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lonization

The Townsend (symbol Td) is a physical unit of the reduced electric field (ratio E/N),

where E iselectric field and N is concentration of neutral particles.
It is named after John Sealy Townsend, who conducted early research into gas ionization.
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lonization cross section

lonization by electron impact

Atoms
Ar +e(g) 2 Art + e, (g) + e, (e)

Molecules

No(vi)) te(g) 2 N (vi)) +e(g) +e,(e)
P N*(exin) + N(ekin) t€17(€;5) +€57(€4)

NH; + e’(g;) = .....to many channels



lonization by electron impact

Interaction of electrons with atoms and molecules

lonization by electron impact
Excitation by electron impact

Relative intensity
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- First ionization energy (IE,)

The minimum amount of energy required
to remove the most loosely bound

electron from an isolated gaseous atom
to form a 1+ ion.

- .
atom,) + energy —ion”, +e

Element/Compound lonization Potential (Volts or eV)

He




lonization-Energy

noble gases:
alkali metals:
Li

40 60

Atomic Number

1 ) 18
. H Increases 13 14 15 16 17 ¢
B|C . O|F

/Q lell;ectron lost /f;\ i s lonization Energy ne :
| O - KO\ ] 4567ii101112
S oo e
Li™

N4 &l

’ T1| Pb . Po| At
Uut Uuq. Uuh

Dy|Ho| Er |[Tm

Increases

Li

Li atom with 3 electrons Li™ ion with only 2 electrons .......
Pr | Nd|Pm|Sm| Eu||Gd|Tb

Pa| U |Np|Pu |Am|Cm|Bk | Cf | Es Md




Electron affinity

E\ec\ronega\ivity

Electron Affinity
» Electron affinity is the amount of energy
absorbed when an electron is added to an
isolated gaseous atom to form an ion with
a -1 charge.

+ Electron affinity is a measure of an atom'’s
ability to form negative ions.

atom(g) + e+ EA — ion(g)
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lonization cross section — idea of experiment

A
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Mono energetic electrons

oV

.= 1, exp(- oNX)
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Electron impact ion source — ion source of mass spectrometer
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Electron impact ionization
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Figure 3. Cross Section of an Electron Impact Source
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Figure 4. lonization cross sections versus electron energy in helium,
from the different databases: BIAGI-vE.9 ( ), BIAGI-v7.1
(—), IST-LISBON { ), MORGAN (——). PHELPS ( ).




Standart definition cross section ¢ (in units,.... ~...cm=)

Total lonization Cross Section /nao2

Experimental results. Rare gases.
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lonization by electron impact

ionsfcm mbar
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a+ LU

IE

A

In case of atoms we have simple situation, the atom in the ground state and
the ground state of the ion. The ionization energy is defined as a difference
between this two states.

Adapted from lecture of prof. S. Matejéik



Energy

AlE
AE

2
>

Adapted from lecture of prof. S. Matejéik

In the molecules is the situation more difficult. We
have to work with potential curves or potential
energy surfaces and thus the IE depends on the
initial geometry of the molecules. For molecule
usually two ionization energies are given, vertical
|IE and adiabatic IE.

Adiabatic AIE is defined as the energy difference
between the energies of the ion and molecule in
Its ground states

The experiments are sensitive on the lowest energy
necessary to ionize molecule and this is called
appearance energy. This corresponds to the
lonization energy at low distances. As the geometry
changes in the molecule and the molecular ion are
only moderate, often is the AE very close to the
AlE.
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Adapted from lecture of prof. S. Matejgik

Experimental setup:

E=0-150eV
FWHM ~50-140 meV
le~20-100nA

The apparatus consist of TEM, MBS and QMS. The TEM is well known, the FWHM was about 140 meV and the le ~100 nA
MBS- effusive type, the molecules in the beam have translational, vibrational and rotational temperature identical to the
temperature of the MBS

The mass selected ions are registered as a function of the electron energy



Electron impact ionization

high T,

R

low Tg

v

E

The EII is characterised from point of view of the kinetics by the cross section

The cross section has a monotonic character with maximum at about 100 eV

The EII is endothermic reaction with a threshold, called appearance energy of the ions

In present experimet we have focused on the estimation of the threshold behaviour of the CS,
estimation of the AE

At elevated temperatures there are changes in the ion yield in the vicinity of the threshold

Adapted from lecture of prof. S. Matejéik



Another definition o_in units cm-? Mathematical Analysis

When these n electron move through a distance dX, they
produce another dn electrons due to collision. Therefore:

dn= o n dx ‘
dn A B
—=0dx d ;}g X
no T f """"""""" ol
Inn=o0x+ A4 C ‘
Now at x =0, n = n,. Theretore,
lnn0=A
Inn=o0x+In n,
In 1=0wc

n=n,e



Another definition a in units cm-?!

Experiments

L @ Kruithof 1940

o Golden 1961 ,
o Specht 1980

10’ T
E/N (Td)

Figure 8. Measured and calculated reduced ionization coefficients.
The solid lines are results from two-term Boltzmann calculations
and the solid symbols () are from the Monte Carlo calculations
using MAGBOLTZ (Biagi 2011). The colour code is BIAGI-v&.9
(——): BSR (——); HAYASHI (——); IST-LISBON (——):
MORGAN ( 1: PHELPS ( 1. PUECH { ). The
measurements are referenced in the text.

Figure 9. -

energy. calculated using a two-term Boltzmann solver. The inset
shows the average energy versus £/N, and the colour code is
BIAGI-v8.9 (——): BIAGI-v7.1 (- - - -): BSR ( ): HAYASHI
(——): IST-LISBON (——): MORGAN (——): PHELPS ( )
PUECH ( ).




Approximate computed curves showing |,
the percentage of electron energy going

to various actions at a given

X/p (V/em/mmHg)

Elastic: loss to elastic impact

Excitation: excitation of electron levels,

leading to light emission and metastable

states
lonization: ionization by direct impact

Kinetic: average kinetic energy
divided by their “temperature” -
Vibration: energy going to excitation of
vibrational levels

50

0]

100

50

0]

From CERN-CLAF, O.Ullaland

I \ /\ I Neon
- ‘. Kinetic |
0.1 1 10 1(I)O 1000
X/p
Add a sprinkling of argon
'l INe + 1% A
lonization
Ktk |
0.1 1 10 100 1000

CLAF 2005 Steinar Stapnes

X/p

L. B. Loeb, Basic Processes of Gaseous Electronics

23



lon source

2.3. Electron impact ionization

» The cross section for the impact ionization is by orders of magnitudes higher than the cross section for
the photo ionization.

» The cross section depends on the mass of the colliding particle. Since the energy transfer
of a heavy particle is lower, a proton needs for an identical ionization probability an ionization energy
three orders of magnitudes higher than an electron

10_—15 —

1017

T
E(eV)

ELGURE 4
‘Tonization cross sections as functions

of energy _for-ionizihg collis!on_s with fas_l electrons, prubul;ls,
and phototis. (From Winter, ¥, in E:;:'plerfntmté!lMc'l’hG:i's in H@y- l'q”. Physics, Springer-Verlag,




p + H, lonization Cross Section
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Cross sections for vibrational excitation, dissociation, ionization...H,

> H,(v) +e....... Vibrational excitation
2> H+H +e.......  Dissociation

2> H,”+hv+e... Photon excitation

>

9

Interaction enerey (0V)

Nuclear separation ()

Fia. 13.1. Potential energy curves for electronic states of H, and
Hy lying within 20 ¢V of the gronnd state.

Cross-section (¢

._
2
5

20 30 40 50
Electron energy (eV)

Fic. 13.37. Cross-sections assumed by Engelhardt and Phelps in their analysis of swarm

data in H; and D, for electrons of characteristic energy greater than 1eV. Q4 momentum-

transfer cross-section, @j, ionization cross-section, Qs dissociation cross-section, Quy

photon excitation cross-section, @y vibrational excitation cross-section ( H,,
———D,}.




Potential Energy Surface Description of the lonization of H,
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Detalls of interaction of electron with H, (1990)
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CROSS SECTIONS FOR ELECTRON COLLISIONS WITH HYDROGEM [
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F10. 1. Some important energy levels of molecular hydrogen and molecular ion (see Ref 5).

Cross Sections and Related Data for Electron Collisions with Hydrogen

Molecules and Molecular lons®

H. Tawara, Y. Itikawa,” H. Nishimura,® andM. Yoshino®

National Institute for Fusion Seience,” Nagoya 464-01, Japan

(Received July §, 1989; 1, 1989)

Digts are compiled and svaluated for colligion procesees of excitation, dissociation,
ionizati } i of hydrogen molecules and molecular ions

it and 1
(H ', H," ) by electron impact as well as for properties of their collision products,

Key words: electron impact; hydrog lecule; hydrogen
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FiG. 16. Cross sections of the production for total ion, molecular hydrogen ions, protons and double protons. Those of
praton production from H and H(2s) are also shown for comparison (see Ref. 125). Note that the short
curves, for proton production at lower energies, correspond to the processes via 2E, (near-zero energy
protons) and >, (repulsive state), respectively.
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lonization cross section He and N,

—— This work

- - - - Seltzer's model
Rudd's model (relativistic)
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New J. Phys. 11 (2009) 063047
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Cross sections for the interactions of 1 eVV-100 MeV electrons in
liquid water and application to Monte-Carlo simulation of HZE

BEB W. Hwang, Y.-K. Kim and M.E. Rudd, radiation tracks
J. Chem. Phys. 104, 2956 (1996).
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Life Is not so simple — Total ionization cross section

Electron Interactions with CF,

L. G. Christophorou,? J. K. Olthoff, and M. V. V. S. Rao
National Institute of Standards and Technology, Gaithersburg, Maryland 20899-0001

J. Phys. Chem. Ref. Data, Vol. 25, No. 5, 1996

Stephan (1985)
Poll (1992)
Nishimura (1991)
Bonham (1991)
Ma (1991)

Bruce (1992)
Bruce (1993)
Bonham (1994)
e Recommendaed
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Electron Energy (eV)

FiG. 17. Total ionization cross section a; ,(€) as a function of electron energy for CF, . Measured values: A, Ref, 43; A, Ref, 103; [, Ref. 69; O, Ref, 98:
+, Ref. 100; V. Ref. 104; ¥, data of Ref. 104 multiplied by 1.16 (per Bonham in Ref. 73); &, Ref. 106. Recorimended: —, average of A and ¥ (see Sec.
4.1 and Table 12).



lonization cross section,
Different channels have different cross sections and dependencies on energy

J. Phys. Chem. Ref. Data, Vol. 25, No. 5, 1996
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Fic. 17, Total ionization cross section a; (€) as a function of electron energy for CF,. Measured values: A, Ref, 43; A, Ref, [03; (J, Ref, 69; O, Ref, 98; y " Poll (1992)
+, Ref. 100, V, Ref. 104; ¥, data of Ref. 104 multiplied by 1.16 (per Bonham in Ref. 73); ¢, Ref. 106. Recorimended: —, average of A and ¥ (see Sec. o ;
Poll (1602) - reviged
4,1 and Table 12).
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Electron Energy (eV)

Electron Interactions with CF, Electron Energy (V)

L.G. Chrislophorou,a) J. K. Olthoff, and M. V. V. S. Rao Fic. 19. Partial fonization cross section for the production of (a) CFy , (b) CFy, (c) CF*, (d) C*, and () F* by electron collision on CF,. o, sl €):
National Institute of Standards and Technology, Gaithersburg, Maryland 20899-0001

O Ref. 43; A, Ref. 103; O. Ref. 98. 0 ial€): + , Ref. 100: V. Ref. 104; ¥, Ref. 73; A, revised data of Ref. 103 (see text), —, average of ¥ and
A (see Sec. 1.2 and Table 15).




Thomson’s formula

lonization if Ae>l
Formula of Rutherford for coulomb force
do=e*d®/4¢e? sin*(¢/2)..... o;= net/l . (e-1)/&

o;= 4nay’(ly/ €)? . (e-I)/1

Electron energy (eV) -> O— 4753.02(|H/ 8)2 : (S/I—l) = ffunction(a/I)

Gi:Z O-in sum of the various subshell contributions

Calculated ionization cross section of the P, state in Ne using the DM formalism. The full curves refer to the contributions from the various
subshells and have been labeled appropriately. The sum of the various subshell contributions has been labeled by the symbol6. Also shown is the
Born calculation of Ton-That and Flannery (broken curve, see text for details). The experimental data points (diamonds) are those of Johnston et
al . Two typical error bars (combined systematic and statistical uncertainty) are shown for the experimental data.




Near the threshold =» linear approximation
o= 4nay’(1/ €)% . (e-1)/1

> Gi= 47t6102(||_|/ 8)2 . (8/1_1) = 1tfun(:tion(g/I)

| =—0=lonisation Argon
lonisation Helium
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lonization cross section recent studies Ar - higher approximation

1254 Ar'fAr ] . 01eV  1eV - ] )
" cxperiment g T |E — Ionization energy

1007 7 roseseclen Ell —electron Impact lonization
% ] FWHM=120 meV z o mev f 06 mol
E 75 IE;IE=0.178 meV S oef
§ % e ] L IE of Ar is 15.759+-0.001eV
2 50+ sl SR
c A CP,) MR T T A S
o - \ Retarding potential (V) IE1 Of Ar+(2P1/2)

—— IE, of Art(2P,,)

—
15.5 16.0
Electron energy (eV)

IE, - IE, = 0.178eV

Figure 2. The ion yield curve Art/Ar as measured in the present experiment. The full curve is the
result of the fitting procedure, involving a convolution of the cross section (dotted curve; the arrows
indicating the thresholds for the two spin states) and an electron energy distribution function with
a width of 120 meV FWHM (for details see text).

The measurgd Ar* ion yield is fitted with a function / (U, p, s):
1(U, p, s)=0,(E p)-f(EU) dE +3s (6)

where s 1s the background signal below the ionization threshold and the cross section O, for
EII at the ionization threshold of Ar is assumed to have the form:
ow(E,p)= 0 for E < IE,(Ar)

A,(E -1E1)% for E>1E,and E < IE,

A,(E - IE1)? + A (E - IE2)® for E > IE,




lonization cross sections H, — details near the threshold

TABLE 13.6

Comparison of observed and caleculated energy separation of various
vibrational levels of Hy

Energy separations (eV)

Vibnl. levels 0-1 1-2 2-3 4-5 56
Calculated 0-269 0-254 238 0-208 0:192
Observed 0-272 0-263 0-233 0-21 0-20
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Fic. 13.21. Variation of the ionization cross-section of H, near the threshold 0-0 0-25 05 0-75
as observed by MeGowan, Fineman, Clarke, and Hanson, O experimental points.
The integrated photo-ionization cross-section observed by Dibeler, Reese, and
Krauss is shown for comparison, A experimental points, The estirnated con- a .. .. . .
\ribution from direct lonization fs 4l shown. Fi1¢. 13.19. Variation of the ionization cross-section of' H, near the threshold
as observed by Marmet and Kerwin.

Tlectron energy above threshold eV




lon source

2 6 Time Scale of Events 43

dissociative capture
resonance capture
fluorescence

ion pair production
autoionization
predissociation

parent ion
fragment ion
metastable ion

\"\ ¥ double ionization
| Coulomb explosion
' A* + B* + 3871 metastable ion

Fig. 2.10. Schematic time chart of possible electron ionization processes. Adapted from
Ref. [39] with permission. © Wiley & Sons. 1936.
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lonization cross section N, s

W. Hwang, Y.-K. Kim and M.E. Rudd, J. Chem. Phys. 104, 2956
(1996).




lonization cross section -acetylene C,H,
Product channels

Rel. Abundance

Pragmatic approach

HEIGHT OF POSITIVE ION PEAK

.
o

F1c. 6. Ionization efficiency curves for several ions from acetylene (493).




lonization cross section data from http://webbook.nist.gov

Rel. Abundance
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lonization - Ell of CH,

Determination of ionization energies (IEs)
for EII of CH, for the following reactions:
e+CH, ->CH",+2e

—-CH"; + H + 2¢

—-CH;+H +e

—-CH", + H, + 2¢

—-CH"+ H +H, + 2e

—-CH"+H +H,+e

—->C+ + 2H, + 2e.

ow(k, p)= 0
A, (E - 1E1)d!

A,(E - IE1)!" + A,(E - TE2)2

(1)
(2a)
(20)
€)
(4a)
(4D)
)

for £ < IE,(Ar)

for £ >1E,

for E>1E, and E < IE,

lon yield (arb. units)

— T —T
15.00 16.25

Electron energy (eV)

—
14.75

Figure A.1. lon yield curve for (H_}'. (H_*{ and (ZH}'}’( H, obtained through digitalization of the
data from [3]. Full curves present fits through these data. Arrows indicate the estimated 1Es derived
by the fitting procedure.
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Figure 5. lon vield curve for (_H*,' CH' and C*/CH4 as measured at 293 K. Full curves present
fits through the experimental data. Arrows indicate the IEs derived by the fitting procedure. Note
that for the case of CH' only IE» and IE; have been derived from the present data; 1E; has been
calculated from the known EA of H (see text).
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MUItlpIe lonization Multiple ionization of helium and krypton by electron impact
close to threshold: appearance energies and Wannier exponents

J. Phys. B: At. Mol. Opt. Phys. 35 (2002) 46854694
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Table 1. AE values in eV for the formation of He* and He®" ions in comparison with other
culated AE values.

c value 1] Redhead [45]  This work
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MUItlple lonization Multiple ionization of helium and krypton by electron impact

close to threshold: appearance energies and Wannier exponents

J. Phys. B: At. Mol. Opt. Phys. 35 (2002) 46854694
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Figure 2. Ion signal as a function of electron energy for the formation of Kr™* ions (n = 1-6) in
the near-threshold region. The measured data are shown as open circles, the fits are shown as solid
curves. The AEs, which are indicated, are the AEs for the individual data sets shown and may
differ from the AE values listed in table 2 which were obtained from a comprehensive analysis of
many individual data sets.
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lonization of clusters
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lonization of C60
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Distribution of carbon clusters produced under various experimental conditions.
a) Low helium density over graphite target at time of laser vaporization.
b) High helium density over graphite target at time of laser vaporization.
¢) Same as b), but with addition of "integration cup" to increase time between vaporization and cluster analysis.
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Electron-Impact Induced Fragmentation of Fullerene Ions

The measurements were performed employing the electron-ion crossed-beam setup. A commercially available powder of fullerenes was
evaporated with an electrically heated oven. The neutral vapor was introduced into a 10 GHz Electron Cyclotron Resonance lon Source (ECRIS).
The extracted ion beam was collimated to 2x2 mm? after mass to charge analysis and crossed with an intense electron beam. The energy of the
electrons can be varied between 10 and 1000 eV. After the electron-ion interaction the fragment ions Csg 9* were separated from the incident ion
beam of C,9* by a 90° magnet and detected by a single-particle detector. The flight time between the interaction of the C,9* ions and the
analysis of the product ions is in the order of 10 us. The current of the parent ion beam was measured simultaneously in a Faraday cup.

Binding energy value of about 11 eV FRAGMENTATION
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Electron-Impact Induced Ionization of Fullerene Ions

IONIZATION A semi-empirical concept for the calculation of electron-impac
ionization cross-sections of neutral and ionized fullerenes
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Cross sections for vibrational excitation, dissociation, 1onization...H,
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Figure 3. Optical excitation function for VUV photons measured with channeltron and
MgF, window (1120-1300 A); pressure 4 x 1077 bar: collection time 7 h; 4-9 meV/chan-
nel. Energy positions of known resonances are indicated. The dissociation energy for
Hi2p} = H(1s) is marked by an arrow.
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Fic. 13.37. Cross-sections assumed by Engelhardt and Phelps in their analysis of swarm
data in H; and D, for electrons of characteristic energy greater than 1eV. Q4 momentum-
transfer cross-section, @j, ionization cross-section, Qs dissociation cross-section, Quy

photon excitation cross-section, @y vibrational excitation cross-section (

H,,
———D,).




Cross sections for ionization...H
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photon excitation cross-section, @y vibrational excitation cross-section ( H,,
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Cross Beam 1on Source, calculations
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Cross Beam 1on Source
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High Resolution Mass Spectrum
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lon detector — Discrete dynode SEM
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Mass spectrum
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Fig. 4. Ionization rate coefficients for single ionization of oxygen atoms and ions from
the ground state by electron-impact in a tenuous plasma (Maxwellian distribution, no
lowering of ionization potential, no collision limit)




See You next week






