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PLASMA

Simple definition:
a quasi-neutral gas of charged particles showing collective behaviour.

Quasi-neutrality: number densities of electrons, n,, and ions, n; , with charge state Z are locally

balanced: n,= Zn,

Collective behaviour: long range of Coulomb potential (1/r ) leads to nonlocal influence of

disturbances in equilibrium.

Macroscopic fields usually dominate over microscopic
fluctuations, e.g.:

p=e(Zn —ng) = V.E = p/eg

Plasma Shielding



Debye Sh |e|d | ng For equal ion and electron temperatures (T, = T;), we have:

1 . 1 3
Emevg — Em,—v,-g — EHETE (2)

Therefore,

. 1."'I 2 " 1_."r2
Vi _ (E) _ ( Me ) 1 (hydrogen, Z=A=1)

Ve \ Mj, Amy) 43

What is the potential ¢(r) of an ion (or positively charged
sphere) immersed in a plasma?

lons are almost stationary on electron timescale!
To a good approximation, we can often write:

n —~ n[l,

where the material (eg gas) number density, np = Napm/A.

M,/m,~1836



Debye Length

Debye length = range of influence, e.g., for single electron

Ve =
P
-




Debye Length

In neighborhood of an electron there is deficit of other
electrons, suplus of positive ions
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The effect of potential — perturbing charge in a plasma are generally much
shorter- range than in vacuum because the charges in plasma tend to
distribute themselves so as to shield the plasma from the electric field the
perturbing charge generates.

The effect can be deduced readily from Poisson’s equation by assuming, for
example, that ions do not move but that electrons adopt a thermal equilibrium
distribution in which electron distribution is determined by the Boltzmann

factor: ne — noo exp(eV/k];)

unperturbed

n,, is electron density far from the perturbing charge where potential V is
taker as a zero. Poisson’s equation is:

---------------------------------------------------------------------------------------------------

If we suppose that eV<<kT, exponential term can be expressed by 1+eV/ kT,
and we obtain:
—e _—eV e el ¥V

VY = — — . 2 1/2
Eo nw[ kT | & o kTe ﬂ% ;]“D — (80kTe /e noo)

Linear approximation just to understand problem, signs are roughly OK




n,=n,exp(eV /kT,) vy =—L_"¢ (n,—n,) = _—enoo[l—exp(i)]
& & & kT,
eV<<KT,, exponential can be _ _
approximated by linear term=> ViV = —enoo[ eV] - ev_V

n, =—
& kT, & kT, A,

e

A =(g,kT. /e’n,)"”

VWV =— |

In one dimension the solution indicates exponential decrease of potential
=>» perturbing effect of a charge will tend to penetrate into the plasma only
to the distance of the order of the Debye length A,

Linear approximation just to understand problem




n,=n,exp(eV /kT)) i
V=2 = V ~expt —
eV<<KT, AD

3

=69,/—, TINnK,ninm

For laboratory plasma with T,=1eV and n,=10"cm= =»  A,=23um

n,=10%cm=3 =» “distance” between particles ~ 2um;

For plasma with T,=0.001eV (~10K) and n,=10%cm= = A =0.7um
n,=10%cm=3 =» “distance” between particles ~ 2um;

For plasma with T,=0.001eV (~10K) and n,.=10’cm= =»  A,=74pum



Potential of a Uniform Sphere of Charge

o OV 1a~ 1 9V 29V cotBdV —p
VV= + s+t———+— =

a- r* 90°  r’sin"80¢° ror r* d0 g,
vV 29V _ =P
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DGJ/Q S '"\jldlnfr /] (not in SI!)

In spherical symmetry Poisson’s equation gives (not in SI!):

1 d° 4re’n,, A B
;E tVr} = kT V(r) @V = 7exp(—7”/ﬁDX) + 7exp(7’//1DX)
=(kT./ 4me’n)"”

Applying the boundary condition that as r tends to infinity VV must tend to zero gives B=0,
V must tend to e/r as r tend to zero =>»

= < xp(—=r/A,y)

r

(not in SI):

=(g,kT. /e’n,)"”
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The solution indicates exponential decrease of potential
=>» perturbing effect of a charge will tend to penetrate into the plasma only
to the distance of the order of the Debay length Ay




Aoy = (KT, /47e°n )7

(n, A, 4/37)3e” | Ay, =KT, \
AN (€21 45, ) = Ne(e/ Ay, ) ~

Neg =~ potencial energy = KT,

N — number of particles in debye sphere




Al e Stinéni v plazmé

e Ustanoveni debyovského
stinéni

Vypocet:

o(r) = (Z;elAney)/r . |, = 69\/f - TinK,ninm™
n

o.(v) = 2n/ b db at 1000K, n=4.8x10*m-3= 4.8x10° cm-3
;=1 mm =0.001m

at 10K, n=1x101%m-3= 1x104 cm3

|,~2 mm ~ 0.002m



Dalsi kroky

Te(eV)

m, electron Debye length.
Nne(m—3)

I'/q
4nA3, -
| Debye

""" shielding

br;.!:'ﬂ n T = |X _ Kf‘

Figure 1.1: Potential ¢; around a test particle of charge ¢; in a plasma and
Coulomb potential ¢cou, both as a function of radial distance from the test
particle. The shaded region represents the Debye shielding effect. The charac-
teristic distances are: Ap, Debye shielding distance: -n.e_lfg, mean electron sep-
aration distance; bSl. = ¢2/({4meo}T), classical distance of “closest approach”
where the e¢/T << 1 approximation breaks down.



