation of a linear molecule
in space. Therefore 37V — 5 coordinates are necessary to describe the relative internal
positions of the atoms in a linear molecule (Figure 7.20), but 3./V — 6 are needed for a
nonlinear molecule.

Following the methods outlined in Chapter 3, the set of 3N mass-weighted Cartesian
displacement coordinates (Figure 7.21 j can be used to construct a reducible represen-
tation for the group. For example D(E') is given by
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Figure 7.19: The orientation of the E^O molecule in space, specified by the three Euler angles
0, </>, and X-

Figure 7.20: The orientation of a linear molecule in space, specified by the two angles 6 and <p.

Figure 7.21: The nine mass-weighted Cartesian displacement coordinates for thO.
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Figure 7.22: The effect of the (72 operation on EhO.

The effect of a C-2 operation on the nine g's is shown in Figure 7.22. Notice that the C<2
operation has left the atoms fixed but has changed the coordinates, since we are working
with the nine displacement coordinates. The matrix representation for 62, 0(6*2), can
be derived by inspection from Figure 7.22,

From Figure 7.23, the matrix representationof av(xz) is
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Figure 7.23: The effect of av(xz) on H2O.

Figure 7.24: The effect of av(yz) on H2O.

From Figure 7.24, the matrix representation of av(yz) is

The characters for the 9x9 representations are

These characters can be easily generated by inspection without writing down the com-
plete matrices since only the diagonal elements of a matrix are needed to determine
the character. For the E operation the contribution by each atom to x(E) is 3 so
that x3N(E) — 3-/V. If any displacement vectors are moved from one atom to another
atom by a symmetry operation, then they contribute zero to the total character of that
symmetry operation. The total character for any operation is the sum of the contribu-
tions from each atom. Any atom for which the displacement vectors are rotated by 0
contributes 1 + 2cos# to the total character x(Cn) since the rotation matrix is
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and the trace is 1 + 2cos#. Any a operation contributes +1 for each atom on the
symmetry plane to the total character since the trace of the reflection matrix

is one. Because SQ = C0&h = cfkCo, each atom not displaced contributes — 1 + 2 cos (9
to the character for an improper rotation by 0. Finally the application of an inversion
operation to an atom inverts the displacement vectors so that x(i) = —3 for any atom
at the center of symmetry.

The nine-dimensional representation can be reduced as

using the relationship

to give

so that the reducible representation T3N can be written as the direct sum of irreducible
representations as

for the E^O molecule. The 3N representation, however, still contains three translations
and three rotations; these must be removed from the full representation to leave the
symmetry representation of the pure vibrational motions.

The symmetry of the translational coordinates can be determined by considering
the effect of the symmetry operations on the three Cartesian basis vectors, i, j, k, or
on a point r. The reasoning behind this is that the motion of the center of mass is
equivalent to the translation of a point through space. For the Civ case, translational
motion in the x direction behaves like the B\ line of the character table (Appendix B)
with respect to the symmetry operations, translational motion along y behaves like BZ,
and along z behaves like A\, that is,

The symmetry of the three rotational motions is more difficult to ascertain. Any
arbitrary rotation can be expressed in terms of rotations about the x-, y-, and z-axes,
which are designated as Rx-, Ry, and Rz. The effect of symmetry operations on an
arbitrary rotation can be determined by representing the rotation by a curved arrow
to represent the fingers of the right hand, using the right-hand rule (Figure 7.25). The
rotation is represented by the counterclockwise movement of the right-hand fingers.
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Figure 7.25: A rotation about the z-axis, Rz

Figure 7.26: The effect of C2 on Rz.

The effect of the point group symmetry operations on the movement of the right hand
yields the symmetry. The sign of the rotation is given by the right-hand rule: that is,
positive for counterclockwise rotation and negative for clockwise rotation. The effect of
applying C<i, av(yz), and av(xz] operations on Rz is illustrated in Figures 7.26, 7.27,
and 7.28. From these figures, we find C<iRz = Rz, av(xz)Rz = —Rz, av(yz)Rz — —Rz
and, of course, ERZ = Rz. We find from the C^v character table that Rz behaves like
the A-2 line (i.e., has A% symmetry). Similarly, Rx and Ry are found to have B-z and BI
symmetry, respectively, so that

Removing the translational and rotational degrees of freedom from T3N leaves

At first sight this procedure might appear to be flawed because the problem was set
up using Cartesian displacement coordinates instead of normal coordinates. The mass-
weighted Cartesian displacement coordinates Qi are related, however, to the normal
coordinates Qi by an orthogonal transformation
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Figure 7.27: The effect of av(yz) on Rz

Figure 7.28: The effect of av(xz) on Rz.

in which the 6 (or 5) rotations and translations are included in the set of Qi.
The STV-dimensional matrix representation is generated from the equation

and substituting equation (7.164) for q into equation (7.165) gives

or

Upon multiplying (7.167) from the right by the inverse 1* we obtain

so that
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The matrix representation generated by using normal modes D®(R) is thus related by
a similarity transformation to that generated using mass-weighted Cartesian displace-
ment coordinates. This means that the two representations are equivalent and have
the same characters. Thus the symmetries of the normal modes of vibration Qi are
correctly generated by using the <fe.

For the H^O molecule the three modes correspond to the24

symmetric stretching mode ^i(«i) 3657cm"1,
bending mode ^2(^1) 1595cm"1,
antisymmetric stretching mode ^3(62) 3756cm"1 ,

where the rules for labeling normal modes of vibration have been used. Normal modes
are labeled in numerical order as i/^, ^2? ^3, and so on. The order used for labeling
modes follows the order listed in Herzberg's character tables24 (sometimes called the
Herzberg order) which proceeds as follows: A\ before A% before B\ before B^ using C<2V

as an example. For a given symmetry type the frequencies of the modes are arranged
in descending order. Finally, lowercase letters are used to describe individual modes
similar to the use of lowercase letters for the individual molecular orbitals (Chapters
9 and 10). The use of capital letters for irreducible representations is restricted to the
total vibrational or electronic symmetry of a molecule. In the case of H2O the two a\
modes precede the 62 mode, and among the two ai modes v\ is chosen to be the higher
frequency symmetric stretching mode. Degenerate modes are given only a single label
so that for NHs, 37V — 6 = 6, but the modes are fi(ai), ^2(^1), ^(e), and v±(e). In
this case there are two modes for each frequency, 2/3 and 1*4. For linear triatomics, v-i is
always the bending mode.

Selection Rules for Vibrational Transitions
Within the harmonic approximation, the vibrational wavefunction for the ground state
is given by the totally symmetric product

in which

and NQ is a normalization constant. The ground state wavefunction belongs to the AI
irreducible representation, since all of the group operations leave IJJQ unchanged. If the
jth vibrational mode is excited by one quantum, then the wavefunction becomes

in which the harmonic oscillator wavefunction for Vj = 1 has replaced that for Vj =0.
The Hermite polynomial part of the wavefunction is H\(^j] — 2£j for Vj = 1 (Table
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7.1). The fact that ^ is proportional to Qj means that t/>i is of the same symmetry
as QJ,

The intensity of an infrared transition is given by the absolute square of the tran-
sition moment integral

in which ifif and ^ are final and initial vibrational wavefunctions within the same
electronic state, /Lt is the dipole moment function, and the integral is over all vibrational
coordinates (dQ = dQi dQi • • • dQ^N-o)- The dipole moment depends on the positions
of the nuclei and hence on the set of Qi. By expressing the dipole moment as a Taylor
series expansion

equation (7.172) becomes

The first term on the right-hand side of this expression is zero because the vibrational
wavefunctions are orthogonal. For a fundamental vibrational transition

and

in which t/;/ differs from ^ only in the jib. normal mode, and the intensity of a vibra-
tional mode is

All of the terms but the jih one in the sum in (7.174) vanish due to the orthogonality
of the Hermite polynomials and the neglect of higher-order terms. In fact //<_i = 0
unless a single vibrational mode changes its vibrational quantum number by one unit,
leading to the selection rule AUJ = ±1 (arising from the properties of Hermite polyno-
mials, equation (7.55)). This selection rule directly follows from the use of the harmonic
oscillator wavefunctions for fa and from the truncation of the expansion of the dipole
moment (7.173) at terms linear in Q. Consequently, to a first-order approximation, the
intensity of an infrared transition is proportional to the square of the dipole moment
derivative (7.177).

The intensity of electric dipole-allowed vibrational transitions is given by the square
of equation (7.172). The integrand ^ff^fa must be totally symmetric, and F(^) <8>
F(/i) 0F('0i) must therefore contain the A\ irreducible representation. For fundamental
transitions, tpi has A\ symmetry while ̂  belongs to the irreducible representation of
the jth mode, which is excited up to v3•, — 1. The dipole moment operator is a vector
IJL = /ixei + /%62 + /^zes that behaves like the point r = xei -f y&i + ze% when the
symmetry operations of the group are applied. This implies that
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and •?/>_/• must have the same symmetry as x or y or z to make the direct product

symmetric. For convenience the symmetry of the Cartesian x, y, and z components are
listed to the right of the character table (Table 7.4) as are the rotations Rx, Ry, and
R

since i'i(ai), ^2(^1), and ^s(62) have the same symmetry as z or y.

Table 7.4: The C 2v Character Table

C2v E C2 &v(xz) (Tv(yz)

Ai

Bi

1
1
1
1

1
1

-1
-1

1
-1
1

-1

1
-1
-1
1

z
Rz

JU 2 •tL'y

0, Rx

Considerable information about the vibrational modes of molecules can be predicted
with the use of character tables and a table of characteristic vibrational frequencies

(Table 7.5). For example, the chloroform molecule HCCla molecule of C%v symmetry

has nine normal modes that reduce as

There are six distinct fundamental vibrational frequencies and all modes are infrared
(and Raman) active. Since there are three C—Cl bonds and one C—H bond, there must
be four stretching modes and 9 — 4 = 5 bending modes. If the three C—Cl stretching
modes are represented by three bond-stretching coordinates Ari, Ar2, and Ara, then
the three-dimensional representation reduces to a\ © e. Consulting the group frequency
table (Table 7.5), one therefore predicts a C—H stretching mode of 2960 cm"1 («i)
and two C—Cl stretching frequencies (ai and e) at 650 cm"1.

The symmetry of the bending modes can be predicted by removing two ai modes
and one e mode from the total of three ai and three e modes. The bending modes must
have ai, e, and e symmetry. For the C—Cl bonds, three bond-bending coordinates can
be defined (A#i, A#2) and A#s) and they form a reducible three-dimensional repre-
sentation. The three C—Cl bending modes therefore reduce to an a\ and an e mode.
This means that the remaining bending mode must be a C—H bend of e symmetry.
Predicting the frequency of bending modes is very difficult, but a bending C—H mode
in CHCla should have a somewhat lower frequency than in EkO (say ~ 1000 cm"1),
while the C—Cl bends might be near 300 cm"1. The frequencies of bending modes are
typically half of the bond-stretching frequencies. The predictions and observations for
CHCls are summarized in Table 7.6. The numbering of the frequencies follows the order

in the character table, and within a given symmetry type the modes are numbered in
decreasing frequency order.

Vibration-Rotation Transitions of Linear Molecules

In many respects, the vibration-rotation transitions of linear polyatomic molecules
closely resemble those of diatomic molecules. The molecular symmetry of linear poly-

z about the x-, y-, and z-axes. All three normal modes of H^O are infrared active

A

B



248 7. Vibrational Spectroscopy

Table 7.5: Infrared Group Wavenumber Table

Group v/cm"1 Group

3300

3020

2960

2050

1650

900

1600

1700

2100

1100

650

560

~/ -iv/cm

3600

3350

2500

1295

1310

700

1100

1000

1450

300

Mode

v\
"2

v*
1/4

"5

^6

500

Table 7.6: Vibrational Modes

Symmetry Type of Mode

a\ C — H stretch
a\ symmetric C — Cl stretch
a\ symmetric C — Cl bend
e C— H bend
e C — Cl stretch
e C— Cl bend

of CHC13

Prediction

2960cm-1

650 cm"1

300 cm"1

1000cm-1

650 cm"1

300 cm"1

Observation25

3033cm-1

667 cm"1

364 cm"1

1205cm-1

760 cm"1

260 cm"1

atomic molecules is either DOO/I or Coow and there are 3./V — 5 modes of vibration. Let us
consider the H—C=N and H—C=C—H molecules as examples. The HCN molecule24

has three fundamental modes of vibration: the C—H stretching mode VI(G+} at 3311
cm"1, the bending mode ^(TT) at 713 cm"1, and the C=N stretching mode ^s(cr+) at
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2097 cm"1. Notice that linear triatomics are an exception to the frequency numbering
scheme because 1/2 (TT) is reserved for the bending mode. Certain functional groups such
as C—H and C=N have characteristic vibrational frequencies. Some of these group
frequencies are listed in Table 7.5. The bending mode is doubly degenerate because of
the possibility of bending in two mutually orthogonal planes. All modes of HCN are
infrared active although 1/3 is very weak.

The acetylene molecule H—C=C—H has DOO/I = Coou ® Ci symmetry. There are
3N — 5 = 7 modes with three stretching modes (the number of stretching modes equals
the number of bonds) and 7 — 3 = 4 bending modes. The fundamental modes24 are:

the symmetric C—H stretch ^i(cr+) at 3373 cm""1,

the C=C stretch i^(<r+) at 1974 cm'1,

the antisymmetric C—H stretch ^s(cr+) at 3295 cm"1,

T
the trans bend H—C=C—H v±(irg) at 612 cm ,

and the cis bend H—C=C—H ^(TTU) at 729 cm"1.

The numbering of the modes is determined by the conventional order of the irreducible
representations in the DOO/I character table of Herzberg. Also, notice that the 1*4 and v§
bending modes are doubly degenerate with two modes associated with each frequency.
The ground vibrational state has cr+ symmetry, and because z belongs to cr+ and £, y
belong to 7ru, only the <r+ and 7ru modes (^3 and 1/5) are infrared active.

The number and types of normal modes can be quickly determined for all linear
molecules. If there are N atoms, then there will be N — 1 stretching frequencies and
((37V — 5) — (N —1))/2 = N — 2 bending frequencies. In the case of symmetric molecules
of DOO/J symmetry, the g or u labels need to be added by symmetrizing the stretching of
bonds or the bending of the molecule. For example, for acetylene there is a symmetric
C—H stretching mode of <j+ symmetry (v\ = 3373 cm"1) and an antisymmetric C—H
stretching mode of <r+ symmetry (^3 = 3295 cm"1).

The fundamental vibrational transitions of linear molecules are either of the E — E
(parallel) type for stretching modes or of the II — E (perpendicular) type for bend-
ing modes. For symmetric linear molecules, which belong to the DOO/I point group, g
and u subscripts are needed. The terms parallel and perpendicular are used because
the transition dipole moment is either parallel (/iz) or perpendicular (fjix and jUy) to
the molecular z-axis. Allowed parallel transitions arise from the /u2 component of the
transition dipole moment with cr+ symmetry,

while allowed perpendicular transitions arise from the //x and fJLy components,

The E — E transitions can have P and R branches only, so that the appearance of
the spectrum closely resembles that of the infrared spectrum of a diatomic molecule
(Figure 7.29).

The II — E transitions have P, Q, and R branches as shown in Figure 7.30. The
rotational energy levels associated with the II state are doubly degenerate because
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Figure 7.29: The ^3(0-+) antisymmetric stretching fundamental band of CC>2. Notice the
weaker bending hot band (01 ll — 0110) that is also present.

Figure 7.30: The ^(^u) bending fundamental band of CC>2.

/ = ±1, where / is the quantum number of vibrational angular momentum (Chapter
6). As the molecule begins to rotate, the two components for a given J begin to split
slightly because of the interaction of rotational angular momentum (J) with vibrational
angular momentum (1). The splitting Az/ is proportional to24
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and q is called the /-type doubling constant. It is useful to use parity labels to distin-
guish the two nearly degenerate levels for each J. There are many different types of
parity, but the two most common varieties are total parity and e/f parity. (A more
detailed description of parity is provided in Chapter 9.) Total parity considers the ef-
fect of inversion of all coordinates in the laboratory frame of the total wavefunction
^ = ^ei'0vib'0rot- This inversion operation E* inverts the laboratory coordinates of all
atoms in a molecule,

and leaves the wavefunction unchanged, except possibly for a change in sign. Total
parity can be either positive + (upper sign) or negative - (lower sign). Total parity
is commonly used to label the energy levels of atoms as well as the rotational energy
levels of diatomic and linear molecules.

This laboratory symmetry operator E* is different from the geometric molecular
symmetry operator i discussed previously. Only D^h molecules have i as a symmetry
operator, while all molecules have E* as a symmetry operator. Note that E* is a very
peculiar operator because it inverts the entire molecular coordinate system as well as
the location of the nuclei. It is therefore a permutation-inversion operator rather than
a molecular symmetry operator of the type discussed in Chapters 2 and 3.

The wavefunction can be written as ^ = ^ei^vib^rot, and the effect of E* on each
part must be considered. The operation E* leaves the relative positions of the nuclei
unchanged, so E*^v\b = V-Vib for nondegenerate a+ vibrations. The rotational part of
the wavefunction, ̂ rot = IJJJM(@,<P}i changes sign for odd J under the operation E*,
since

The effect of E* on tpe\ is much more difficult to ascertain because ^e\ is a function of
internal molecular coordinates. It is possible to show the surprising result26 that E* in
the laboratory frame is equivalent to av (chosen to be av(xz), for convenience) in the
molecular frame. Thus for the totally symmetric electronic ground state X1^"1",

The total parity of a linear molecule wavefunction alternates with J as shown in
Figure 7.31 for a XE+ state. Since this alternation of total parity with J occurs for all
electronic states, it is convenient to factor out the J dependence and designate those
rotational levels with a total parity of +(—1)J ase parity and those with a total parity
of -(-1)J as / parity (for half-integer J a total parity of +(—I)-7"1/2 corresponds to
e, —(—I)7"1/2 to /).27 The e/f parity is thus a J independent parity labeling scheme
for rovibronic wavefunctions (rovibronic = rotational x vibrational x electronic). All
XE+ rotational energy levels, therefore, have e parity (Figure 7.31). The e/f parity
labels correspond to the residual intrinsic parity of a rotational level after the (—1)J

part has been removed. Note that Figures 7.31, 7.32, and 7.33 also apply to electronic
transitions (Chapter 9).

The one-photon, electric-dipole selection rule + <-> — is derived by recognizing that
the parity of fjL is —1 (i.e., E*p, = — 1/x), while the parity of the transition moment
integral
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Figure 7.31: Parities of the rotational levels in a 1E+ state.

Figure 7.32: Parity labels for the rotational levels of a IT state with a negative value for the
parameter g, that places / above e for each J.

must be +1. This +/— selection rule becomes e <-» e: f <-» / for P and R branches,
and e <-» / for Q branches in the e/f parity labeling scheme.

Parity labeling is essential when nearly degenerate energy levels are present, as
for example, in II vibrational states of linear molecules. For a II state / = ±1, and
it is possible to form linear combinations of the vibrational wavefunctions from the
two-dimensional harmonic oscillator wavefunctions (Chapter 6), so that they are eigen-
functions of av:

Note that av$((f)} = $(?r — <f>) so that the upper sign in equation (7.186) corresponds
to / parity, while the lower sign corresponds to e parity. The total parity still changes
with J, as shown in Figure 7.32, while the e/f ordering is determined by the sign of q,
the /-doubling constant. Therefore, e/f parity labels are convenient for differentiating
between the two near-degenerate levels associated with /-type doubling (Figure 7.32).

In a II — E transition (Figure 7.33) the Q branch lines terminate on rotational levels
of the opposite parity (/ <-» e), as opposed to P and R branch lines that terminate on
rotational levels of the same parity (e «-> e). Thus the usual combination differences
involving P and R branches provide rotational constants for the upper and lower levels
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Figure 7.33: Energy-level diagram for a II — E transition.

of e parity only, while analysis of the Q branch yields constants for the upper levels of
/ parity.

The +/— total parity labels or e/f parity labels are unrelated to the g/u vibrational
labels used in D^h molecules in which

where + corresponds to g and — corresponds to u. Since DOO/I = Coov <g) Ci, the g and
u labels are required when the molecule has a center of symmetry.

Nuclear Spin Statistics
An additional symmetry requirement is associated with the constraint placed on mole-
cular wavefunctions by the Pauli exclusion principle. Because identical nuclei are in-
distinguishable, their exchange can, at most, change the sign of the total wavefunction
V'totai that includes nuclear spin. If PI 2 is the operator which exchanges identical nuclei,
then the Pauli exclusion principle requires that

For particles with integer nuclear spin (/ = 0,1,2,...), called bosons, the sign in equa-
tion (7.188) is found to be positive (+1), while for fermions with half-integer nuclear
spin (/ = i, |, |,...) the negative sign (—1) applies.

The total wavefunction can be written as a product of a nuclear spin part V'spin and
a space part, ^space = ifr,

so that the effect of PI 2 °n either part can be examined separately. When PI 2 operates
on the "normal" space part of the total wavefunction of a symmetric linear molecule
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the + levels are labeled as symmetric or s, and — as antisymmetric or a.
For a diatomic molecule, the P\2 permutation operator in the laboratory frame

is equivalent to the Cz(y} symmetry operator in the molecular frame of a diatomic
molecule.26 This surprising equivalence can be rationalized if one remembers that the
C^y) operation does not, in fact, exchange the nuclei. The C-2 operator changes the
electrons, the nuclear displacement vectors, and the rotational variables 9 and 0, but
leaves the positions of the nuclei unaltered. The location of the nuclei define the mole-
cular 2-axis, which is not affected by a symmetry operation such as C^y). Clearly this
is physically equivalent to just interchanging the nuclei while leaving the positions of
all of the other particles fixed.

The nature of the nuclear spin part of V^totai depends on the particular nuclei under
consideration. For example in the F—Be—F or H2 molecules of D^h symmetry, the
nuclear spins of F and H are ^. The symmetric and antisymmetric nuclear spin wave
functions can be constructed for nuclei A and B with OL— |m/ — +^),/3 = |m/ = —5) ,
as

and

The total wavefunctions must obey the equation

because H and F nuclei are both fermions. This means that s symmetry spatial wave-
functions must be combined with antisymmetric spin functions, while a symmetry spa-
tial wavefunctions are combined with symmetric spin functions. Since there are three
symmetric nuclear spin wavefunctions but only one antisymmetric function, the energy
levels with a symmetry have statistical weights three times those of the s levels. This
means that, all other things being equal, the transitions from a levels are three times
as intense as are those from s levels. Note that s and a labels describe the wavefunction
exclusive of nuclear spin.

The P\2 permutation operator in the laboratory frame, or the C^y) symmetry
operator in the molecular frame, needs to be applied to the total wavefunction

Once again one can conclude that for a symmetric vibration and for a symmetric 1 £+
electronic state, C^y) has no effect. The operation of C^(y) on ^>rot replaces 9 by IT — 0
and 4> by ir + (f> in YJM (#> 0) or
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Figure 7.34: Nuclear spin weights and labels for a 1St state with two equivalent spin-^ nuclei.

Figure 7.35: Infrared emission spectrum of the ^3(0^) antisymmetric stretching mode of
BeF2.

The energy-level diagram for H2 or BeF2 is illustrated in Figure 7.34. The selection
rules on s and a are s <-> s and a <-» a for transitions. The levels with the larger
nuclear spin weighting are designated ortho, while the levels with the smaller weighting
are designated para. The effect of nuclear spin statistics can clearly be seen in the
spectrum28 of BeF2 (Figure 7.35).

The g and u symmetry labels for an electronic or vibrational state are determined
by the i symmetry operator acting in the molecular frame or by the Pi^E* product of
permutation-inversion operators in the laboratory frame. This is because the E* op-
erator first inverts all coordinates of all particles and then PI 2 places the nuclei back
into their original position. The net effect of PuE* is thus to invert the electronic
coordinates through the origin (i.e., the operator i}. This also means that the s or a
symmetry (associated with PI2) of a rovibronic wavefunction operator is determined
by the g or u symmetry (associated with i or Pi^E*) of the vibronic part of the wave-
function (vibronic = vibrational x electronic; rovibronic = rotational x vibrational x
electronic) and by the total parity (associated with E*). The various possibilities are
illustrated in Figure 7.36.

The exchange of the two equivalent nuclei in a homonuclear diatomic molecule
(Pi2 operator) can be carried out in other ways equivalent to the operator C^y}. For
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Figure 7.36: Parities for the rotational levels of JE states of D^h molecules.

example, all of the particles are inverted through the origin by the E* operator in
the laboratory frame and then the electrons (and the nuclear displacement vectors)
are inverted back by the i operator in the molecular frame. This leaves the two nuclei
exchanged; mathematically iE* = Pi2E*E* = Pi2, as required. Thus, the s or a parity
is determined by the total parity (E* operator) and the g or u parity of the electronic
state (i operator) as shown in Figure 7.36.

Finally, the superscript + or - on the *E+ and 1£~ symbols is necessary in order
to distinguish between the effect of av on the electronic (or vibronic) wavefunctions,

For doubly degenerate vibronic wavefunctions II, A, 3>, and so forth, one component
can always be labeled + while the other can be labeled —. However, writing II±, A±,
$± generally serves no useful purpose, so that only for E states is the superscript + or
— used.

The effect of nuclear spin statistics is most apparent for molecules such as CC>2 for
which the nuclear spins of equivalent nuclei are zero. In this case the equivalent nuclei
are bosons so only the s levels are present. The a levels have no antisymmetric nuclear
spin functions to combine with and are therefore absent. This means that all of the odd
J lines are missing in the infrared spectrum of the 1^3 mode of CC>2 and the spacing
between the lines is approximately 4J3. In general the relative nuclear spin weights5 for
two equivalent nuclei are //(/ + !).

Excited Vibrational States of Linear Molecules
The symmetry of excited Vibrational states of linear molecules is obtained by taking
direct products of the symmetry species. For example for a doubly excited state (i>2 = 2)
of II symmetry one obtains II ® II = E+ © [E~] © A. This product, however, can be
reduced to a symmetric part (E+ © A) and an antisymmetric part (E~), but only
the symmetric part is allowed by symmetry (cf. the Pauli exclusion principle). In the
direct product tables of Appendix C, the antisymmetric part of the product is in square
brackets. Notice that II <8> II is the same as coupling two / = ±1 Vibrational states to
make a / = ±2 (A) and two / = 0 states (E+ and E~). However, the /i = +1, /2 = —1
and /i = — 1, /2 = +1 states are indistinguishable, so that only a E+ results. Note that
if the H (gi H product resulted from a vibronic product where a H electronic state was
coupling to a TT bending mode or if each vr was from a different vibrational mode, then
both E+ and E~ states would be present. The stack of energy levels for the bending
mode of a linear triatomic molecule, such as HCN, is shown in Figure 7.37. For a two-
dimensional harmonic oscillator, energy levels with the same v are degenerate, but this
degeneracy is removed when anharmonicity is taken into account.



Figure 7.37: Bending energy levels of a linear triatomic molecule. Notice that / is often written
as a superscript on V2, i.e., a vibrational state is labeled by v\v2fa .

The energy levels for a collection of 37V — 5 harmonic oscillators (37V — 6 for nonlinear
molecules) is

r is the degeneracy of the rth vibrational mode. For the anharmonic oscillator
the modes are no longer independent and cross-terms are present, so that24

in which the index t applies to degenerate modes with vibrational angular momentum
It- As an example, the vibrational energy-level expression for HCN is

For most large molecules the constants xrs and gt? are not known. The vibrational
energy levels (in cm""1) for HCN are given by29

in which higher-order terms are dropped.
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where d
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Figure 7.38: Energy-level diagram for some of the vibrational levels of CO2- The solid lines
correspond to infrared transitions, while the dotted transitions are observed by Raman spec-
troscopy (Chapter 8).

The energy level diagram is quite complicated even for a triatomic molecule. For
example the energy levels of some of the known states of CO2 are shown in Figure 7.38.
The selection rules for transitions among the excited energy levels are derivable, as
usual, from the transition dipole moment integral. The general selection rules can be
summarized as A/ = 0, ±1, g <-» w, and E4" <*> S~.

The various possibilities are:

1. A/ = 0 with / = 0. This is a parallel transition of the E+ — E+ type with P and
R branches (AJ = ±1).

2. A/ = ±1. This is a perpendicular transition such as II — E, A — II, and so forth,
with P and R (AJ = ±1) branches and a strong Q branch (AJ = 0).

3. A/ = 0 with / ^ 0. Transitions of the type II — II, A — A, and so forth, with
P and R branches and weak Q branches. The Q branch lines are not always
observed. The relative intensities of the lines in the various branches are given by
the rotational populations and the Honl-London factors5 (from Table 9.4 with A
replaced by I}.

Some of the possible transitions are displayed in the energy-level diagram for CC>2
(Figure 7.38). Notice that in addition to fundamentals, overtones, and hot bands, transi-
tions such as Ol1! <— 000 are possible. These transitions, in which the quantum numbers
for two or more modes change, are called combination bands. For example, all possible
allowed transitions among the first four bending energy levels of HCN are illustrated
in Figure 7.39.
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Figure 7.39: All possible allowed transitions among the first four bending energy levels of a
triatomic molecule such as HCN.

Figure 7.40: Vibrational modes25 of CHsF with only one member of each degenerate pair of
modes displayed.

7.3 Vibrational Spectra of Symmetric Tops

Consider a molecule such as CHaF with 3N — 6 = 9 modes of vibration. The application
of group theory indicates that there are three a\ modes and three e modes25 of vibration
using the C^v character table. The four bonds in the molecule give rise to four stretching
modes: the three C—H stretches and a C—F stretch. The symmetry of the C—H
stretching modes are ai and e, while the C—F stretch has ai symmetry. The remaining
five of the nine possible modes must be bending modes. The H—C bending modes can
be reduced to a symmetric CHs bending mode (umbrella mode) and an antisymmetric
CHa bending mode of e symmetry. The symmetry of the —C—F bending mode (or
CH3 rock) is e (Figure 7.40).
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Figure 7.41: A parallel A\ — A\ transition of a symmetric top molecule.

As for linear molecules, transitions in symmetric tops can have transition dipole
moments parallel to the z-axis (symmetry axis) or perpendicular to the z-axis. Parallel
transitions are of the A\ — A\ type, while perpendicular transitions are of the E — A\
type. The A\ — A\ energy level diagram is given in Figure 7.41. The transitions obey
the parallel selection rules t±K = 0 with AJ = ±1 for the K' = 0 <— K" — 0 transition
and AJ = 0, ±1 transitions for K ^ 0. It is useful to note that these are exactly the
same selection rules as obtained for the linear molecule, with K playing the role formerly
played by /. Indeed the intensity expressions are given by the same Honl-London factors
given in Table 9.4 with K replacing A. The transitions associated with each K are called
sub-bands. The observed spectrum can be viewed as a superposition of sub-bands as
shown in Figure 7.42. At low resolution the band exhibits the characteristic PQR
pattern, Figure 7.43. When examined at higher resolution, the K splittings for each
rotational line are resolved (Figure 7.44).

Coriolis Interactions in Molecules

The E—Ai type transitions of a symmetric top molecule require the addition of Coriolis
terms to the vibrational Hamiltonian operator. Coriolis forces are very important for
the doubly degenerate E level.

Consider a molecular reference frame xyz rotating in space relative to the labo-
ratory coordinate system XYZ. This means that the molecular frame of reference is
an accelerated coordinate system, which will have "fictitious" centrifugal and Coriolis
forces. These forces are not present when the molecule is viewed in the inertial labora-
tory coordinate system. It is more convenient, however, to work in the molecular frame
and to live with the presence of centrifugal and Coriolis forces.

The origin of centrifugal forces are best explained by considering a particle of mass /JL
rotating at a constant angular velocity uo (Figure 7.45). This models a rotating diatomic
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P(12) P(10) P(8) P(6) P(4) P(2) Q R(0) R<2) R(4) R(6) R(8) R(10) R(12)

Figure 7.42: Sub-bands of a parallel transition of a symmetric top. On the top the sub-bands
are shown separately, and they are combined to simulate a real spectrum in the bottom panel.

Figure 7.43: The infrared spectrum of the CHaBr 1/3 mode. Notice the presence of two Q
branches, one due to CH^Br and the other to CH-pBr.

molecule of reduced mass p, as seen from the laboratory frame. Although the magnitude
of the velocity of the particle is constant, the direction of the velocity is constantly
changing (Figure 7.45). In the laboratory frame the particle is constrained to move in
a circle by application of a force of magnitude
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Figure 7.44: The K structure of two rotational lines of the CH3Br v3 mode. The intensity
alternation is caused by nuclear spin statistics.

Figure 7.45: A rotating particle of mass //, viewed in the laboratory frame and in the rotating
(molecular) frame.

The particle is therefore undergoing acceleration, since Newton's second law is

In the rotating molecular frame (Figure 7.45) the particle is stationary since the angular
velocity uj of the particle and of the molecular frame is the same. A new centrifugal
force has appeared that exactly balances the force T. As anyone who has been in a car
that corners sharply can attest, these "fictitious" forces are very real in an accelerated
frame of reference.

A Coriolis force is the second type of fictitious force that can appear in an accelerated
coordinate system. Consider a particle of mass // initially moving at a constant angular
velocity aj (Figure 7.46). Some time later (position 5 in Figure 7.46) the particle is
released and proceeds to move in a straight line at constant velocity because there
are no applied forces (Newton's first law). After the particle has been released, the
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Figure 7.46: A particle is constrained to move in a circle at a constant angular velocity u
(positions 1 to 5). At 5 the particle is released and continues its motion unconstrained by
external forces (positions 6 to 8).

motion in the laboratory frame is simple, but when viewed in the rotating frame the
motion appears peculiar. In the frame rotating with an angular velocity u> the particle
moves both radially at a constant velocity vradiai and veers to the right (Figure 7.46).
The particle seems to veer to the right because the rotating frame is rotating out
from underneath the particle moving at a constant velocity in the laboratory frame.
The motion of the particle to the right is caused by a "fictitious" Coriolis force. The
Coriolis force is

where v' is the velocity in the rotating frame. The magnitude of the Coriolis force is

The Coriolis force is responsible for the counterclockwise rotation of tornados and
hurricanes in the northern hemisphere. This is because the Earth is a rotating reference
frame that has a Coriolis force that makes the winds veer to the right in the northern
hemisphere.

Coriolis forces are also important in molecules. Consider the Hj molecule that has
the structure of an equilateral triangle with D$h symmetry.30 The 37V — 6 = 3 modes
of vibration are shown in Figure 7.47. The degenerate vibration v^ at 2521 cm"1 has
two orthogonal modes of vibration via and v^b that can be chosen as shown in Figure
7.47. If the vibrational mode of the molecule is v^a, then the Coriolis forces (7.203)
act as shown by dashed lines in Figure 7.48. The Coriolis forces acting on via lead to
the excitation of i^ft! when the molecule is in i/26, the Coriolis forces excite v^a- This is
analogous to the strong coupling of two pendula of the same frequency. The molecule
will therefore rapidly convert back and forth between v^a and v-x>. The v<ia and 1/26
modes are thus coupled via a first-order Coriolis effect.



264 7. Vibrational Spectroscopy

Figure 7.47: The vibrational modes of H^.

Figure 7.48: Coriolis forces acting on the two degenerate components of the 1/2 mode of H^

Figure 7.49: The H;j~ molecule has ±|C|ft units of vibrational angular momentum in the z/2
mode.

Linear combinations of v<ia and t>26 that have vibrational angular momentum (Figure
7.49) can be formed. In this case the magnitude of the vibrational angular momentum25

is (,h where — 1 < £ < 1. Notice that unlike linear molecules for which the vibrational
angular momentum quantum number I is integral, £ for a symmetric top is not neces-
sarily integral.
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Figure 7.50: Rotational energy levels of a symmetric top molecule in a doubly degenerate
vibrational state.

Vibrational angular momentum changes the energy-level formula. When vibrational
angular momentum is present in a molecule, J becomes the vector sum of the rotational
angular momentum and the vibrational angular momentum. Note that neither the pro-
jection of the vibrational angular momentum (TTZ) nor the projection of the rotational
angular momentum (Jz — TTZ) is quantized as an integer about the molecular 2-axis.
The projection of the total angular momentum (J2), however, is quantized about the
molecular 2-axis with a quantum number designated as K. The rotational Hamiltonian
operator becomes25

in which TTZ is the vibrational angular momentum operator about the symmetric top
axis. Expanding the last term in equation (7.205), dropping the pure vibrational term
containing Tr2, an<^ taking matrix elements of H give the energy levels as

or

In equations (7.206), it is assumed that there are £fi units of vibrational angular mo-
mentum about the symmetry axis of the symmetric top. The rotational and vibrational
angular momenta about the top axis can either be in the same direction (— sign) or
in the opposite direction (+ sign). For historical reasons the +|£| with +\K (and —1£|
with — \K\) levels are labeled as (+/) levels and the -f|£| with —\K\ levels (and —1£|
with +\K ) are labeled as (—/) levels. The energy-level diagram for a doubly degenerate
vibrational level of a symmetric top molecule is given in Figure 7.50.
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Figure 7.51: The energy-level diagram for the E — A\ transition of a symmetric top.

The E — AI energy-level diagram25 is given in Figure 7.51. The energy-level struc-
ture of an E vibrational state is complicated by the presence of a first-order Coriolis
interaction between the two components. The selection rules are AK = ±1 and A J — 0,
±1. Note also that for AK = +1 the transitions connect to the (+/) stack, while for
AK = — 1 they connect with the (—/) stack. The transition can again be represented
by a superposition of sub-bands. Notice how the sub-bands do not line up as they do
for a parallel transition, but they spread out (Figure 7.52). Each sub-band is separated
by approximately 2(A(l — Q — B). This gives rise to a characteristic pattern of nearly
equally spaced Q branches (Figure 7.53).

7.4 Infrared Transitions of Spherical Tops

Spherical tops such as CfLi, NH^, SFe, and CGO belong to the point groups 7^, O/j,
or Ih- Let us consider the CH4 molecule.25 There are 37V — 6 = 9 modes made up of
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Figure 7.52: Simulated spectrum of an J5 — AI perpendicular transition of a symmetric top.
The individual sub-bands are combined to give the total spectrum in the bottom panel. The
notation for the Q branches is A/fQ/^//, with the AA' = ±1 superscripts denoted as r and p.

Figure 7.53: The CFaCl z/4 mode exhibiting sub-band Q structure. The intensity variation in
the Q branches is due to nuclear spin statistics.

four stretching modes and five bending modes (Figure 7.54). The four C—H stretch-
ing coordinates can be reduced to a symmetric ai stretch (i>i) and a triply degenerate
antisymmetric C—H stretch of £2 (or f^} symmetry (1/3). Triply degenerate irreducible
representations are labeled as t (or T) by inorganic chemists and electronic spectro-
scopists, but as / (or F) by many vibrational spectroscopists. The five bends reduce to
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v^aj 2914 cnrT1

symmetric C-H stretch

v2(e) 1526 cm'1 bend

v3(t2) 3020 cm'1

antisymmetric C-H stretch

v4(t2) 1306 cm'1 bend

Figure 7.54: The normal modes of vibration of CFU with only one member of each degenerate
mode shown.

a pair of e modes (1/2) and a triply degenerate £2 bending mode (^4). Only ^3 and 1/4
are infrared active, but all of the modes are Raman active (Chapter 8).

The rotational energy levels of a spherical top are given by BJ(J + 1); however,
there is both a (2J+ l)-fold K degeneracy and a (2J + l)-fold M degeneracy. The total
degeneracy is therefore (2J + I)2 for each rotational level. A more detailed analysis
that takes into account the effects of centrifugal distortion and anharmonicity predicts
that the K degeneracy is partially lifted. The number of levels into which each J splits
can be determined by group theory. These splittings are called cluster splittings and a
surprisingly sophisticated theory31 is required to account for their magnitude. A picture
of the effect of some cluster splittings on a transition is presented in Figure 7.55.

It turns out that E states of a spherical top do not experience first-order Coriolis
coupling, so that they have the same energy-level pattern as AI states. However, T%
states experience a first-order Coriolis effect and split into three components,31

and

The energy-level pattern is given in Figure 7.56 for a T<z — AI transition. Transitions
with AJ = 0, ±1 are allowed, but with the additional restrictions:
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Figure 7.55: The cluster splittings of the P(9) line of the 1/3 mode of CH4.

Figure 7.56: The energy-level diagram of a Ta — A\ vibration-rotation transition of a spherical
top.
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Figure 7.57: The infrared spectrum of the CtU 1/3 mode.

and

The spectrum of a "typical" spherical top is given in Figure 7.57. At low resolution the
spectrum exhibits the characteristic PQR contour similar to a symmetric top (Figure
7.43).

7.5 Vibrational Spectra of Asymmetric Tops

The vast majority of polyatomic molecules are asymmetric tops. The E^O molecule has
three vibrational modes (Figure 7.58), with all modes both infrared and Raman active
(Chapter 8).

The vibration-rotation transitions of asymmetric tops are classified as a-type, b-
type, and c-type, depending on the orientation of the transition dipole moment relative
to the principal axes. For H2O, the oscillating dipole moments of the v\ and v^ modes
are along the z(b) direction and the transitions are classified as 6-type. The v-$ band of
E^O has an oscillating dipole moment along the y(a] direction giving rise to an a-type
transition. For molecules of sufficiently low symmetry, such as HOD, hybrid bands can
occur, in this case a6-hybrid bands.

The selection rules for a-type, 6-type, and c-type transitions are the same as for
microwave transitions. The selection rules are as follows:
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v^aj 3651 cm *
symmetric stretch

v2(aj 1595 cm"1 bend

v3(b2) 3756 cm'1

antisymmetric stretch

Figure 7.58: The normal modes of vibration of EhO.

Figure 7.59: The a-type mode z/n of ethylene, C2H4.

1. a-type bands, with

and AJ - 0, ±1, except for ̂  = 0 <- ̂  = 0, for which only AJ = ±1 is
possible;
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2. 6-type bands, with

and AJ = 0, ±1;

3. c-type bands, with

and AJ = 0, ±1, but for K'C = Q^K',! = 0, AJ = ±1 only.

Since many molecules are near-oblate or near-prolate symmetric tops, the general
appearance of asymmetric top bands often resembles either parallel or perpendicular
bands of a symmetric top. For example, the a-type v\\ band of C2H4 is shown in Figure
7.59. This mode is similar in appearance to the parallel transition of a symmetric top.

7.6 Vibration-Rotation Line Intensities

All molecules except homonuclear diatomics have at least one allowed vibration-rotation
band. Infrared spectroscopy is thus one of the most common techniques used for quali-
tative and quantitative analysis in chemistry. Infrared spectroscopy is also popular for
remote sensing of the earth and in astronomy. To the uninitiated, one of the confus-
ing aspects of quantitative vibration-rotation spectroscopy is the dozens of different
units used for line or band intensities,32"34 including km/mole for vibrational bands
by quantum chemists and cm/molecule for lines in the HITRAN35 database. Another
barrier is that most of the relevant equations cited in the literature32^34 are not in SI
units.

As always, the starting point is the set of basic equations that govern the absorption
and emission of radiation for a degenerate two-level system (section 5.7). The equation
for Beer's law, equation (5.120), for a line at frequency v, including the stimulated
emission correction is

In this form, Beer's law relates the observed intensity to the concentrations
(molecules/m3) in the upper state (-/Vi) and lower state (No) associated with a single
transition, rather than the more useful total concentration, N = ̂  Ni. The assumption
of thermodynamic equilibrium allows NI to be eliminated using the Boltzmann relation
(see section 5.7),

and NQ can be replaced by N using a relationship from statistical thermodynamics,36
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with q as the partition function and EQ the lower state energy (see the discussion
near equations (6.41) to (6.43) and near (6.87)). If needed, nuclear spin statistics (or
electronic or vibrational degeneracy) appear as an additional degeneracy factor in the
numerator and in q. Taking natural logarithms of equation (7.210) then leads to

for Beer's law. The term (1 — e~
hvwlkT} [s the correction due to stimulated emission

caused by population in the excited state. For quantitative work in the thermal infrared
region (y < 2 000 cm"1) the stimulated emission correction cannot be neglected at room
temperature.

For emission from an excited state \v'J') down to v"'«/"), the expression for the rate
is given by

with NI in molecules/m3. The total power emitted PJ>->J» (watts/m3) is thus

because each photon carries hv\Q of energy. Again it is convenient (but not necessary)
to assume thermodynamic equilibrium so that the concentration in the excited state,
NI, can be converted to the total concentration, TV, using equations (7.211) and (7.212).
The total power is then

and using equation (5.113) for AJ>-^J" gives

or

where equation (7.218) does not assume thermodynamic equilibrium. The quantity
Sj>j" is defined by equation (5.112) for both atoms and molecules (see below).

In Beer's law for absorption at v, equation (7.213), the product Nl is defined as the
column density, x, or "optical mass,"

with dimensions of molecules/m2, while the absorption coefficient a (m"1) is given as

The lineshape function g(y — VIQ) is included in the absorption cross section a (some-
times written as k(y] in the infrared literature) with the usual equation (section 5.7)



274 7. Vibrational Spectroscopy

The line strength Sj>j» is defined in exactly the same way for atoms and molecules
as

The line strength Sj> j» (in C2 m2 or in the non-Si unit of D2) is rarely tabulated in
favor of the related quantity

also often confusingly called a line strength or line intensity. The customary notation
and terminology uses the symbol S for three distinct but related quantities: the line
strength Sj>j», equation (7.222), the line intensity 5", equation (7.223) (often given
the symbol S in the infrared literature), and the Honl-London rotational factor Sfr/
(Chapter 9). To make matters worse all three quantities are often called "line strengths."
Implicit in all these equations is a uniform definition of a line as a transition between
two levels, «/' and J".

Although the integrated cross section J ' adv obtained by removing the lineshape
function g(v — V\Q) from equation (7.221) and the line intensity S' have the same units
(m2 s"1), they are different quantities. In particular, the cross section a in equation
(7.221) is associated with the form of Beer's law (equation (7.210)) that uses the con-
centrations NQ and NI of the molecules in the quantum states, while the line strength
6" is associated with Beer's law (equation (7.224)) that uses the total concentration N.

The definition of S', equation (7.223), allows Beer's law to be written as

Clearly the line intensity, 5", is an integrated effective cross section that can be deter-
mined by solving equation (7.224) as

with the integration covering a single line to eliminate the lineshape function, g(v — v\o).
The integration could also be over an entire band, in which case S' is interpreted as
a band strength. From equation (7.225), the SI units for 5' are thus m2 s"1 (or m2

s"1/molecule) but these are unfortunately almost never encountered.
The units of the effective integrated cross section S' are a major headache because

of the numerous choices possible for the quantities v, AT, / in equation (7.225). If v is
replaced by v in cm"1, / in cm and N in molecules/cm3, then 5' has the "HITRAN35

units" of cm"1/(molecule cm~2) or cm/molecule. If the integral (7.225) is taken over an
entire infrared band, and the cm of the HITRAN unit is converted to km and moles are
used instead of molecules in concentration, then the units km/mole favored by quantum
chemists are obtained for S'. The conversion from cm/molecule to km/mole requires
multiplication by the numerical factor of 1Q~5N& = 6.022 141 99 x 1018. Another possi-
ble choice is to measure concentration N in pressure units such as atmospheres, leading
to S' in cm~2/atm (with v in cm"1, / in cm). The conversion from cm~2/atm to HI-
TRAN units thus requires the use of the ideal gas law. To convert from cm~2/atm
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to cm/molecule, divide by the factor 0.101 325/fcT = 7.338933 x 1021/T. Finally the
conversion from HITRAN units (cm/molecule) to SI units (m2 s"1/molecule) requires
multiplication by 10~2co = 2997924.58. Pugh and Rao32 provide a convenient table
for converting between various possible units for the line intensity S'.

The HITRAN35 database includes line positions, v (in cm"1), integrated effec-
tive cross sections ("line intensity"), S' (in cm"1/(molecule cm"2)), the Lorentzian
halfwidth for pressure broadening by air (i.e., Az/!/2/2 for g\^(y — V\Q)} in cm^/atm
(as well as the self-broadening coefficient), and the lower state energy (£Q in cm"1) all
reported at a standard temperature T — 296 K for some 39 molecules of atmospheric
interest. With these quantities the transmission of the atmosphere can be calculated.

The integrated absorption cross section / adv can also be used to compute emission
spectra. The conversion from the cross section a to the Einstein Aj'^j" value is given
by equation (5.121),

Integration over frequency for a line to eliminate the lineshape function g(y — V\Q) gives

or

As usual for intensities, care with units is required because equation (7.228) assumes SI
units. The integrated cross section § adv can be converted to S' using equation (7.223)
and the relationship in SI units is

The intensity relationships in Chapter 5 apply, but for J adv rather than S'.

Line Intensity Calculations

Line intensities S' can be treated as purely empirical quantities that must be determined
by measurement for each individual rotational line in a spectrum. Line intensities, how-
ever, can be related back to more basic quantities such as dipole moment functions or
transition dipole moments that can be computed by the methods of ab initio quantum
chemistry or determined from other experiments. A theoretical model for line intensi-
ties is also needed for interpolation, extrapolation, and compact representation of line
intensity data.

For diatomic molecules the line strength Sj/j// , equation (7.222), can be written as
a product of a vibrational part, \M.V>V» 2, a rotational part, 5^//J, called a Honl-London
factor, and a correction term, F(m), called a Herman-Wallis37 factor:
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The purely vibrational transition dipole moment

has already been discussed earlier in this chapter, equation (7.50). The Honl-London
factors are given in Table 9.4 and Sj-,, — J" + 1 and Sj,, = J" for the diatomic 1E+

case. The Herman-Wallis factor F(m) is usually expressed as a polynomial

with m defined as J + 1 for an R branch and — J for a P branch.38 Equation (7.229)
has thus separated the square of the transition dipole moment into a purely vibrational
part, |M</W"|2, a rotational part, 5^/J, and a correction term, F(m), that compensates
for errors in separation of vibration from rotation, i.e.,

The Herman-Wallis effect appears, for example, as a strengthening of an R branch
and a weakening of a P branch (or vice versa) relative to the expected intensity given
by equation (7.229) with F(m) — 1. The Herman-Wallis factor, -F(m), quantifies
the Herman-Wallis effect and originates from vibration-rotation interaction. Herman-
Wallis factors can be computed38 from the dipole moment function /x(r), equation
(7.51), and the Dunham potential, V(r), equation (7.35), or simply derived from ex-
perimental observations. For linear molecules a similar separation,

can be carried out, but Watson39 recommends the forms

and

with the vibrational angular momentum / replacing A for the Honl-London factors
found in Table 9.4. Similar forms for Sj>j» can be developed for symmetric tops (K
replaces A for the Honl-London factors) and theoretical line intensities for asymmetric
rotors such as water are also available.40

The simplest possible intensity expression for a diatomic vibration-rotation transi-
tion assumes the "double harmonic" approximation, i.e., a harmonic oscillator for the
potential and a linear dipole moment function, equations (7.51) to (7.53). Ignoring the
Herman-Wallis effect, which is often small, results in the expression32

for the line strength, Sj>j».
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The vibrational matrix element in equation (7.236) can be evaluated for the har-
monic oscillator using equation (7.56), i.e.,

with x = r — re for the v + 1 <— v transition of the A—B molecule with reduced mass
//AB and linear dipole moment function p>(r). The equation for the line strength is thus

Aand the effective integrated cross section 5' for a line becom

the transitionusing equation (7.223). To obtain a fundamental band intensity, S^&nd, the tr;
has v = 0 and all lines need to be included by summation over J' and J", i.e.,

The summation over J' and J" can be replaced by a sum over AJ and J", assum-
ing z/io approximately constant, and the Honl-London factors Sffi obey the sum rule
(Chapter 9),

plus the definition of q so that

If the stimulated emission correction, 1 — e~
h^o/kT^ js ignored then the fundamental

band intensity is

Using numerical values in equation (7.243) gives the equations

with /UAB in atomic mass units (u).
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Figure 7.60: Fermi resonance in CO2.

For polyatomic molecules an equation similar to (7.243) can be derived, but in this
case mass-weighted cartesian coordinates qi are used to set up the normal coordinates
Qi so

The reduced mass //AB appears explicitly in equation (7.242), but the effective mass is
implicitly contained in the Qi coordinates in equation (7.246), which have dimensions
of m kg"1/2. The corresponding numerical equations for (7.246) are the same as (7.244)
and (7.245) but with JUAB = 1 since the masses are included in Qi.

The possibility of vibrational, orbital, and electron spin degeneracy is not included in
equations (7.243) to (7.246). If necessary, they can be multiplied by an extra degeneracy
factor of Qi. The double harmonic approximation is very popular in ab initio quantum
chemistry because the required derivatives of the dipole moment can be computed
rapidly for the equilibrium geometry, but is of only modest reliability.

7.7 Fermi and Coriolis Perturbations

The regular energy-level pattern predicted by G(vi) in equation (7.197) rarely exists
for real molecules. Deviations from a regular pattern are called perturbations by spec-
troscopists. Consider the Raman spectrum (Chapter 8) for CC>2. The v\ fundamental
mode of CC>2 should be strong, while the 2i/2 overtone should be weak. In fact they
have roughly the same intensity. Moreover, the 2^2 (cr+) mode is not present at 2 x
667 cm"1 = 1334 cm"1, but at 1285 cm"1 instead (Figure 7.60). The explanation for
these discrepancies was provided by Fermi25—the v\ and 2^2 vibrational levels have
the same symmetry, £+, and so there are anharmonic terms in the exact Hamiltonian
operator that couple these vibrational modes. The 0220 Ag state is not affected because
it has A5 symmetry. This type of interaction between neighboring vibrational levels of
the same symmetry is known as a Fermi resonance.

The unperturbed v\ and 2z/2 levels (dashed lines in Figure 7.61) have almost identical
energies, but anharmonic terms that were neglected in the simple harmonic oscillator
approximation cause the two levels (Figure 4.1) to be pushed apart. If the original
wavefunctions were 7/>ioo and ^O2°o> then the final mixed wavefunctions are
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Figure 7.61: Fermi interaction of the 100 £+ and 02°0 £+ vibrational levels of CO2.

with aK,btt l/-\/2 in the case of CO2- Using second-order perturbation theory (Chapter
4), the energy shift is given by

in which V = (i/)2\H^ \tjj-i) ig tne interaction matrix element and E2 ' and E\_ are the
unperturbed energies. Clearly, Fermi resonances are most pronounced when two states
of the same symmetry are in close proximity and are coupled by a nonzero anharmonic
interaction term.

Other interactions between levels are possible since the simple harmonic oscillator
picture has neglected many types of higher-order terms in the vibration-rotation Hamil-
tonian operator. In addition to the anharmonic terms responsible for Fermi resonances,
Coriolis terms can also perturb the expected regular energy-level pattern. "First-order"
Coriolis effects have already been discussed for the splittings observed in E vibrational
levels of symmetric tops and T vibrational levels of spherical tops. These large effects
must always be taken into account. In addition "second-order" Coriolis effects are pos-
sible between states of different symmetry. Since Coriolis interactions involve rotational
motion, they occur only in the gaseous state.

If two vibrational states (with wavefunctions ̂ i and ^2) of a molecule are near each
other in energy and differ in symmetry, such that

contains a totally symmetric irreducible representation A\, then a Coriolis resonance
is possible. The explanation41 of this rule is simple: the lowest-order Coriolis terms
neglected in the total Hamiltonian operator have the form pJx, qJy, or rJz (with p,
q, and r constants) and they behave like the rotations Rx, Ry, and Rz. Thus if two
vibrations differ in symmetry by a rotation about one of the principal axes, then a
neglected Coriolis term in the exact Hamiltonian operator can always be found to
cause an interaction. Of course, if the states are far apart (hundreds of cm"1), then the
effect of the interaction is small since the interaction matrix element is, at most, a few
cm"1 in size.
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Figure 7.62: Energy-level diagram for the inverting NHa molecule.

An example of a Coriolis resonance exists between the v\ and v^ vibrational modes42

of NH2 for which

the symmetric stretch z'i(ai) is at 3219 cm"1 ,

the bend ^2(01) is at 1 497 cm"1 , and

the antisymmetric stretch 1/3(62) is at 3301 cm"1 .

In this case Rx has 62 symmetry and we have a\ <g> 62 <8> 62 = fli- The z-axis corresponds
to the out-of-plane c-axis, so that v\ and z/3 interact via a c-axis Coriolis resonance,
which is responsible for some local rotational perturbations in the spectra of v\ and 1/3.
Notice that 21/2(^1) ~ 2994 cm"1 can also interact with v\ via a Fermi resonance. In
heavier molecules z/i, 2z/2, and ^3 would be too far apart to interact extensively, but in
light hydrides such as NH2 or H2O the rotational structure covers hundreds of cm"1

and there are many possible interactions.

7.8 Inversion Doubling and Fluxional Behavior

The rotational energy levels of the ground state of NHs are doubled. This was one of the
earliest discovered manifestations of fluxional behavior in molecules. The NHs molecule
can rapidly invert (Figure 7.62) its geometry. The two forms correspond to different
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Figure 7.63: The two chiral forms of PHDT.

enantiomeric forms of the molecule. In fact, for a noninverting molecule such as PHs
(or AsHa) the two forms (Figure 7.63) of PHDT could, in principle, be separated.

For chiral molecules the two forms (enantiomers) have identical energy levels, but
a large barrier prevents their interconversion. In NHa the barrier for interconversion of
these two forms43 is only 2009 cm"1 (Figure 7.62), allowing facile interconversion by
tunneling. The energy-level patterns for the two forms of NHs are no longer identical
as a result of their mutual interaction. New approximate wavefunctions need to be
constructed

by mixing wavefunctions of the left- and right-handed forms. It turns out that the
+ levels (sometimes labeled s for symmetric) lie below the corresponding — levels
(called a for antisymmetric). The + or — are added as superscripts (Figure 7.62) to the
vibrational quantum number of the inverting normal mode. This +/— or s/a notation
is not related to the notation for parity discussed previously. Notice that for the energy
levels above the barrier, the inversion splitting becomes a vibrational interval and the
numbering on the right of the diagram is more appropriate.

Fluxional behavior is an effect commonly observed in weakly bound systems such
as van der Waals dimers, for example (H2O)2- Since the inversion of a molecule changes
the handedness of the coordinate system, simple geometric symmetry operations are
not adequate to describe the molecular motion. Permutations and inversions of the
nuclei need to be considered in order to describe these motions. Permutation-inversion
group theory44 has different group operations and group names, but these groups are
often isomorphic with the more familiar point groups. For example the permutation-
inversion point group appropriate for the inverting NHs molecule is isomorphic with
DM- The addition of the inversion operation has increased the order of the group from
6 (Cto) to 12 (D3h).
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Problems

1. Consider the ethylene molecule of D%h symmetry.

(a) Determine the number and symmetry of the normal modes of vibration.
(Choose x to be out of plane and z along the C=C axis.)

(b) Which modes are infrared active?

(c) Use projection operators to find the symmetry of the

(i) C=C stretch,

(ii) C—H stretches,

(iii) In-plane bends,

(iv) Out-of-plane bends.

2. Determine the symmetry of the normal modes of vibration for the following mole-
cules:

(a) H—C=C~™C=N;

(b) C01-;

(c) PtClJ-;

(d) irans-glyoxal.

3. Fill in the following table:

Molecule v (cm l] Force Constant (N m *)

NH 3133
NF 1115
O2 1555
N2 2 331
NO 1876

4. The molecule 1,1-dichloroethylene (C2H2C12) is planar with Civ symmetry, the
C=C bond coinciding with the C2-axis. Take this axis as the z-axis and the plane
containing the molecule as the yz-plane.

(a) Determine the number and symmetry of the normal modes of vibration.

(b) How many infrared bands (fundamentals) are there of a-type, 6-type, and
c-type, respectively? The C2-axis is the axis of the intermediate moment of
inertia IB-

(c) Are there any vibrations in this molecule for which the fundamental fre-
quency (Av = 1) is forbidden in the infrared, but for which the first overtone
(Av = 2) is allowed (given sufficient anharmonicity to permit Av = 2)?
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5. The positions of the atoms in the molecule ^84 have been determined by x-ray
diffraction. In terms of a set of Cartesian coordinates x, T/, z placed within the
molecule, these are

N2: 0, 6, 0;
N4: 0, -6, 0;
82: —a, a, a;
84: —a, —a, —a.

NI: x = 6, y = 0, z = 0;
N3: -6, 0, 0;
Si: a, —a, a;
83: a, a, —a;

Here the numbers a and 6 are unrelated parameters of the order of a few angstroms
in size.

(a) To what point group does the molecule belong?

(b) What are the symmetries of the normal modes of vibration?

(c) How many different vibrational frequencies does the molecule have?

(d) How many bands should appear in the infrared absorption spectrum as fun-
damentals?

(e) Assume the parameter a = 3 A= 1.56. Compute the moments of inertia
as well as A, B, and C. What kind of rotor is the molecule (linear rotor,
spherical top, oblate or prolate symmetric top, near oblate or near prolate
asymmetric top)?

The Line Positions of the 2i/s Band of CHsF (in cm"1)

J R(J] P(J) J R(J) P(J]

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

2084.72
2086.25
2087.75
2089.22
2090.65
2092.07
2093.41
2094.75
2095.99
2097.23
2098.37
2099.49
2100.58
2101.59
2102.60
2103.54
2 104.43

—
—

2076.13
2074.27
2072.41
2070.49
2068.55
2066.55

—
2062.43
2060.31
2058.10
2055.88
2053.60
2051.27
2048.92
2046.50

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

2105.29
2106.09
2106.86
2107.56
2108.24
2108.87
2 109.45
2110.00
2110.49
2110.93
2111.40
2111.70
2112.05

—
—
—
—
—

2044.05
—

2039.01
2 036.42
2033.81
2031.15
2028.44
2025.69
2022.95
2020.10

—
2014.33
2011.38
2 008.39
2005.37
2002.26

—
1 996.00

6. The 2^3 band of CHsF is observed near 4.8 //m. The line positions of this parallel
band are provided in the table above.

(a) Determine ^0, B', B", D'j, and D"j,
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(b) Assume a tetrahedral geometry and a "standard" C—H bond length to com-
pute A" (= A'}.

(c) From the B" constant and the assumption in (b) compute the C—F bond
length.

7. The lines of the fundamental, 1--0, and first overtone, 2-0, vibration-rotation
bands of CO are listed in the following table, in cm"1.

1-0 Band 2-0 Band

J

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

P(J]

—
2135.5461
2131.6333

—
2123.7001
2119.6827
2115.6294
2111.5434
2107.4231
2103.2688
2099.0815
2094.8612
2090.6089
2086.3215
2082.0027
2077.6500
2073.2647
2068.8476
2064.3968
2059.9148
2055.4002
2050.8546

—
—

2037.0252
2032.3528
2027.6495

—

R(J)

2147.0816
2150.8565
2154.5960
2158.3002
2161.9687
2165.6015
2169.1984
2172.7593
2176.2840
2179.7723
2183.2242
2186.6395
2190.0180
2193.3596
2196.6642
2199.9314
2203.1615
2206.3539
2209.5088
2212.6258
2215.7040
2218.7459
2221.7487

—
2227.6391
2230.5264
2233.3748
2236.1842
2238.9545

J

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

P(J)

4256.2171
4252.3023
4248.3184
4244.2634
4240.1403
4235.9477
4231.6856
4227.3539
4222.9549
4218.4859
4213.9486
4209.3431
4204.6700
4199.9279
4195.1186
4190.2409
4185.2956
4180.2830
4175.2024
4170.0553
4164.8411
4159.5599
4154.2115
4148.7969

R(J)

4263.8376
4267.5421
4271.1774
4274.7414
4278.2351
4281.6571
4285.0096
4288.2898
4291.4996
4294.6379
4297.7051
4300.7001
4303.6240
4306.4756
4309.2552
4311.9619
4314.5970
4317.1591
4319.6487
4322.0663
4324.4100
4326.6807
4328.8785
4331.0029
4333.0537

(a) For each band, determine the five parameters VQ, B", D", B', and D''.

(b) From the band origins, determine UJG and ujexe.

(c) Determine Be and ae.

(d) Compute TQ and re. Why are they different?

(e) Test the Pekeris and Kratzer relationships.

(f) Predict all of the preceding constants for 13C16O.



Problems 285

8. Even when the rotational structure of a vibrational band cannot be resolved, it
is sometimes possible to extract the rotational constant B from the separation
between the maxima in the P and R branches as

where B is the rotational constant (in cm"1) and T is the absolute temperature.
Derive this equation.

9. The observed IR bands (in cm"1) of 10BF3 and nBFs are as follows (vs = very
strong; s = strong; m = medium; w = weak):

10BF3 482 718 1370 1505 1838 1985 2243 2385 3008 3263

nBF3 480 691 1370 1454 1838 1932 2243 2336 2903 3214

Intensity sswvswwwwww

The order of increasing vibration frequency of the fundamentals is v^ < v-^ < v\ <
z/3. Assign the observed bands. (It might be thought that the 1370 cm"1 band is
the overtone 2^2, but this can be ruled out. Why?)

10. A spectroscopist is searching for the LiNNN molecule in the gas phase in the
infrared region of the spectrum. By analogy with CaNNN (J. Chem. Phys. 88,
2112 (1988)) LiNNN should be linear and quite ionic. The N—N bond distance
in crystalline azides (M+NNN~) is 1.18 A.

(a) Estimate a reasonable Li—N bond length (e.g., from ionic radii) and compute
a B value from the geometry.

(b) Determine the number and symmetry of the normal modes of vibration.

(c) Estimate frequencies for the normal modes by analogy with other azides.

(d) Describe each IR allowed fundamental transition (i.e., parallel or perpendic-
ular, which branches occur, the spacing of the lines, etc.)

11. For the formaldehyde molecule tkCO of Civ symmetry:

(a) Determine the number and symmetries of the normal modes.

(b) Determine which modes are infrared active.

(c) Number the normal modes and describe each mode (e.g., symmet-
ric/antisymmetric bend/stretch; in plane/out of plane). For each mode pro-
vide an estimated vibrational frequency.

12. (a) To what point group does the dichloroacetylene molecule Cl—C=C—Cl be-
long?

(b) How many fundamental modes will there be for dichloroacetylene?

(c) Sketch the approximate atomic motion of the normal modes.

(d) Specify the infrared activity of each.
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(e) Why do the first overtones of the infrared active fundamentals not occur in
the IR spectrum?

13. The following table gives the fundamentals and combination bands in the infrared
spectrum of acetylene. Fundamentals are very strong (vs), combination bands
involving only two fundamentals are of medium (m) intensity, and all others are
weak (w). The frequency order of the fundamental bands is z/4 < V*, < 1/2 < v-$ <
v\. Determine the frequencies of the fundamentals and assign the combination
bands.

Position/cm"1 730 1328 1961 2703 3295 3308 3898 4091 5260 6556

Intensity vsmw mvsw mmmm

14. Consider the BFa molecule of D^h symmetry.

(a) Determine the number and symmetries of the normal modes.

(b) Determine the activity of each mode in the infrared.

(c) Determine the symmetries of each of the following types of internal modes:
(i) B—F stretching modes,
(ii) Out-of-plane bending motions,
(iii) F—B—F angle deformations.

(d) What are the selection rules for overtone and combination bands in the
infrared?

15. Consider the vibrational spectra for the trans-difluoroethylene molecule.

(a) Determine the number and symmetries for the normal modes.

(b) Determine the activities of each of the modes in the infrared.

(c) Determine the symmetries of each of the following types of internal modes:
(i) C—F stretching modes,
(ii) Out-of-plane bending modes,
(iii) H—C—F angle deformations,
(iv) C=C stretching modes.

16. Since the cyanogen molecule C2N2 is linear, it has seven fundamental vibrational
modes.

(a) Determine the IR activity of each of these fundamentals.

(b) Sketch the approximate atomic motions for the vibrational modes. Make
sure to symmetrize both the parallel and perpendicular modes.

17. For the czs-diimide molecule H—N=N—H of C?,v symmetry:

(a) Determine the number and symmetries of the normal modes of vibration.

(b) Which modes are IR active?

(c) Number the normal modes and describe each mode (e.g., symmetric N—H
stretch, etc.).



Problems 287

(d) For each mode estimate a vibrational frequency.

18. For the IF molecule, the following spectroscopic constants were recently deter-
mined:

UJG -610.258cm-1,

(jjexe = 3.141 cm""1,

Be =0.279711 cm"1,

ae = 0.001874 cm-1.

(a) Determine the IF bond length (re).

(b) Describe and sketch the fundamental infrared spectrum (at 300 K).

(c) Calculate the frequency of the R(2] and P(2) transitions for the fundamental
band and the first overtone.

19. The infrared spectrum of N2O has three fundamental bands. Assuming that the
structure of N2O is linear, explain how this spectrum allows you to distinguish
between N—N—O and N—O—N. Sketch the approximate atomic motions of the
normal modes.

20. Several of the lines in the v = 0 to v = 1 transition for H35C1 have the following
wavenumbers:

P(J)/cm-1

2865.0977
2843.6242
2821.5680
2798.9423
2 775.760 1

J

0
1
2
3
4
5

R^/cm'1

2906.2464
2925.8961
2944.9130
2963.2849
2980.9998
2998.0460

(a) Use these data to determine the band origin VQ.

(b) Calculate ote and Be.

(c) Determine the equilibrium internuclear separation re to as many significant
figures as the data justify.

21. The following bands have been measured in the infrared spectrum of a bent AB2
molecule:

Wavenumber/cm

1200
2400
2670
3500

1 Intensity Wavenumber/cm ]

vs
m
vs
vs

3600
3870
4700
4800

L Intensity

w
m
m
w
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Identify the fundamental, overtone, and combination bands.

22. Show that Fermi resonance cannot occur between two levels with different values
of / .

23. Show that the superposition of two vibrations at right angles to one another gives
circular motion if the vibrations have equal amplitudes and differ in phase by 90°.

24. (a) Calculate the G matrix for D2O.

(b) Using the force constants listed in Table 7.3 calculate the vibrational fre-
quencies of D2O and compare with the experimental values of v\ = 2 666
cm"-1, z/2 = l 179 cm"1, and v* = 2789 cm"1.

25. (a) Using the vibrational constants (7.200) calculate the symmetry and fre-
quency of all possible vibrational levels of HCN below 3500 cm"1.

(b) Calculate all possible allowed vibrational transitions between these levels.

26. A 10-cm-long cell containing 10 mTorr of HC1 is prepared at 296 K. Consider
the P(2) transition of the fundamental band at 2843.6247 cm"1. The HITRAN
database35 lists the pressure-broadening parameter (half width at half maximum)
as 0.2395 cm-1/atm for self broadening and the line intensity S' as 3.692 x 10~19

cm/molecule. Notice that HITRAN uses half width at half maximum for the
pressure-broadening parameter rather than the full width used in this book.

(a) Is the line predominantly pressure-broadened or Doppler-broadened?

(b) What will be the transmission of the cell at line center, i.e., at 2843.6247
cm-1?

(c) If the cell is then filled with air to a total pressure of 1 atm, repeat (a) and
(b) given that the air-broadening coefficient (half width at half maximum)
for HC1 is 0.0799 cm"1/atm.

27. The first derivative of the dipole moment function for HC1 was calculated ab
initio (Meyer and Rosmus, J. Chem. Phys. 63, 2356 (1975)) to be \dfif dr\ = 0.86
D/A at the calculated equilibrium bond distance, re = 1.278 A. Other calculated
equilibrium constants were ue = 2977 cm"1 and |/xe| = 1.136 D.

(a) What is the ab initio band strength 5^and for the fundamental in HITRAN
units (cm/molecule). How does this compare with the experimental value of
81.485 cm"2 atm"1 at 296 K?

(b) What is the line intensity, S', the integrated cross section /crdi/, and the
line strength Sj>j» for the R(Q} line of the fundamental band?

(c) What is the Einstein A value for the R(0) line? Is A~l the same as the
lifetime?
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Chapter 8

Light Scattering and the
Raman Effect

8.1 Background
The Raman effect is a light-scattering phenomenon. When light of frequency v\ or VQ
(usually from a laser or, in the prelaser era, from a mercury arc lamp) irradiates a sample
(Figure 8.1), it can be scattered. The frequency of the scattered light can either be at
the original frequency (referred to as Rayleigh scattering) or at some shifted frequency
i/s = v\ ± ^molecular (referred to as Raman scattering). The frequency fmoiecuiar is an
internal frequency corresponding to rotational, vibrational, or electronic transitions
within a molecule. The vibrational Raman effect is by far the most important, although
rotational and electronic Raman effects are also known. For example, the rotational
Raman effect provides some of the most accurate bond lengths for homonuclear diatomic
molecules.

In discussing the Raman effect some commonly used terms need to be defined (Fig-
ure 8.2). Radiation scattering to the lower frequency side (to the "red") of the exciting
line is called Stokes scattering, while the light scattered at higher frequencies than that
of the exciting line (to the "blue") is referred to as the anti-Stokes scattering. Finally,
the magnitude of the shift between the Stokes or the anti-Stokes line and the exciting
line is called the Raman shift, l±v = \v\ — v$\.

Classical Model
When an electric field is applied to a molecule, the electrons and nuclei respond by
moving in opposite directions in accordance with Coulomb's law. The applied electric
field therefore induces a dipole moment in the molecule. As long as the applied electric
field is not too strong, the induced dipole moment is linearly proportional to the applied
electric field, and is given by

in which the proportionality constant a is called the polarizability and is a characteristic
of the molecule.

The intensity of the scattered light is proportional to the square of the magnitude
of the induced oscillating dipole moment. If some internal motion of the molecule (vi-

293
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Figure 8.1: Scattering of light by a sample.

brational, rotational, or electronic) modulates this induced oscillating dipole moment,
then additional frequencies can appear. Classically, this means that the polarizability
has a static term OJQ and a sinusoidal oscillating term with amplitude 0:1

with uj(= wmoiecuiar) being some internal angular frequency. As usual, it is convenient to
use angular frequency uj(= IKV] for theoretical work and frequency v (or wavenumber,
i>) for experimental work. For example, a vibrational mode Qi has

so that if the polarizability does not change with vibration, that is, if (da/dQi)\Q =
0, then there is no vibrational Raman effect. Classically, the oscillating polarizability
causes the induced dipole moment to oscillate at frequencies other than the incident aj\.
To see this, let us represent the applied electric field E as EQ cosujit. Upon substituting
(8.2) into the magnitude of (8.1), we get

The trigonometric identity

has been used in the final step of equation (8.5). The first term is unshifted in frequency
and corresponds to Rayleigh scattering (Figure 8.2). The lower frequency term with
uJi — uj corresponds to Stokes scattering, while the higher frequency term with uji + u;
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Figure 8.2: Schematic diagram of a Raman spectrum showing vibrational and rotational
Raman effects.

corresponds to anti-Stokes scattering (Figure 8.3). This simple classical derivation (8.5)
is very deceptive, since it predicts that Stokes and anti-Stokes scattering have the same
intensity: this is not usually the case.

The energy-level diagram for Stokes and anti-Stokes scattering shows that anti-
Stokes scattering will be weaker because the population in the excited vibrational level
is less than that in the ground state (Figure 8.3). For a classical oscillator the scattering
(Rayleigh and Raman) is proportional to the fourth power of the frequency (see section
8.4 and problem 7). (The sky is blue because air molecules Rayleigh scatter more blue
than red sunlight.) Thus if we introduce the Boltzmann distribution of vibrational
populations, the ratio of the intensities of the bands is given by

for a nondegenerate vibration.
There is one additional complication. For highly symmetric molecules such as CH4,

the induced dipole is in the same direction as the applied electric field. For less sym-
metric molecules, however, p,-md and E can point in different directions because the
molecular response to the applied electric field can be different along the X-, Y- and
Z-ax.es in the laboratory frame. In matrix notation, equation (8.1) becomes

or
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Figure 8.3: Energy-level diagram showing Stokes and anti-Stokes scattering.

in which OK is a 3 x 3 symmetric matrix. This symmetric matrix is called the polariz-
ability tensor.

The polarizability tensor a can be simplified by working in the appropriate principal
axis system of the molecule, analogous to the principal axis system for the moment of
inertia tensor (Chapter 6). As the polarizability tensor is a real, symmetric matrix,
it is always possible to construct an orthogonal transformation matrix X from the
normalized eigenvectors of a. The matrix X represents a rotation of the coordinate
system, r' = X-1r or r = Xr', with r* = (x,y,z). As discussed in Chapter 3, the
diagonalized matrix a' is related to a by the similarity transformation

The a' matrix consists of the eigenvalues of a and has the form,
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or ax = ax'x>, ay = ay>y', and az = az>z> if the molecular principal axis system is
assumed. Note that unless required by symmetry, the principal axes of polarizability of
a molecule do not coincide with the principal axes of the moment of inertia.

The polarizability ellipsoid of a molecule is denned by the equation

or

in the principal axis system. The ellipsoid has maximum total dimensions equal to
2/v/^x> 2/\/%' and 2/V^ along the x-, ?/-, and z-axes. For a spherical top, otx =
oi.y = az so the ellipsoid is a sphere; for a symmetric top or linear molecule, ax = ay

and the ellipsoid has a circular cross section in the xy-plane. For the normal case of light
scattering with wavelength A substantially greater in size than that of the molecule,
the molecule behaves as if it were represented in shape by the polarizability ellipsoid.

For a diatomic molecule such as H2 or HC1, it is convenient to label the polarizability
parallel to the molecular z-axis as a\\(= ctz), and the polarizability perpendicular to
the 2-axis as a±(= otx — ay). The mean polarizability is given by

and the polarizability anisotropy 7 is defined as

The mean polarizability a can be deduced, for example, from a measurement of the
optical refractive index (see problem 7) and the anisotropy 7 from a measurement of
the depolarization ratio p (see below) of Rayleigh scattering.

Polarizability is an important molecular property that plays a role in, for example,
intermolecular interactions. The polarizability of a molecule can be calculated by the
methods of ab initio quantum chemistry. The results of such a calculation1 of a and
7 for H2 are displayed in Figure 8.4 as a function of the internuclear distance, r. At
large r, the value of <3 approaches that of two H atoms, while at short r the value
of a tends to that of the He atom. At r = re — 0.742 A, da/dr ^ 0 so there will
be a vibrational Raman effect for H^. As the bond stretches from equilibrium, the
electrons are less tightly held by the nuclei so the polarizability increases. In general
for both heteronuclear molecules such as HC1 and homonuclear molecules such as HQ,
the polarizability ellipsoid will change as the molecule vibrates, leading to a vibrational
Raman effect. The Raman effect is thus less restrictive than normal dipole-allowed
infrared vibrational spectroscopy, which has no allowed transitions for a homonuclear
molecule because dp,/dr = 0.

Simple arguments based on changes in the polarizability as a function of the normal
coordinates Qi can be made for a typical polyatomic molecule such as CC>2. As shown
in Figure 8.5, motion along the symmetric stretching coordinate Qi, will change the
mean polarizability so that da/dQi ^ 0 and v\ is Raman active. The situation is
different for 1/2 and 1/3 because of the high symmetry. The polarizability again changes
with Q but the values at +Q and — Q are identical by symmetry, (i.e., a(Q) is an even
function) so at Q = 0, da/dQ ~ 0 for z/2 and 1̂ 3 (Figure 8.5). For the dipole moments
IJL the opposite situation prevails with dfj,/dQi = 0, dn/dQ-2 ^ 0, and d/x/<9Q3 ^ 0,
so v\ is Raman active but v^ and ^3 are infrared active. This is an example of the rule
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Figure 8.4: The polarizability of Ha as a function of internuclear distance r calculated by ab
initio methods.1

Figure 8.5: The polarizability of CC>2 as a function of the three normal coordinates Qi, Q?,
and Qs (shown schematically).

of mutual exclusion that applies to molecules with a center of symmetry, and will be
discussed later.

Quantum Model

The quantum mechanical theory of the Raman effect was developed in the early 1930s
by Placzek.2 The starting point is the same as in Chapter 1 with a two-level system
with energy levels E\ and EQ as depicted in Figure 1.8. An oscillating electric field
is applied to the system, E = Eocoswi, with the wavelength A assumed to be much
bigger than the molecular dimensions. In the case of Rayleigh and Raman scattering,
the electric field is not in resonance (i.e., a; ̂  (E± — Eo]/h = u;io), but instead induces
an oscillating dipole moment that re-radiates. In quantum mechanics this means that
we are looking for (see equation (1.66)) the transition dipole moment,
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with ^i(t) and ^/o(t) being the solutions of the time-dependent Schrodinger equation
(1.29) for the two-level system. The intensity of the scattered radiation is proportional
to |Mio|2. The interaction of electromagnetic radiation and the system is taken into
account with the electric-dipole interaction term, equation (1.26), namely

In this case p, is an induced moment, and fji and EO need not point in the same direction.
Rather than solving the Schrodinger equation as outlined in Chapter 1, pertur-

bation theory (Chapter 4) will be used to obtain an expression for the transition
dipole moment, Mio(i). In what follows the states in the molecule are labeled as
\n) — |0), \k) = 1), and |r), with |r) being the additional states in the molecule not
depicted in Figure 1.8. The application of the small perturbing electric field, equation
(1.6), alters the wavefunction fyn of the system so that

The zeroth-order solution to the time-dependent Schrodinger equation,

is

with 7/4 being the solution of the corresponding time-independent equation,

The perturbed Schrodinger equation is

and using equation (8.18) to first order leads to

or, equivalently, when the zeroth-order equation is subtracted, to

The first-order correction can be obtained by assuming (with some foresight) a
solution of the form

Substitution of the assumed solution (8.25) into equation (8.24), using cos(o;t) — (el<jjt +
e~tw*)/2, and then equating terms with equal time dependence leads to two separate
equations,
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and

The right-hand side of equations (8.26) and (8.27) can be manipulated by the trick of
inserting unity (Chapter 4), in the form 1 = ̂  |T/¥ AW I so that we obtain

By defining the matrix element p,rn of // by

we may write (8.26) and (8.27) as

and

The ip£ an<i ^n wavefunctions can also be expanded in terms of the complete,
orthonormal set of VY functions, i.e., as

and

which results in the expansion coefficients c^f and c~ being given by

and

from equations (8.30) and (8.31). The time-dependent first-order correction (equation
(8.25)) to the wavefunction is thus

with 



8.1 Background 301

Rayleigh scattering involves no frequency shift of the scattered light (i.e., k = n for
Mfcn(^)) and is based on the oscillating part of the quantum mechanical dipole moment,
i.e.,

to first order. The term Mnn, given by

has no time dependence and is just the dipole moment of the molecule in state \il)n}.
This term does not result in any light scattering and hence can be discarded leaving,
to first order, Mnn(t) « Mnn(t), with Mnn(i) given as

Rayleigh scattering is thus proportional to |Mnn|2 obtained using equation (8.39).
In exactly the same way, the transition dipole moment MjjJ (t) leads to transitions

from state |n) to state \k) with

Once again, the zeroth order term,

has been discarded because it corresponds to a regular transition dipole moment of the
type that has been discussed in Chapter 1, so that it does not contribute to Raman
scattering.

For the Raman effect it is assumed that ajkn — (Ek — En)/fi can be positive (Ek >
En} for Stokes scattering or negative (Ek < En} for anti-Stokes scattering, and that
enough energy is available from the incident photon to induce the transition from n >
to \k >, i.e., u> > uJkn or uj — ujkn > 0 (sometimes referred to as "Klein2""4 conditions").
In addition, the second term on the right-hand side of equation (8.40) has an oscillating
dipole moment at a high angular frequency of Wfen+a;, which is interpreted3 (somewhat
surprisingly!) as a two-photon transition, and will not be considered further. The first
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term on the right-hand side of equation (8.40) has the correct angular frequency u)kn — a;
associated with the Raman effect.

The expression for the oscillating transition dipole moment for a Raman transition
from state \n > to \k > is thus given in first-order perturbation theory as

Consider the applied electric field to be given in terms of its laboratory Cartesian
components as

while the oscillating transition dipole moment also has Cartesian components,

as do the matrix elements of the dipole moment:

To make the meaning of equation (8.42) clearer, consider for example the X component
of MJJJ (£) on the left-hand side in response to the Z component of EO on the right-hand
side, in which case we may write

for comparison with the corresponding term from equation (8.9), namely,

Before the comparison can be made, the substitution of EQZ cos ujt for EZ in equa-
tion (8.47) needs to be made and then the fcn-matrix element formed using the ̂  \i)

and \&n (t) wavefunctions to give

Converting the cosine to its exponential form and using ̂  — V^ 'e~^kt and ̂ n' =
^0)e-ia;nt ieads to

and once again the high frequency term with Wfcn + u can be ignored. Comparison of
equations (8.46) and (8.49) leads to the conclusion that

or in general
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Figure 8.6: Energy-level diagram for the Stokes Raman scattering of huj into h(u — Ukn) and
the dipole matrix elements p,rn and ^,rk that contribute to the polarizability tensor elements

with z, j = X, y, Z. The elements of the polarizability tensor are thus given by a sum of
dipole matrix element products divided by energy denominators as depicted in Figure
8.6 for the case of Stokes Raman scattering of an incident photon at fiuj to H(UJ — o>fcn).

The polarizability, equation (8.51), contains resonance denominators that cause a^
to become large if the frequency of the applied electric field approaches that of an
atomic or a molecular transition—i.e., if a; approaches ujrn- In this case, a single term
in the sum dominates and results in the resonance Raman effect. The resonance Raman
effect also leads to an enhancement in the Raman scattering, and with large (but finite!)
values of a^, when an extra damping term is included in the denominator of equation
(8.51).4

The selection rules for Raman transitions from state |n) to state \k) are, as usual,
obtained by inspection of the transition dipole moment integral (8.42)

which is given in equation (8.46) in terms of the polarizability tensor elements o^,
equation (8.51). It is convenient to define formally a polarizability operator QHJ as

so that taking matrix elements

leads to the polarizability tensor values, a^-, of equation (8.51).
In terms of Raman selection rules, the time dependence of equation (8.52) is of no

consequence, and they are determined by the symmetry of i/Jk, tyni and &ij in equation

aij .
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Raman Shift / cm"1

Figure 8.7: Raman spectrum of liquid H2O in the O—H stretching region. The peak to the
right is the v\ symmetric stretching mode, while the peak to the left is due to the Ivi overtone
and the O—H stretching mode of two (or more) hydrogen-bonded EbO molecules.

(8.54). The 6>ij operator is made up of dipole moment operators fa and /ij, i, j = x, y, z.
This means that in the molecular frame the six elements of the polarizability tensor
(axx, ayy, azz, axy, a.xz, and ayz) all transform like the binary products of coordinates
x2, y2, z2

: xy, xz, and yz when the symmetry operations of the point group are applied.
The symmetry of these binary products (or properly symmetrized combinations) are
listed on the right side of character tables. Thus the direct product

must contain the AI irreducible representation in order for the corresponding integral
to be nonzero and give an allowed Raman transition from |0) to |1) .

For example, x2, y2, and z2 for the H^O molecule have AI symmetry, while xy, xz,
and yz have AI, B\, and BI symmetry, respectively. Thus the three normal modes of
H2O, v\(a\), ^2(01), and 1/3(62), are all Raman active (Figure 8.7).

Notice that if a molecule has a center of symmetry, then both IJJQ (for fundamentals)
and otij have g symmetry and consequently V>i must also be of g symmetry. Thus all
Raman active fundamental transitions have g symmetry, if the molecule has a center
of symmetry. Correspondingly, all infrared active fundamentals must have u symmetry
since [JL has u symmetry. This leads to the rule of mutual exclusion, which states that
no fundamental mode of a molecule with a center of symmetry can be both infrared
and Raman active. Comparison of infrared and Raman band positions can thus be a
simple but powerful tool in deducing molecular geometry.

For the tetrahedral molecule CCLj all four vibrational modes (z/i(ai) 459 cm"1,
1/2(e) 218 cm"1, ^3(^2) 762 cm"1, 1/4(£2) 314 cm"1) (see Figure 8.8) are Raman active.
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Raman Shift / cm"1

Figure 8.8: Vibrational Raman spectrum of liquid CCU.

This is in contrast to the infrared spectrum in which only ^3 and 1/4 are observed. The
partially resolved doublet near 775 cm~L in the Raman spectrum is actually two Fermi
resonance transitions (762 cm"1, 790 cm"1) made up of nearly equal mixtures of i/sfo)
and z/i -f ^4 (£2)-

Polarization

The typical Raman scattering geometry is shown in Figure 8.9. The intensity of light
scattered parallel (7||) and perpendicular (/j_) to the incident electric field vector can
easily be measured with polarizers. The ratio p = /j_//||, called the depolarization ratio,
is an important clue in the assignment of a vibrational Raman spectrum, because it
depends on the symmetry of the vibrational mode.

From the theory of the Raman effect, it is known that a symmetric vibration has
0 < p < | for linearly polarized incident light.5'6 For a non-totally symmetric vibr
p = | for linearly polarized incident light, and the band is said to be depolari
unpolarized light is used—as was done, for example, using a mercury arc lamp in the
prelaser era—then p = | for a non-totally symmetric vibration.5'6 Thus a measure-
ment of the depolarization ratio will often distinguish between totally symmetric and
nonsymmetric vibrations. Totally symmetric vibrations, such as the C—Cl stretching
mode (v\(ai) 459 cm"1) in CGU, tend to be strong scatterers with depolarization ratios
close to zero (Figure 8.10), whereas this mode is forbidden in the infrared spectrum.

The physical origin of polarized scattering for a symmetric vibration is easy to
understand in classical terms. For example, in the case of a symmetric vibration for a
spherical top, the induced dipole is always parallel to the incident radiation and the
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Raman Shift / cm'1

Figure 8.10: Vibrational Raman spectrum of liquid CCLj showing the depolarization of the
bands. The upper trace corresponds to I\\ and the lower trace to I±.

molecule behaves like a tiny sphere (Figure 8.11): i.e., the polarizability ellipsoid is a
sphere. The scattered light is also polarized parallel to the incident light polarization
and p ~ 0 (Figure 8.11). Molecules with Oh,Td, or Ih symmetry behave in this way for
totally symmetric (ai) vibrations.
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Figure 8.11: Polarized light scattering by a sphere.

8.2 Rotational Raman Effect

The dipole moment induced in a nonrotating molecule when an electric field is applied
is given in the laboratory frame by

or, written explicitly in matrix format, by

Since the polarizability tensor, like the moment of inertia tensor, is represented by a
real symmetric matrix, it is always possible to find an orthogonal transformation which
diagonalizes a. This new molecular coordinate system is obtained by a rotation of the
molecular o>, t/-, and z-axes such that the off-diagonal components of a are eliminated,

As far as light scattering is concerned, the molecule is represented by the polariz-
ability ellipsoid. A spherical top molecule has a spherical polarizability ellipsoid and
therefore behaves like a tiny sphere when an electric field is applied. The oscillating
electromagnetic field is applied and the scattered light is detected in the laboratory
frame of reference. The rotation of the molecule therefore modulates the scattered light
for all molecules except spherical top molecules (Figure 8.12).

The rotational Raman effect is less restrictive than is microwave rotational spec-
troscopy because symmetric linear molecules without dipole moments such as Cl2 and
CC>2 have pure rotational Raman spectra. However, spherical tops such as CH4, SFe,
and CQQ will not have observable rotational Raman spectra because an anisotropic po-
larizability tensor is required. In simple terms, an applied electric field can only exert
a torque on a molecule if the molecule is more polarizable along one direction than
another.
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Figure 8.12: Light scattering by a rotating molecule is modulated by the rotational motion.

The rotational selection rules are obtained by evaluating the integrals

in which the $n are the direction cosines, the Vi are rotational wavefunctions ty
and $ are both functions of the Euler angles 9, </>, x, Figure 6.27) and a^ is the
polarizability component in the molecular frame. The direction cosines are required
(Chapter 6) in order to transform between the laboratory and molecular coordinate
systems. Selection rules for rotational Raman spectroscopy are derived from matrix
elements of the products of the direction cosine matrix elements. As a result, A J = ±2
transitions are possible. In simple terms, since there are two photons involved in a
Raman transition, transitions with AJ = ±2 are possible.

Compare the previous results with pure rotational microwave transitions in which

Again the integration is over the Euler angles, and fa are the dipole moment components
averaged over vibrational and electronic variables. In this case the matrix elements of
the direction cosines result in the selection rule, AJ = ±1.
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Stokes S(0) anti-Stokes S(0)

Figure 8.13: Stokes and anti-Stokes S(0) transitions for the rotational Raman effect.

Diatomic Molecules
The selection rules for the rotational Raman effect in linear 1E+ molecules are AJ =
0, ±2. Only 5-branch transitions (A J = +2) are observable since the A J = 0 transitions
correspond to the unshifted Rayleigh line. The definition of the S branch as AJ =
J' — J" means that both the Stokes and anti-Stokes transitions are 5-branch lines
(Figure 8.13), although this seems confusing at first sight. The definition of AJ is
Jupper — Jiower, not Jfinai — Jinitiah and as depicted in Figure 8.13, J = 2 is always above
J = 0. As shown in Figure 8.13, AJ = +2 for both the Stokes and anti-Stokes 5(0)
lines. The situation is analogous to microwave transitions of a linear molecule for which
only R branch (AJ = +1) transitions occur in both emission J + 1 —> J or absorption
J + 1 <— J, although the initial and final states are different.

The transition frequencies are given by

where ± corresponds to anti-Stokes and Stokes transitions, respectively. The lines are
spaced by about 4B from each other. Figure 8.14 shows the rotational Raman spectrum
ofN2 .

8.3 Vibration-Rotation Raman Spectroscopy

Diatomic Molecules
The selection rules for vibration-rotation Raman Spectroscopy for 1E+ diatomic mole-
cules are Aw = ±1 and AJ = 0, ±2. The vibrational transitions with Av = ±2, ±3,...
are allowed weakly for the anharmonic oscillator, similar to infrared vibration-rotation
Spectroscopy.
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Figure 8.14: Rotational Raman spectrum of N2. Note the intensity alternation due to nuclear
spin statistics and the x's that mark instrumental artifacts called grating ghosts.

The rotational selection rules AJ = — 2 , 0 , 2 result in 0, Q, and S branches, respec-
tively, as shown in Figure 8.15. The vibration-rotation Raman spectrum of N2 is shown
in Figure 8.16.

The equations for the three branches are

and

in which VQ — v\ — A(?i/2 for the 1 <— 0 Stokes spectrum. Notice that at high resolution
(Figure 8.16), the Q-branch lines can be resolved at high J because of the A£?J2 term
in equation (8.63).

8.4 Rayleigh and Raman Intensities

Classical Theory
As discussed in Chapter 1, an oscillating classical dipole moment
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Figure 8.15: Energy-level diagram and spectrum for vibrational Raman scattering of a linear
molecule.

radiates with total average power P (watts) given, from electromagnetic theory,7 by

In scattering, the incident electric field polarizes the molecule and induces a dipole
moment, /Ltind = ceE, equation (8.1). The electric field oscillation is given by

so /iind oscillates at the same angular frequency cj and radiates with a total average
power
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Figure 8.16: Vibration-rotation Raman spectrum of N2. Note the intensity alternation due to
nuclear spin statistics.

In terms of the incident intensity / = e^E^cjl (equation (1.43)) the electromagnetic
wave leads to

for the scattered power per molecule. A scattering cross section crscat can be defined as

and can be evaluated if a value for the mean polarizability a = a is available.
This scattering causes the extinction of a beam of light of intensity /o falling on a

sample through an equation similar to Beer's law, as depicted in Figure 1.12,

with the cross section <rscat due to scattering out of the beam rather than absorption.
In general, when a beam of light of intensity IQ is transmitted through a sample, the
light can be absorbed (with a = <rabs) as discussed in Chapter 1 or scattered (with
0"scat including both Rayleigh and Raman effects) as discussed here, so that the total
extinction of the beam (0"abs + tfscat) is given as

The mean polarizability a can be computed for use in equation (8.70) by ab initio
methods (e.g., Figure 8.4 for H2) or obtained from refractive index data (Problem 7). In
this example, the Rayleigh scattering of light by air leads to the attenuation coefficient
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with TV the air density in molecules/m3, n the refractive index of air (Chapter 1,
Problem 2) and 6 — 1.05, a small correction for the anisotropy of the N2 and C>2
molecules. Rayleigh scattering of sunlight leads to red sunsets and blue skies because
of the A~4 dependence of the attenuation coefficient Q;Scat of air.

Because Raman and Rayleigh scattering are so weak, a typical laboratory experi-
ment does not involve measurement of the small intensity change in an incident laser
beam as given by equation (8.71). Rather, a typical Raman experimental geometry is as
shown in Figure 8.9, with the incident electric field EO polarized parallel to the Z-axis
and traveling in the X direction. The total scattered radiation, /', is detected at 90°
traveling in the Y direction, and polarized in the X and Z directions. A polarizer could
be used to measure I!, and /j_ separately, but generally just the total intensity I1 is
detected. The observed intensity of the scattered light, /', in this typical 90° scattering
geometry is given from electromagnetic theory7 as

per molecule. The prime is used on the scattered intensity /' because the units are watts
per steradian (not watts/m2). The incident radiation of intensity IQ is an irradiance
(Chapter 1) and has the usual units of watts/m2. The oscillating electric field EQ is
along the Z-axis so the induced moments needed for scattering are

If there are NQ molecules per m3 in the initial state 0) in the scattering volume Vs,
and the incident intensity is /o = £oc|-Eo|2/2, then the scattered intensities become

and

The molecules in the sample, however, generally have random orientations except
in the case of a single crystal, so that the polarizability elements must be averaged over
the different molecular orientations.5'6 The transformation between the laboratory and
molecular coordinate systems is given by direction cosines $n (Chapter 6), and as
shown in equation (8.59). The resulting average is given in terms of two quantities: the
mean polarizability a defined as

and the anisotropy 7, defined as



314 8. Light Scattering and the Raman Effect

in the principal axis system. For the cases of linear and symmetric top molecules for
which ax = ay, 7 reduces to ay — Q!J_ (equation (8.15)). In particular, the required
orientational averages are

and

The final intensity expressions for the scattered light are thus given in terms of a and
7 as

and

The depolarization ratio p = I± //y has the simple expression

As expected, for spherical tops 7 = 0 so p — 0 and the scattered radiation is linearly
polarized as if the molecule was spherical. Expressions (8.81) to (8.88) assume linearly
polarized incident radiation as from a laser, but if unpolarized natural light is used, a
slightly different set of expressions is obtained.6

As always some care with units is needed. The units of o? and 72 can be deduced
from the basic equation (8.1) and are C2 m4 V~2 or C4 m4 J~2. The units to be used
for the incident intensity IQ are W m~2 and the scattered intensity /' is in W sr"1,
with 7Vo in molecules per m3.

One of the main problems with scattering (Raman and Rayleigh) intensities, /', is
that equations such as (8.87) depend upon the particular experimental conditions, such
as the 90° viewing geometry, the state of the incident polarization, the size of the scat-
tering volume, and so forth. To remove at least some of the experimental parameters,
a quantity called the differential scattering cross section (da/dQ] is defined by some
authors as
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with units of m2 per steradian. The concept of a differential scattering (or Raman)
cross section is not particularly useful, and it is just as easy to use the full equations
such as (8.87).

Vibrational Intensity Calculations

The general scattering intensity equations, (8.85) to (8.89), can be applied to the spe-
cific case of the vibrational Raman effect. Raman intensities of vibrational bands can be
estimated in the "double harmonic" approximation analogous to infrared vibrational
band intensities (Chapter 7). In the Raman case, the harmonic oscillator model is as-
sumed for each vibrational mode as in the infrared, but it is the polarizability expansion
(rather than the dipole expansion), that is truncated after the linear term: i.e.,

for a diatomic molecule. For the Raman transition from v to t/, the matrix element
(v'\aij(r)\v] is needed with

The first term on the right-hand side of equation (8.91) is zero because ^v and Vv
are orthogonal within a single electronic state, and the second term leads to the usual
harmonic oscillator selection rules Aw — ±1 (Chapter 7). Using equation (7.56) with
x = r — re gives

for the v -f 1 <— v transition of the diatomic A—B with reduced mass /MB-
The polarizability tensor elements GUJ for the fundamental vibrational band (v =

1 «- 0) are

Equation (8.93) can be combined with equation (8.87) to yield the intensity expression

with

and
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In equation (8.94), the primes on a and 7 denote derivatives, while on / the prime
indicates that the units are watts/sr rather than watts/m2.

The lower state population density NQ can be replaced by the total population
density N using the usual relationship for a harmonic oscillator from statistical ther-
modynamics,

in which q is the partition function for a simple harmonic oscillator. The final inten-
sity equation for Stokes vibrational Raman scattering for the fundamental band of a
diatomic thus becomes

For polyatomic molecules the polarizability is expanded in terms of the normal mode
Qk with

For a polyatomic molecule, the equation corresponding to (8.98) for Stokes Raman
scattering by a fundamental mode Qk is given similarly by

with qv the total vibrational partition function. The formula (8.88) for the depolariza-
tion ratio also applies, but with the polarizability derivatives, a' and 7', replacing the
polarizabilities, a and 7.

The units of polarizability, a, are not always easy to understand because the SI
units of C m2 V"1 obtained from the basic equation (8.1) are often not encountered.
If equation (8.1) is used with cgs units, then surprisingly the dimensions of a are cm3

so a values are traditionally reported in A3 (1 A3 = 10~24 cm3). One can imagine
that the polarizability ellipsoid has this "pseudo volume" in these non-Si units. The
conversion from polarizabilities in A3 to C m2 V"1 involves multiplication by the factor
of 47r£0 x 10~6, i.e.,

The expression for the scattered intensity for mode Qk is then

with the definitions

and
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Ab initio computer programs use atomic units internally, and the atomic units for
polarizability can be deduced from equation (8.51). The atomic units for a are age2/^,
with ao the Bohr radius and Eh the hartree (1 hartree = 2 RQQ = 219474.631 2 cm"1).
The numerical conversion factor from atomic units is given as

8.5 Conclusions
There has been a renaissance in Raman spectroscopy with the availability of lasers,
Fourier transform spectrometers, and sensitive array detectors. Although Rayleigh scat-
tering is weak and Raman scattering even weaker (typically 10~6 of the incident radi-
ation), Raman spectroscopy has a number of important attributes.

Raman spectroscopy has different selection rules than do direct electronic, vibra-
tional, and rotational spectroscopies, so it provides complementary information, espe-
cially for centrosymmetric molecules. Raman spectroscopy uses visible light to obtain
electronic, vibrational, and rotational information about molecules. Since the technol-
ogy for generating, manipulating, and detecting visible light is often more advanced
than the corresponding infrared and millimeter wave technology, this can provide an
important experimental advantage. The water molecule is a relatively weak Raman
scatterer but a strong infrared absorber. Because of this fact, Raman spectroscopy is
often the technique of choice for the vibrational spectroscopy of molecules in aqueous
environments. For example, the vibrational spectroscopy of biological samples (which
are altered by dehydration) is usually best carried out by Raman scattering.

Problems

1. Which normal modes of ethylene are Raman active? (See Problem 1 of Chapter 7.)

2. For the molecules in Problem 2 of Chapter 7, which modes are infrared active
and which are Raman active?

3. Discuss the Raman activity of the normal modes of the molecules in Problems 4,
5, 12, 14, 15, 16, and 17 of Chapter 7.

4. For the IC1 molecule the following spectroscopic constants are listed in Huber and
Herzberg's book:

o;e = 384.293cm"1

(joexe = 1.501 cm"1

Be = 0.1141587cm-1

ae - 0.0005354cm-1.
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(a) Predict the pure rotational Raman spectrum. What will be the Raman shift
of the two lines closest to the exciting laser line?

(b) Predict the pattern of the Stokes vibration-rotation Raman spectrum for
the fundamental band. What will be the Raman shifts of the 5(0) and 0(2}
lines from the exciting laser line at 5145 A?

5. Fill in the following table with a yes (Y) or a no (N) to indicate allowed spectro-
scopic transitions. Answer yes if one or more modes or transitions are allowed,
and no if all modes or transitions are forbidden.

Molecule

H20

SF6

CS2

N20

Allene

Benzene

C12

Rotational Vibrational
Rotational

Raman
Vibrational

Raman

6. The vibrational Raman spectrum of the SO^ anion of C^v symmetry exhibits
four bands in aqueous solution: 966 cm"1 (strong, p); 933 cm"1 (shoulder, dp);
620 cm"1 (weak, p); and 473 cm"1 (dp) (p = polarized; dp = depolarized). Assign
the symmetries of the bands and describe the motion of the normal modes.

7. The attenuation of sunlight by Rayleigh scattering is described by equation (8.71).

(a) Derive equation (8.73) using the Lorentz^Lorenz relationship between the
mean polarizability a and the refractive index n:

N is the molecular density in molecules/m3.

(b) At 500 nm, what is the amount of direct sunlight (1 — ///o) removed by
Rayleigh scattering as measured by a person on the earth's surface? Use the
refractive index for air (at 1 atm) given in Question 2 of Chapter 1. Assume
that the atmospheric pressure p (and the density JV, the quantity n — 1,
and consequently <Tscat) obey the barometric law, P/PQ = e~z/H, with z the
height above the ground and the atmospheric scale height, H, taken as 8
km. Do the calculation for a solar zenith angle of 0°, i.e., the sun is directly
overhead. Take the temperature as 15°C and ignore its variation with height.

The mean polar izability a of N2 gas has been found to be 1.778 A3 by measure-
ment of the refractive index (Problem 7) at 5145 A. The polarizability anisotropy
7 has been determined to be 0.714 A3 by measurement of the depolarization of
scattered light from an argon ion laser operating at 5145 A.

8.
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(a) What was the measured depolarization ratio?

(b) The argon ion laser beam has a power of 1 W and is focused to a 10 pm spot
(i.e., approximately a cube with 10-/um sides) in N2 at 1 atm pressure. A 2-
cm diameter lens with a focal length of 10 cm collects the photons scattered
at 90°. What is the scattered power detected, assuming no optical or detector
losses? How many photons/s are detected?

9. Pecul and Coriani (Chem. Phys. Lett. 355, 377 (2002)) have calculated the deriv-
atives of the mean polarizability a' = da/dr and 7' = d^/dr at re for N2. At
5145 A, they obtained a' = 6.61 and 7' = 7.80 in atomic units. (Hint: Atomic
units for a' and 7' are aoe2E^1, while atomic units for a and 7 are a^E^1.}

(a) What is the depolarization ratio for the fundamental Stokes Raman vibra-
tional band?

(b) For the experimental conditions of Problem 8, compute the scattered power
for the Stokes Raman fundamental band at 2330 cm"1.
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Chapter 9

Electronic Spectroscopy of
Diatomics

9.1 Orbitals and States

Within the Born-Oppenheimer approximation, the electronic Schrodinger equation for
a diatomic molecule A—B is

with the Hamiltonian operator given by

The approximate solution of equation (9.1) is accomplished by assuming that i/je\ is
made up of molecular orbitals (MOs) and that each MO is a linear combination of
atomic orbitals (LCAOs). More precisely, an approximate solution is written in the
form of a determinant (Chapter 5)

with each 0$ being a molecular orbital of the form

in which 0^ and 0? are atomic orbitals localized on atoms A and B, respectively.
Information about the electronic structure of diatomic molecules can therefore be

derived from consideration of the shapes of the molecular orbitals constructed as linear
combinations of atomic orbitals. The atomic orbitals of the constituent atoms are in an
environment with reduced symmetry (D00h or C^, rather than K^) in the diatomic
molecule. As the symmetry is reduced from spherical to axial, each electron with orbital
angular momentum / will begin to precess about the internuclear axis (Figure 9.1). This
sort of "intramolecular Stark effect" means that although I is no longer a good quantum
number, the projection of 1 onto the internuclear axis, m/, remains useful. The sign of

321
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Figure 9.1: The precession of 1 about the internuclear axis.

Table 9.1: Correlation of Atomic and Molecular Orbitals

Atomic
Orbital

/

Molecular
Orbital

A

sa
pa, pTT

da, dit, dS
fa, /TT, fS, f(p

mi is determined by whether the circulation of the electron around the internuclear
axis is left- or right-handed, and the electronic wavefunction is an eigenfunction of the
lz operator, that is,

The direction of the circulation of an electron around the internuclear axis cannot affect
the energy, so there is a double degeneracy for A = |m/ > 0. It is useful to label the
atomic orbitals in a diatomic molecule by

The irreducible representations of the point group Kh are s, p, d, /, g, h, i, k, I, m, n,
o, etc.; similarly a, TT, 6, <p, 7, 77, i, K, X, JJL, v, o, etc., are the irreducible representations
of COQV (Table 9.1). The labels g and u are appended as subscripts for DOG/I molecules.

The atomic orbitals are combined to give the molecular orbitals, as shown in Figure
9.2 for a homonuclear diatomic molecule made of atoms of the second row of the periodic
table. For O2 the electrons are added to the molecular orbitals to give the configuration

or

s
P
d
f



to Ns the order of the ITTU and 3ag (7ru(2p) and cr9(2p)) orbitals are switched.

depending on the labeling scheme adopted for the molecular orbitals. The net bond
order ((number of bonding electrons — number of anti-bonding electrons)/2) is 2 for
O2- From a (7rg)2 configuration the electronic states that result are given by the direct
product

with square brackets around the antisymmetric part of the product. Since the two TT*
electrons are identical in C>2, care must be taken not to violate the Pauli exclusion
principle. On exchange of the two identical electrons (fermions), the total wavefunc-
tion t/Wbitai ̂ spin must be antisymmetric. This means that the symmetric part (£+
and As) of the Hg <g> Hg product combines with the antisymmetric electron spin part
((a(l)/3(2] — o;(2)/5(l))/\/2), while the antisymmetric orbital part (£^~) combines with
the symmetric electron spin part (a(l)a(2), (a(l)/3(2) + a(2)/3(l))/^, /3(l)/3(2)). The
(?r*)2 configuration of oxygen therefore gives rise to the 1S+, 3S~, and 1A5 electronic
states. Since Hund's rules apply to molecules as well as to atoms, 3E~ is expected to
lie lowest in energy. If the two electrons are in different orbitals (7r)1(7r')1, then twice
as many states are possible, namely those associated with the terms 1)3E+, l53E~, and
1>3A. Note that in the direct product tables in Appendix C, the antisymmetric part of
each product is enclosed in square brackets.

The notation for the electronic states of diatomic molecules parallels that for atoms,
with the symbol 25+1A^ used in place of 2S+lLj, and with A = ^Aj. Capital Greek
letters are used for the multi-electron molecular labels, while lowercase Greek letters
are used for one-electron orbital labels. For example, the electronic configuration of the
O2 ground state has two unpaired electrons with AI = ±1 and A2 = ±1. The possible
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Figure 9.2: Molecular orbital diagram for second-row diatomic molecules.  Note that for Li
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Figure 9.3: Angular momenta in a diatomic molecule.

Table 9.2: Angular Momenta in Diatomic Molecules
Angular Projection on Molecular Axis

Momentum (units of K)

J
L
S
R

N = R + L

ft = (A + E)
A
E

A

values of the projection of total orbital angular momentum A = AI + A2 are ±2, 0,
0, which translates into A, E+, and E~ electronic states. Notice that since the \i are
projections of the angular momenta of electrons along the internuclear axis, they add
as scalars rather than as vectors.

For a diatomic molecule the total angular momentum (exclusive of nuclear spin) is
the vector sum of orbital (L), spin (S), and nuclear rotation (R) angular momenta, J
= L + S + R (Figure 9.3). The total angular momentum J has a projection of $lh
units of angular momentum along the molecular axis and (as always) Mjh along the
space fixed Z-axis (Figure 9.4). The notation for various angular momenta and their
projections on the intermolecular axis are summarized in Table 9.2. Notice that the
name given to the projection of S along the internuclear axis is E. (This is completely
unrelated to the fact that A = 0 is also called a S state!) The Q, quantum number is
sometimes appended as a subscript to label a particular spin component.
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Figure 9.4: Components of J in the laboratory (X, Y, Z) and the molecular (x, y, z) frames.

For A > 0 there is a double orbital degeneracy which we can think of as correspond-
ing to the circulation of the electrons in a clockwise or counterclockwise direction. This
degeneracy remains for Q, > 0, and it is customary to use |fi| to represent both values.
For example, a 3E~ state has 3E]~ and 3£~+ spin components (A = 0, E = ±1,0), while

a 2II state has 2n 3/2 and 2IIi/2 (A = 1, E = ±1/2) spin components. Notice that there
are always 25+1 spin components labeled by their |Q| values except when 5 > |A| > 0.
In that case there is a notational problem in labeling the 25+1 spin components, so
£1 = |A| + E is used instead of |A + E|. For example, for a 4I1 state (5 = 3/2, A = 1)
the spin components are labeled as 4n5/2, 4n3/2,

 4n!/2, and 4n_!/2.
The electronic states of diatomic molecules are also labeled with letters: X is re-

served for the ground state, while A, B, C, and so on, are used for excited states of
the same multiplicity (25+1) as the ground state, in order of increasing energy. States
with a multiplicity different from that of the ground state are labeled with lowercase
letters a, 6, c, and so on, in order of increasing energy. This convention is illustrated by
the energy-level diagram of the low-lying electronic states of O2 in Figure 9.5.

The possible electronic transitions among the energy levels are determined by the
selection rules:

1. AA = 0, ±1. The transitions E - S, II - E, II - II, A - II, and so forth, are
allowed.

2. A5 = 0. Transitions that change multiplicity are very weak for molecules formed
from light atoms, but as spin-orbit coupling increases in heavy atoms, transitions
with A5 7^ 0 become more strongly allowed.

3. AE = 0 (for Hund's case (a), see below).

4. An = 0,±l.

5. E+ — E+, E~ — E~, but not E+ — E~. This selection rule is a consequence of
the IJLZ transition dipole moment having E+ symmetry. Notice that E+ — II and
E~ — II transitions are both allowed.
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Figure 9.5: The low-lying electronic states of the C>2 molecule.

6. g <-> u. The transitions lU g — 1UU, XE+ — :E+, and so forth, are allowed for
centrosymmetric molecules.

For example, transitions among the first three electronic states of C>2 (fe1!^, a1 Ag, and
X3T,~, Figure 9.5) are forbidden, but the £3£~ - X3Y,~ transition is allowed. The
B — X transition of (>2, which is known as the Schumann-Runge system, is responsible
for the absorption of UV light for wavelengths A < 200 nm in the earth's atmosphere.
The vacuum UV region is so named because of this absorption of radiation by O^ in
air. Spectroscopic measurements in the vacuum UV region must therefore be carried
out under vacuum conditions.

9.2 Vibrational Structure

An electronic transition is made up of vibrational bands, each of which in turn is made
up of rotational lines. The presence of many vibrational bands, labeled as v' — v", ex-
plains why electronic transitions are often called band systems. The terms band system,
band, and line date from the early days of spectroscopy and refer to the appearance
of electronic transitions of gaseous molecules recorded photographically on glass plates
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Figure 9.6: The C3Ylu — B3Tlg second positive system2 of N2. The pairs of numbers indicate
the vibrational bands (v1, u"), and the wavelength scale on the top is in angstroms.

with a spectrograph. Although lasers and Fourier transform spectrometers have largely
displaced classical techniques, a reproduction of such a photographic plate is presented
in Figure 9.6.

The CN free radical occurs prominently in many plasmas that contain carbon and
nitrogen impurities.1 It will serve as an example of an electronic spectrum of a diatomic
molecule. The ground state of CN X2E+ arises from the configuration • • • (it2p}A (alp)1,
while the first excited state A2Hi arises from the (7r2p)3(cr2p)2 configuration (Figure
9.7). The subscript i stands for "inverted," which means that the 2Ti\/2 spin component
lies above the 2n3/2 component. For non-ionic heteronuclear diatomic molecules such
as CN, the electronic configurations can be obtained with the help of Figure 9.2, with
the g and u labels deleted.

Vibrational structure is organized into sequences and progressions. A group of bands
with the same Av is called a sequence so the 0-0, 1-1, 2-2 bands form the At? = 0
sequence, while the 0-1, 1-2, and 2-3 bands form the Aw = — 1 sequence (Figure 9.6).
When the excited-state and ground-state vibrational constants are similar, bands of the
same sequence cluster together. A series of bands all connected to the same vibrational
level V, such as 3-1, 2-1, 1-1, and 0-1, is called a progression. Upper state progressions
connect into the same lower vibrational level, while lower state progressions connect to
the same upper vibrational level.

The vibrational band positions of an electronic transition are obtained from the
usual vibrational energy-level expression: that is,
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Figure 9.7: Potential energy curves and the lowest few vibrational levels for the X2E+, v42Ili,
and 52£+ states of CN.

in which ATe = Eupper — E\ower is the energy separation (in cm"1) between the potential
minima of the two electronic states.

The intensities of the various vibrational bands are determined by three factors:
the intrinsic strength of the electronic transition, the populations of the vibrational
levels, and the squared overlap integral of the two vibrational wavefunctions, called the
Franck-Condon factor. Franck-Condon factors result from the application of a more
general rule called the Franck-Condon principle. This principle has both classical and
quantum mechanical versions.

The classical version of the Franck-Condon principle is based on the idea that elec-
tronic transitions occur very quickly, in less than 10~15 s. In such a short time the nuclei
do not have time to move, so vibration, rotation, and translation are "frozen" during an
electronic transition. On a potential-energy diagram, therefore, electronic transitions
occur vertically at the initial r value. The kinetic energy (but not the potential energy)
is the same immediately before and after an electronic transition.

The presence of vibrational levels can be added to the classical picture (Figure 9.8)
by quantizing the energy levels (Figure 9.7). Furthermore, vibrating diatomic molecules
(except for v = 0) spend more time at the classical inner and outer turning points of
the vibrational motion than in the middle, so that transitions can be approximated as
occurring near the turning points. For example, Figure 9.9 predicts the 0-18 band of
the B — X transition of Br2 to be strong in emission, while Figure 9.7 predicts the 2-0
band of the A2Tl — X2T^+ transition of CN to be strong in absorption.

The quantum mechanical version of the Franck-Condon principle is based on the
fact that the intensity of a given transition is proportional to the square of the transition
moment integral
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Figure 9.8: Electronic transitions occur vertically on an energy-level diagram and approxi-
mately conserve the radial kinetic energy.

Figure 9.9: The Br2 B H0+ and X £+ potential energy curves.

and the Born-Oppenheimer approximation that separates electronic and nuclear mo-
tion, i/)ev = ipe^v The rotational motion of the diatomic molecule is ignored here, but
its inclusion does not change the derivation. The electronic wavefunctions are a para-
metric function of the internuclear distance r so the transition dipole moment ~M.ev



330 9. Electronic Spectroscopy of Diatomics

becomes

with TJ representing the electronic coordinates. The electronic transition dipole moment
Re(r) is defined as

The electronic transition dipole moment integral Re(r) can be expanded in a Taylor
series about a convenient value of r, say f. Using r, the electronic transition dipole
moment Re(V) becomes

Substitution of equation (9.12) into equation (9.10), and retaining only the first term
on the right-hand side of equation (9.12) leads to the transition dipole moment ~M.ev

expression

In other words, Mew has been factored (9.13) into the product of an electronic and a
vibrational part, with the electronic transition dipole moment Re given by

and the vibrational overlap integral (v'l^"} given as

The expansion center r could be chosen as r" or as (r^ + r")/2, but the best ap-
proximation is to let r be the r-centroid value for a particular u' — v" vibrational band.
The r-centroid, rv>v», is defined as

In this case, the Franck-Condon separation of electronic and vibrational motion, equa-
tion (9.13), becomes

The r-centroid approximation, equation (9.17), is mainly of pedagogic interest and in
practice either equation (9.13) or the full r-dependent transition moment Re(r) is used.
In fact, if the transition dipole moment function Re(r) is available from either ab initio
calculation or experiment, then it should be used explicitly with numerical vibrational
wavefunctions as discussed at the end of this chapter.
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Figure 9.10: For the J32S+ - X2S+ transition of CN, the 0-0 band will be strong because of
favorable vibrational overlap.

The intensity of a vibronic transition is proportional to the square of the transition
moment integral, namely

in which qv>-v» — \(v'\v")\2 is called the Franck-Condon factor. Note that although
the vibrational wavefunctions are all orthogonal within one electronic state, they are
not orthogonal between two different electronic states. The electronic transition dipole
moment |Re| has a magnitude of about 1 debye for an allowed transition, while q ranges
between 0 and 1 depending on the extent of overlap. The value of |Re|

2 measures the
intrinsic strength of an electronic transition, while the Franck-Condon factor determines
how the intensity is distributed among the vibrational bands.

As discussed in more detail in Chapter 7. potential curves V(r) can be obtained
for each electronic state using the RKR procedure and the Bv and Gv constants.3 The
one-dimensional vibrational Schrodinger equation (7.13), can be solved numerically to
obtain the vibrational wavefunctions, which are then used to integrate equation (9.15).4

Franck-Condon factors can thus easily be calculated with freely available computer
programs.3'4

The intensity of the vibrational bands of an electronic transition is determined by
the population of the vibrational levels, the intrinsic strength of a transition (Re), and
the Franck-Condon factors. In the case of a common initial vibrational level, the relative
intensity of two bands is given by a ratio of Franck-Condon factors. The magnitudes
of the vibrational overlap integrals can be estimated from a picture of vibrational
wavefunctions (e.g., Figure 7.5). As shown in Figure 9.10, when the two electronic states
have similar re and u>e values, then the At? = 0 sequence of diagonal bands 0-0, 1-1,
2-2 are strong because of the optimal overlap of the Av — 0 vibrational wavefunctions
of the upper and lower electronic states. In contrast, when the equilibrium internuclear
separation re of the two electronic states is significantly different, the off-diagonal bands
(Av 7^ 0) have particularly good vibrational overlaps (Figure 9.11).

The vibrational band heads or origins of an electronic band system can be conve-
niently organized into a Desiandres table. A Deslandres table is a two-dimensional array
of vibrational band energies, constructed as shown in Table 9.3. The terms diagonal
and off-diagonal bands refer implicitly to a Deslandres table. The differences between
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Figure 9.11: The 2-0 band of the A2U - X2S+ transition of CN has a large Franck-Condon
factor.

Table 9.3: Deslandres Table of the Band Heads of the N2 C
3UU -B3Ug Second Positive

System2

"'/..„ 0 1 2 3 4

0 29652.8
1990.7

1 31643.5
1 939.8

2 33583.4
1869.8

3 35453.1
1752.1

4 37205.2

1 703. 6

1 702. 1

1 704.8

1 702.0

1 682.8

27949.2
1 992.2
29941.4
1 937. 1
31878.5
1872.6
33751.1
1 771.3

35522.4

1674.7

1 674.5

1 666,6

1 675.2

1670.7

26274.5
1 992.4
28266.9
1 945.0
30211.9
1864.0
32075.9
1 775.8
33815.7

1 647.2

1 646.8

1652.7

1646.0

1 644.5

24627.3
1 992.8
26620.1
1 939. 1
28559.2
1 870. 7
30429.9
1 777.3

32207.2

1611.4

1617.1

1617.0

1611.4

1617.2

23015.9
1 987. 1
25003.0
1939.2

26.942.2
1 876.3
28818.5
1 771.5

30590.0

elements in adjacent rows and columns give the apparent vibrational intervals of the
ground and excited electronic states.

9.3 Rotational Structure of Diatomic Molecules

Singlet-Singlet Transitions

The rotational structure of singlet-singlet electronic transitions is identical to that of
the vibrational transitions of a linear molecule, as discussed in Chapter 7. In Chapter
7 it was shown for a linear polyatomic molecule that the projection of the total an-
gular momentum along the internuclear axis originates from the vibrational angular
momentum 1. For singlet electronic states the angular momentum projection along the
z-axis originates from the orbital motion of the electrons (L). As shown in Figure 9.3,
the projection of L along the internuclear axis is denoted A and is analogous to the
vibrational angular momentum quantum number /. As discussed in Chapter 7, three
types of transitions are possible:
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Figure 9.12: The 0--0 band of the CuD A1Z+ - X1E+ system.5 The peaks marked with +
are P branch transitions, while those marked with * belong to the R branch.

1. AA = 0, A" = A' = 0. As shown in Figure 9.12, JE+ - 1S+ (or 1E~ - *£-)
transitions have only P and R branches (AJ = ±1). *£ — *£ transitions are
parallel transitions, defined as those for which the transition dipole moment lies
along the z-axis.

2. AA = ±1. As illustrated by Figure 9.13, 1U - 1S+, JH - 1S~, 1A - 1U, and so
on, transitions have strong Q branches (AJ — 0) as well as P and R branches,
with AJ — ±1. These transitions have a transition dipole moment perpendicular
to the molecular axis, and hence are designated as perpendicular transitions.

3. AA = 0, A' = A" ̂  0. Transitions such as1!!-1!!, 1A-1A, and so on, are
characterized by weak Q branches and strong P and R branches (AJ = 0, ±1).

The total power Pj>j" (in watts/m3) emitted by an excited rovibronic level \nv'J'}
making a transition to the lower level \n"v"J"} is given by the expression7

in which Nj> is the excited-state population in molecules/m3, vj'j» is the transition
frequency in Hz, qv>-V" is the Franck-Condon factor, Re is the electronic transition
dipole moment in coulomb meters, and Sffl is a rotational line strength term called a
Honl-London factor (Table 9.4). This equation (9.19) is obtained from the expression
for the Einstein A factor (equation (1.53)) by multiplication by hv to convert from
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Figure 9.13: The 0-0 band of the NH clU - a1 A system.6 The doubling of the lines at high
J in the R and Q branches is due to A-doubling in the caH state. The very intense line near
30 790 cm~l is due to emission from the He atom.

photons/s to watts, then multiplication by Nj> to account for the number density of
excited states, and finally by the substitution of 5w/_w//|Re|

25^//J/(2J' + 1) for /^0

(see Chapter 5 and the end of this chapter for details). The Honl-London factors are
derived from the properties of symmetric top wavefunctions.8 The relative intensities of
the rotational lines in a band of an electronic transition are given by the Honl-London
factors S$t of Table 9.4.

For electronic transitions the rotational constants of the two states can differ sig-
nificantly. Consider the expressions for P, Q, and R branches,

and

If B' < B", then the spacing between the lines in the P branch will increase as J"
increases (9.20a), while the spacings between the lines of the R branch (9.20c) will

Or
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Table 9.4: Honl-London Factors

"These values are twice those listed in Herzberg's Spectra of
Diatomic Molecules because of a different definition of the per-
pendicular transition dipole moment (see section 9.5).

decrease (Figure 9.12). At some point the lines in the R branch will pile up and then turn
around. This pile up of lines is called a band head and is a characteristic feature of many
electronic transitions. At low resolution (Figure 9.14) a band head has a characteristic
edge structure due to the overlap of many rotational lines. Conversely, if B' > B",
then the band head will be in the P branch and the band is said to be blue (or violet)
degraded (or degraded to shorter wavelengths). If the band head is in the R branch,
then the band is described as red degraded (or degraded to longer wavelengths), as
illustrated in Figure 9.14. Band heads also occur in vibration-rotation spectra, but
because B' — B" is relatively small the head often occurs at sufficiently high J that it
escapes observation.

The expressions for P and R branches (9.20) can be combined into a single ex-
pression by defining an index m = J" + 1 for the R branch and m = — J" for the P
branch,

For the Q branch m = J" and the expression for the line positions is
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Figure 9.14: The low-resolution laser excitation spectrum of the A1S+ — XaS+ transition of
SrS.9

Figure 9.15: Fortrat parabola for the 0-0 band of the J32E+ - X2E+ transition of CN.1

The VP^R expression (9.22) can be plotted as a function of m, or more commonly m
is plotted as a function of P, to give what is called a Fortrat parabola (Figure 9.15). A
Fortrat parabola is helpful in visualizing the rotational structure of a vibrational band.
The head will occur in the Fortrat parabola when

or when

with the head-origin separation being given by
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Figure 9.16: The Fortrat diagram for the A1H - Xl^+ transition of BD.10

Sometimes the Fortrat diagram is plotted as a function of |m| so that the P and R
branches no longer fall on the same parabola (Figure 9.16). In addition the effect of
centrifugal distortion terms, which become significant for high-J lines, distorts the curve
from a pure parabolic shape (Figure 9.16).

For 1II states (and all states with A > 0) there is a degeneracy associated with the
two possible values ±|A|. The effect of this double degeneracy on a II — £ transition has
already been discussed in Chapter 7. In the case of an electronic transition the small
splitting in the levels of a 1H. state is called A-doubling11 rather than /-type doubling,
but the effects are completely analogous. Only the names and the physical origins
of the splittings are different. Thus the energy-level diagram for a II — £ transition
(Figure 7.33) applies to both vibrational transitions of linear polyatomic molecules and
electronic transitions of diatomic (and linear polyatomic) molecules. The energy level
splitting due to A-doubling increases with J and is given by qJ(J +1) for 1II states.11

Nonsinglet Transitions

The rotational structure of nonsinglet states is more complex than that of singlet states
because of the effect on the rotational structure of both spin and orbital angular mo-
ment. In general, the Hamiltonian operator is separated into electronic, vibrational, and
rotational parts, with the effect of spin-orbit coupling within a state being accounted
for by the addition of the spin-orbit operator,

so that

The methodology for determining the rotational energies for nonsinglet states is
to formulate this Hamiltonian operator in terms of the various angular momentum
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operators J, N, S, R, and L (Table 9.2) and to select suitable basis functions. In the
next step a matrix representation of the Hamiltonian operator can be constructed and
diagonalized to obtain the energy eigenvalues and wavefunctions (eigenvectors).

Since the focus of this section is on the rotational structure, it is convenient simply
to treat the vibronic expectation value,

as a constant. Explicit forms for Hr0i and Hso in the molecular coordinate system
are11-13

and

in which

are raising and lowering operators. In equations (9.30) and (9.31) all operators are in
the molecular frame so that
(anomalous). Notice that the commutators associated with the components of L and S
are the same in both the laboratory and molecular frames, while those associated with
J are anomalous in the molecular frame. This means that J+ is a lowering operator
and J~ is a raising operator—that is,

Next a suitable basis set needs to be chosen. Since the Hamiltonian operator is
comprised of electronic, vibrational, and rotational terms, it is convenient to use a
simple product basis set,

in which n and v label the electronic state and vibrational level. The basis functions
are simultaneous eigenfunctions of the operators He\, //vib, Lz, -S'2, 5Z, Jz, J

2, and Jz'-
that is,
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The only non-zero off-diagonal matrix elements associated with J± and 5± are

Notice that a label for L is not present in the basis set because the electronic wave-
function is generally no longer an eigenfunction of L2, that is,

even though the projection of L along the inter nuclear axis is well defined, with

The rapid precessional motion of L around the internuclear axis (Figure 9.1) prevents
the experimental determination of the magnitude of L. This means that matrix ele-
ments of L2 or L+ are simply constants whose values could be determined by ab initio
calculation. Usually the expectation values of these operators are just absorbed into
the electronic band origins. An alternate approach11 eliminates L from the rotational
Hamiltonian operator to give an effective Hamiltonian operator in terms of N2 (see
Table 9.2) rather than R2.

2S+ States

For 2E+ states there are two basis functions,

and

in which S7, A, and E are signed quantum numbers. The diagonal matrix elements of
JYrot, equation (9.30), are (in units of cm"1):
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Figure 9.17: Energy-level diagram of a 2S+ state with a positive spin-rotation constant, 7,
that puts the e level above / for each N.

in which e and / are parity basis functions (see section 9.4). The Hamiltonian matrix
in the transformed basis set becomes

It turns out that if the diagonal elements of H' are expressed in terms of the integral
quantum number N (i.e., the total angular moment exclusive of electronic spin, Table
9.2) rather than J, then they simplify to

In equation (9.55a) N is J — ̂  for the e levels, while in equation (9.55b) TV is J -f ^
for / levels. The energy-level pattern for 2E+ states is thus identical to that for XE+

The off-diagonal matrix elements of —B(J+S + J S+] couple the 2E!/2 state to the
2E_!/2 state—namely

Collecting the diagonal and off-diagonal elements of H (in cm"1) gives

Although this matrix can be diagonalized as it stands, the diagonalization can be
avoided by transforming the basis functions as
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states if N is used rather than J (Figure 9.17). The subscripts 1 and 2 in equations
(9.55a-b) are chosen in accordance with the spectroscopic custom that FI has J equal
to the maximum value of (N + S). Although the energy-levels corresponding to the
two J values for each N—(F\(N) and F2(N})—are exactly degenerate at this level of
theory, inclusion of the spin-rotation interaction term11'13

splits them by the amount 7(AT + ^).

2n States

There are four possible basis functions for a 2II state,

The derivation of the sixteen possible matrix elements of Hrot + Hso, equations (9.30)
and (9.31), is slightly more involved than for 2E+ states but results in the Hamiltonian
matrix (in units of cm""1):

To obtain the full matrix H, the vibronic term energy Eev needs to be added to each
term along the diagonal. Note that the constant matrix element of (B(L2 — I/2)) has
been included in Eev. In this case the e/f parity basis functions are written as

in which the upper (lower) sign refers to e(f) parity. The resultant transformed Hamil-
tonian matrix for the e-parity block is

with identical matrix elements for the /-parity block.
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There are two limiting cases for the energy levels of a 2II state depending upon the
extent of spin-orbit coupling, as measured by the relative size of the diagonal AL • S
term in the Hamiltonian operator. When A is large (A >> -BJ), it is referred to as
Hund's case (a) coupling, while when A is small (A <C -BJ), it is referred to as Hund's
case (b) coupling.

The Hund's case (a) 2II Hamiltonian matrix is characterized by diagonal matrix
elements with the large separation A.E = H'n — H^ ~ A, and by a relatively small off-

diagonal matrix element                                       In this case, second-order

perturbation theory (Chapter 4) predicts that the higher upper energy level is shifted
upward by V2/AE = (Hi2)2/AE and the lower energy level downward by the same
amount. There are thus two widely separated spin components, 2n3/2 and 2H\/2, with
energies given by

and

The energy-level expressions (9.61) and (9.62) can be simplified by defining

and

Thus, the rotational levels of the           and         spin components are well separated
for each J value, and each component has its own effective B value, while the actual
mechanical rotational constant is the average

At this stage of development the e and / components for each rotational energy level
are exactly degenerate. If A-doubling14 is taken into account, the 2H!/2 rotational levels
are split by — p(J + ^) and the 2H3/2 rotational levels are split by /(p,q)(J + |)3, in
which /(p, q) is a parameter which depends on p and q. The two A-doubling constants,
p and q, account for interactions with distant 2S states. As illustrated in Figure 9.18

and

so that the energy-level expressions become
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Figure 9.18: The energy-level pattern for a Hund's case (a) 2I1 state with negative A-doubling
parameters, p and q, that put e levels above / for each A-doublet.

The energy levels for a Hund's case (b) 2H state are therefore given by B(N(N+l) — 1),
so that at this level of treatment, for each TV there is a fourfold degeneracy, F\e, FI/,

each rotational energy-level J is twofold degenerate and this degeneracy is lifted by
A-doubling interactions in a rotating molecule.

If the splitting between the 2IIi/2 and 2n3/2 spin components is small, then the
Hund's case (b) energy-level pattern applies. In this case, A — IB <C BJ (i.e., (H\\ —
H<22) ^ H\<z) so that the two spin components are strongly coupled. In this case, the
2 x 2 Hamiltonian matrix (9.60) must be diagonalized (Chapter 4) in order to obtain
the two energy levels.

For Hund's case (b), the spin-orbit coupling constant is zero (A = 0). The two
energy levels are given by the expression

For a Hund's case (b) 2H state it is again useful, as in the 2E+ case, to introduce the
integral quantum number N = J + | for the E+ level and N = J — ̂  for the E
Thus from equation (9.69) the FI and F2 energy levels are given by

and
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Figure 9.19: Energy-level diagram for a Hund's case (b) 2H state.

F2e, and F2/ (Figure 9.19). The FI and F2 labels are denned so that J = N + ± for FI
and J = N — | for Fa. If A-doubling is considered, then the e and / levels are split by
qJ(J + 1) as for a 1U state.14

In general the rotational energy levels for Hund's case (b) 2S+1A states are given by
BN(N + 1) and there are 2(25 + 1) degenerate levels for A / 0 and 25 + 1 degenerate
levels for A — 0 (E+ or £~ states). In contrast (Figure 9.20) for a Hund's case (a) 25+1A
state there are 25+1 well-separated spin components in which the rotational energy
levels for each component are given by B^efi^J(J -f 1). For Hund's case (a) each J is
doubly degenerate (A > 0), corresponding to ±A (or e// parity states). For £ states,
Hund's case (a) coupling is rare since there is no contribution by the diagonal spin-orbit
term to the energy levels. Second-order spin-orbit coupling can, however, split a 25+1£
state into 5 + 1 spin components, labeled by their Q values. A molecule such as BiH
with nominally a X3Y,~ ground state is split into XiQ+ and X^l substates by a large
second-order spin-orbit coupling (cf. Hund's case (c) below).

The energy-level patterns described by Hund's case (a) and (b) are extreme limiting
cases. The accurate description of molecular energy levels also requires the addition of
centrifugal distortion, spin-rotation coupling, spin-spin coupling, and A-doubling terms,
as well as the numerical diagonalization of the Hamiltonian matrix.11'13 There are also
two additional Hund's coupling cases that are not uncommon: Hund's cases (c) and (d).

In Hund's case (c), the spin-orbit coupling becomes larger than BJ as well as
larger than the separation between neighboring electronic states—that is, A ^> BJ and
A ^> AFstates- In this case the various spin components from several 25+1A terms occur
in the same energy region and their wavefunctions become mixed through off-diagonal
(i.e., between 2S+1A terms) spin-orbit coupling. The complete spin-orbit Hamiltonian
operator,

causes both large spin-orbit splittings and extensive mixing of the electronic wavefunc-
tions.
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Figure 9.20: Hund's case (a) and Hund's case (b) energy-level patterns for a 2S+1A state.

The strong coupling of L and S means that only J and J7 are good quantum numbers
for pure case (c) coupling. Since L, 5, A, and £ no longer have any meaning, the
conventional 2lS+1A^ notation is misleading; the Hund's case (c) notation is just Q.
For example, the B3HQ+ state of 1-2 should be labeled as 50+ using Hund's case (c)
notation. Since spin-orbit coupling increases rapidly with increasing atomic number Z,
electronic states of diatomic molecules containing heavy elements tend toward Hund's
case (c). For Hund's case (c) coupling, the 25+1 spin components of a given 2S+1A term
are like independent electronic states and are labeled by the good quantum number J7.

The rotational energy-level pattern for a Hund's case (c) state is similar to
the Hund's case (a) pattern (Figure 9.21). The rotational energy-level expression is
BeffJ(J + 1) for each Q state. For O ̂  0 each level is doubled due to the ±O degen-
eracy, which can be lifted by Q-type doubling interactions. The $7-doubling splitting
increases as J increases with a J-dependence that scales as J2fi. For both Hund's cases
(a) and (c) the spin components are labeled by Q, but only for Hund's case (a) does a
spin component originate from a specific 2S+1A term. In Hund's case (c) the 1) state is
a mixture of many 2S+1A$i basis functions.

Hund's case (d) applies to Rydberg electronic states in which an electron is excited
to an orbital with a large principal quantum number. In this case, the Rydberg electron
is so distant from the nuclei that 1 and s for the Rydberg electron couple only weakly
to the internuclear axis. For a pure Hund's case (d) state the rotational energy-level
expression is BR(R+l] and each level has a (25+l)(2L+l) degeneracy. The 2L+1 and
25 + 1 degeneracy is associated with the ML and MS degeneracy of a very atomic-like
Rydberg electron. The atomic-like character of the Rydberg molecular orbital allows L
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Coupling Case

Hund's case (a)
Hund's case (b)
Hund's case (c)
Hund's case (d)

Good Quantum
Numbers

A, S, E, ft
A, S, S
ft
L, ft, St S

Rotational Energy
Expression

BJ(J+1)
BN(JV+1)
BJ(J+1)
B/2(fl+l)

Orbital and Spin
Degeneracy of Each

Rotational State

2 (1 for E states)
2(25 + 1) (2S + I for
2 (1 for E states)
(2L+1)(2S+1)

E states)

to be a good quantum number in this case. The various Hund's coupling cases12 are
summarized in Table 9.5, keeping only the main rotational term.

9.4 The Symmetry of Diatomic Energy Levels: Par-

ity
Nothing causes as much confusion in the study of the spectra of diatomic molecules
as does the concept of parity. The difficulty lies in there being several different types
of parity such as g/u, e / f , +/—, and s/a. The basic idea is quite simple, however:
if the Hamiltonian operator H and a symmetry operator O$ commute, then a set of
simultaneous eigenfunctions of the two operators can be found; that is,

implies that

and that

If a molecule has a certain symmetry, then the effect of the associated symmetry opera-
tor can be used to label wavefunctions and energy levels. Care must be taken, however,

9. Electronic Spectroscopy of Diatomics

Figure 9.21: Hund's case (c) rotational energy-level pattern.

Table 9.5: Hund's Coupling Cases
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to specify both the symmetry operator and the part of the total Hamiltonian operator
under consideration. Failure to do this is the real source of confusion about parity.

Total (+/-) Parity

If the symmetry operation is E* (sometimes called /) and the total Hamiltonian op-
erator including electronic, vibrational, and rotational parts (but not nuclear spin) are
used, then one obtains total parity. The E* operator inverts all of the coordinates of
the particles (nuclei and electrons) in the laboratory frame with the origin at the center
of mass (Figure 9.4)—that is,

The E* operator is a symmetry operator because all of the relative positions of the
particles are the same before and after inversion, and consequently the energy levels
are unchanged by application of E*. Note, however, that the sign of the wavefunction
can change under E* since

Total parity is the parity often used in nuclear and atomic physics. Physicists have
long noted that the properties of a right-handed system are identical to those of a
left-handed system (except for the process of /3-decay) since the E* symmetry operator
converts one into the other.

The E* symmetry operator is used to divide all rovibronic energy states into two
groups by means of the equation

All rovibronic energy levels for which the upper sign applies have positive (+) total
parity, while all rovibronic levels for which the lower sign applies have negative (—)
total parity. The effects of E* on the electronic, vibrational, and rotational parts of the
total wavefunction need to be determined individually.

The effect of E* on the vibrational part of the diatomic wavefunction is easy to
ascertain. The inversion operation leaves the vibrational part of the wavefunction un-
changed because t/Vib is a function only of the magnitude of the internuclear separation
r. Inversion of the coordinates of all particles leaves r unchanged, so that

The effect of E* on the rotational wavefunction is more complicated. For instance,
Figure 9.22 shows that the E* operation replaces 0 by n — 0 and </> by 0+7r in VVot^ </>),
and for 1E+ states ^rot = YJM(@-, <!>}• We have already discussed the effect of inversion
in the laboratory frame on spherical harmonics, the result being

In general, however, ^rot = |OJM), and the properties of these rotational wavefunc-
tions need to be considered. The rotational wavefunctions |OJM) are identical to the
symmetric top wavefunctions \KJM) discussed in Chapter 6, and it is found that12
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Figure 9.22: Diatomic molecule coordinate system.

The final part of the problem, the effect of inversion on ipe\, is the most difficult
because V>ei is known in the molecular frame. The calculation of 7/>ei is performed under
the Born-Oppenheimer approximation in which the nuclei are fixed in space; thus
^e\(xi,yi,Zi) is known but i{)e\(Xi,Yi, Zi) is not. Since the inversion operation changes
the sign of the laboratory coordinates pQ, Yi,Zi) of the particles, the effect of E* on
^e\(xi,yi,Zi) is not obvious. Hougen has considered this problem12'15 and has shown
that E* in the laboratory frame is equivalent to the symmetry operation of reflection
av in the molecular frame. The equivalence of the permutation-inversion operation E*
in the laboratory frame and the ordinary point group operation of reflection av in the
symmetry plane of the diatomic molecule is an important (and not obvious!) result. The
effect of av on the coordinates of an electron is established by replacing (xi,yi,Zi) by
(xj, —j/i, Zi), if the reflection is arbitrarily chosen to be in the xz-plane of the molecule.
Without considering the detailed form of the spin and orbital parts of i/)e\, it is not
possible to extend the treatment further. It turns out that the effect of av on the spin
and orbital parts is12

and

The effect of av on a |A = 0} orbital part of the electronic wavefunction is particu-
larly interesting since one obtains

These ± signs are written as superscripts on the term symbols, E+ and E~; they
correspond to

The superscript ± sign in the term symbol for E states indicates the effect of the av

symmetry operator on only the orbital part of the electronic wavefunction. The addition
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of superscript ± to the term symbol for A > 0 (II, A, <&, etc., states) is not necessary
since the levels always occur as a ± pair because of the twofold orbital degeneracy
(Figure 9.18).

The effect of the av operator (equivalent to E*) on the total wavefunction is deter-
mined by combining equations (9.80), (9.81), and (9.82):

in which cr = 0 for all states, except £~ states for which a — 1. Since the av operation
changes the signs of A, E, and fH, the parity eigenfunctions are linear combinations of
the basis functions, namely

with

The selection rules on total parity are derived, as usual, by requiring a totally
symmetric integrand for the transition moment integral,

The transition moment operator has (—) parity since

so that only + *-> — transitions are allowed for one-photon electric dipole transitions.

Rotationless (e/f) Parity

Notice that the total parity changes sign with J (Figure 9.23) because of the phase
factor ( — 1 ) J in equation (9.80). This alternation of the total parity with J is always
present, and hence it is useful to factor it out by defining e and / parity as16

and

for integer J. Similarly, for half-integer J,

and
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Figure 9.23: Parity of aS, 2E, and 3E rotational energy levels.

Figure 9.24: Parity of 1H and aA rotational energy levels with positive A-doubling
constants,14'17 q and QA (respectively), that put e levels above / for each A-doublet.

in which tp is the total rovibronic wavefunction. In the molecular frame, E* is replaced
by av. Notice that e and / parity is a "residual parity" or a rotationless parity describing
the total parity with the rotational part removed.
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Because the alternation of sign with J has been removed, e/f parity is more conve-
nient to use than total parity. All rotational energy levels of 1S+ states have e parity,
while all 1E~ rotational energy levels have / parity (Figure 9.23). For 1II states all of
the rotational energy levels occur as e/f pairs (Figure 9.24). The + «-» — selection rule
for total parity becomes e <-> e and / <-> / for P and R branches, while e <-» / for Q
branches.

The use of e/f parity also suppresses an annoying (_i)-/-2S+s'+0' factor in the
definition of the parity eigenfunctions (9.85) since

in which e corresponds to the upper sign and / to the lower.

Gerade/Ungerade (g/u) Parity

For homonuclear diatomic molecules, the point group -Doo/i contains an inversion op-
eration {. This inversion operation is applied in the molecular frame, unlike the E*
symmetry operation that is applied in the laboratory frame. Moreover, E* (or av) is a
symmetry operation for all diatomic molecules, while £ is a symmetry operation only
for homonuclear diatomic molecules.

It is useful to classify only the electronic orbital part of the wavefunction with the
aid of i. (The operation i acts only on the spatial coordinates of electrons and leaves
the vibrational, rotational, and electron spin parts of the wavefunction unchanged in
any case.) Now the location of the nuclei define the molecular 2-axis, so the inversion
operation i means that only the electrons (but not the nuclei or the coordinate system)
are inverted through the center of the molecule,

or

where the + sign corresponds to g (gerade) parity and - to u (ungerade) parity. The g
or u parity is appended as a subscript to the term symbol of a diatomic molecule, for
example, 2£j~, 3S~, XAU . Thus g and u are used to classify just the electron orbital part
of the total wavefunction. The selection rule g <-» u applies for electric dipole-allowed
transitions since the transition dipole moment fj, is of u parity.



The symmetric ^nuc wavefunctions must be combined with antisymmetric normal wave-
functions (excluding nuclear spin) ijj to give an overall antisymmetric product ^nuc-
These rovibronic wavefunctions are therefore antisymmetric with respect to Pi2 and
are labeled a. Similarly, the single antisymmetric nuclear spin function must be com-
bined with a symmetric normal wavefunction (excluding nuclear spin) to give an overall
antisymmetric product t/'V'nuc- These rovibronic energy levels are therefore symmetric
(with respect to P\<2) and are labeled s. In the case of H2 the a rotational energy levels
(called ortho levels) have three times the statistical weight of the s rotational levels
(called para levels). By convention ortho levels always have the larger statistical weight
and para levels the smaller (see Chapter 7).

Which rotational energy levels of a homonuclear diatomic molecule are s and which
are a with respect to the Pi2 operation? The problem is that Pi2 is a permutation-
inversion operator that switches (permutes) the two nuclei of a homonuclear diatomic
molecule so that Pi2 is not an ordinary group symmetry operator.

The Pi2 operator can be expressed in terms of group symmetry operations and
applied to the wavefunction in two steps. First, all of the electrons and all of the nuclei
are inverted through the origin by applying the E* operator in the laboratory frame;
then only the electrons are inverted back by applying i in the molecular frame. Thus
all + rotational energy levels have s symmetry for g electronic states or a symmetry
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Symmetric/Antisymmetric (s/a) Parity

For homonuclear diatomic molecules an additional symmetry called s (for symmetric)
and a (for antisymmetric) can be used to classify the rotational energy levels. The
Pauli exclusion principle demands that the total wavefunction including nuclear spin be
symmetric or antisymmetric with respect to interchange of the two identical nuclei. This
interchange of two identical nuclei is described by the operator PI2 in the laboratory
frame. Experimentally it is found that if the identical nuclei are bosons (/ == 0,1,2,. . .) ,
then the total wavefunction (including nuclear spin) is symmetric with respect to the
Pi2 operator, while if the identical nuclei are fermions (/ = ^, |, |,...), then the total
wavefunction is antisymmetric with respect to Pi2- The total wavefunction is written
as the product of the "normal" wavefunction ijj which includes electron spin, orbital,
vibrational, and rotational parts (as discussed earlier) and a nuclear spin wavefunction
V'nuc, so that we obtain

and

Consider the molecules H2 or F2, in which the nuclei are fermions with / = ^. In
this case there are four nuclear spin wavefunctions, three of them symmetric,

and one of them antisymmetric,
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Figure 9.25: Parity for JSg and ̂ ^ rotational energy levels.

for u electronic states. Similarly all — rotational energy levels have a symmetry for g
electronic states and s symmetry for u electronic states (Figure 9.25).

Now since the E* operator is represented by av in the molecular frame so that

this means that the application of Pi2 in the laboratory frame is equivalent to Ci(y) in
the molecular frame.15 Similarly the i operator in the molecular frame (i = a^C^y})
is equivalent to E*P\-2 in the laboratory frame.15 This is a very plausible result since
the E* operator inverts the electrons and nuclei, while PI 2 switches the nuclei back
leaving only the electrons inverted.

Consider the ground state of the (>2 molecule of 3E~ symmetry. The even N val-
ues have — parity (a) and the odd N values + parity (s) (Figure 9.26). The nuclear
spin of 16O is zero, so only symmetric nuclear spin wavefunctions ̂ nuc are possible.
The symmetric ^nuc wavefunction must be combined with the s symmetry t/j function
because oxygen nuclei are bosons. This means that the a levels of 62 (even N) cannot
exist and transitions involving them are therefore missing in the spectrum. The s and a
symmetry labels are thus very useful in establishing the relative intensities of rotational
lines. In general the relative nuclear spin weight of para levels relative to ortho levels is
given by (2/+ l)//((2/+ !)(/+1)) = //(2/+1). The electric dipole selection rule for s
and a symmetry is s *-> s and a <-> a since electronic transitions cannot simultaneously
flip nuclear spins.

9.5 Rotational Line Intensities

Quantitative spectroscopy is based on interpreting the intensities as well as the positions
of lines. The starting point for diatomic intensities is the set of equations for a J' <-» J"
transition of an atom in Chapter 5. The line intensity equations for atoms (Section 5.7)
all apply provided that the atomic line strength Sj>j» is replaced by the qv>-v» |Re|

25j1//
product. The molecular line strength Sj>j» has the same definition as the atomic line
strength, i.e.,
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Figure 9.26: The parity of the O2 ̂ 3£g rotational energy levels.

although in the molecular case, Sj>j» applies to a single rotational line in a rovibronic
transition. Thus, each A-doublet is composed of two lines and the spin multiplicity adds
25 + 1 additional lines, even if the A-doubling or spin splitting is not resolved.

As in atoms, a line is defined as a transition between two energy levels, J' and J".7

Thus in both atoms and molecules each energy level has a degeneracy of 2 J + 1 (in
the absence of electric and magnetic fields) and for a 2S+1A molecular electronic state,
there are (2S + 1)(2 — 5o,A) energy levels for each J.

The rotational line strength is approximately factored into vibrational, electronic,
and rotational components with

Implicit in equation (9.103) is an arbitrary recipe7'18 for separating the electronic and
rotational components or, in other words, a simultaneous definition of the HonKLondon
factors Sffl and the electronic transition dipole moment Re. For transitions with A A =
0 or AQ = 0 it is customary to use the (LZ = /t° operator so that for 1E+ — XE ,
*E~ — 1E , 1II — 1H, etc., transitions we have

with S — E = 0. For these parallel singlet transitions, the Honl-London factors of the
upper third of Table 9.4 apply.

9 . E l e c t r o n i c  S p e c t r o s c o p y  o f  D i a t o m i c s
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The situation is different for perpendicular transitions with A A = ±1 (or AQ = ±1)
such as 1H—*E , 1II—l A, and so forth. If the square of the transition moment is taken as

then the Honl-London factors of the lower two thirds of Table 9.2 must be divided
by an additional factor of 2. However, the recommended definitions7 of perpendicular
transition moments are

for AA = +1, and

for A A = — 1. The electronic transition dipole matrix elements are then

The transition moment components .R+, R~, and RQ
e can always be chosen to be real

numbers by a suitable phase convention.18

Electromagnetic radiation is applied to the molecule in the laboratory frame and,
for convenience, assumed to be polarized along the Z-axis. Derivation of rotational line
strength factors thus requires that the transformation from laboratory to molecular
coordinates be considered. The Z component of the transition dipole moment in the
laboratory frame, (LZ-, is related to the components in the molecular frame by the <&jj
direction cosines of the S* matrix (Chapter 6):

and using the definitions of /t° and /i± leads to the equation,

The basis functions for a singlet electronic state XA are taken as the usual t/> =
V'ei^vib^rot product, i.e.,
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so the transition dipole moment component MZ for an allowed LA — XA transition is

assuming that the transition dipole moment has no r dependence. Substitution of equa-
tion (9.110) for (LZ into equation (9.112) gives

using the selection rules A A = 0, ±1 and AM = 0.
Only one term on the right-hand side of equation (9.113) applies at any one time

because R+ only has nonzero matrix elements for AA = +1 (e.g., a 1II— x£+ transition),
R~ only has nonzero matrix elements for A A = — 1 (e.g., a 1T!,+ — 1I1 transition), and
R® for A A = 0 (e.g., a 1A — !A transition). Values for the transition dipole moments
R+, R~, and RQ

e can be derived from experiment—for example, by measuring the
lifetime r of a transition and then converting to an Einstein AJ/^J// value (and hence
a transition dipole moment). Care must be taken in the interpretation of experimental
lifetimes because all possible decay channels contribute to a measured lifetime, not just
the desired J' —» J" transition. Alternately, the methods of modern ab initio quantum
chemistry can be used to compute transition dipole moments.

The Honl-London factors Sffi of Table 9.4 can be derived using equations (9.113)
and (9.103). For example, the Sffl values for AA = 1 correspond to using the first term
on the right of equation (9.113) and are

The factor of 3 has appeared in equation (9.114) because for unpolarized light fix, fry,
and jlz in the laboratory frame need to be considered, not just (JLZ- The results of the
calculation must be independent of the choice of X, Y, or Z so each transition dipole
component makes an identical contribution — hence the factor of 3. The sum over M is
needed in (9.114) because of the definition of the line strength Sj>j» given by equation
(9.102). The direction cosine matrix elements are given in many sources12'19 and the
sum over M then results in the Sffi values of Table 9.4.18

There is a possibility of a factor of two error because the Honl-London factors of
Table 9.4 must be used with the definitions of R+ and R~ given by equation (9.108). If
the "traditional" equation (9.105) is used instead for the square of the transition dipole
moment, then the Honl-London factors for A A = 4-1 and A A — —1 of Table 9.4 need
to be divided by two.

The set of equations in SI units for line intensities of singlet electronic transitions
(see section 5.7) are:
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The normalized lineshape function g(t/ — VQ) (Chapter 1) has not been included in
equations (9.115) to (9.117), but can be appended to the equations. If a lineshape
function g(y — VQ) is included, then a subscript v should be be added, i.e.,

but this practice is not usually followed.
The cross section a (9.118) in Beer's law (Chapter 5),

includes a lineshape function. For electronic transitions, the stimulated emission correc-
tion, A/i(2J" -f 1)/(2J' + 1) in equation (9.120) is rarely needed because N\ is usually
small and can be neglected. The various equations in section 5.7 that interconvert Ein-
stein A and B coefficients, absorption cross sections and oscillator strengths all apply
because of the common definition of the line strength factor Sj'j» (equation (9.102))
for atoms and molecules. The line strength factor S'j'j", which approximately equals
qv'-v"\Re\

2S^ when applied to electronic transitions of diatomic molecules, should
not be confused with the Honl-London factor (rotational line strength factor), 5j^//J,
which is represented by a similar symbol. The line intensity Sf often encountered in
infrared work (obtained by assuming ther mo dynamic equilibrium and absorbing the
stimulated emission correction, see Chapter 7) should not be confused with integrated
cross section J crdv or with Honl-London factors Sffi or with the line strength Sj>j>>.

The separation of electronic and vibrational coordinates is not necessary if a bond-
length dependent transition dipole moment function Re(r) is available. Ab initio calcu-
lations, for example, can provide electronic wavefunctions i^e(ri^r} at various internu-
clear distances, r. These wavefunctions can be used by many ab initio program suites
to compute the electronic transition dipole moment as a function of r,

with Ti representing the electronic coordinates. Rather than separating the electronic
and vibrational parts as

using the Franck-Condon approximation, the Re(r) transition dipole moment can be
used directly. Computer programs such as Le Roy's LEVEL4 can accept Re(r) functions
and compute relative vibrational band intensities
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from the vibrational wavefunctions i/Jv(r) for each electronic state or better yet, if Kff (r)
(equation (7.15)) is used, from the vibrational wavefunction for each rovibronic level
with ijjvj(r}.

Integrated (i.e., no g(y — //o)) Einstein AJ>^>J» values can also be computed4 from
the equation,

or

with Aj'-^jn in s x, Re in debye, v in cm l, and Sffl from Table 9.4. The corresponding
equation for the integrated absorption cross section a (section 5.7) for a line is

with § adv in HITRAN units (Chapter 7) of cm/molecule, £ in cm"1, and the transi-
tion moment Re in debye. Equations for conversions to other quantities and units are
available in Chapter 5 and Chapter 7.

The intensities in diatomic electronic spectroscopy obey a number of useful "sum
rules." These sum rules can be used for a variety of purposes including being a sanity
check to find potential errors. The vibrational sum rule for Franck-Condon factors is

For a real molecule, implicit in equation (9.127) is a sum over both discrete states and
continuum states, as can be seen from the derivation of the sum rule using ]T v)(v\ = 1,
the identity for completeness of the basis set (Chapter 4), equation (4.6):

or
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The Honl-London factors of Table 9.4 also obey a rotational sum rule,

for A A = +1, or — 1, or 0. As an example, for A A = 0 the sum is

The rotational sum rule applies to all rotational transitions connected to a given J' or
J", and the sum is over all possible connected J" or J' (respectively) to yield either
2J' + 1 or2J" + l.

In the general case of a nonsinglet 2S"+1A — 2S +1A transition it is possible to
derive18 a set of Honl-London factors in the Hund's case (a) or Hund's case (b) limit.
The computation of line intensities for nonsinglet molecules7'12'18 will not be discussed
in detail. The basic idea, though, is simple. First a set of transition dipole moments and
associated Honl-London factors are derived for the transitions between the basis set
functions (Hund's case (a) or (b)) of the two states. After diagonalization of the Hamil-
tonian matrices for the upper and lower states, the upper and lower state wavefunctions
are known as linear combinations of their basis functions. Using these linear combina-
tions and the known line strength factors for transitions between the basis functions,
the line strength for any particular rovibronic line can be computed. The calculation
is somewhat similar to computing the rotational line intensities for asymmetric rotors
using symmetric top basis functions with the three components of the dipole moment.

In the general case the sum rule ]T Sffi for an allowed 2S +1A — 2S +1A transition
becomes

with the sum over all AJ for a given state and over all spin-components and any A-
doublets. In essence for each J" (or ./') of an electronic state, the spin-components
contribute "2S + 1 levels and A-doubling contributes either 1 (A = 0) or 2 (A > 0) levels
to the sum, in addition to the usual 2J" + 1 or 2J' + 1 from equation (9.130).

9.6 Dissociation, Photodissociation, and Predissoci-
ation

Under certain conditions the dissociation energies of diatomic molecules can be deter-
mined by electronic spectroscopy. If the two potential curves involved in an electronic
transition have significantly different re values (Figure 9.9), then the Franck-Condon
factors favor long progressions in the upper state v' for absorption or in the lower state
v" in emission (Figure 9.27). The resulting progressions can be extrapolated using the
Le Roy-Bernstein method (Chapter 7) to determine the dissociation energies. These
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Figure 9.28: Predissociation of a state labeled A by a state labeled a.

studies are carried out by electronic spectroscopy. Note that if D'Q is known, DQ can be
calculated by using the equation

provided the atomic transition energy x is known (Figure 9.27).
If the initial state of a molecule is excited by light of energy hv > DQ -f x (Figure

9.27), it can cause transitions into the vibrational continuum above the dissociation

Figure 9.27: Absorption and emission progressions.
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asymptote of the excited state potential energy function. The spectrum in this region
will be a continuum with very broad peaks with widths of hundreds or even thousands
of cm"1. For absorption from a single vibrational level of the lower state, the structure
will roughly mimic the shape of the square of the initial state radial wavefunction.
Observation of the low-energy onset of this continuum can be used as a means of
determining the absolute energy of the upper state asymptote, and hence also the
ground state dissociation energy, DQ .

The transition intensity for photodissociation20'21 from a particular initial state
(v", J"} may be denned in terms of the frequency-dependent absorption cross section
a in SI units of m2,

(9.134)
in which the transition dipole moment has units of debye, v is the transition wavenum-
ber in cm"1, K(E) — E — V(r = oo) is the asymptotic radial kinetic energy of the
molecular fragments dissociating along the final state potential energy curve, in cm"x,
H is the reduced mass in atomic mass units (u), and the final state continuum wave-
function il>E,j'(r) is normalized to unit asymptotic amplitude. Note, however, that the
quantity normally reported experimentally is the decadic molar extinction coefficient e
(equation (1.63)) in units of liter mole""1 cm"1, e(v,J;i>} = (10~19Af4/ln(10))cr(?;, J).

It is quite common for two potential curves to cross (Figure 9.28). Of course, if the
two crossing curves have the same symmetry, then an avoided crossing occurs because
of the noncrossing rule. (The noncrossing rule states that when two potential energy
curves of the same symmetry try to cross, there will always be a mixing of the two
wavefunctions to give an avoided crossing.) In any case, in the vicinity of the crossing
point an interaction, no matter how small, exists between the diabatic (nonmixed)
curves. The interaction acts as a perturbation to mix the wavefunctions of the two
states near the crossing point. This means that the "bound" wavefunctions of the A
state (Figure 9.28) have some "free" a-state character near the crossing point (and vice
versa). The A — X transition, therefore, will display predissociation, in which some
levels of the A state are able to dissociate. This type of predissociation is present in
NH,22 for which the states are X3£~~, A3H, and the repulsive state is 5S~. In general,
predissociation occurs whenever there is a substantial radial matrix element between a
bound vibrational wavefunction and a continuum radial wavefunction (approximately
a sine wave) of another electronic state.20 These overlap matrix elements tend to be
largest if the crossing point occurs near the outer turning point of the bound vibrational
level (Figure 9.28), but a curve crossing is not necessary for predissociation.

The Golden Rule expression for such predissociation rates k(v, J} is, in units of s""1,

or

f
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in which HA,a(
r) is the coupling strength function in units of cm"1, and the other

symbols are defined above for equation (9.134).
Predissociation is surprisingly common in the spectroscopy of diatomic molecules.

The presence of predissociation is evident when rotational or vibrational structure
abruptly terminates, or if the lines become broad (Chapter 1), in accordance with
the Heisenberg energy-time uncertainty principle (A.EAi > ft). The energy correspond-
ing to the wavelength at which predissociation occurs provides an upper limit to the
ground-state dissociation energy.

Problems

1. For the diatomic molecules Na2, CO, CO+, SO, and NO:

(a) What are the lowest energy configurations and the bond order?

(b) What terms arise from each configuration and which term lies lowest in
energy?

(c) For each term, what levels arise (J7 components) and which level lies lowest
in energy?

(d) Predict the lowest energy excited electronic level for each molecule.

2. The CrO molecule has a a8^"K configuration.

(a) What electronic states arise from this configuration?

(b) What is the ground state of CrO, and is it regular or inverted?

(c) If the spin-orbit coupling constant A is 63 cm"l for the ground state, calcu-
late the energy-level pattern of the spin components.

3. For the 63Cu2 molecule the following spectroscopic constants were determined for
the 51E+ — XlYi+ electronic transition:

Te = 21757.619cm-1

u'e = 246.317 cm"1 u'£ = 266.459 cm"1

uex'e = 2.231 cm"1 u>ez" = 1.035 cm"1

B'e = 0.098847cm-1 B% = 0.108781 cm"1

a'e = 0.000488 cm"1 o£ = 0.000620 cm"1

(a) Construct the Deslandres table for 0 < v' < 3 and 0 < v" < 3.

(b) Is the 1 — 0 band degraded to longer or shorter wavelengths?

(c) At what J and wavenumber will the 1 — 0 band head occur?

4. The following spectroscopic constants were determined for the SrS A1E+ — Xl^+

transition:
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Te = 13932.707cm-1

u'e = 339.145 cm"1

uex'e = 0.5524cm-1

r'e = 2.51160 A
D'0 = 3.48 eV

u4' = 388.264 cm"1

uex'e =1.280 cm"1

r'l = 2.43968 A
D% « 3 eV

(a) Calculate the Morse potential parameters for the X1E+ and Al^+ states of
SrS, and graph the potential curves.

(b) Predict the strongest band in the emission spectrum from v' — 0 and in the
absorption spectrum from v" = 0.

5. The following vibrational bands were observed for the first negative system of N2
(in cm-1):

17046.5
17373.2
19121.4
19416.6
19692.7
21229.1
21491.1
21 734.5
21952.1
23368.3
23600.6
23807.9

23992.5
24 144.9
25542.1
25739.4
25913.5
26065.5
26183.6
26261.4
27908.6
28051.2
28169.7
28254.1

28299.7
30221.1
30 306.3
30355.0
30371.6
32489.8

(a) Assign the vibrational quantum numbers to the bands and construct a Des-
landres table. (Hint: Draw a stick spectrum of the data.)

(b) Derive a set of spectroscopic constants that reproduce this data set.

6. Derive the Hamiltonian matrices (9.57) and (9.60).

7. Obtain programs to calculate RKR potentials3 and Franck-Condon factors4 (see
http://leroy.uwaterloo.ca/). Using the data for Cu2 in problem 3, calculate the
Franck-Condon factors for the Deslandres table of part 3(a).

8. Using the data for Cu2 in problem 3, calculate approximate Franck-Condon fac-
tors for the Deslandres table of part 3(a). Assume that the vibrational wavefunc-
tions are represented by harmonic oscillator wavefunctions and then compute
the overlaps numerically using a computer program such as Maple, Mathcad, or
Mathematica.

9. In general, Franck-Condon factors are best calculated numerically, but some an-
alytical approximations are available (Nicholls, J. Chem. Phys. 74, 6980 (1981)).
For example, for a diatomic molecule A—B with cjg, r^, a;", r", and ^AB, the
Franck-Condon factor for the 0 — v bands are given approximately by the Poisson
probability equation
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with u = (Are)
2)UAB^e/67.44, Are in A, /^AB in atomic mass units u and uje in

cm"1. The average vibrational frequency uje is denned by

For the B — X transition of 79Br2 (Figure 9.9), the required constants are oj'e = 168
cm"1, u" = 325 cm"1, r'e = 2.678 A, rf = 2.281 A. Compute the Franck-Condon
factors for the 0 — 15 to 0 — 25 bands and check the graphical prediction from
Figure 9.9 that the 0 — 18 band is the strongest band in emission.

10. The lifetime of the v' = 0 level of the A1Y,+ state of Li2 has been measured to be
18 ns. The 0-0 band is at 14020 cm-1.

(a) Calculate the oscillator strength, /abs? and the electronic transition dipole
moment |Re| (in debye) for the A1E+ — X1E+ electronic transition. How do
the vibrational and rotational sum rules help in the calculation?

(b) Given that the Franck-Condon factor for the 0 - 0 band of the A1 £+ - Xl £+
transition at 14020 cm"1 is 0.052, calculate the Einstein A value for the
band. What would the Einstein A value be for the R(2) transition of this
band?

(c) Assuming Doppler broadening, what would the peak transmission (///o) be
for the R(2) line of the 0 - 0 band of AXE+ - X1Z+ transition? The 7Li2

dimer is in a heated furnace 10 cm long at 750° C and has a partial pressure
of 17 mTorr. (B" = 0.672 cm"1 and w" = 351 cm"1 are needed to compute
the partition function and the population in v" = 0, J" = 2.)
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Chapter 10

Electronic Spectroscopy of
Polyatomics

10.1 Orbitals and States

The spectroscopy of polyatomic molecules has much more variety than the spectroscopy
of diatomic molecules. Rather than try to survey this vast field, only a few topics will
be considered in order to provide the reader with a glimpse of it.

Molecular orbital theory is the key to understanding the electronic structure of
polyatomic molecules. The electronic Schrodinger equation

can be solved approximately by constructing a set of molecular orbitals in which each
molecular orbital is a linear combination of atomic orbitals

in the same manner as has been discussed for diatomic molecules. The total wavefunc-
tion is a Slater determinant of MOs,

These electronic wavefunctions are constructed in such a way that they are eigenfunc-
tions of the symmetry operators for a specific molecular point group. Moreover, since
the symmetry operators commute with the electronic Hamiltonian operator, that is,

these wavefunctions are simultaneously eigenfunctions of the electronic Hamiltonian
operator. Thus, the electronic wavefunctions are classified by the irreducible repre-
sentations of the appropriate molecular point group, and the electronic wavefunction
belongs to a particular irreducible representation. For example, because the point group
symmetry of water is C2V, the electronic wavefunctions of water must have A\, ̂ 2, 5i,
or B-2 symmetry.

367
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Figure 10.1: The Is orbitals on the H atoms in the HaO molecule.

Walsh's Rules: Qualitative Molecular Orbital Theory

A great deal of useful insight into the electronic structure of molecules can be gained
through the use of qualitative molecular orbital theory. (Of course, even more infor-
mation is provided by quantitative molecular orbital theory, but this is itself a subfield
of chemistry as extensive as molecular spectroscopy.) The application of rudimentary
molecular orbital theory in predicting the geometry and electronic structure of mole-
cules was pioneered by A. D. Walsh in a series of influential papers published in the
early 1950s. In honor of Walsh's work, particularly in deducing whether the geometry
of a triatomic molecule is linear or bent, qualitative molecular orbital predictions can
be obtained from a set of simple rules known as "Walsh's rules."

The dihydride triatomics with the structural formula AH2 can be either linear
(Dooh) or bent (C<2V}. Consider the possible molecular orbitals of the t^O molecule
formed by simple linear combination of the valence Is orbitals of H (Figure 10.1) and
the 2s and 1p orbitals of O. The two Is atomic hydrogen orbitals are not suitable wave-
functions since they do not have the correct C^v symmetry since, for example, the C-i
symmetry operator converts the ISA orbital into the !SB orbital, i.e.,

The first step is to form symmetry-adapted linear combinations (SALCs) of atomic
orbitals either by inspection or by the use of projection operators.

The four irreducible representations of the C^v point group give rise to four projec-
tion operators:

The application of these four operators to the ISA function projects out two functions
of the appropriate symmetry, namely

upon normalization (assuming orthonormal atomic basis functions). With the oxygen
atom situated at the origin of the coordinate system, the symmetries of the oxygen



Figure 10.2: Molecular orbital diagram for the H2O molecule.

valence atomic orbitals s, px, py, and pz are ai, 61, 62, and ai, respectively. The hydro-
gen and oxygen symmetry orbitals are then combined by forming linear combinations
to produce the molecular orbitals shown in Figure 10.2. The O Is core orbital is a
nonbonding core orbital with a\ symmetry, while the O 2s orbital is a valence orbital
and is the second orbital of ai symmetry. Since the O Is a\ orbital is lower in energy
than O 2s a\ it is labeled lai, while the O 2s orbital is labeled 1a\. The remaining
orbitals are labeled in a similar fashion, in which the numbering starts with the lowest
energy orbital for each symmetry type.

The electronic configuration of the ground state of H^O is thus

and is denoted X lAi. The labeling scheme for states, X, A, B, a, 6, and so on, parallels
that of diatomic molecules, but a tilde is added in order to distinguish the A or B states
from the A or B labels of the irreducible representations. For consistency, the tilde is
used in the state labels of all polyatomic molecules, even linear ones. The orbitals are
labeled according to the appropriate irreducible representations using lowercase letters,
but the overall symmetry of an electronic state is capitalized. The multiplicity 25 + 1
appears as a left superscript.

The highest occupied molecular orbital (HOMO) in H^O is the nonbonding, out-of-
plane O 2px orbital. The lowest unoccupied molecular orbital (LUMO) is the strongly
antibonding 4&i orbital (Figure 10.2). As is often the case, the first excited configuration
of H2O is obtained by transferring an electron from the HOMO to the LUMO to give

10.1 Orbitals and States 369
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the excited electronic configuration

This configuration gives rise to states with b\ <g> a\ = &i orbital symmetry and a total
electronic spin of S = 0 or 1. Qualitative molecular orbital theory thus predicts that
there are two states associated with this excited LUMO configuration, A 1B\ and a3Bi.
Furthermore, Hund's first rule, which states that among all states arising from the same
configuration, the one with the highest multiplicity is lowest in energy, predicts that
a 3J3i is lower in energy than A 1B\.

The selection rules for electronic transitions are derived through the use of the
transition moment integral

In the case of H2O, the components of/u have JBi, £2, and A\ symmetry, while the initial
and final electronic states have A\ and B\ symmetry. Thus the A 1B\ -— X 1A\ transition
should be a fully allowed, electric-dipole transition in which the electron is transferred
out of a nonbonding 61 orbital into an antibonding a\ orbital. The H^O A lBi — X 1A\
transition is present in the 1860 to 1450 A region of the vacuum ultraviolet.1 The
diffuse nature of this particular electronic transition, typical of electronic transitions
observed in the vacuum ultraviolet (VUV) region of the spectrum, is due to molecular
photodissociation.

An example of a linear AH2 molecule is the molecule BeH2. BeH2 is known to
exist as a polymeric solid,2 and it has recently been prepared in the gas phase.3 The
symmetry-adapted linear combinations of the two hydrogen Is orbitals for linear AH2
are by inspection

nd

The molecular orbital diagram for BeH2 is given in Figure 10.3. Both the Be Is
(not shown) and 2s orbitals have ag symmetry so that the valence ag orbital is labeled
as 2<J9. The ground-state configuration for BeH2 is (I<rg)2(2cr5)2(lcru)2, which gives an
X1S+ ground state.

Why is H2O bent while BeH2 is linear? Geometric predictions can be obtained
either from detailed ab initio calculations or by constructing a Walsh molecular orbital
diagram. A Walsh MO diagram is a correlation diagram based on the change in orbital
overlap caused by a change in geometry. The Walsh MO diagram for the AH2 case is
given in Figure 10.4. The 1ag orbital decreases slightly in energy as the molecule bends
due to the increased overlap between the hydrogen ISA and !SB orbitals, while the
bending of the A—H bonds lifts the degeneracy of the nonbonding ITTU orbital. The
out-of-plane l&i component remains nonbonding while the in-plane 3ai component
becomes strongly bonding as the molecule bends.

The Walsh MO diagram predicts that all AH2 molecules with four or less valence
electrons will be linear in their ground states while all AEk molecules with five or more
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Be orbitals BeH, orbitals H orbitals

Figure 10.3: Molecular orbital diagram for BeH2.

Figure 10.4: Bent-linear correlation diagram for AH2-type molecules.
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valence electrons will be bent in their ground states. This prediction is confirmed by
experimental evidence.

The NH2 molecule with seven valence electrons is another AH2 example. The
ground-state configuration is

appropriate for a bent molecule. The ground state of NH2 is predicted and observed
to be X 2Bi with the unpaired electron in a nonbonding, out-of-plane p orbital. The
first excited configuration is obtained by promoting a 3ai electron to the l&i orbital,
namely

which gives the A 2A\ state. The A 2A± — X 2Bi transition is electric dipole-allowed
and occurs in the visible region of the spectrum. Notice that the NH2 molecule in the
X2Bi state is predicted to be strongly bent (the observed angle is 103.4°, similar to
the bond angle for H2O), while the first excited state has only one electron in the 3ai
orbital so that the geometry in the A 2A\ state is predicted to be considerably less bent.
Experimentally the bond angle for the A2Ai state has been determined to be 144°; this
result indicates that NH2 in A2Ai state is closer to being linear than bent at a right
angle.1

The symmetric nonhydride triatomic BAB is another common type of molecular
species. The Walsh MO diagram (bent-linear correlation diagram) is constructed for
AB2 by using the same principles that were used for AH2. The presence of valence
s and p orbitals on all three centers, however, complicates the picture somewhat (see
Figure 10.5).

As electrons are added to the AB2 molecular orbitals, the molecule should be linear
as long as the number of valence electrons does not exceed 16. The Cs molecule with
12 valence electrons and the CO2 molecule with 16 valence electrons are linear, in
agreement with this prediction. AB2 molecules with 17 or more electrons are predicted
to be bent. Accordingly, NO2 with 17 valence electrons and 03 with 18 valence electrons
are both bent.1

While predictions based on qualitative molecular orbital theory are in most cases
reliable, there are some important exceptions. For example, the molecule SiC2, which
is isovalent with linear €3, is found to be T-shaped.4 Walsh's rules are only applicable
to covalently bonded molecules, not to ionically bonded molecules. The fact that the
bonding in SiC2 is best represented by the ionic species, Si+C^, is an excellent example
of why Walsh's rules can fail to predict the correct geometry.

Huckel Molecular Orbital Theory
Aromatic molecules such as benzene and naphthalene can be thought of as containing
two types of valence electrons, a and TT. There are localized C—C and C—H cr-bonds,
which hold the molecule together (<j-framework), and delocalized ?r-bonds formed from
the out-of-plane carbon pz orbitals. Huckel MO theory is based on simple principles
involving the electronic properties of the 7r-molecular orbitals. Although Huckel theory
is very simple, it manages to capture the essence of 7r-electronic structure in aromatic
molecules.

Huckel MO theory is based on several approximations. The first is that the TT-
electrons can be treated separately from the <j-electrons in an aromatic molecule. The



Figure 10.5: Bent-linear correlation diagram for the BAB molecule. In this case the numbering
of the molecular orbitals does not include the core orbitals.

assumption of a — TT separability is equivalent to assuming that the electronic Hamil-
tonian operator can be separated into two parts as

with wavefunctions correspondingly factored as ^ = i^^a- Similarly, the 7r-electron
Hamiltonian operator can be broken into a sum of separate one-electron effective Hamil-
tonian operators (one for each 7r-electron), namely

The molecular orbitals are expressed as linear combinations of the atomic pz-orbitals

/i> viz->
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Substitution of equation (10.17) into the electronic Schrodinger equation then yields
the set of homogeneous linear equations

The variational principle can then be applied to determine optimal values for the
set of coefficients GJ . The variational principle states that the optimum coefficients for
an approximate ground-state electronic wavefunction can be obtained by minimizing
the electronic energy of the system. In matrix notation, equation (10.18) becomes

in which the elements of Heff and the overlap matrix S are given by

A nontrivial solution to the secular equation,

consists of UK eigenvalues En with corresponding eigenfunctions

In Hiickel theory the integrals Hf? and S^ are not determined by ab initio meth-
ods, but instead are determined empirically. Additional approximations are invoked in
order to reduce the number of unknown parameters to just two, the integrals a and /?,
defined as

If the two carbon atoms are adjacent, then Hfj* = ft, while if the two carbon atoms are
not adjacent, then HfP — 0. Furthermore, the overlap matrix is assumed to be the unit
matrix, S^ = 6^. With these assumptions the secular equation takes a simple form in
terms of the two parameters a (the Coulomb integral) and /3 (the resonance or bond
integral).

To illustrate Hiickel molecular orbital theory, consider the 7r-electronic structure of
the s-£rans-butadiene molecule of C^h symmetry (Figure 10.6). The Hiickel approxima-
tions give rise to the secular equation

a
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Figure 10.6: The butadiene molecule.

Figure 10.7: Coordinate system for butadiene.

for the four molecular orbitals constructed from the four pz orbitals, one on each carbon
atom (Figure 10.7).

As usual, the application of molecular symmetry simplifies the problem. The four pz

orbitals form a four-dimensional reducible representation of the C^h point group with
characters

which can be reduced as Fred = 2Fa" ©2F6s. The symmetry-adapted linear combinations
of atomic orbitals can be found by inspection, or by the use of projection operators,
to be
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Using these symmetry-adapted basis functions {gi} rather than {pzi} gives matrix
elements

and so on. There is also a new secular determinant,

Notice that the secular determinant in equation (10.28) has been partitioned into two
smaller symmetry blocks because all matrix elements between functions of different
symmetry are zero. The four solutions of the secular equation are thus

while the associated normalized wavefunctions are



The atomic orbital composition of the wavefunctions is shown in Figure 10.8.
The lowest energy Tr-electron configuration of butadiene is (lau)

2(165)
2, giving an

X 1A9 ground state. The promotion of an electron from the lbg HOMO to the 2au

LUMO gives the (lau)
2(lbg)

1(lau}
1 configuration and the A1BU and A3BU states. The

very diffuse A1BU — X lAg electronic transition has been observed at 217 nm.1 Simple
Hiickel theory predicts the HOMO to LUMO transition to be at 2(0.618)/3, giving a
value of —37300 cm"1 for f3. Note that both Coulomb integrals (a] and resonance
integrals (/5) are negative numbers due to the choice of the zero of energy (cf. the
hydrogen atom, Chapter 5).

In general the electronic Hamiltonian operator for a linear polyene with n atoms is
a symmetric tridiagonal matrix with elements along the diagonal equal to a and subdi-
agonal and superdiagonal elements equal to /?. For this special form of the tridiagonal
matrix, the solution to the secular equation is well known and given by energies5

and wavefunctions

Figure 10.8: Hiickel molecular orbitals of butadiene.
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Figure 10.9: Coordinate system for the benzene molecule.

Cyclic 7r-electron molecules have a different secular equation in Hiickel theory. For
example, the secular equation for benzene is

The nonzero elements HI$ = HQI = (3 must be added in order to satisfy the cyclic
boundary condition that the last carbon atom in the loop around the ring must join to
the first carbon atom in the loop.

The application of molecular symmetry is again helpful in simplifying the secular
equation in (10.33). The benzene molecule has DQ^ symmetry (Figure 10.9), but it
is simpler to use the rotational subgroup DQ (Deh = DQ <g> Ci) for the problem. The
appropriate g and u labels for the wavefunctions can be determined either by inspection
or by using the symmetry operators of the D§h point group. The six pz orbitals form a
reducible representation with characters

in which the CQ-, 63-, and C2-axes lie along the z-axis, while the C'2- and C '̂-axes lie in
the molecular plane. The three C2-axes bisect carbon atoms, while the three C2'-axes
bisect the carbon-carbon bonds. This representation can be reduced to give
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Since the pz orbitals change sign on application of the dh operator, inspection of the
D§h character table (Appendix B) for the presence of a negative sign for this operation
gives

Symmetry-adapted linear combinations of the six pz orbitals are determined by the
use of projection operators, together with the orthogonality condition in the case of the
degenerate e\ and 62 functions. The six symmetrized functions are

Constructing the secular determinant in this basis set gives

which is already diagonal. The energy levels are at a + 2/3, a — 2/3, a + 0 (doubly
degenerate) and a — /? (doubly degenerate) as shown in Figure 10.10.

The 7r-electron ground-state configuration of benzene is (fl2u)2(eig)4 with X lA\g

being the ground state. The lowest energy excitation promotes one electron out of the
e\g orbital into the e<2U orbital, which results in the configuration (a2w)2(ei9)3(e2U)1.
For this configuration the direct product eig<g>e2W, which reduces to b\u®b-2u®e\u, gives
rise to the states, 1Biu,

 3J5iu,
 lBiu,

 3B2U, lEiu, and 3Eiu. Since //z has Au symmetry
and (//a;, fjLy] have E\u symmetry, however, only the 1E\U — l A\g transition of benzene
is allowed for the De/i point group.

The famous ultraviolet transition of benzene at 260 nm turns out to be the forbidden
A 1B\U—X lAig transition,1 which becomes allowed as a result of vibronic coupling (see
section 10.3 on vibronic coupling).

10.2 Vibrational Structure of Electronic Transitions
Within the Born-Oppenheimer approximation, the separation of vibrational and elec-
tronic motion leads to the concept of associating electronic states with potential energy



380 10. Electronic Spectroscopy of Polyatomics

Figure 10.10: Energy-level diagram for the 7r-electrons of benzene.

surfaces. For a diatomic molecule, the potential energy function V(r) is a function of
a single variable, the internuclear separation r. For a polyatomic molecule the poten-
tial energy function V(Qi] is a function of 37V — 6 (or 5) internal coordinates, usually
expressed in terms of normal modes. The simple one-dimensional diatomic potential
energy curve is replaced by a multidimensional potential energy surface for each poly-
atomic electronic state. Shown in Figure 10.11 is a simple example of a polyatomic
potential energy surface for the He(CO) van der Waals molecule.

The solution of the Schrodinger equation for nuclear motion on each potential energy
surface of a polyatomic molecule provides the corresponding vibrational frequencies and
anharmonicities for each electronic state, namely1

In this equation, the u;r are the harmonic vibrational frequencies, each with a corre-
sponding degeneracy dr, the xrs and gw are anharmonic corrections, and the index t
refers to degenerate modes with vibrational angular momentum lt. The polyatomic vi-
brational equation (10.38) may be compared with the much simpler vibrational energy-
level expression for a diatomic molecule, namely

A vibronic transition frequency is given by the difference between two vibronic term
values, that is

in which ATe is the minimum potential energy difference between the two states. A vi-
bronic transition can be specified by noting the electronic transition and the vibrational
quantum numbers for each of the states, for example, A — X (v^v^- • •) — (v'iV2 • • •)• A
convenient shorthand notation for a vibronic transition of the A — X electronic transi-
tion is denoted as
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He-CO Potential Surface
Recommended Ft

Figure 10.11: The He(CO) potential energy surface as a function of the radial distance R of
the He atom from the center of mass of the CO molecule, and the angular position 6 of the
He atom relative to the CO internuclear axis. The origin at 0° represents a colinear HeCO
geometry.

with the numbers 1, 2, etc. referring to the z/i, ^2, etc., vibrational modes. For example,
the formaldehyde transition from X 1A\ (vi = 0) to AlA-2 (v^ = 2, v^ — 1) can be
written either as A1AZ-X %(020100) - (000000) or as A1A^-X lAi, 2§4j. Except
for triatomic molecules, the second notation is preferable and is now often used for
infrared as well as vibronic transitions of polyatomic molecules.

The vibrational selection rules for an allowed electronic transition are determined
from the Franck-Condon principle (Chapter 9). The intensity of a vibronic transition
is proportional to the square of the transition moment integral,
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Within the realm of the Born-Oppenheimer and normal mode approximations the
transition moment integral is comprised of an electronic transition dipole moment

and a product of 3JV — 6 (or 5) vibrational overlap integrals. For a totally symmetric
vibration the selection rule on v is therefore

and the intensity of the transition determined by the Franck-Condon factor

for that mode. For non-totally symmetric vibrations, the Franck-Condon factor van-
ishes for Vi values such that

because the product P^' ®r^" does not contain the totally symmetric irreducible rep-
resentation. For an allowed electronic transition, the nonsymmetric vibrational modes
obey the selection rule

10.3 Vibronic Coupling: The Herzberg-Teller Effect

Often nonsymmetric vibrational transitions occur in an electronic transition with the
selection rule

although, as discussed above, this is forbidden for electric dipole-allowed electronic
transitions. The fact that these transitions tend to be relatively weak is indicative of
an electronically forbidden character. The A 1B?,U — X lA\g transition of benzene at
260 nm is a classic example. The A — X transition is forbidden (because x, y, and z
belong to the E\u and A^u irreducible representations), but has been observed with
moderate intensity in the near UV region (Figure 10.12). The 0-0 origin band is not
observed, but Ai^ = 1 transitions (VQ has &ig symmetry) are prominent. In addition a
long progression in v\, the ring breathing mode, is present. (Note that, by convention,



A,/ nm
Figure 10.12: The A 1B-2U - X lA\g transition of benzene near 260 nm.

the Wilson numbering scheme6'7 for the vibrational modes of benzene is commonly
used rather than the Herzberg numbering scheme recommended by Mulliken.8) The
v\ mode is totally symmetric (ai9), so there are no symmetry restrictions on Ai^.
The progression in v\ (Figure 10.12) means that the benzene ring has DQ^ symmetry
in both ground and A states but the size of the ring is different in the two states. A
detailed rotational analysis confirms that the C—C bond length increases by +0.0353 A
from 1.397 A in the X lA\g ground state.9 The v\ mode, however, always occurs in
combination with an odd number of non-totally symmetric vibrations, often VQ (Figures
10.12 and 10.13).

The A — X transition is a forbidden electronic transition that becomes allowed by
vibronic coupling, as first explained by Herzberg and Teller.1'10 In this case, the total
vibronic symmetry (rel®rvib = rvlbronlc) must be examined. In the case of the benzene
A1B-2U — X lAig 60 transition, this requires that the transition moment integral

be considered.
The vibronic symmetry of the ground state is A\g, while the vibronic symmetry of

the excited state is Biu®e<2g — EIU. Since //x and fjLy have EIU symmetry, the transition
moment integral is now nonzero. Provided that the vibrational and electronic degrees

10.3 Vibronic Coupling: The Herzberg-Teller Effect 383



384 10. Electronic Spectroscopy of Polyatomics

Figure 10.13: Possible vibronic transitions associated with the A 1B?,U — X lA\g transition of
benzene.

of freedom are mixed and cannot be factored, the benzene A — X transition becomes
vibronically allowed. The inclusion of a single nonsymmetric quantum of vibration thus
changes the overall symmetry of the excited state and permits a transition.

The intensity of a vibronic transition depends on the degree of mixing of the vi-
brational and electronic wavefunctions. As long as this mixing is not too extensive,
it can be estimated by perturbation theory. Consider a set of zeroth-order electronic
and harmonic vibrational wavefunctions without the effects of vibronic coupling. The
Schrodinger equation for a fixed equilibrium configuration is

The electronic Hamiltonian operator depends parametrically on the value of the vibra-
tional coordinates. Vibronic coupling is derived by expanding formally the electronic
Hamiltonian operator in the power series

The excited-state wavefunction "09 becomes mixed with other zeroth-order electronic

states through the perturbation term H', so that it becomes

t
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with the expansion coefficients c^ given by

The degree of mixing is determined by the ratio of the magnitude of the vibronic cou-
pling matrix element (if}^.\H'\^) and the separation (Ej —.£/£) between the interacting
states. The electronic transition moment integral then becomes

For the benzene A 1.B2u — X lAig transition the first term in (10.49) vanishes and
the sum is dominated by interaction with the nearby C 1E\U state. The C 1E\U — X lA\g

electronic transition is fully allowed. The mode VQ of 629 symmetry mixes with the
A lB>zu electronic state to give a vibronic state of E\u symmetry. The A 1B^U v& —
1 vibronic state mixes with the C 1E\U electronic state of the same symmetry. The
A 1B>2U — X lA\g electronic transition1'9 is observed because of intensity "borrowing" or
"stealing" from the nearby strong C 1E\U — X lA\g transition through vibronic coupling
involving mainly v'6.

The interaction matrix element between the two excited states determines the mag-
nitude of the Herzberg-Teller effect. This electronic matrix element can be expressed as

and is nonzero only if the vibronic symmetry T^f <8> T(^i of the A state matches the
electronic symmetry of the C state, F^fe. In this electronic integral (dH/dQi)Qi==o is a
function of the electron coordinates and has the same symmetry as the normal mode
Qi since H itself is totally symmetric. This leads to the selection rule

for the A — X vibronically active mode(s).

10.4 Jahn-Teller Effect

The Jahn-Teller1'10'11 effect also violates the selection rule AVJ = ±2, ±4, ±6,... for
nonsymmetric vibrations in an electronic transition. This effect in molecules is a conse-
quence of the much celebrated Jahn-Teller theorem. Jahn and Teller11 proved that any
nonlinear molecule in an orbitally degenerate electronic state will always distort in such
a way as to lower the symmetry and remove the degeneracy. This is a perfectly general
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result, but it conveys no information as to the size of the distortion. Both infinitesi-
mal and massive distortions are possible, and both are consistent with the Jahn-Teller
theorem.

For nonsinglet molecules, spin-orbit coupling competes with the Jahn-Teller effect,
since spin-orbit splitting also lifts orbital degeneracies independently of the Jahn-Teller
effect. The Jahn-Teller theorem is also inapplicable to linear molecules for which undis-
torted orbitally degenerate states (II, A, <£, . . .) are possible.

The Jahn-Teller effect is a consequence of Born-Oppenheimer breakdown, and it
is convenient to use the same approach that was used to describe vibronic coupling.
There is a zeroth-order Born-Oppenheimer electronic Hamiltonian operator and a per-
turbation operator,

responsible for the mixing of vibrational and electronic wavefunctions. If Va and -06
are linearly independent orbitally degenerate electronic wavefunctions, then H' will lift
their degeneracy if there is a nonzero matrix element between them, that is,

/

This electronic integral will be nonzero only if F^ 0 (F^a ® r^b)sym contains the to-
tally symmetric irreducible representation because (dHe/dQi)Qi=Q is a function of the
electron coordinates and has the same symmetry as Qi. Since t/;a and t/;& belong to
the same irreducible representation, the symmetric product is used to ensure that the
Pauli exclusion principle is not violated. Jahn and Teller11 exhaustively considered all
degenerate states of all point groups with respect to all non-totally symmetric vibra-
tional distortions. In all cases, except for linear molecules, a vibrational distortion (Qi)
could be found that broke the symmetry of the molecule. As shown schematically in
Figure 10.14, a distortion from the symmetric configuration can be found that lowers
the total energy of the molecule. For example, the hexafluorobenzene cation CeFg" has
an X 2Eig ground state with a small spin-orbit splitting. The X 2E\g state of CeFg"
distorts, lowering the symmetry from DQ^ and lifting the degeneracy in the E\g elec-
tronic state. The size of the Jahn-Teller distortion can be estimated from the vibronic
activity associated with the non-totally symmetric e^g modes in the B ^A^u — X 2Eig
electronic transition.12

10.5 Renner-Teller Effect

Although linear molecules are not subject to the Jahn-Teller effect, they do experi-
ence another "name" effect—the Renner-Teller effect.1'10'13 (Linear molecules are also
subject to the Herzberg-Teller effect.) The Renner-Teller effect is the interaction of
vibrational and electronic angular momenta in a linear molecule. The levels associated
with bending modes are shifted in energy by an interaction that couples vibrational
motion to electronic motion for states in which A 7^ 0 (i.e., n, A, $, ...).

The Renner-Teller effect occurs because the double orbital degeneracy is lifted as a
linear molecule bends during vibrational motion (Figure 10.15). As the linear molecule
bends, the two potential curves V+ and V~ (corresponding, for example, to the p



Figure 10.14: A Jahn-Teller distortion along a doubly degenerate vibrational coordinate lifts
the degeneracy and stabilizes the molecule.

Figure 10.15: The bending motion of a linear molecule lifts the orbital degeneracy of the A2H
state of CaOH.

orbital in the plane of the molecule and the p orbital out of the plane) become distinct.
The combined vibrational and electronic motion on these two potential surfaces mixes
the zeroth-order vibrational and electronic wavefunctions associated with the linear
configuration. The Renner-Teller effect is again a consequence of the breakdown of the
Born-Oppenheimer approximation.

The bending motion of a linear molecule has vibrational angular momentum IK along
the z-dxis (for a state with v% bending quanta / — i>2, ^2 — 2 , . . . 0 or 1). A linear molecule
can also have electronic orbital angular momentum with a projection of Ah along the z-
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Figure 10.16: Vibronic energy levels of a 1II electronic state of a linear triatomic molecule.
The vibrational symmetry is on the left while the vibronic symmetry (vibrational ® electronic)
is on the right.

axis. For the Renner-Teller effect, the coupling of these two angular momenta requires
a new quantum number, K, given by

Notice that K, A, and / are signed numbers, but by convention only the magnitudes
are usually quoted. The vibrational energy-level pattern appropriate for a 1II electronic
state is shown in Figure 10.16. In this figure the vibronic symmetries are obtained from
the direct product of the vibrational symmetry with the electronic orbital symmetry (II)

Without the Renner-Teller effect the excited bending levels in a triatomic molecule are
given by the expression gl2, where g (=52) has a typical value of a few cm""1 because of
anharmonicity. With the Renner-Teller effect the vibrational pattern is more complex,
with splittings that are typically on the order of tens or hundreds of cm"1, depending
upon the magnitude of the electronic-vibrational interaction.

10.6 Nonradiative Transitions: Jablonski Diagram

Molecules in liquids, solids, and gases can exchange energy through collisions. Energy
deposited in a specific molecule soon dissipates throughout the system because of these
m£ermolecular interactions. Interestingly, if energy is deposited in a large, isolated
molecule it can also be dissipated through intramolecular interactions. For example,
electronic excitation can be converted into vibrational excitation in a large molecule
without collisions. The various possible processes that can occur for a large organic
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Figure 10.17: Photoprocesses in a large molecule: a Jablonski diagram.

molecule, such as benzene or naphthalene, are summarized in a Jablonski diagram (see
Figure 10.17).

In the Jablonski diagram the ground state is a singlet and is labeled 5o with Si, 52,
5s,... used for excited singlet states with increasing energy. For an aromatic molecule
such as benzene the Si <— SQ transition is typically a TT* <— TT excitation. For exam-
ple, the first excited electronic configuration of benzene (a2u)2(ei5)

3(e2U)1 gives rise
to singlet and triplet states; according to Hund's rules, the lowest energy triplet lies
below the lowest energy singlet. The triplet states are labeled as Ti, T^r.. in order of
increasing energy.

The fate of an absorbed photon in a large molecule can be described with the aid
of the Jablonski diagram. The S\ <— So absorption is followed by rapid (picosecond)
vibrational relaxation to the bottom of the S\ state in any condensed phase. In the
absence of collisions this particular vibrational relaxation process cannot occur without
violating the principle of conservation of energy.

There are four possible fates of a large molecule in the electronic state S\: reaction,
fluorescence, internal conversion, or intersystem crossing. From a chemical point of view
perhaps the most important possibility is the reaction of the excited molecule with other
molecules. This possibility is studied in the vast field of photochemistry and is beyond
the scope of this book.

If the molecule in Si re-emits a photon, 5i —» SQ, this process is known as flu-
orescence. If the emitted photon has the same energy as the absorbed photon, then
the process is known as resonance fluorescence] otherwise, if the emitted photon has
less energy than the absorbed photon, then the process is known as relaxed fluores-
cence. Small, gas-phase molecules emit resonance fluorescence but large, condensed
phase molecules emit relaxed fluorescence. Fluorescence lifetimes are typically on the
order of nanoseconds.
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Singlet to triplet conversion for excited states is also possible in which the Si —> T\
process is known as intersystem crossing. Emission from the triplet state back down to
the ground state is weakly allowed by spin-orbit mixing. The T\ —> So emission is called
phosphorescence and typically has a lifetime on the order of milliseconds to seconds for
large organic molecules.

A molecule in Si can bypass the triplet manifold and transfer directly to high
vibrational levels of the ground state. This nonradiative Si —So process is called internal
conversion. The processes of internal conversion and intersystem crossing in an isolated
gas-phase molecule can only occur because a high density of vibrational levels exists,
allowing energy conservation to be satisfied exactly (within the limits of the uncertainty
principle based on the lifetime of the excited state).

10.7 Photoelectron Spectroscopy

Photoelectron Spectroscopy allows the orbital energies of a molecule to be measured
directly. In photoelectron Spectroscopy the molecule is bombarded with electromag-
netic radiation of sufficient energy to ionize the molecule. Typically, vacuum ultraviolet
radiation is used to liberate valence electrons, while x-ray radiation is used to dislodge
core electrons. Valence photoelectron Spectroscopy is of particular interest to chemists
since this process provides a means whereby the energies of the bonding orbitals can
be measured directly.

The He atom provides a convenient source of vacuum ultraviolet radiation. For in-
stance, one source is the He 1P—1S resonance transition at 171129.148 cm"1 (21.217307
eV or 584.35399 A), which involves the promotion of the electron from Is to 2p. The
energy of this transition is more than sufficient to ionize any outer valence electron
according to the process

for any molecule, M. The excess energy that results from the energy difference of the
photon minus the binding energy of the electron is distributed as internal energy in
M+ or as kinetic energies of the molecular ion M+ and the electron. Since an electron
is much lighter than a molecule, conservation of momentum requires that the ionized
electron move at a high speed relative to the molecule. In other words, nearly all of the
kinetic energy is carried by the electron, so a measurement of the electron energy gives
the internal energy of the molecule from the Einstein equation,

Ignoring vibrational and rotational energy for the moment, this means that if the photon
energy (hi/o} is known and the electron kinetic energy is measured (KEe). then the
electron binding energy (£?moiecuie) in a particular electronic orbital of the molecule
is determined. This means that the photoelectric effect directly measures the binding
energies of electrons in a molecule.

For example, the valence photoelectron spectrum of H2O recorded with He / excita-
tion is shown in Figure 10.18. As is customary, the spectrum is not plotted as a function
of the measured electron kinetic energy (KEe) but as a function of hi/Q — KEe. In this
way the scale directly reads the binding energy of the electron orbital (or the ionization
energy of the orbital). The lowest energy ionization at 12.61 eV corresponds to the
ionization from the nonbonding out-of-plane orbital of 61 symmetry (see Figure 10.2).



Figure 10.18: Valence photoelectron spectrum of EbO recorded with He / excitation.

The next ionization (14^16 eV) corresponds to the in-plane H—O bonding orbital of
a\ symmetry. The removal of this bonding electron changes considerably the geometry
of the final H2O+ ion relative to the geometry of the ground-state molecule. Since the
ionization process is very fast, the Franck-Condon principle applies, and substantial
vibrational structure is observed. The origin band for the ionization of the ai electron
is at 13.7 eV. Finally, removal of the in-plane 62 (Figure 10.2) bonding electron with
18-20 eV ionization energy also results in extensive vibrational structure near the ori-
gin at 17.2 eV. The final valence orbital at 32 eV, corresponding to the ionization of a
2s (ai) O electron, is not shown in Figure 10.18 because the binding energy is greater
than the 21.2 eV of energy that is available from the He / source.

The photoelectron spectrum of E^O gives the binding energies of the four occupied
valence molecular orbitals. The y-axis of the qualitative molecular orbital diagram (Fig-
ure 10.2) is thus made quantitative. The photoelectron spectrum of H^O also suggests
that molecular orbitals are more than figments of a quantum chemist's imagination.
Orbitals exist and their properties can be measured.

10.8 Rotational Structure: H2CO and HCN

The rotational energy levels of linear, symmetric top, spherical top, and asymmetric
top molecules have been discussed in previous chapters. The general selection rules have
also been considered in the sections on infrared spectroscopy (Chapter 7) and electronic
spectroscopy of diatomic molecules (Chapter 9).

Electronic spectra of polyatomic molecules display much more variety than is found
in the infrared transitions of polyatomic molecules or electronic transitions of diatomic
molecules. The main reason for this diversity is the possibility that an electronic tran-
sition induces large changes in the geometry. It is not uncommon for a molecule, such
as HCN, to change point groups or to dissociate into fragments upon electronic exci-
tation. HCN has a linear ground state, while the first excited electronic state has a
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Figure 10.19:
molecule.

Bent-linear correlation diagram for the rotational energy levels of a triatomic

bent structure so it is necessary to consider a bent-linear rotational level correlation
diagram.

The ground state of HCN is X1S+ (Coov) and has four degrees of vibrational free-
dom plus two degrees of rotational freedom. The A1 A" (Cs) excited electronic state
has three degrees of vibrational freedom and three degrees of rotational freedom. It
is necessary, therefore, to convert one bending vibration in linear HCN into rotation
about the a-axis for bent HCN. A correlation diagram is very helpful in obtaining a
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qualitative understanding of how energy levels and quantum numbers must change as
a function of bending angle. For bent HCN the energy levels are given approximately
by (ignoring stretching vibrations)

since the molecule is a near prolate top. In equation (10.57) the Ka quantum number
gives the projection of rotational angular momentum about the top axis and hvb is
the vibrational quantum of bending. For the linear molecule, the corresponding energy
level expression is

In equation (10.58) the / quantum number gives the projection of vibrational angular
momentum along the z-axis and hv is the quantum of bending for the linear molecule.
Since J is always a good quantum number, it must remain invariant to any changes in
geometry. However, / is transformed into K as the molecule bends (Figure 10.19). The
vibrational angular momentum lh becomes Kah units of rotational angular momentum
as the HCN molecule bends.

The A 1A"-X :E+ transition1'14 of HCN occurs near 1800 A. This transition shows a
long progression in the v<i bending mode (and in ^3, the CN stretch) in both absorption14

and laser-excited emission. From the Franck Condon principle, linear-linear transitions
will not exhibit a progression in a bending mode. The bands are found to obey the
selection rule K' — I" — ±1 (in general, K' — I" could be 0. ±1), consistent with the
transition dipole moment pointing out of the plane of the bent molecule. The excited
A state must therefore have A1A" symmetry.

The rotational structure of the bands is relatively simple because the excited state is
approximately a prolate top with rotational spacings given by BJ(J + 1). The selection
rule AJ = 0, ±1 appropriate for a perpendicular electronic transition gives a simple P,
Q, R structure for each band (Figure 10.20).

Perhaps the most famous electronic spectrum is the A M.2 — X 1A\ transition of
formaldehyde, observed in the region 3530-2300 A.1'15 The A — X transition was
the first electronic transition of an asymmetric top molecule in which the rotational
structure was understood in great detail.16 In addition, formaldehyde is the simplest
molecule with the carbonyl chromophore, and therefore serves as a prototype for more
complex aldehydes and ketones.

The electronic structure of formaldehyde can be rationalized with a simple localized
molecular orbital picture. The carbonyl chromophore has a set of localized molecular
orbitals16 given in Figure 10.21.

The six valence outer electrons (two of the four carbon electrons form the C—
H bonds and the two O(2s) electrons are not considered) give a (5ai)2(l&i)2(2&2)2

ground-state configuration. The HOMO-LUMO transition corresponds to the transfer
of a nonbonding, in-plane O2py(2&2) electron to an antibonding C—O 7r*(2&i) orbital.
This type of transition is associated with =C=O, =C=S, —N=O, —NC>2, and —O—
N=O chromophores and is called a TT* <— n transition. For H2CO, the first excited-
state configuration is (5ai)2(l&i)2(2&2)1(2&i)1

5 which gives rise to the A 1A% and a^A-2
electronic states.

The A 1A<2 — XlAi electronic transition is electric-dipole forbidden because the A^
irreducible representation is the only one in the C^ point group not associated with one
of the components of the dipole moment vector. The A — X transition appears weakly
through vibronic coupling with 2/4, the out-of-plane bending mode of 61 symmetry
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Figure 10.20: The 03Q(K' = 1) - 000 absorption band of the A 1A" - X aS+ transition of
HCN.

Figure 10.21: Localized molecular orbitals associated with the carbonyl chromophore of
formaldehyde.
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Figure 10.22: The vibrational modes15'16 of formaldehyde in the A lA-z and X 1A\ states.

(Figure 10.22). Since the direct product A2 <S> B\ gives #2, the A. 1A% — X lAi transition
borrows intensity from the allowed B 1B<2 - X 1A\ transition16 near 1 750 A.

The observed A 1A<2 — X 1A\ laser excitation spectrum of formaldehyde17 is shown
in Figure 10.23. A tunable laser was used to excite the vibronic levels of the A state
of formaldehyde, and the resulting undispersed total fluorescence was monitored as a
function of laser wavelength.17 The simple picture of the electronic structure of H^CO
described above is unable to account for some features of the spectra. The long progres-
sion of 1182 cm"1 is assigned as the v'2 carbonyl stretching mode. This long progression
appears because of a lengthening of the C—O bond. The vibrational intervals associ-
ated with the out-of-plane bending mode in the excited electronic state (2/4) are very
peculiar, however. In the A state the frequency of the v'^ mode is 125 cm"1, as compared
to the 1167 cm"1 value for the v'{ mode of the X state.

Surprisingly, the rotational analysis of H^CO preceded the vibronic analysis. From
the moments of inertia, the inertial defect (Chapter 6), A(= Ic - I A — IB) was found
to be -0.265 u A2 in the A state, but 0.057 u A2 in the X state.15 For a perfectly rigid
planar molecule, A would be exactly zero, but for a nonrigid planar molecule (such as
the ground state of H^CO), A is generally a small positive number due to vibrational
and electronic motion.18

The vibronic and rotational structure of the spectra associated with the A state of
formaldehyde can be understood if the A state is allowed to be slightly nonplanar. This
possibility is in accord with the prediction of the Walsh diagram for H2CO (Figure
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10.24). Population of the ?r* orbital (2&i) favors a pyramidal geometry. The peculiar
vibrational intervals associated with i/4 occur because of a barrier to linearity of 316
cm"1 in height. The vibrational energy-level pattern is consistent with the potential
energy curve for the out-of-plane bending19 shown in Figure 10.25.

If the A state of formaldehyde is pyramidal (Cs point group), then at first sight
it would seem inappropriate to use the C<2V point group to label the electronic state
and the vibrational levels. The molecule is only slightly nonplanar, however, with the
v'4 — 1 vibrational level already above the barrier. Even below the barrier, with the
molecule in the ground vibrational level (i>4 — 0), the molecule rapidly inverts much
like ammonia does. In fact, the v'4 = 0 to v'4 = 1 vibrational levels are pushed closer in
energy as the barrier height increases, and thus are analogous to the 0+ — 0~ inversion
doublet of NH3 (see the section on inversion doubling in Chapter 7). The "average"
structure (but not the equilibrium structure) is planar.

A rigorous theoretical analysis using permutation-inversion operations shows that a
group called G$ of order 4 should be used for the A state.16'20 However, G^ is isomorphic
with C-2vi so that there is no error in retaining the labels (and results!) derived from the
C-2V point group. If the A M.2 state of formaldehyde had a very high barrier to planarity
(and no inversion), then the A1A" label would have to be used.

The rotational analyses of the vibronic bands of the A 1A% — X 1A\ transition also
have some peculiarities. H^CO is a near prolate top with the C=O bond along the
a-axis in both electronic states. Many of the strong absorption bands have a vibronic
symmetry of B% in the A state because the direct product 61(^4) <8> A<i(A ^2) gives the
BI irreducible representation. A B^ — A\ vibronic transition is associated with the y
component of the transition dipole moment (Hy). The transition moment therefore lies
in the plane of the molecule, but is perpendicular to the a-axis (the C=O bond). This
corresponds to the 6-axis of the molecule (the c-axis is necessarily out-of-plane in any
planar molecule) so that the strong bands are perpendicular, b-type bands.15'16 The
rotational selection rules are AXa = ±1, AKC — ±1, AJ = 0, ±1 for these bands.

Figure 10.23: Laser excitation spectrum of the A lA-z — X 1A\ transition of formaldehyde.17
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Figure 10.24: Walsh diagram for H2CO.
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Out-of-plane deformation angle p / degrees

Figure 10.25: The potential energy curve as a function of the out-of-plane bending angle in
the A1A2 state of H2CO.

Some perpendicular c-type bands can also be found in the absorption spectra15'16

with the selection rules AKa = ±1, AKC = 0, AJ = 0, ±1. They must be associated
with BI — AI vibronic bands and contain odd quanta of ^5(62) an(^ ^(^2), since the
direct product AI ® b? gives the BI irreducible representation. These bands, in fact,
account for as much as one-quarter of the strength of the formaldehyde A — X electronic
transition.

Finally a few very weak parallel bands (a-type) are found in the A — X transition.
For these bands the selection rules are AKa = 0, A/fc = ±1, AJ = 0, ±1. Surprisingly,
the origin band (0$) is found in the spectrum with a-type selection rules. The origin
band has AI — A\ vibronic character and is forbidden by electric dipole selection rules
in a vibronically-induced electronic transition. Magnetic dipole transitions are possible,
however, and the magnetic dipole moment behaves like the rotations Rx, Ry, and
Rz in the character table. Callomon and Innes21 proved that the origin band of the
A M.2 — X M-i transition has magnetic-dipole character.

10.9 Intensity of Transitions

Once again the formulas presented in Chapter 5 for atoms can be used because of the
common definition (equation (5.112)) of the line strength

For a polyatomic molecule J remains a good quantum number and the Mj degeneracy is

Energy / cm"1
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still 2J+1. As for diatomic molecules, Sj> j» can be factored into electronic, vibrational,
and rotational parts as long as the wavefunction can be written as ̂  = ^eiVVib^rot- The
separation of the electronic and vibrational motion has already been discussed, equation
(10.41), and leads to polyatomic Franck-Condon factors for each normal mode, Qi. The
line strength Sj>j» is thus

with the definition for Franck-Condon factors being

The rotational line strength part, 5^,J, is a Honl-London factor (Table 9.4) for
linear singlet molecules or for singlet symmetric tops (with K' = A' and K" = A." in
Table 9.4), but is in general more complicated. The polyatomic line strength expression,
equation (10.60), is the same as that for a diatomic molecule, equation (9.103), with
the exception that the 3N — 6 (or 5) Franck-Condon products have replaced the single
qv'-v» diatomic Franck-Condon factor.

The simple line strength expression (10.60) fails frequently, for example, for transi-
tions affected by vibronic coupling, or between states that experience the Jahn-Teller
or Renner-Teller effects. There are even more subtle problems associated with the
separation of Sjtj» into electronic, vibrational, and rotational parts. For example, in a
polyatomic molecule the principal axis system of the upper electronic state is not always
oriented in the same direction as in the lower state because of changes in geometry. This
"axis switching" allows nominally forbidden rotational branches to appear in the elec-
tronic spectrum.1 The rotation of the principal axes will also affect the Franck-Condon
factors because this corresponds to a relative rotation of the inertial coordinate sys-
tems. The normal modes Qi have different equilibrium positions in the upper and lower
states, and can also be "rotated" relative to one another. In this case the Dushinsky
effect22 of coordinate rotation needs to be considered when the Franck-Condon factors,
equation (10.60), are computed.

The diatomic equations (9.115) to (9.118) apply as long as qv<-v" is interpreted as a
product of Franck-Condon factors and as long as the rotational part is not necessarily
a Honl-London factor from Table 9.4.

A particularly useful relationship can be derived connecting the integrated absorp-
tion cross section and the oscillator strength of a transition. Many electronic transitions
of polyatomics, for example, suffer from predissociation and the upper state lifetimes
then reflect the rates of various nonradiative processes rather than the radiative life-
time. This means that the equations involving the radiative lifetimes and the Einstein
A values are sometimes not very useful. The integrated absorption coefficient of an
entire electronic system, however, is easily measured in any phase and can be converted
to an oscillator strength /abs or to an Einstein A value. If the excited state has unit
quantum efficiency (i.e., the probability of emission of a photon is one) and the excited
state only emits to the ground state, then the radiative lifetime, r, is A"1.

The individual rotational lines of an electronic transition of a large molecule may
not be resolved or the molecule may be in solution or in the form of a solid. In this
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case, some of the intensity equations in Chapter 5 may not be very useful because
they implicitly apply to individual lines that are not observed for a large molecule. For
example, the integrated absorption coefficient for an electronic band system cannot be
treated in the same way as that for a line because the band system usually covers a
substantial frequency range.

For a broad electronic transition the integrated Einstein B value is given by

from equation (5.135) for the cross section a or

The Einstein Av value is related to the Einstein Bv value (equation (1.22), ignoring
degeneracy) by

so that an integration over frequency gives the rather approximate formula

from which the Einstein A value can be expressed as

The approximation occurs because the Einstein A and B coefficients have different
frequency dependences and when the transition covers a substantial frequency range,
it is no longer possible to convert one to the other exactly. Indeed the usual intensity
formulas in Chapter 5 are all defined for individual lines and their successful application
to unresolved bands is not assured.

The measurement of the absorption cross section a need not be in the gas phase, in
which case c = co/n (Chapter 1) and thus

or

if the molar absorption coefficient e (see equation (1.63)) is used. Equations (10.67)
and (10.69) were derived by Strickler and Berg,23 and tested successfully with the
solution spectra of a number of strongly absorbing large organic molecules. Equation
(10.68) applies to strong, electric dipole-allowed transitions and assumes that there

w
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is no orbital or spin degeneracy to consider. If orbital or electron spin degeneracy is
present, then the ratio flower/supper appears in equations (10.67) to (10.69).

Similar equations for other integrated quantities can be derived using equation
(10.63) and the careful application of some of the relationships given in equations
(5.134) to (5.138). For example, the transition strength S in C2 m2 is given by

and the oscillator strength /abs by

gain for equation (10.70), orbital or spin degeneracy is not considered, and if present
a factor of giower appears in the numerator. Although often discussed, the oscillator
strength and other related quantities are not well defined for an electronic band system.

Problems

1. Construct a planar-pyramidal correlation diagram (Walsh diagram) for an AHs-
type of molecule. Predict the geometries of the BHs, CHs, NHs, and CHJ mole-
cules.

2. With the aid of the Walsh diagram (Figure 10.4) predict the geometry and elec-
tronic symmetry of the Btk, BH^, and BH^" molecules. For BH2 predict the
lowest energy electronic transition.

3. Predict the ground electronic states for the following BAB-type molecules, CNC,
NGN, BO2, N3, COj, and NOj.

4. The ethylene molecule has a strong diffuse absorption beginning at 2 100 A and
extending into the vacuum ultraviolet. A very long progression in the excited-state
CH2 torsional mode is observed. On the basis of simple 7r-molecular orbital theory
and the Franck-Condon principle, account for these observations and suggest an
assignment for the electronic transition.

5. Construct a molecular orbital diagram for the vr-electrons of the linear molecule
C4. For the C4, C^", and CJ molecules predict the ground electronic states. (Hint
To obtain the correct 7r-electron count, construct a filled cr-framework from the 8
valence sp hybrid orbitals.)

6. The 7r-electrons of napthalene (CioHg) can be considered to be confined to a
rectangular box of dimension 4 A by 7 A ("particle-in-a-box").

(a) Set up and solve the Schrodinger equation to find the energy levels.

(b) Add the electrons to the energy-level diagram.

(c) Which levels correspond to HOMO and LUMO? At what wavelength will
the lowest energy transition occur?

7. Consider the 7r-electron system of the cyclopentadienyl radical, CsHs, taken to
be of D$h symmetry.
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(a) Determine to which irreducible representation the MOs belong.

(b) Assuming orthogonality between the 1pz atomic orbitals, determine the nor-
malized MOs.

(c) Use the Hiickel approximation to determine the MO energies.

(d) What are the ground and first excited state configurations for the 7r-electron
system?

(e) What transitions will be symmetry allowed?

Consider the hydrogen peroxide molecule H—O—O—H, which for the purposes
of this problem is assumed to have C^h symmetry (rather than C% symmetry).

(a) For the basis set of 10 atomic orbitals including the Is on the two hydrogen
atoms, and 2s, 2px, 2py, and 2pz on the oxygens, determine the symmetries
of the 10 molecular orbitals.

(b) Use the projection operator technique to obtain functions that form bases
for these irreducible representations.

(c) Specify the irreducible representations corresponding to each of the mole-
cular orbitals in the following table of Intermediate Neglect of Differential
Overlap (INDO) eigenvalues and eigenvectors:

(d) Determine the symmetries of the excited configurations formed by promoting
an electron from the highest occupied MO to the lowest empty (number 8)
and to the next highest (number 9) MO. Will the electronic transitions from
the ground (Ag) state to excited states of these symmetries be allowed?
Explain your reasoning.

Energy/a.u.

1
2
3
4
5
6
7
8
9
10

Oi 2s
Oi 2px
Oi 2py
Oi 2Pz
O2 2s
O2 2pz
02 1Pv
O2 2pz
Hi Is
H2 Is

-1.610
1

-0.642
0.138
-0.064
0.000
-0.642
-0.138
0.064
0.000
-0.254
-0.254

-1.278
2

-0.581
-0.171
-0.160
0.000
0.581
-0.171
-0.160
0.000
-0.328
0.328

-0.772
3

0.300
0.051
-0.574
0.000
-0.300
0.051
-0.574
0.000
-0.278
0.279

-0.752
4

0.040
-0.555
-0.282
0.000
0.040
0.555
0.282
0.000
-0.332
-0.332

-0.706
5

0.000
0.000
0.000
-0.707
0.000
0.000
0.000
-0.707
0.000
0.000

-0.577
6

-0.218
-0.396
0.502
0.000
-0.218
0.396
-0.502
0.000
0.210
0.210

-0.543
7

0.000
0.000
0.000
-0.707
0.000
0.000
0.000
0.707
0.000
0.000

0.165
8

-0.260
0.550
-0.224
0.000
0.260
0.550
-0.224
0.000
0.282
-0.282

0.322
9

0.196
0.125
0.406
0.000
0.196
-0.125
-0.406
0.000
-0.530
-0.530

0.342
10

-0.069
-0.406
-0.308
0.000
0.069
-0.406
-0.308
0.000
0.485
-0.485

8
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9. For the s-cis-butadiene molecule CH2=CH—CH=CH2 of C-2V symmetry:

(a) What are the symmetries of the molecular orbitals for the 7r-electrons?

(b) Using Hiickel theory, derive the energies and wavefunctions of the TT-
molecular orbitals.

(c) What are the ground-state electronic symmetries of the cation, neutral, and
anion of s-cis-butadiene?

10. For the allyl free radical CH2CHCH2 of C^v symmetry, what are the symmetries
of the 7r-orbitals? For the 7r-electrons, derive the Hiickel molecular orbitals and
energies. What is the ground-state 7r-electron configuration and the electronic
symmetry of the allyl free radical? (Pick the x-axis to be out of the plane of the
molecule.)

11. Derive equation (10.69) from (10.68).

12. The absorption spectrum of Rhodamine B dye in ethanol was measured and the
value of f £/vdi> was found to be 5 937 L mole""1 cm"1, while (v~3)~1 was found
to be 0.51 x 1013 cm~3. The effective refractive index of ethanol is 1.360. Calculate
the radiative lifetime r and the transition dipole moment in debye for this dye
(assuming a quantum efficiency of 1). From the transition dipole moment calculate
an approximate absorption oscillator strength (i/max is about 17800 cm""1).
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Appendix A

Units, Conversions, and
Physical Constants

The Mohr and Taylor (1998) recommended values of the fundamental physical con-
stants. The digits in parentheses are the one standard deviation uncertainty in the last
digits of the given value. Mohr, P. J. and Taylor, B. N., CODATA Recommended Val-
ues for the Fundamental Physical Constants: 1998, Rev. Mod. Phys. 72, 35 (2000). See
http://www.codata.org/.

Quantity

speed of light in vacuum
permeability of vacuum

Symbol

C,Co

A*o

Value

299792458
47T X 1(T7

=12.566 370 614... xl(T7

Unit

m s"1

N A ~ 2

N A"2

permittivity of vacuum £Q

Newtonian constant of gravitation G
Planck constant h
h/2-K h
elementary charge e
Bohr magneton, eft/2rae /^B
nuclear magneton, eh/2mp /UN
proton mass mp

proton-electron mass ratio mp/me

proton magnetic moment /J,P
proton gyromagnetic ratio, 2m p/H 7P

fine-structure constant, e2/4?r£o/ic a.
Rydberg constant, meca2/2h -Roo

in hertz, RooC
in joules, ROO he
in electron volts, Roohc/{e}

Bohr radius, a/^Roo ao
Hartree energy, 2R00hc E^

in eV, Eh/{e}

1/Moc2

=8.854187817. ..xID"12

6.673(10) xlO"11

6.62606876(52) x!0~34

1.054571596(82) xlO"34

1.602176462(63) xlO~19

9.27400899(37) xlO"24

5.05078317(20) xlO"27

1.67262158(13) xlO"27

1.00727646688(13)
1836.1526675(39)
1.410606633(58) xlO"26

2.67522212(11) xlO8

7.297352533(27) xlO"3

10973731.568549(83)
3.289841960368(25) xlO15

2.17987190(17) xHT18

13.60569172(53)
0.5291772083(19) xlO"10

4.35974381(34) xlO"18

27.2113834(11)

Fm-1

m3 kg"1

J s
Js
C
J T"1

JT-1

kg
u

JT-1

g-i T-i

m
Hz
J
eV
m
J
eV

-i

406
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Quantity Symbol Value Unit

electron mass me

electron magnetic momenta //e

in Bohr magnetons" /^e/^B
in nuclear magnetons0 //e/MN

electron (?-factora ge

Avogadro constant NA
atomic mass constant

1 mu = m(12C)/12 = 1 u u
Faraday constant, NA.G F
molar gas constant R
Boltzmann constant, R/NA k

in electron volts, k/{e}
in hertz, k/h
in wavenumbers, k/hc

molar volume (ideal gas), RT/p
T = 273.15 K, p = 101325 Pa Vm

T = 273.15 K, p = 100 kPa Vm

Stefan-Boltzmann
constant, (7T2/60)fc4/ft3c2 a

first radiation constant, Zirhc2 c\
second radiation constant, hc/k c%
Wien displacement law constant,

6 = AmaxT = C2/4.965 114 231... 6
electron volt, (e/C) J = {e} J eV
standard atmosphere atm
standard acceleration of gravity gn

9.10938188(72) xlO~31

5.485799110(12) x!0~4

-928.476362(37) xKT26

-1.0011596521869(41)
-1838.2819660(39)
-2.0023193043737(82)
6.02214199(47) xlO23

1.66053873(13) xKT27

96485.3415(39)
8.314472(15)
1.3806503(24) xHT23

8.617342(15) xKT5

2.0836644(36) xlO10

69.50356(12)

22.413996(39) xKT3

22.710981(40) xl(T3

5.670400(40) xlO~8

3.74177107(29) xlO~16

0.014387752(25)

2.8977686(51) xHT3

1.602176462(63) xlO"19

101325
9.806 65

kg
u
JT-1

mol"1

kg
C mol-1

J mor1 K
JK-1

eVK-1

HzK- 1

m K-

m3 mol 1

m3 mol"1

Wm- 2 K-4

Wm 2

m K

m K
J
Pa
m s~2

aMohr and Taylor have used negative values for these quantities as recommended by Brown et
a/., Mol. Phys. 98, 1597 (2000). The equations in this book follow the traditional definitions
and require positive values.

-1 -1



Appendix B

Character Tables

Cs E &h

A' I I x;y;Rz x2 \ y2; z2; xy
A" 1 -1 z\Rx;Ry xz;yz

Ci E

1 1 Rx;Ry;Rz X 2 ; y 2 ; z 2 ; x y ] x z ; y z
1 -1 x;y;z

C-2 E C-2

A 1 1 z\Rz X2;y2;z2;xy
B I -I x]y;Rx;Ry xz\yz

C3

A

E

E

1

C3

1
£

£*

A2
<^3

1

£*

£

Z\RZ
( x , y ) \ (Rx,Ry)

£=exp(2

x2 + y2-z2

(x2 -y2,xy);(xz,yz)

After D. Bishop, Group Theory and Chemistry, Dover, New York, 1993.
For groups which can be written as direct products G — G\ ® d or G = G\ <8> Cs, i.e., Cnh,
Dnhi D^<i^ D^d-, SG, Oh, Dooh, and /^, the order in which the irreducible representations are
listed in the Herzberg character tables (Vol. II, Infrared and Raman Spectra; Vol. Ill, Electronic
Spectra of Polyatomic Molecules) differs from that given here. By convention it is the order in
the Herzberg character tables that is to be used in numbering normal modes of vibration.
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i

A
A

g

u

1
1

i/3



B. Character Tables 409

<?4

A
B

E

E

I
1

1

C*4 C-2

1 1

-1 1

i -I
-i -1

A3
O4

1 2;;«z x2 + y2]z2

-1 x2-y2;xy

1 [ (x,y)](Rx,Ry] (xz,yz)

C5

A

El

E2

E

1

{',c

a el
1 1
£ £2

e* e2*
e2

 £*
£2* £

C| C| £=-exp(27ri/5)

1 1 jz;/k o;2 + i/2;22

e2* e* 1
£2 g }> ( x , y ) ] ( R x , R y ) (xz,xy]

£ £2* }
£* £2 | (x2~y2,xy)

CG

A
B

E1

E2

E

1
1

I!
!i

C& 63

1 1
-1 1

e -e* •
£* -£ •

—£* -e
— £ —£*

C2 Cl Cl £=exp(27rz/6)

1 1 1 z;Rz x2 + y2;z2

-1 1 -1
-1 — £ £*
_ j _ £* e 

1 -e* -
1 -£ -e*

D2

A
Bi
B2

B3

= V E C2(z)

1 1
1 1
1 -1
1 -1

C2(y) 6-2(0;)

1 1 X2;y2;z2

-I -1 2;^ XT/

1 —1 y, Ry xz
-1 1 x;Rx yz

D3

Al

A2

E

E

1
1
2

2Cs 3(^2

1 1
1 -1

-1 0

x2 + 2/2;^2

^;-R2

(x,y);(Rx,Ry) (x2 - y2 ,xy};(xz,yz]

D4

Ai
A2

B!
B2

E

E

1
1
1
1
2

2C4 C2

1 1
1 1

-1 1
-1 1

0 -2

2C2 IC'i

1 1 o^ + y2;*2

-1 -1 z]Rz

1 -1 x2-y2

— 1 1 x y
0 0 (x,y);(Rx,Ry] (xz,yz)

-i
i

1

(x ,y ) ; (R ,R)x y (xz ,yz )

(x -y ,xy )2 2
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D5 E 2C5 2CJ 5C2 a = IT

Ai
A2

Ei
E2

1
1
2
2

1
1

2coso:
2cos 2a

1
1

2cos 2a
2cosa

1
-1 z;Rz

0 (x,y);(R x,Ry)
0

*2+y2;*2

(xz
(*2

,yz)
-y2,xy)

D6 E 2C6 2C3 C2 3C2 30%

A,
A2

B!
B2

El

E2

1
1
1
1
2
2

1
1

_l

-1
1

-1

1
1
1
1

-1
-1

1
1

-1
-1
-2

2

1
-1

1
-1

0
0

1
_j^
_ ^

1
0
0

z;Rz

(x,y);

x^ + y^z2

(Rx,Ry] (xz
(x2

,yz)
-y\ 

xy)

C2v E C2 a-v(xz) &v(yz)

Ai
A2

Bi
B2

1
1
1
1

1
1

-1
-1

1
-1

1
-1

1
-1
-1

1

z
Rz
X] R

y,Rx

*2;
xy
xz
yz

y2;*2

Csv E 2Cs 3&v

Ai I I I z x2 + y2;z2

A2 I 1 - 1 Rz

£ 2 - 1 0  ( x , y ) ; ( R x,Ry) (x2 - y2,xy);(xz,yz]

C^v E 2C*4 C2 2&V 2(Ta

Ai
A2
Bi

I
1
1

1
1

-1

1
1
1

1
-1

1

1 z
-1 Rz
-1

x2 + y2;z2

x2-y2

B2 1 -1 1 -1 1 xy
E 2 0-200 (x,y);(Rx,Ry) (xz,yz}

-
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C$v

A!
A2

Ei
E2

E

1
1
2
2

2C5

1
1

2C5
2

1
1

2cos a 2cos la
2cos la 2COSQ!

5av a = IT

1 z x2 + y2-z2

-1 ^
0 (x,y);(Rx,Ry) (xz,yz)
0 (x2-y2,xy)

CGV

A,
At
B±
B2

Ei
E2

E

1
1
1
1
2
2

2C6

1
1

-1
-1

1
-1

2C3

1
1
1
1

-1
_]_

C2

I
1

-1
_\
_2

2

3<7« 3o"d

1 1 2 x2 + y2;22

-1 -1 Rz

1 -1
-1 1

0 0 (x,y);(Rx,Ry) (xz,yz)
0 0 (x2-y2,xy)

C-2H

A9

B9

Au

Bu

E

1
1
1
1

C2

1
— 1

1
-1

i

1
1

-1
_j^

&h

1
_^
_ j

1

Rz X2;y2;z2;xy
Rx;R.y xz\yz
z
x;y

Csh

A'

E'

A"

E"

E

1

{i
1

C3

I
£

£*

1

£

£*

A2
<-^3

1

£*

£

1

£*

£

Oh

1
1
1

-1
__i

-1

S3 Si £=exp(2vri/3)

1 1 Rz x2 + y2;z2

^ e ( x , y ) (x2-y2,xy)

-1 -1 z
~£ -£*

£ / (/?X'jR«) (X2'^)

Cih

Aq

Bg

E9

Au

Bu

Eu

S

1

1

0
1
1{1

C4

1
-1

i

1
-1

i
—i

C2

1
1

_]_

-1
1
1

-1
-1

A3
O4

1

-1

— i
i
1

_ j

i

i S^ <^h, S"4

1 1 1 1 Rz x2 + y2;z2

1 —1 1 —1 x2 — y2;xy

l -i -i \ \ (Rx^Ry} (xz>xy)
-1 -1 -1 -1 z
- 1 1 - 1 1

-1 ~{ 1 i \ fx v )
-1 i 1 -i f (X'y)

1
1 £*

-i

-i



Cs/i

A'

E{

E'2

A"

E?

Efi

E

1
1
1
1
1
1
1
1
1
1

C5

1
£
£*
e2

e2*
1
£
£*
e2

£2*

r>2
^5

1
e'2

e2*
£*
£
1

£2

£2*

£*
£

A3
U5

1
£2*

£2

e
£*
1
e2*
e2

e
£*

A4
°5

1

£*

£
e2*

£2

1

e*
£

£2*
e2

&h

1
1
1
1
1

-1
-1
_]_

-1
-1

S5

1
e
e*
e2

e2*
-1
— £

-£*

-e2

-£2*

Q7

^S

1
e2

£2*

£*

£

-1

-£2

-£2*

— £*

A3
^5

1
2*

£

£2

£

£*
_]_

_£2

— £

— £*

e9•-'s

1

£*

£

£2*

£2

-1

-£*

— £

-£2*

-£2

£=exp(27ri/5)

^2

(a;»y)

z
 (RX,Ry)

x2 + y2;z2

(x2 -y2;xy)

(xz,yz)

C&h

A9
B9

Elg

E-2g

Au

Bu

f*j It/

E-2u

E

1
1
1
1
1
1
1
1
1
1
1
1

C6

1
-1
£

£*

— £*

— £

1

-1

£

£*

-£*

C3

1
1

— £*

— £

— £

— £*

1

1

-e*
— £

— £

£

£2

1

-1

^
-1

1

1

1

-1

-1

^
1

1

A2
^3

1

1

— £

— £*

-£*

1

1

— £

— £*

— £*

— £

A5
^6

1

-1

£*

£

— £

-£*

1

-1

£*

£

— £

— £*

Z

1

1

1

1

1

1

-1

-1

-1

-1

-1

-1

C-5
^3

1

-1

£

£*

-£*

— £
_^

1

£

-£*

£*

£

£5^6

1
1

-£*

— £

— £*

-1

-1

£*

£

£

£*

Oh

1

-1
_J^

-1

1

1

^
1

1

1

-1

-1

5-6

1
1

— £

— £*

— £*

— £

-1

-1

£

£*

£*

£

£3

1

-1

£*

£

— £

-£*

-1

1

— £*

— £

£

£*

Rz

 (Rz,Ry)

Z

\ (x>y}
]
\

a=exp(27ri/6)

x2+y2;z2

(xz,yz)

(x2 ~y2,xy)

— £

-e2*

-£
-1

-£

-1

-1

-£



D2h = Vh

A9
B\g

B2g

Bsg

An

BIU

B2u

BZU

E

1
1
1
1
1
1
1
1

C2(z)

1
1

-1
-1

1
1

-1
-1

&(y)

1
_^

1
-1

1
-1

1
_]_

0>0r)

1
_^
-1

1
1

-1
-1

1

%

1
1
1
1

_^
_]_
_ j
-1

a(xy)

1
1

-1
-1
-1
-1

1
1

a(xz)

1
-1

1
-1
_]_

1
-1

1

&(yz)

1
-1
-1

1
-1

1
1

-1

*2
;?/

2;*2

.Rz xy
Ry XZ

Rx yz

z
y
X

D3h

A{
A'2
E'
A'{
A%
E"

E

1
1
2
1
1
2

2C3

1
1

-1
1
1
j

3C2

1
-1

0
1

-1
0

&h

1

1

2
-1
_]
-2

253

1
1

-1
-1
-1

1

3&v

1
-1

0
-1

1
0

z2 + y2;
Rz

(X,

Z

y)

(Rx,Ry)

(*2

(xz

-y2

,yz)

z2

,%y)

D4h

Alg

A2g

Big

Big

E9
Aiu
A2u
Bin
B2u
EU

E

1
1
1
1
2
1
1
1
1
2

2C4

1
1

-1
_ j

0
1
1

-1
_^

0

C2

1
1
1
1

-2
1
1
1
1

-2

2C£

1
-1

1
-1

0
1

-1
1

-1
0

2C'2

1
-1
-1

1
0
1

-1
-1

1
0

i

1
1
1
1
2

-1
-1
-1
-1
-2

254

1
1

-1
-1

0
-1
-1

1
1
0

&h

1
1
1
1

-2
-1

j

-1
-1

2

2^

1
-1

1
-1

0
-1

1
-1

1
0

2<Jd

1 x2 + y2;z2

-1 #z

-1 x2-?/2

1 xy
0 (flx,^) (a*,yz)

-1
1 z
1

-1
0 (x,y)



DSH.

A\
A'2
E(
E'2
A'{
A'i
EC
EZ

E

1
1
2
2
1
1
2
2

2C5

1
1

2 cos a
2 cos 2a

1
1

2 cos a
2 cos 2a

2<5f

1
1

2 cos 2a
2 cos a

1
1

2 cos 2ci!
2 cos a

5C2

1
-1

0
0
1

-1
0
0

&h

1
1
2
2

_^

-1
-2
-2

255

1
1

2 cos a
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Appendix C

Direct Product Tables

The antisymmetric product is in brackets. Since the tables are symmetric about the
principal diagonal, the part below the diagonal is omitted.

Cs

A'
A"

Ci

A9
An

A' A"

A' A"
A'

•A.g Au

-Ag Au
Ag

C2, C2h

A
B

A B

A B
A

C2v

A!
A2

B!
B2

Al A2 B,

Al A2 Bl
Al B2

Al

B2

B2
Bi
A2
Ai

D2, D2h
l

A
Bi
B2
B3

A Bi

A Bl
A

B2

B2
B3
A

B3

Bs

B2
Bi
A

After Harris, D. C. and Bertolucci, M. D., Symmetry and Spectroscopy, Dover, New York,
1989.
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Cs, Cshi S&

A
E

A

A

E

E
[A] 

+ A + E

C^v, #3, Dsd, Dsh

Al

A2

E

Ai

A,

A2

Ai
Ai

E

E
E
A, + [A2] + E

C^, C±h j 84

A
B
E

A

A

B

B
A

E

E
E
[A] 

+ A + 2B

(^4vt Dt, Did, D±h

Ai
A2
Bi
B2
E

Ai A2

Ai A2
Al

Bi

Bl
B2

Ai

B2

B2
B,
A2
Ai

E

E
E
E
E
Ai + [A2] + Bi + B2

C$, Csh

A
Ei
E2

A

A

Ei

Ei
[A] + A + E2

E2

E2
Ei + E2
[A] + A + El

c$v, #5, D*,d,1 D5h
2

Ai
A2
Ei
E-2

Ai

Ai

A2

A2
Ai

Ei

Ei
Ei
Ai + [A2] + E2

E2

E2
E2
Ei
Ai
+ E2
+ (Ai} 

+ EI

CQ, Ceh

A
B
Ei
E2

A B

A B
A

Ei

Ei
E2
[A] + A + E2

E2

E2
Ei
2B +
(A} +

Ei
A + E2

C&v, D&, D&h

Ai
A2
Bi
B2
Ei
E2

Ai A2

Ai A2
Ai

Bi

B,
B2
Ai

B2

B2
Bi
A2
Ai

Ei

Ei
Ei
E2
E2
Ai + [A2] + E2

E2

E2
E2
Ei
Ei
Bi
Ai
+ B2 + Ei
+ [A2] + E2



£>6d
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A2
Bi
B2
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E3
Ei
E5

Al A2 Bl

Ai A2 Bl
A! B2

Al

B2

B2
Bl
A2
Al

Ei

Ei
E!
E5
E5
Ai + [A2] + E2

E2

E2
E2
E4
E4
EI + £3
Ai + [A2] + £4

E3

E3
E3
Es
E3
E2 + E*
Ei + E5
Ai + [A2] + Bi + B2

E4

E4
E*
E2
E2
E3 + E5
BI + B2 + E2
Ei + E5
Ai + [A2] + E4

E5

E5
E5
Ei
El
Bi + B2
E3 + ES
E2 + E4
Ei + E3
Ai + [A2

+ E4

} + E2

0,0h,
1 Td

A!
A2

E
Ti
T2

A! A2

Ai A2

Ai

E

E
E
Ai + [A2] + E

Ti

Ti
T2

Ti+T2
Al+E + [Ti] + T2

T2

T2

Ti
Ti+T2

A2 + E + Ti+T2
Ai + £;+[Ti]+T2

^0011 > LJ<x>h
E+
E~
n
A
$
r

s+ E-

£+ E~
S+

n

n
n
£+ + [£-] + A

A

A
A
n + $
E+ + p-] + r

$

$
$
A + r
U + H
E+ + [E-]+7

r

r
r
3> + H
A + 7
tt + K
E+ + [E-] + A



Ik1

A
Ti
T2

G
H

A Ti

A Ti
A + [Ti] + H

T2

T2

G +
44-

H
[T2] + H

G

G
T2 + G +
TX + G +

H
H

A + [Ti] + [T2] + G + H

H

H
T!
Ti
Ti
4

+
+
-f

•f

T2

T2

T2

[TI

+ G +
+ G +
+ G +
+ [T*]

H
H
2H
+ {G}~\-G + 2H

K,Kh*

S
P
D
F

S P

S P
S +[P} + D

D

D
P+D + F
S + [P] + D + [F] + G

F

F
D + F + G
P+D+F+G+H
S + [F] + D + [F] + G + [H] + 1

1 Add the g-u selection rules, viz., g x g = g;g x u = u;u x u = g.
2Add the prime-double prime selection rules, viz., 'x' = '; 'x" — "; "x" = '.



Appendix D

Introductory Textbooks

In addition to more specialized monographs, there are a number of textbooks that cover
the entire field of molecular spectroscopy at an introductory level. Unfortunately many
of them are out of print and copies are difficult to obtain.

Atkins, P. W. and Friedman, K. S., Molecular Quantum Mechanics, 3rd ed., Ox-
ford University Press, Oxford, 1999.

Banwell, C. N. and McCash, E., Fundamentals of Molecular Spectroscopy, 4th ed.,
McGraw-Hill, London, 1994.

Barrow, G. M., Introduction to Spectroscopy, McGraw-Hill, Singapore, 1962.

Bingel, W. A., Theory of Molecular Spectra, Wiley Verlag Chemie, Weinheim,
Germany, 1970.

Bransden, B. H. and Joachain, C. J., Physics of Atoms and Molecules, 2nd ed.,
Prentice Hall, Upper Saddle River, New Jersey, 2003.

Brown, J. M., Molecular Spectroscopy, Oxford Chemistry Primers, No. 55, Oxford
University Press, Oxford, 1998.

Chang, R., Basic Principles of Spectroscopy, Krieger, Malabar, Florida, 1978.

Dixon, R. N., Spectroscopy and Structure, Methuen, London, 1965.

Dykstra, C. E., Quantum Chemistry and Molecular Structure, Prentice Hall, En-
glewood Cliffs, New Jersey, 1992.

Flygare, W. H., Molecular Structure and Dynamics, Prentice Hall, Englewood
Cliffs, New Jersey, 1978.

Graybeal, J. D., Molecular Spectroscopy, McGraw-Hill, New York, 1988.

Guillory, W. A., Introduction to Molecular Structure and Spectroscopy, Allyn &;
Bacon, Boston, 1977.

Harmony, M. D., Introduction to Molecular Energies and Spectra, Holt, Reinhart
& Winston. New York. 1972.
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Harris, D. C. and Bertolucci. M. D., Symmetry and Spectroscopy, Dover, New
York, 1989.

Hollas, J. M., Basic Atomic and Molecular Spectroscopy, Wiley, Chichester, Eng-
land, 2002.

Hollas, J. M., High Resolution Spectroscopy, 2nd ed., Wiley, Chichester, England,
1998.

Hollas, J. M., Modern Spectroscopy, 4th ed., Wiley, Chichester, England, 2004.

Karplus, M. and Porter, R. N., Atoms and Molecules, Benjamin, New York, 1970.

King, G. W., Spectroscopy and Molecular Structure, Holt, Reinhart &; Winston,
New York, 1964.

Levine, I. N., Molecular Spectroscopy, Wiley, New York, 1975.

McHale, J. L., Molecular Spectroscopy, Prentice Hall, Upper Saddle River, New
Jersey, 1999.

Richards, W. G. and Scott, P. R., Structure and Spectra of Molecules, Wiley,
Chichester, England, 1985.

Steinfeld, J. I., Molecules and Radiation, 2nd ed., M.I.T. Press, Cambridge, 1985.

Struve, W. S., Fundamentals of Molecular Spectroscopy, Wiley, New York, 1989.

Thorne, A. P., Spectrophysics, 2nd ed., Chapman &; Hall, London, 1988.

Thome, A. P., Litzen, U., and Johansson, S., Spectrophysics: Principles and Ap-
plications, Springer-Verlag Chemie, Berlin, 1999.

Walker, S. and Straw, H., Spectroscopy, Vols. I, II, and III, Chapman & Hall,
London, 1976.

Weissbluth, M., Atoms and Molecules, Academic Press, New York, 1978.

Whiffen, D. H., Spectroscopy, 2nd ed., Longmans, London, 1972.
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Index

a, absorption coefficient, 21, 184, 273, 399
a, spin function, 124, 129, 254, 352
A, Einstein coefficient, 8-11, 19-20, 140-

147, 182-184, 275, 357-358, 400
A, irreducible representation, 84-85
A, rotational constant, 190, 193-196, 199
Absorbance,143
Absorption, 9-21
Absorption cross section, 20, 142, 144, 184,

273, 275, 357-358, 361, 399-401
Angular momentum, 114-120

coupling, 125, 141
nuclear spin, 137-140, 148, 253-256,

352-353
orbital, 111-114, 116-117, 125-131,

147-148, 321-326, 332-333, 387-
388

rotational, 170, 185-190, 193-195,
249-250, 265-266, 309-310, 324-
326, 393 398

spin, 115, 120-134, 323-326, 338-346
total in atoms, 119-124
total including nuclear spin, 137-140,

253-256, 352-353
vector coupling model, 118-120, 123
vibrational, 177-181, 250-253, 256-

259, 264-266, 276, 380, 386-388,
393

Anharmonic oscillator, 215-220, 257-258,
309, 380

Anomalous commutation relationships,
188-189, 194, 338-339

Antenna temperature, 204
Anti-Stokes scattering, 293-296, 301, 309
Antisymmetric product, 352, 323, 420
Associated Laguerre functions, 116-117
Associated Legendre functions or polyno-

mials, 112-113, 135, 172, 182
Asymmetric top, 167-169, 193-198

electronic transitions, 393-398
energy levels, 193-195
line intensity, 198, 276
selection rules, 195-198, 270-272, 398
vibration-rotation bands, 270-272

Asymmetry parameter, 195
Atmospheric scale height, 318
Atomic clock, 138
Atomic term symbol, 128-134
a-type transitions, 196-197, 270-272, 398
Aufbau principle, 125, 153
Axis switching, 399
Azimuthal quantum number, 116

(3, spin function, 124, 129, 254, 352
B, Einstein coefficient, 8-11, 18-20, 140-

147, 357, 400
B, irreducible representation, 84-85
B, rotational constant, 170-171, 176, 181,

190, 224-225, 334, 342, 393
Balmer series, 109-111, 137, 154
Band head, 331-332, 335-337
Band intensity, 277-278

condensed phase, 400
Barometric law, 318
Beer's law, 19-21, 142, 184, 272-275, 312,

357
BeF2, 181, 255
BeH2, 370-371
Berg, 401
BF3, 43, 167, 168, 201, 285, 286
Birge-Sponer plot, 220-222
Blackbody radiation, 7-8, 17, 35-36, 204
Bohr condition, 11
Bohr frequency, 14, 23-25, 27
Bohr magneton, 120, 148, 406
Bohr model, 109
Bohr radius, 116-117, 145, 317, 406
Boltzmann equilibrium, 9, 272, 295
Bond integral, 374
Bond order, 323
Born-Oppenheimer approximation, 97-99,

199, 306, 214, 321, 329, 379, 382,
386-387

Bosons, 253, 256, 352-353
Br2, 328-329
Brackett series, 110
Branches, 223
6-type transitions, 196-197, 270-272, 398

431
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Bun sen, 109

C, rotational constant, 190, 193-196, 199
C, 133-134
C3, 372
C4, 401
C60, 266, 307
Ca, 137, 139, 154
CaN3, 285
CaOH, 387
CC14, 304-306
C2C12, 285
Center of mass, 165, 208-209
Centrifugal distortion, 174-177, 190-192,

203, 213, 215, 220, 225, 268, 337
Centrifugal force, 174, 260-262
Centrifugal potential, 210
C6F+, 386
CF3I, 202
CF3C1, 267
CF3CP, 192
CH4, 45, 55, 167, 266-270, 295, 307
C2H4, ethylene, 46, 271-272, 282, 401
C2H2, acetylene, 172, 249, 286
C3H4, allene, 54, 167-169
C3H5, allyl, 403
C6H6, benzene, 43, 45, 53, 167, 372, 378-

380, 382-385, 389
C4H6, butadiene, 374-377, 403
CsHs, cylopentadienyl, 402
C1oHg, naphthalene, 372, 389, 401
Character tables, 83-87, 245, 247, 304,

408-419
Characters, 81-83, 101, 104, 241-245, 375,

378
CHC13, 247-248
CH3C1, 167, 185-186
CH3F, 259, 283
CH3I, 190, 203
C2H2C12, 282
C2H2F2, 286
C12, 217, 307
Classes, 50-51, 79, 82-83
Classical turning points, 215
Clebsch-Gordan coefficients, 123-124
Cluster splittings, 268-269
CN, 327-328, 331-332, 336
C2N2, 286
CO, 172-176, 284
CO2, 21-22, 250, 256, 258, 278-279, 297-

298, 307, 372
Collision, strong, 15-16, 27
Column density, 157, 204-205, 273, 286
Combination bands, 258

Combination differences, 224-225, 252
Commutators, 88, 99, 112, 117, 127-132,

188-189, 338, 346
Coriolis coupling, 232, 260-266, 268-270
Coriolis force, 260-266
Coriolis resonance, 278-280
Correlation diagram, 194-195, 370-373,

392, 401
Coulomb integral, 374, 377
Coulomb's law, 17, 158
Coupled basis set, 122-124
CrO, 362
Cross section, 20, 142, 144, 184, 273, 275,

357-358, 361, 399-401
integrated, 144-146, 204, 275, 288,

357, 400
CS, 201
Cs, 137-138
c-type transitions, 196-197, 270-272, 398
Cu2, 362
CuD, 333

dcr/du, differential scattering cross section,
314-315

D), centrifugal distortion constant, 174-177
DC1, 220, 223-224
De Broglie, 5, 34-35
Debye, 16, 145-147
Depolarization ratio, 297, 305-307, 314,

316, 318-319
Deslandres table, 331-332, 362-363
Detuning frequency, 14-15
Diatomic molecules

dissociation energies, 212-213, 220-
222, 359-362

electronic spectra, 321-366
energy levels, 213-215, 337-346
pure rotational spectra, 169-174
Raman spectra, 309-310
vibration-rotation levels, 208-220
vibration-rotation selection rules,

216-220, 223
vibration-rotation transitions, 223-

224
Differential scattering cross section, 314-

315
Dipole moment, 11-12, 23, 134, 145, 153,

171-172, 195-197, 204, 216-219,
246, 308

Dipole moment derivative, 217, 246
Dirac bracket notation, 13, 92, 113
Dirac delta function, 19, 29
Dirac's equation, 139
Direct product basis set, 105-106
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Direct products, 85-86, 104-105, 121, 247,
256, 304, 323, 379, 388, 395-398,
408, 420-421

Direct sum, 78-79, 83, 105
Direction cosines, 186-188, 308, 355
Dissociation energy, 213, 220-222, 361-362
Doppler broadening, 22, 28-31, 37-38, 157,

205
Double harmonic approximation, 276-278,

315-316
DR21 molecular cloud, 205
Dunham energy level expression, 213-214
Dunham potential, 210-211, 213-214
Dushinsky effect, 399

E, molar extinction coefficient, 21, 361
E, irreducible representation, 84-85
E*, total parity operator, 153, 251-256,

347-349, 351, 353
El, electric dipole transition, 137, 147,

223, 349, 370
E2, electric quadrupole transition, 147,

218, 223
.E3, electric hexadecapole transition, 147
E?„, spectral irradiance, 17
Edlen, 34
Einstein A and B coefficients, 8-11, 19-20,

140-147, 182-184, 275, 357-358,
400

Einstein photoelectron equation, 364
Electron diffraction, 5, 35
Electric hexadecapole transition, 147
Electric-dipole approximation, 13
Electric quadrupole transitions, 147, 218,

223
Electromagnetic spectrum, 5-7
Electromagnetic waves, 3-5
Electron configuration, 125, 128-131, 133-

134, 322-325, 327, 369-372, 377-
379, 393

Electronic spectra of polyatomic
molecules, 367-405

electronic states, 367-379
intensities, 398-401
notation, 369, 380-381
rotational structure, 391-398
vibrational structure, 379-388

Electronic spectroscopy of diatomic
molecules, 321-366

intensities, 333-335, 353-359
notation, 323-326
parity, 346-353
rotational structure, 332-346
selection rules, 325-326, 349

vibrational bands, 326-332
Electronic transition dipole moment, 307-

308, 311-312, 355
Enantiomers, 281
Equivalent width, 157
Euler angles, 185-189, 238-239, 308
Excitance, 7, 17

f, fabs, oscillator strength, 143-147, 157,
357, 399-401

F, irreducible representation, 85
F, total angular momentum including nu-

clear spin, 137-138
F, 133
F2, 352
Fermi resonance, 278-279
Fermions, 124, 253-254, 323, 352
Fine structure, 120, 137, 406
Fluorescence, 389-390
Flux of photons, 19-21, 142
Fluxional behavior, 41, 199, 280-281, 396
F(m], Herman-Wallis factor, 275-276
F2O, 201, 238
Forbidden transition, 137, 139, 147, 157,

326, 379, 382-383, 393, 398-399
Force constants, 178, 211, 227-229, 232-

238
Fortrat parabola, 336-337
Fourier transform, 24, 27, 31-32
Franck-Condon factor, 328-333, 358, 359,

363-364, 399
Franck-Condon principle, 328-332, 381-

382, 391, 393, 401
Fraunhofer, 109, 137
Free radicals, 38, 177, 223, 327, 403
Frequency, 3
Function space, 72-76, 78, 100-104
Fundamental transitions, 217-219, 223-

224, 246, 249, 258, 277, 304, 315-
316

G, irreducible representation, 85
G matrix, 236-237
ge, electron g value, 120, 148, 407
Gaussian lineshape function, 30-31
Generalized coordinates, 227-228
GF matrix, 237
Golden rule, 361-362
Great Orthogonality Theorem, 79-83
Grotrian diagrams, 138
Group vibrational frequencies, 249
Groups, 48

Abelian, 48, 86
homomorphic, 49-50
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isomorphic, 49-50
multiplication table, 49, 69-70, 89
notation, 52-55
order, 48
point, 49
subgroup, 51, 85, 378

H, irreducible representation, 85
H2, 221, 254-255, 297-298, 352
H+, 263-264
Harmonic oscillator, 178-179, 211-212,

215-216, 218, 231, 245-246, 252,
256-257, 276, 315-316

energy levels, 212, 231, 257
selection rules, 218, 246, 315
two-dimensional, 178-179, 252
wavefunctions, 211, 215-216, 218, 231

HC1, 202, 219-220, 223, 225, 288, 297
HCN, 167, 177-178, 200, 248-249, 256-

259, 391-394
HC5N, 177
H2CO, 196-197, 199-200, 201, 381, 393-

398
HD, 172
HD 75 309 source, 157
He, 138, 390
He(CO), 380-381
Heisenberg uncertainty principle, 18, 26-

27, 362
Herman-Wallis effect, 276
Herman-Wallis factor, 275-276
Hermite polynomials, 211-212, 218, 245-

246
Herschel, 109
Herzberg order, 245, 408
Herzberg-Teller effect, 382-385, 386
HF, 172-173
HITRAN database, 272, 275, 288, 290
HITRAN intensity units, 146, 204, 274-

275, 288, 358
H2O, 27, 69, 166-167, 169, 232-245, 247,

270-271, 280, 304, 368-372, 390-
391

(H20)2, 41, 281
H2O2, 402
HOMO, highest occupied molecular or-

bital, 369, 377, 393, 401
Homogeneous lineshape, 21-31
Honl-London factors, 184, 193, 198, 258,

260, 274-277, 333-335, 354-359,
399

Hooke's law, 174
Hot band transitions, 219
Hubble Space Telescope, 157

Hiickel molecular orbital theory, 372-379,
401-403

Hund's cases, 342-346
case (a), 342-346
case (b), 343-346
case (c), 344-346
case (d), 345-346

Hund's rules, 130-133, 323, 370, 389
Hydrogen atom, 109-110, 115-124, 138-

139
energy levels, 116
hyperfine structure, 138-139, 141
Lamb shift, 139
maser, 138
selection rules, 134-137
spin-orbit intervals, 120-124, 154
Stark effect, 154
wavefunctions, 115-118
Zeeman effect, 155-156

Hyperfine structure, 137-140, 155-156

7, moment of inertia, 161-169
I, nuclear spin angular momentum, 137-

138, 148
I2, 221 222, 345
IC1, 317
IF, 287
Index of refraction, 3

of air, 3, 34
Induced dipole moment, 293-295
Inertial defect, 199, 202, 395
Inhomogeneous lineshape, 21-22, 28-31
Inner product. See Scalar product
Integrated cross section, 145-146, 274-275,

357
Intensity borrowing or stealing, 385, 395
Intercombination transitions, 137
Internal conversion, 389-390
Internal coordinates, 208, 232-238
Interstellar absorption, 157
Intersystem crossing, 389-390
Inversion doubling, 280-281, 396
Inverted term, 133, 327
lonization limit, 111, 137, 154, 391
Irradiance, 17, 313

spectral irradiance, 17
solar, 38

Isotopic relationships, 199, 214, 235

J, total angular momentum, 115, 170, 177,
180, 324

atoms, 115, 118-120, 125, 132-134,
137, 151

molecules, 170, 172, 177, 180, 187-
190, 195, 210, 223, 324
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Jablonski diagram, 388-390
Jahn-Teller effect, 385-387
JPL intensity units, 204

K, 136-137
K, quantum number, 188-190, 260, 265-

268, 388, 393
Klein conditions, 301
Klein integrals, 214
Kirchoff, 109
Kraitchman's equations, 199
Kratzer relationship, 174-175, 203, 213
Kronecker delta, 62

25+1 An, term symbol, 323-325, 348
2S+1Lj, term symbol, 128-134
A-doubling, 337, 342-345
LQ, Lyman a. transition of H, 139, 141, 157
L, orbital angular momentum

atoms, 99, 114-118, 125-132, 147-148
molecules, 179, 321-326, 387-388

Lv, spectral radiance, 17
Laboratory coordinate system, 185-189,

208-210, 251, 254-256, 260-263,
347-353, 355-356

Lagrange's equations, 227-228, 236
Lande interval rule, 133
Laplacian operator, 99, 126, 210
Laporte rule, 136-137
Larmor frequency, 149
Laser, 16-17, 31-33, 34-39, 153, 157, 293,

314, 317 319, 335, 395-396
Le Roy-Bernstein analysis, 221-221, 359
Legendre polynomials, 91. See also Associ-

ated Legendre functions or poly-
nomials

LEVEL computer program, 289, 357-358,
364

Li, 125, 137
Li2, 323, 364
Light scattering, 293-320
LiN3, 285
Line intensities, 11-34

atomic, 140-147, 157
diatomic electronic, 333, 353-359,

361-362, 364
polyatomic electronic, 398-399
pure rotational, 182-184, 192-193,

198, 204, 205
vibrational, 272-278, 288
Raman, 310-317, 318-319

Linear combination of atomic orbitals,
102-103, 321, 367

Linear independence, 73

Linear molecules, 86-87, 167, 169-177,
182-184, 247-259, 275-276, 386-
388

Linear operators, 42, 74
Lineshape functions, 21-33

Gaussian, 29-31
Lorentzian, 25-29, 31, 184, 275
transit time, 31-33, 37, 38
Voigt, 28-29
Van Vleck-Weisskopf, 184

Local modes, 232
Long-range potential, 221-222
Lorentz-Lorenz relationship, 318
Lorentzian lineshape function, 25-29, 31,

184, 275
Lowering operator, 112-114, 129, 189, 194,

338
l-type doubling, 251-252, 256-259
LUMO, lowest unoccupied molecular or-

bital, 369-370, 377, 393, 401
Lyman series, 109-110, 139, 141, 157

u, magnetic moment, 120
UB, Bohr magneton, 120, 148, 155, 406-407
uj, total magnetic moment, 149-152
uN, nuclear magneton, 148, 155, 406-407
Mt/, spectral excitance, 7, 17
Ml, magnetic dipole transition, 139, 147,

172, 398
M2, magnetic quadrupole transition, 147
Magnetic dipole transitions, 139, 147, 172,

398
Magnetic moment, 120, 147-152, 157, 406-

407
Magnetic quadrupole transition, 147
Magnetic quantum number, 116-117
Magnetogyric ratio, 147-148, 406
Many-electron atoms, 117, 124-134
Mass-weighted cartesian coordinates, 226-

230, 238-245, 278
Matrices, 58-59

cofactors, 60-61, 63
complex conjugate, 60
determinant, 60-61
diagonalization, 65, 94-95, 106-107,

122, 156, 165, 198, 229, 296, 307,
338, 343, 359

eigenvalues and eigenvectors, 63-65,
88-89, 91, 93-96, 107-108

Hermitian, 62, 65, 88, 93
Hermitian conjugate, 60, 92
inverse, 60, 63
orthogonal, 63, 65, 94, 187, 229
symmetric, 62
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trace, 60
transpose, 60
unitary, 63, 65, 75, 78-79, 93, 101

Matrix representation of groups, 58 59
direct product representations, 85-86,

103-105
equivalent representations, 77
irreducible representation, 78-79, 79-

83
reducible representation, 78-79, 79-

83
regular representation, 89
unitary representation, 78
using basis functions, 72-76, 238-244
using basis vectors, 69-72
using position vectors, 65-69
using wavefunctions, 100, 102-103

Matrix representation of the Hamiltonian
operator, 91-97, 106 107, 338-
346, 372-379

Maxwell-Boltzmann distribution function,
22, 30

Microstates, 129-131, 153
Molar extinction coefficient, 21, 361
Molecular cloud, 205
Molecular coordinate system, 165, 185-

189, 251-256, 307-308, 313-314,
338-339

Molecular orbitals, 102-103, 321-323, 367-
379, 391, 393-394, 401-403

Moment of inertia tensor, 161-165
Moments of inertia, 164
Morse potential, 212-213, 220
Mulliken notation, 84-87, 383
Multi-electron atoms, 124-134
Multiplet splitting, 132-133, 137, 140, 154

N, total angular momentum excluding
spin, 324, 340-346, 353

N2, 309-310, 312, 313, 318-319, 323, 327,
332, 363

Na, 30, 37, 38, 137, 147, 154-155, 158
Natural lifetime, 17, 22
Natural lifetime broadening, 22-27, 37
Newton's laws of motion, 162, 227-228,

262-263
NF3, 201
NH, 334, 361
NH2, 280, 372
NH3, 47, 49, 51, 72, 100, 102-103, 245, 280-

281
NH+, 266
N2H2, 286
Nicholls, 363

NO, 177, 223
NO2, 372
NO3, 38
N2O, 287
Noncrossing rule, 361-362
Nonradiative transitions, 20, 203, 389-390
Nonrigid rotor, 174-177
Normal modes, 229-230

coordinates, 229-230
labels, 245
selection rules, 245-247
symmetry, 238-245

N4S4, 283
Nuclear magneton, 148, 406
Nuclear magnetogyric ratio, 148
Nuclear spin statistics, 192-193, 253-256,

310, 312, 352-353

O, 133, 157
green line, 147
red line, 147

0+7, 157
02, 137, 172, 177, 313, 322-323, 325-326,

353-354
03, 338, 372
OR, transformation operators, 74-76, 101-

103, 105-106
OH, 218
One-electron atoms, 115-118, 128, 134-136
Operator algebra, 42-43
Optical activity, 57
Ortho levels, 255, 352-353
Orthogonal functions, 74, 78, 89, 93, 101
Oscillator strength, 143-147, 157, 204, 357,

364, 399-401
Overlap integral, 73-74, 328, 330-331, 382
Overlap matrix, 361, 374
Overtone transitions, 6, 218-219, 232, 258,

278-279, 282, 284 288, 304

P12, permutation operator, 124-125, 253-
256, 352-353

Para levels, 255, 352-353
Parallel transitions, 249, 258, 260-261, 333,

354
Parity, 346-347

atoms, 130-131, 134, 136, 147
e / f , 251-253, 341, 344, 349-351
g/u, 251, 351
S/a , 253-256, 352-353
total, 13, 130-131, 136, 147, 153, 172,

251-253, 255-256, 347-349
Partition function, 143, 172-173, 184, 205,

272, 316
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Paschen series, 109-110
Paschen-Back effect, 152
Pauli exclusion principle, 124-125, 129,

253, 323, 352, 386
Pauli spin matrices, 87-88, 115
Pekeris relationship, 213
Permutation operator, 124-125, 253-256,

352-353
Permutation-inversion groups, 281, 396
Permutation-inversion operators, 251, 255,

348, 396
Perpendicular transitions, 249-250, 258,

266-267, 333, 335, 354-355
Persistent lines, 137
Perturbation theory, 95-96, 107, 121, 123,

133, 149, 155-156, 158, 279, 299,
302, 342, 384

Perturbations, 278-280
Pfund series, 110
PH3, 281
Phosphorescence, 389-390
Photoelectron spectroscopy, 390-391
Photodissociation cross section, 361
Photon recoil, 38
Photons, 5
Physical constants, 5, 406-407
Pickett, 204
Placzek, 298
Planck function. 7-9, 11, 35-36, 406
Plane polar coordinates, 178-179
Polar coordinates, 59-60, 111, 116, 153,

210, 238
Polarizability, 293-298

anisotropy, 297, 313-314, 318
hydrogen, 297 298
mean, 297, 312, 313, 318-319
operator, 303
units, 314, 316-317

Polarizability ellipsoid, 297, 306, 307, 316
Polarizability tensor, 296, 303-304, 307,

315
Polarization of light, 5, 305-307, 314
Power broadening, 33
Precessional motion, 119-120, 150-151,

322, 339
Predissociation, 359-362, 399
Pressure broadening, 21, 27-28, 30, 37-38,

204, 275, 288
Pressure shift, 28
Principal axis, 43-44
Principal axis system, 165, 196, 296

for moment of inertia, 165
for polarizability, 296

Principal quantum number, 116, 154, 345

Products of inertia, 164
Progression of bands, 327, 359, 360, 382-

383, 393, 395, 401
Projection operator, 92, 100-103, 233, 368

q, partition function, 143, 172-173, 184,
205, 272, 316

Qualitative molecular orbital theory, 322-
323, 368-372

Quantum defect, 111, 154
Quantum efficiency, 400, 403
Quantum electrodynamics, 121, 139-141

p, depolarization ratio, 297, 305-307, 314,
316, 318-319

R, rotational angular momentum, 324,
338, 345-346

R, Rydberg constant, 111, 116, 138, 154,
406

r-centroid approximation, 330
Rabi frequency, 14-17, 33, 40
Rabi oscillations, 15-17, 31, 33
Radiance, 17, 204
Radiometry, 7, 17
Radiation density, 7-11, 18
Radio astronomy, 139, 204-205
Raising operator, 112-115, 189, 194, 338

339
Raman effect, 293-320

electronic, 293
rotational, 293-294, 307, 309
selection rules, 303-305, 308, 309-310,

315
vibrational, 293-295, 297-298
vibrational selection rules, 303-304,

315
vibration-rotation spectra, 209-312,

318
Raman shift, 293-294
Rayleigh scattering, 293-295, 297, 298

301, 310-315, 318
of air, 312-313, 318

Rayleigh-Jeans law, 35, 204
Ray's asymmetry parameter. See Asymme-

try parameter
Rb, 137-138, 140
Rearrangement theorem, 49
Reduced mass, 116, 171, 209, 214, 261-263
Refractive index. See Index of refraction
Regular term, 133, 362
Renner-Teller effect, 386-388
Resonance integral, 374, 377
Resonance lines, 137, 138
Resonance Raman effect, 303
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Rhodamine B, 403
RKR, Rydberg-Klein-Rees method, 214-

215, 289, 331, 363
Rigid rotor, 170, 193, 203
Rms speed, 37
Rotating wave approximation, 14, 25
Rotational constant, 170-171, 176, 181,

190, 234, 285, 342
Rule of mutual exclusion, 304
Russell-Saunders coupling, 125, 129
Rydberg formula, 111, 116
Rydberg-Klein-Rees method, 214-215,

289, 331, 363
Rydberg state, 345

S, spin angular momentum
atoms, 115, 120-124, 125-134, 137,

148-152, 153, 155-157
molecules, 324-325, 337-339, 344-346

S', line intensity or effective integrated ab-
sorption cross section, 273-274,
276, 287

Sband, band intensity, 277-278, 288
Sfi', Honl-London factor, 184, 193, 198,

258, 260, 274-277, 333-335, 354-
359, 399

Sj'j", atomic or molecular line strength,
141-146, 184, 192, 198, 273-277,
288, 353-354, 356-357, 399

Scalar product, 58, 73, 75, 92
Schmidt procedure. See Gram-Schmidt

procedure
Schoenflies notation, 52
Schumann-Runge system of O2, 326
Secular determinant or equation, 64-65,

93-96, 194, 229, 374-379
Selection rules, 34, 105-106

atoms, 134-137, 138, 147, 149
molecules, 171-172, 182-190, 193,

195-198, 216-220, 223, 245-247,
251-252, 255, 258, 260, 266, 270,
303, 308-309, 325-326, 349, 351,
356, 370, 382, 385, 393, 398

Semiclassical model, 11, 25, 27, 213-215,
222

Semiclassical quantization condition, 213
Sequence of bands, 327, 331
SF6, 55, 167, 266, 307
SiC2, 372
Similarity transformation, 65, 77-78, 81,

165, 235, 296
Slater determinant, 124-125, 129, 367
SO2-, 318
S2O, 202

Solar constant, 38
Spectral intensity, 17
Spherical harmonics, 112-113, 116-118,

153, 170, 182, 210, 347
Spherical top, 167, 268-270, 297, 305-307,

314
Spin components, 324-325, 327, 342-346,

359
Spin multiplicity, 130-131, 354
Spin-orbit coupling, 99, 120-124, 125-134,

137, 139, 152, 154, 325, 337-346,
362, 386, 390

Spin-rotation interaction, 340-341
Spontaneous emission, 8-11, 15, 20, 22-27
SrS, 336, 362-363
Stark effect, 203-204, 216
Stefan-Boltzmann law, 36, 407
Stimulated emission, 811, 16, 19-21, 142-

146, 184, 272-273, 277, 357
Stimulated emission correction, 184, 272-

273, 277, 357
STIS spectrograph, 157
Stokes scattering, 293-296, 301, 303, 309,

310, 316, 319
Strickler, 401
Structure determination, 198-200
Sum rule

Franck-Condon factors, 358
Honl-London factors, 277, 359
oscillator strength, 147
rotational, 359

Symmetric product, 245, 323, 352, 386
Symmetric top, 167-169

energy levels, 185-190, 265
pure rotational transitions, 190-192
pure rotational intensities, 192-193
selection rules, 190, 266
vibration-rotation bands, 259-266
wavefunctions, 189, 203, 347

Symmetry-adapted basis functions, 100,
102-103, 368, 370, 375, 379

Symmetry coordinates, 233-238
Symmetry elements, 41-42, 49, 52-54
Symmetry number, 172
Symmetry of Hamiltonian operators, 99-

100, 105-107
Symmetry of normal modes, 238-245
Symmetry of rotations, 242-244
Symmetry of translations, 242
Symmetry of wavefunctions, 99-100, 102-

103
Symmetry operations, 41-46

Cn, 43-44, 67-68
E, 43, 69
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i, 44, 68
<r, 44, 66
Sn, 44, 68

T, irreducible representation, 85
T\ process, 15
T2 process, 15, 27-28
Taylor series expansion, 210-211, 213, 216,

227, 246
Term symbol

atomic, 128-134
diatomic, 323-325

Tex, excitation temperature, 204-205
Thermal infrared region, 273
Ti, 137
Time-dependent Schrodinger equation, 12-

13, 299
Transformation operators, 74-76
Transition dipole moment, 13, 16, 19, 33,

34, 37, 105-106, 171, 182-183,
216, 276, 299-305, 329-331, 333-
334, 351, 354-358, 361, 393, 403

parallel, 249, 258, 260-261, 272, 283,
333, 354, 398

perpendicular, 249, 258, 260, 267, 272,
333, 335, 354-355, 393, 398

function, 216-219, 246, 275-277, 330,
357

Transit-time broadening, 31-33, 37, 38
Two-level system, 8-33, 36-37, 96, 272,

298-303

Uncertainty principle. See Heisenberg un-
certainty principle

Uncoupled basis set, 121-124
Units, 4-7, 17, 21, 145-148, 157, 170-171,

204-205, 274-275, 313, 314-315,
316-317, 319, 358, 361, 406-407

Van der Waals molecules, 41, 281, 380-381
Van Vleck-Weisskopf lineshape function,

184
Variational principle, 125, 374
Vector coupling coefficients, 123-124
Vector representation of wavefunctions,

123-124
Vectors, 58-63

column, 59
cross product, 58-59
dot product, 58, 62, 73
eigenvectors, 63-65
orthogonal transformation, 63, 165,

234, 243, 296, 307
row, 59

unitary transformation, 63, 75
Vibrating rotor, 208-220
Vibrational angular momentum, 177-181,

250-251, 257, 264-270, 276, 380,
387-388, 398

Vibrational frequency, 212, 231
Vibrational modes. See Normal modes
Vibrational motion

diatomic molecules, 208-220
polyatomic molecules, 226-272

Vibrational overlap integral, 330-332, 382
Vibrational relaxation, 389
Vibrational satellites, 176-177
Vibration-rotation transitions

asymmetric top molecules, 270-272
diatomic molecules, 223-224
linear molecules, 247-259
spherical top molecules, 266-270
symmetric top molecules, 259-266

Vibronic coupling, 379, 382-385, 395
Voigt lineshape function, 28-29

Walsh's rules, 368-373
Wang transformation, 203
Watson, 108, 276
Wavelength, 3-4
Wavenumber, 4
Wave-particle duality, 5
Wave vector, 3, 34
Wien displacement law, 35-36, 407
Wien's formula, 35
Wigner-Eckart theorem, 131
Wilson, 336-237, 383
WKB approximation, 213-214

£(r), spin-orbit coupling function, 120-121

£, Coriolis coupling constant, 264-268
£, spin-orbit coupling constant, 122, 131-

133
Zeeman effect, 147-152, 154-156

anomalous, 148
normal, 148

Zero-point energy, 178
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