Interactions of electron with atoms and molecules  SVIUFP 2024 3B
Rotational and vibrational excitation
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Electron scattering cross-section on Ar
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FIGURE 3.16. Electron collision rate constants K,,. K., and K, versus T, in argon gas
(compiled by Vahedi, 1993).
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The thermal average rate constant

The thermal average reaction rate constant

The thermally averaged rate constant ¢, (7)) (in a.u.) is obtained

from the energy-dependerit cross-section o ( E) as
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. paC TS o e = eldLe -
The reaction rate coefficient o ("?rkT)-‘{; _________ | s

- ~different muhmlmml transitions v — v’ obtained using equation
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(4) are shown in Fig. 3 as solid lines.
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Higher temperatures favor products for an endothermic reaction
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For further discu,ésion, it is convenient to represent the cross-
section o(E,) in tl}é form
T
I2
where k is the wave vector of the incident electron, P(E,) is the
probability for vibrational (de-)excitation at collision energy E).

o(Eq) = — P(EY), (5)
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Figure 2. Depandence of the integral cross section for the reaction H;* + Hy+H;™ +H on the collision energy Er. In the meV and sub-meV anargy range, there
is good agreament batweaen two different merged beam results, Rafs. [34,41]. Note that Allmendinger et al*! scaled their relative cross sactions to the
absolute ones calculated by Sanz-Sanz et al.™ as described in the caption of figure 10 of Ref. [24]. Between thermal energies and 1 eV, most of the published
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on results fram the sixties and seventies, a steep decline has been predicted above 2 eV. In contrary, our results (yellow filled circles) do not show this trend,
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ara nearly identical and are represented here simply by the one black line.
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Interactions of electron UFP 2022 3B
Rotational and vibrational excitation

Rutherford atom Excitation energies
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Chapter 22: Reaction Dynamics

[J saddle point, the highest point on a potential energy surface encountered along the
reaction coordinate.
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Reaction coordinate
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Reaction Coordinate

“.....In chemistry, a reaction coordinate is an abstract
one-dimensional coordinate which represents progress
along a reaction pathway. It is usually a geometric
parameter that changes during the conversion of one
or more molecular entities. In molecular dynamics

A + H 9 9 C _I_ simulations, a reaction coordinate is called collective
2 cee *e0ee variable. .....”
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Accurate Time-Dependent Wave Packet Calculations for the
O* + H, - OH" + H lon—Molecule Reaction
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1 Phys. Chem. A 2015, 118, 11951-11962
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Figure 1. Minimum energy path for the O* + H, — OH" + H reaction
calculated on the MMG PES'” as a function of ry, — rou. () Collinear
configuration, OHH angle @ = 180°. The dashed horizontal lines
indicate the energy of the initial H, v=0and v = 1, and final OH" +' =
0,v' =1, and v' = 2 vibrational states. (b) Perpendicular configuration
OHH angle a = 90°.
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Figure 9. Thermal rate constants for the O* + H, reaction. Blue solid
line: TDWP. Solid circle: experimental result from ref 7. Black dashed
line: Langevin model. Red dashed line: AQO model.
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Figure 8. Top: total reaction cross section as a function of collision
energy for the O"+H,(v=0,j) reactions. Solid black line: j = 0. Red
dashed line: j = 1. Blue short-dashed line: j = 2. Solid drcles: experi-
mental results from ref 7. Bottom: Total reaction cross section as a
function of collision energy for the O* + Hy(1v=0,(j}) reaction averaged
over the thermal rotational population at 300 K. Black solid line:
TDWP. Solid circles: experimental results from ref 7. Green dashed
line: Langevin model, 5,(E_) =AE V% A = 16 A eV,

Reaction Coordinate Diagrams

“ We can follow the progress of a reaction on its way from reactants to
products by graphing the energy of the species versus the reaction coordinate. We
will be vague in describing the reaction coordinate because its definition is a mess
of other variables composed to best make sense of the progress of the reaction. The
value of the reaction coordinate is between zero and one. Understanding the
meaning of the reaction coordinate is not important, just know that small values of
reaction coordinate (0-0.2) mean little reaction has taken place and large values
(0.8-1.0) mean that the reaction is almost over. It is a kind of scale of the progress
of a reaction. A typical reaction coordinate diagram for a mechanism with a single
step is shown below: “




Dynamics studies of O 4 D; reaction using the time-dependent wave packet

Ziliang Zhu®®, Li Li®, Qiju Li® and Bing Teng?

2College of Physics, Qing dao University, Qing dao, People’s Republic of China; ®Shandong Peninsula Engineering Research Center of
Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, People’s Republic of China

method

ABSTRACT ARTICLE HISTORY

Based on the potential energy surface (PES) reported by Li et al. (Phys. Chem. Chem. Phys. 20, 1039 Received 15 November 2018

(2018)), the initial state dynamics calculation of O* + D; (v = 0,j = 0) reaction was con_ducted usi_ng Accepted 7 May 2019
KEYWORDS

Reaction probability;

the time-dependent wave packet method with a second order split operator. Dynamics properties
Ot + D, reaction; integral

such as reaction probability, integral cross section, differential cross section, and distribution of prod-
ucts were calculated and compared with available experimental and theoretical results. The present

integral cross section values were in good agreement with experimental results. In addition, the cross section;
differential cross section indicates that the mechanism of the complex-formation reaction plays a time-dependent wave
packet

dominant role during the reaction.
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A new potential energy surface of the OH,"*
system and state-to-state quantum dynamics
studies of the O* + H, reactiont
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Henri Louis Le
Chatelier rz
(1850-1936)

3
/
I

Princip akce a reakce

PFi ovliviovani rovnovahy se uplatfiuje princip akce
Karl Ferdinand a reakce aplikovany na chemické déje, znamy pod
Braun iz nazvem Le Chateliertiv-Braunuv princip:

(1850-1918)

Poruseni rovnovahy vnéjsim zasahem (akci) vyvold
déj (reakci) ktery sméruje ke zrusSeni ucinku
vnéjsiho zasahu (akce).



Born-Oppenheimer approximation

Franck — Condon factor

N 2
Pit ~ <Winitial. Vinal™

proportional

James Franck
1882-1964
1925 Nobel prize

Franck-Condon principle

The probability (or amplitude) of a simultaheous
electronic and vibrational transition to a new
“vibronic” state depends on the overlap between
the wavefunctions of the ground and excited
states.

or:

Electrons move much faster than nuclei. For an
electronic excitation to occur, the nucleic
configuration should be optimal (the same).




Transitions between molecular
potential energy surfaces

. . " Excited State
During an electronic transition

the complex absorbs energy [

/ }molecular rotations
lower energy
microwave radiation

electrons change orbital 3

the complex changes energy state

electron transitions

higher energy <

visible and UV radiation Ground State

Electron: 1eV > v=5.9x107cm st
t~a,/v ~10-8/ 5.9x107=2x10"16s

Timescale : 2101 sec

medium energy
IR radiation

Timescale of geometry changes \
(vibrations): =10-1% sec

As aresult, observe vertical (Franck-Condon) transitions

} molecular vibrations

In other words, we assume that we only have to consider the electronic
portion of the ground- and excited-state wavefunctions to understand
these transitions: Born-Oppenheimer approximation




The Born-Oppenheimer Approximation

The Born Oppenheimer Approximation assumes that electrons in a molecule
move much faster than the nuclei, and adapt instantaneously, finding the
lowest potential energy for each nuclear configuration. Therefore, it is

possible to calculate an electronic energy for each nuclear configuration,
considering the nuclei frozen.

Timescale : 2101° sec

Timescale of geometry changes
(vibrations): =102 sec

HE(X?E3)




Condon approximation or Franck-Condon principle.

In the Condon approximation:

~ 2
/tI!}HpIJ;drdQ: Th(Q =0)S.,. P <Winitial. \Vfinal>

with

Franck — Condon factor

S s, and ifs square are Franck-Condon overlap~integral
and Frohck-Condon factor, respectively (see also [2]).

I(w)

The spectrrfollows immediately:

[(wph) ~ Tr(Q = 0)P X 1 8,1, P6(Ey — B — Ty,

The relative intensities are determined only through vi-
brational wave functions, electronic wave functions play
almost no role.

Principle of vertical transitions !




Absorption or emission of a photon

Collision with electron

The Franck—Condon principle is a rule in spectroscopy and quantum chemistry that
explains the intensity of vibronic transitions. Vibronic transitions are the simultaneous
changes in electronic and vibrational energy levels of a molecule due to the absorption
or emission of a photon of the appropriate energy. The principle states that during an
electronic transition, a change from one vibrational energy level to another will be
more likely to happen if the two vibrational wave functions overlap more significantly.



https://en.wikipedia.org/wiki/James_Franck
https://en.wikipedia.org/wiki/Edward_Condon
https://en.wikipedia.org/wiki/Spectroscopy
https://en.wikipedia.org/wiki/Quantum_chemistry
https://en.wikipedia.org/wiki/Vibronic_transition
https://en.wikipedia.org/wiki/Photon
https://en.wikipedia.org/wiki/Electronic_transition
https://en.wikipedia.org/wiki/Quantum_vibration
https://en.wikipedia.org/wiki/Energy_level
https://en.wikipedia.org/wiki/Wave_functions
https://en.wikipedia.org/wiki/Photon

The absorption or emission of a photon

Energy

absorption
emission

Nuclear Coordinates

Franck—Condon principle energy diagram. Since
electronic transitions are very fast compared with
nuclear motions, vibrational levels are favoured
when they correspond to a minimal change in the
nuclear coordinates. The potential wells are shown
favouring transitions betweenv=0and v = 2.

0—>2 2¢-0

Fluorescence Absorption

5¢0

Energy

Schematic representation of the absorption and
fluorescence spectra corresponding to the energy
diagram in Figure 1. The symmetry is due to the
equal shape of the ground and excited state
potential wells. The narrow lines can usually only
be observed in the spectra of dilute gases. The
darker curves represent the inhomogeneous
broadening of the same transitions as occurs in
liquids and solids. Electronic transitions between
the lowest vibrational levels of the electronic
states (the 00 transition) have the same energy in
both absorption and fluorescence
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Fig. 3 Photoelectron spectrum of the ionization of H,




Franck-Condon Principle

Ahsorption of light and promaotion of an electron from

one state to another happens

hort time it takes for the electronic
s little or no geometry change in the

FRANCK-CONDON PRINCIPLE

mntermuclear
distance, &




Franck-Condon Principle
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Franck-Condon principle - FOTOIONIZATION

MO diagram for the three highest occupied MOs in CO accessible by Hel radiation. PES of CO obtained by Hel
radiation and potential energy curves for the neutral molecule and the three ionized states.
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(4.5.1 Dynamics of electronically excited states)

& A molecule which is electronically excited badiation can undergo a

range of dynamical processes:

“\1‘AB‘»"

a) Laser-induced fluorescence

b) Excitation to the repulsive wall of a bound state, leading to direct dissociation

c) Excitation of a repulsive state, leading to direct dissociation

d) Excitation to a bound state and dissociation by coupling to a repulsive state

e) Excitation to a bound state and dissociation by tunneling through a barrier

f) Excitation to a bound state and dissociation by internal conversion to the
dissociation continuum of the ground state

Processes d)-f) are referred to as predissociation.



Details of interaction of electron with molecules

Details of interaction of electron with H,



Potential Energy Surface Description of the
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