
Postulates of quantum mechanics

Postulate 1. Associated to any isolated physical system is a unitary space known as the
state space of the system. The system is completely described by its state
vector, which is a unit vector in the system’s state space.

Two vectors which differ just by a factor eiϕ, referred to as the global phase, are
experimentally indistinguishable. In this sense, states are one dimensional spaces
represented by a class of vectors of length one.

The natural basis of quantum informatics is a quantum system with two basis
states, which are analogous to 0 and 1 used in classical information theory. Such a
system is therefore called qubit and its basis states are denoted |0〉and |1〉. Taking
into account the projective equivalence, the qubit is mathematically the complex
projective line P1(C). But we will more often denote it as H2 (thus ignoring the
phase equivalence of states).

Postulate 2. The time evolution of the isolated quantum system |u(t)〉 is given by diffe-
rential equation

i~
∂

∂t
|u(t)〉 = H|u(t)〉,

where ~ ∈ R is the so-called reduced Planck constant andH is an Hermitian
operator, called the Hamiltonian of the system.

This equation is called Schrödinger’s equation. The physical significance of the
Planck constant is the ratio between the energy and frequency of a photon. Since it
is a real number, it is possible to omit it from the equation (and consider the Ha-
miltonian divided by this constant). Since Hamiltonian is Hermitian, Schrödinger’s
equation has a simple form for its eigenvectors (we omit the Planck constant)

∂

∂t
|u(t)〉 = −ir|u(t)〉,

where r ∈ R is the eigenvalue of the operator H. Assuming that the Hamiltonian
does not change over time, it is easy to find a solution for the eigenvector |u(t)〉

|u(t)〉 = e−irt|u(t0)〉.

Using our convention about functions of operators, we get a notation for the general
vector |v〉

|v(t)〉 = e−iHt|v(t0)〉.
It is easy to see that the operator e−iHt has eigenvalues of size one (namely e−irt),
and is therefore unitary.

Because in quantum computers we want to perform precisely defined discrete
operations on the input (on the input qubites), we can reformulate the second
postulate in discrete form as follows:

Postulate 2’. The quantum state of an isolated quantum system |ϕ〉 changes during a
time interval ∆t to the state U |ϕ〉, where U is a unitary operator.

Postulate 3. A measurement is given by a Hermitian operator M , called observable. Let

M =
∑
i

miPi

be the spectral decomposition of M (i.e, mi are the eigenvalues of M and
Pi projections on the eigenspace corresponding to the eigenvalue mi).
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– The result of the measurement is one of the numbers mi (which is real
because the operator is Hermitian).

– The probability that the result of measuring the state |ϕ〉 will be miis
equal to 〈ϕ|Pi|ϕ〉.

– If the result of the state measurement |ϕ〉 is equal to mi, the system
immediately after the measurement is in the state

Pi|ϕ〉√
〈ϕ|Pi|ϕ〉

(we say the system collapses into this state).
This postulate describes the so-called projective measurement and does not de-

scribe the phenomenon of quantum measurement in general. For our purposes,
however, this will be enough, moreover, it is true that each measurement can be
converted to projective measurements with certain modifications. In the so-called
non-degenerate case, the number of different eigenvalues is equal to the dimension
of the system (there are no multiple eigenvalues) and all the mentioned subspaces
are one-dimensional. Degenerate measurement is therefore characterized by the fact
that the number of possible results is smaller than the dimension of the system, i.e.
smaller than the measurement of other quantities. Note that we the dimension of
the system is the maximum number of possible measurement results.

Note that the measurement is given by a set of projection operators Pi. Which
one of them will be used is a random phenomenon determining the measurement
result. The probability that the operator Pi will be used is given by the square of
the size of the projection result, i.e. the square of the norm of the vector Pi|ϕ〉. This
is equal to 〈ϕ|P †i Pi|ϕ〉, which is equal to 〈ϕ|Pi|ϕ〉 since the projection is Hermitian
and idempotent. Since |ϕ〉 =

∑
i Pi|ϕ〉 holds, the sum of all probabilities is equal

to one for a unit vector.
The result of the projection is standardized in the above formula by the square

root of the probability of the result. Note that the normalization factor |ϕ〉 depends
on the vector and causes the measurement to be a nonlinear mapping.

Each measurement captures some property of the system. The Hamiltonian,
which occurs in the Schrödinger equation, for example, corresponds to the so-called
total energy of the system (the time evolution of the system is therefore determined
by this quantity).

Since the observable is Hermitian, it has an orthonormal basis of eigenvectors
|bi〉. The projection on subspace Pi is then equal to

Pi =
∑
j

|bj〉〈bj |,

where we sum over all base vectors with eigenvalue mi.
Writing the observable as one operator (i.e. not, for example, as a set of pro-

jections) enables, among other things, fast calculation of the mean value of the
observable M on a specific state |ϕ〉 as

E(M) =
∑
i

mip(mi) =
∑
i

mi〈ϕ|bi〉〈bi|ϕ〉 = 〈ϕ|(
∑
i

mi|bi〉〈bi|)|ϕ〉 = 〈ϕ|M |ϕ〉.

Postulate 4. Let U and V be quantum systems. Then a system composed of U and V
is described by the tensor product U ⊗ V . If the system U is in the state
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|u〉 and the system V is in the state |v〉, then the state of the compound
system is equal to |u〉 ⊗ |v〉.
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