
Reversible computation

Each classical algorithm is Boolean function

{0, 1}n → {0, 1},

which assigns each input the output value. If the output is longer (which it usually
is), the algorithm is

The complexity of the algorithm, when viewed as a Boolean function, corresponds
to the size of the smallest Boolean circuit that computes the function. The circuit
can consist of several simple, usually one- or two-value gates. The construction of
the circuit is thus a kind of decomposition of a Boolean function into some suitable
set of simple functions.

On a similar basis, it is possible to talk about the complexity of quantum algori-
thms: we decompose the relevant unitary transformation into simple transformati-
ons and ask about the size of the decomposition, i.e. the number of gates used.

To do this, it is necessary to choose a suitable set of basic operators that we can
use in the decomposition and with which any operator can be constructed. Such a
set is called a universal set of gates.

In the classical case, the AND, OR and NOT functions, which are the Boolean
operators ∧, ∨ and , form a natural universal set of gates. Any function can be
straightforwardly decomposed into it using, for example, the disjunctive normal
form of the function f :

f(x1, x2, . . . , xn) =
∨

f(z)=1

(y1 ∧ y2 ∧ · · · ∧ yn) ,

where z = (z1, z2, . . . , zn) runs through {0, 1}n and

yi =

 xi, pokud zi = 1,

xi, pokud zi = 0.

However, there are also several gates that are universal in themselves, such as
NAND:

NAND
a

b
a · b

Universality of NAND follows from rules a = NAND(a, a) and a∨ b = NAND(a, b).
If we expect quantum circuits to be more powerful than classical ones, we should

at least be able to implement quantum classical algorithms. To do this, it would be
enough to implement a NAND quantum circuit. However, this is not immediately
possible, because all quantum operators are reversible, while NAND is not.

This opens the issue of reversible calculation of a Boolean functions. A universal
reversible function must be at least three-bit. Such a universal function is, for
example, the Toffoli function defined as

T : (a, b, c) 7→ (a, b, c⊕ ab),

where the binary multiplication corresponds to AND and the binary addition ⊕
corresponds to the logical gate XOR, that is the “exclusive or”. The Toffoli function
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is reversible, and it an its own inverse. We will depict the corresponding gate as

T

a

b

c

a

b

c⊕ ab

the operator NAND is obtained using the Toffoli gate as follows:

T

a

b

1

a

b

NAND(a, b)

For quantum computing, it is important that we can copy input basis states:

T

a

1

0

a

1

a

Note that this only copies the basis states. For the general state |ϕ〉 = α|0〉+ β|1〉
we get

T |ϕ〉|1〉|0〉 = α · T |010〉+ β · T |110〉 = α|010〉+ β|111〉,
which is an entangled state, certainly not equal to |ϕ〉|1〉|ϕ〉. (The “non-cloning
theorem” shows that the general state can not be copied.)

It can be seen from the figures that calculations composed of Toffoli gates will
need auxiliary bits in addition to the input. We have also seen that the auxiliary
bits are intertwined with the input bits, which is undesirable because we have to
take them into account, for example, when estimating the measurement result. The
quantum calculation of the Boolean function f should correspond to the form we
saw in the Deutsch-Jozsa algorithm. It should consist of an input register |x〉, which
is not changed by calculation, an auxiliary register |p〉, which also does not change,
and an output qubit |y〉, to which the value f(x) is added. Schematically:

Uf

|x〉
|p〉
|y〉

|x〉
|p〉
|y ⊕ f(x)〉

where the auxiliary register is naturally omitted from the picture. We will realize
the result of the operation by the following circuit

x x

y y ⊕ x
⊕
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which is called CNOT, or controlled negation, because it is actually an instruction:
if x, negate y.

The desired form of calculation can now be achieved by the following steps:
• reversible quantum calculation of the function f (e.g. using Toffoli gates)

in the input and auxiliary registers;
• adding the result to the output qubit using the CNOT function;
• reversed calculation in the input and auxiliary register leading to the ori-

ginal states.
The procedure is illustrated by the following scheme calculating the function a ∨ b
= (a ∧ b).

a ∨ b
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y y ⊕ (a ∨ b)
⊕
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