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ABSTRACT
This paper is a contribution to the study of two distinct kinds of logics for modelling uncertainty. Both approaches use log-
ics with a two-layered modal syntax, but while one employs classical logic on both levels R. Fagin, J.Y. Halpern, N. Megiddo,
A logic for reasoning about probabilities, Inf. Comput. 87 (1990), 78–128, and infinitely-many multimodal operators, the other
involves a suitable system of fuzzy logic in the upper layer and only one monadic modality P. Hájek, L. Godo, F. Esteva, Fuzzy
logic and probability, in Proceedings of the 11th Annual Conference on Uncertainty in Artificial Intelligence (UAI ’95), 1995,
pp. 237–244. We take two prominent examples of the former approach, the probability logics Prlin and Prpol (whose modal
operators correspond to all possible linear/polynomial inequalities with integer coefficients), and three logics of the latter
approach: PrŁ, PrŁ△ and PrPŁ△ (given by theŁukasiewicz logic and its expansions by the Baaz–Monteiro projection connective
△ and also by the product conjunction). We describe the relation between the two approaches by giving faithful translations of
Prlin and Prpol into, respectively, Pr

Ł△ and PrPŁ△ , and vice versa.We also contribute to the proof theory of two-layeredmodal
logics of uncertainty by introducing a hypersequent calculusHPrŁ for the logic PrŁ. Using this formalism, we obtain a transla-
tion of Prlin into the logic PrŁ, seen as a logic on hypersequents of relations, and give an alternative proof of the axiomatization
of Prlin.

© 2020 The Authors. Published by Atlantis Press B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Numerous logical systems have been proposed, and intensively
studied in recent years, to cope with reasoning about uncertain
events. Among them, two of the most prominent examples are the
systems introduced by Fagin, Halpern, and Megiddo [11] (see also
Halpern’s monograph [15]), which we denote here as Prlin and
Prpol. These systems employ a rather sophisticated two-layered
modal syntax: They start, in a first layer, by expressing classical
events (i.e., propositions that can only be true or false) by means
of the syntax of propositional classical logic; then, they define the
atomic statements of the second syntactical layer as linear inequal-
ities (in the case of Prlin), or polynomial inequalities (in the case
of Prpol), of probabilities of these classical events. Each of these
inequalities can be seen as the application of a multimodal operator

*Corresponding author. Email: paolo.baldi@unimi.it
This paper is an extended and revised version of the conference communication [1] Besides
improving the notation and streamlining the presentation of our original results, in this
paper: (1) we provide inverse translations from fuzzy to classical probability logics (Theo-
rems 2 and 4), (2) we give a hypersequent calculus of relations that axiomatizesŁukasiewicz
logic in a strong sense (Theorem 5), (3) we axiomatize the probability logic based on
Łukasiewicz logic with a hypersequent calculus of relations (Theorem 8), (4) using this
result, we obtain simpler proofs of additional translations between fuzzy and classical prob-
ability logics (Theorem 10 and Corollary 11) and, finally, (5) we give an alternative proof
of axiomatization of one of the prominent classical probability logics (Theorem 13).

on classical formulas. Finally, such atomic statements may be com-
bined using classical connectives again.

The consequence relation of both logics Prlin and Prpol is then
introduced semantically by means of Kripke frames enriched by
a probability measure, which allows for expressing the validity
of statements of these logics: in the atomic case, as the truth
of inequalities involving the probability of events, i.e., of sets of
worlds described by classical formulas, and, in the case of complex
formulas, by using the usual semantics of classical logic.

Despite dealing with the intrinsically graded notion of probabil-
ity, the semantics of these logics remains essentially bivalent. An
alternative approach to reasoning about uncertain events uses the
framework of mathematical fuzzy logic and takes sentences like
“𝜑 is probable” at face value, i.e., identifying its truth degree with
the probability of 𝜑. Then, one combines such formulas using con-
nectives of a suitable fuzzy logic. Hence, this approach also uses a
two-layered modal syntax which is, however, radically simplified.
Indeed, it employs only one monadic modality (for “is probable”),
instead of infinitely-many polyadic modalities, as it shifts the syn-
tactical complexity of the atomic statements to the many-valued
semantics of the fuzzy logic in question.

The original rendering of this approach [4,5] used Łukasiewicz
logic Ł to govern modal formulas. The resulting logic, which we
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denote here as PrŁ, was given by using Kripke frames enriched by a
probability measures, analogously to Prlin and Prpol. Later, several
authors studied numerous similar logical systems by altering not
only the upper logic but also the lower one (to speak about probabil-
ity of fuzzy events) and even their interlinking modalities (to speak
about other measures of uncertainty such as necessity, possibility,
or belief functions).1

In this paperwewill focus only on the logic PrŁ and twoof its expan-
sions, PrŁ△ and PrPŁ△ , which use stronger fuzzy logics to gov-
ern the behavior of modal formulas in the upper syntactical layer,
namely the logic Ł△ expanding Ł with the Baaz–Monteiro projec-
tion operator △, and its further expansion PŁ△ with the product
conjunction.2

A natural question presents itself: what is the relation between
the two approaches? More precisely: can Prlin and Prpol be trans-
lated into two-layered modal fuzzy logics and, hence, be casted
into a syntactically simpler framework without losing expressiv-
ity? This paper intends to give a positive answer to this question
while providing inverse translations as well, thus showing that both
approaches are indeedmuchmore closely related than itmight have
seemed at first sight.

The answer is, nonetheless, not as straightforward as one could
expect: We present translations of Prlin and Prpol into, respectively
the logics PrŁ△ and PrPŁ△ , and vice versa. The need for the prod-
uct conjunction of PrPŁ△ in the second case is hardly a surprise,
since we need to take care of products in the polynomial inequal-
ities of Prpol. However, the presence of the projection connective
△ in both cases may appear as an unexpected nuisance.

The effort toward amending this eyesore led to the second main
contribution of the paper:We show that the logic PrŁ can be axiom-
atized using a particular Gentzen-style calculus, denoted as HPrŁ,
which is an extension of a known calculus for Łukasiewicz logic.
Unlike classical Gentzen calculi, which work with sequents, in
our case we have to consider more complex syntactical structures,
known as hypersequents of relations. Interestingly enough, these
structures yield a rich framework that allows us to circumvent the
use of the projection connective△ and present the desired transla-
tion of Prlin into the logic PrŁ, seen as a logic on hypersequents of
relations. Although the calculus HPrŁ is not analytic, its existence
enhances the applicability of the logic PrŁ and deepens our theoretic
understanding of this logic; e.g., we can use it to obtain an alterna-
tive proof of the axiomatization of Prlin, which is arguably simpler
that the one known from the literature [12]. Therefore, the results
of this paper strengthen the overall prominence of PrŁ among log-
ics of uncertainty.

1We refer the reader to the survey work [12] (and references therein)
and to the abstract unifying framework for these logics [2].

2The logics of uncertainty introduced above are usually denoted using
different symbols in the literature. In particular, the classical ones (or
more precisely their axiomatic systems) Prlin and Prpol are denoted
by AXprob and AXprob,× in Halpern’s book [15] and, following the
notational conventions introduced inHájek’s book [13], the fuzzy ones
PrŁ, PrŁ△ , and PrPŁ△ are traditionally denoted as FP(Ł), FP(Ł△),
FP(PŁ), respectively. We have opted here for a uniform but neutral
terminology, for ease of reference through the paper.

The paper is organized as follows: First, in Section 2, we introduce
the syntax, the semantics, and axiomatizations for the logics under
investigation, in a reasonably self-contained yet streamlined man-
ner. Then, in Section 3, we present the mentioned translations of
Prlin and Prpol into, respectively the logics PrŁ△ and PrPŁ△ , and
vice versa. In Section 4 we introduce a hypersequent calculusHPrŁ
and prove that it axiomatizes the logic PrŁ. In Section 5 we pro-
vide a faithful translation of the logic Prlin into PrŁ (seen as a logic
of hypersequents of relations) and give an alternative proof of the
axiomatization of Prlin. Finally, in Section 6 we add some conclud-
ing remarks and hints at future research directions.

2. CLASSICAL AND FUZZY LOGICS OF
UNCERTAINTY

2.1. Propositional Core

In this paper, we need the following four propositional logics: (1)
classical logicCL cast in the language with the truth-constant⊥ and
implication →, (2) Łukasiewicz logic Ł in the same language, (3)
Ł△, the expansion of Ł in the language with the additional unary
connective△ known as Baaz–Monteiro projection, and, finally, (4)
PŁ△, the expansion of Ł△ with the additional binary connective
⊙ (called product conjunction). Next, we review some of the prop-
erties of these logics needed for the paper; we refer the reader to the
corresponding chapters of the Handbook of Mathematical Fuzzy
Logic [10] for more details and references.

We expect the reader to be familiar with the notion of formula (over
an arbitrary propositional language) and the notion of evaluation
in classical logic. In the case of Ł, Ł△, and PŁ△, (standard) evalua-
tions are functions from the corresponding set of formulas into the
real unit interval [0, 1], such that e(⊥) = 0 and

e(𝜑 → 𝜓) = min{1, 1 − e(𝜑) + e(𝜓)}

e(△𝜑) = {1 if e(𝜑) = 1
0 otherwise

e(𝜑 ⊙ 𝜓) = e(𝜑) ⋅ e(𝜓).

Let L be any of these four logics andΨ∪ {𝜑} a set of formulas in the
language of L. We say that 𝜑 is a semantical consequence of Ψ in L,
in symbols Ψ ⊨L 𝜑, if for each evaluation e such that e(𝜓) = 1 for
all 𝜓 ∈ Ψ, we have e(𝜑) = 1.
We also expect the reader to be familiar with the notion of deriv-
ability relation ⊢AX in a (finitary) Hilbert-style axiomatic system
AX ; we say that AX is an axiomatization of a logic L if for each
finite set Ψ ∪ {𝜑} of formulas, we have Ψ ⊨L 𝜑 iff Ψ ⊢AX 𝜑. It
is well known that there are numerous axiomatizations of classical
logic (where the equivalence holds even for infinite sets of premises)
and the three fuzzy logics considered here. We write ⊢L when an
axiomatization of a logic L is fixed or known from the context.

Let us conclude this subsection by recalling additional defin-
able connectives of Łukasiewicz logic together with their standard
semantics:
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¬𝜑 𝜑 → ⊥ 1 − x

𝜑 ∨ 𝜓 (𝜑 → 𝜓) → 𝜓 max{x, y}
𝜑 ∧ 𝜓 ¬(¬𝜑 ∨ ¬𝜓) min{x, y}
𝜑 ⊕ 𝜓 ¬𝜑 → 𝜓 min{1, x + y}
𝜑 ⊗ 𝜓 ¬(¬𝜑 ⊕ ¬𝜓) max{0, x + y − 1}
𝜑 ⊖ 𝜓 ¬(𝜑 → 𝜓) max{0, x − y}.

Whenever necessary to avoid confusions, we add “ Ł” as a subscript
to the connectives in order to distinguish them from the classical
ones.

2.2. Five Two-Layered Modal Languages

We start by recalling the language lin of the logic Prlin. It is a
two-layeredmodal language: first, in a lower layer, we have the non-
modal formulas which are simply those of classical propositional
logic. Then, we have basic inequality formulas of the form

n

∑
i=1

aiP(𝜑i) ⩾ c,

where𝜑is are nonmodal formulas and c and ai are constants for inte-
gers (in other works in the literature real numbers [15] or also ratio-
nals [3] are used). In the extreme case in which n = 0 or all ai’s are
0, we have the basic inequality formula 0 ⩾ c. The linear combina-
tion on the left-hand side of the inequality is called a basic inequality
term. The formulas of the upper layer of lin, called modal formu-
las, are then obtained from basic inequality formulas via the usual
connectives of classical logic. Obvious abbreviations apply; in par-
ticular, we use the following:

−∑n
i=1 aiP(𝜑i) for ∑n

i=1 −aiP(𝜑i)

P(𝜑) ⩾ P(𝜓) for P(𝜑) − P(𝜓) ⩾ 0

t ⩽ c for −t ⩾ −ct

t < c for ¬(t ⩾ c)

t = c for (t ⩾ c) ∧ (t ⩽ c)

The language pol is obtained by using again the language of clas-
sical logic for the lower layer, and allowing any polynomial basic
inequality terms in the upper layer, i.e., the basic inequality formu-
las of lin have the general form

n

∑
i=1

aiP(𝜑i,1)⋯ P(𝜑i,mi
) ⩾ c.

Complex formulas of the upper layer are built as in lin, combin-
ing basic inequality formulas by means of connectives of classical
logic. Note that in pol one can express fundamental probabilistic
notions, e.g., independence of events using formulas of the kind

P(𝜑 ∧ 𝜓) = P(𝜑) ⋅ P(𝜓).

Let us now turn our attention to the fuzzy approach toward logics
of probability. We introduce three languages, Ł

P , Ł△
P , and PŁ△

P ,
where, as before, the lower-layer formulas are those of classical

logic, but instead of basic inequality formulas combined by con-
nectives of classical logic, the modal formulas are built from sim-
ple atomic modal formulas of the form P(𝜑) (where 𝜑 is a classical
formula) using the connectives of the logic Ł, Ł△, or PŁ△, respec-
tively. For example, P(p → p) and P(⊥) are atomic modal formulas
in any of these two-layered modal languages, P(⊥) →Ł P(p → p) is
a nonatomic modal formula in any of them,△P(⊥) is a nonatomic
modal formula in Ł△

P and PŁ△
P , and △P(⊥) ⊙ P(p → p) is a

nonatomic modal formula in PŁ△
P . Observe that the two-layered

syntax does not admit iterative applications of the modal operator
(e.g., P(P(p) → P(q)) is a not a well-formed formula) nor combi-
nations of atomic modal formulas with nonmodal formulas in the
upper level (e.g., p⊙ P(q) is not a well-formed formula either).

Remark 1.Note that a basic inequality formula∑n
i=1 aiP(𝜑i) ⩾ c oflin can be seen as an atomic modal formula obtained by applying

an n-ary modality □a1,…,an,c, on n classical formulas 𝜑1, … , 𝜑n. In
this way, one can see lin as an instance of an abstract two-layered
modal language [2]. The same is true for pol, but here the set of
used modalities is even more complex. Thus, the five languages can
be summarized in the following table:

Language Lower l. Modalities Upper l.

lin CL { t ⩾ c ∶ t lin} CL
pol CL { t ⩾ c ∶ t poly} CL
ŁP CL {P} Ł

Ł△P CL {P} Ł△
PŁ△P CL {P} PŁ△

Convention 1. Henceforth, we will adopt the following notational
convention for distinguishing modal and nonmodal formulas in
each of the logics we consider.

Nonmodal Modal

Formulas 𝜑,𝜓,… 𝛾, 𝛿,…
(Multi)sets of formulas Φ,Ψ,… Γ,∆,…

Note that we will use the same symbols for sets and multisets of
formulas, relying on the context for resolving ambiguities.

2.3. One Semantics and Five Logics

The semantical picture for all five languages is based on Kripke
models enriched by (finitely additive) probability measures. A
(probabilistic) Kripke model is a triple M = ⟨W, ⟨ew⟩w∈W, 𝜇⟩,
where

• W is a nonempty set of worlds

• ews are classical propositional evaluations

• 𝜇 is a finitely additive measure over a Boolean subalgebra of the
powerset algebra of W such that
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𝜑M = {w ∶ ew(𝜑) = 1}

is a measurable set for any classical formula 𝜑

Clearly,M allows us to define the truth values of nonmodal formu-
las in each of its worlds. The assignment of truth values of modal
formulas depends on the language in question, but in all cases we
evaluate modal formulas only at the level of the whole model.

For basic inequality formulas of lin we define

||||
||||

n

∑
i=1

aiP(𝜑i) ⩾ c
||||
||||
M

= 1 iff
n

∑
i=1

ai𝜇
(
𝜑M
i
)
⩾ c.

The truth values of basic inequality formulas of pol are defined
analogously, and truth values of complex modal formulas in both
languages are then defined using the truth-functions of classical
connectives.

Recall that Ł
P , Ł△

P , and PŁ△
P share the same atomic modal for-

mulas; we define their truth values simply as

||P(𝜑)||M = 𝜇(𝜑M).

Then, clearly, we always have ||P(𝜑)||M ∈ [0, 1], and so we can
compute the truth values of more complex modal formulas using
truth functions for connectives of the corresponding logic. For
example ||P(p → p)||M = 1, because p → p is a tautology of clas-
sical logic, and ||P(⊥)||M = 0 because ⊥ is a contradiction. As for
nonatomic examples, one can easily compute ||P(⊥) →Ł P(p →
p)||M = 1, ||△ P(⊥)||M = ||△ P(⊥)⊙ P(p → p)||M = 0.
For each of the five languages we have introduced, we can define
the corresponding logic as the consequence relation on the set of
modal formulas given as preservation of the truth value 1 over all
Kripke models; for instance, we define Prlin as the following con-
sequence relation between sets of modal lin-formulas and modallin-formulas as

Γ ⊨Prlin 𝛿 iff ||𝛿||M = 1 for each Kripke model M

where ||𝛾||M = 1 for each 𝛾 ∈ Γ.

Analogously, we define the logics Prpol, PrŁ, PrŁ△ , and PrPŁ△ .

2.4. Axiomatizations

An axiomatization for Prlin proposed in the literature [11], which
we will denote here as AX Prlin , consists of: (1) any axiomatization
of classical logic for both modal and nonmodal formulas, (2) the
following three axioms and one rule,

(QU1) P(𝜑) ⩾ 0

(QU2) P(⊤) = 1

(QU3) P(𝜑 ∧ 𝜓) + P(𝜑 ∧ ¬𝜓) = P(𝜑)

(QUGEN) From 𝜑 ↔ 𝜓 infer P(𝜑) = P(𝜓)

and (3) the axioms to manipulate linear inequalities, meant to be
instantiated with any basic inequality formula ∑k

i=1 aiP(𝜑i) ⩾ c,
integers c′ and d′ < c and d > 0, and permutation 𝜎:

(LQ1) P(𝜑) ⩾ P(𝜑)

(LQ2)
k
∑
i=1

aiP(𝜑i) ⩾ c ↔
k
∑
i=1

aiP(𝜑i) + 0P(𝜑) ⩾ c

(LQ3)
k
∑
i=1

aiP(𝜑i) ⩾ c ↔
k
∑
i=1

a𝜍(i)P(𝜑𝜍(i)) ⩾ c

(LQ4)
k
∑
i=1

aiP(𝜑i) ⩾ c ∧
k
∑
i=i

biP(𝜑i) ⩾ c′ →

→
k
∑
i=1

(ai + bi)P(𝜑i) ⩾ c + c′

(LQ5)
k
∑
i=1

aiP(𝜑i) ⩾ c ↔
k
∑
i=1

daiP(𝜑i) ⩾ dc

(LQ6)
k
∑
i=1

aiP(𝜑i) ⩾ c ∨
k
∑
i=1

aiP(𝜑i) ⩽ c

(LQ7)
k
∑
i=1

aiP(𝜑i) ⩾ c →
k
∑
i=1

aiP(𝜑i) > d′

The proof that AX Prlin is indeed an axiomatization of Prlin relies
essentially on linear programming methods. The original paper
[11] also shows that the satisfiability problem for Prlin is NP-
complete. On the other hand, the same paper proves that the
satisfiability problem for Prpol is in PSPACE, and provides an
axiomatization for this logic, but only via a reduction to real closed
field theory. Another axiomatization of Prpol, in the languagepol
was found only later [18] and it includes an infinitary rule.

In contrast, the axiomatizations of PrŁ, PrŁ△ , and PrPŁ△ are much
simpler: [2,12,13] they use any axiomatization of classical logic
for nonmodal formulas, any axiomatization of Ł (or Ł△ or PŁ△,
respectively) for modal formulas and just three additional axioms
and one rule:

(A1) (P𝜑 ⊗ P(𝜑 → 𝜓)) →Ł P𝜓

(A2) P¬𝜑 ↔Ł ¬ŁP𝜑

(A3) P(𝜑 ∨ 𝜓) ↔Ł [(P𝜑 ⊖ P(𝜑 ∧ 𝜓))⊕ P𝜓]

(Nec) From 𝜑 infer P𝜑.

As in Prlin and Prpol, the satisfiability problems for PrŁ and PrPŁ△
are also known to be NP-complete and in PSPACE, respectively
[14].

3. TRANSLATING Prlin INTO Pr
Ł△ AND

Prpol INTO Pr
PŁ△

In this section, we show that the classical probability logic Prlin can
be faithfully translated into the two-layeredmodal fuzzy logic PrŁ△
and vice versa, and then we extend this result to obtain translations
between the logics Prpol and PrPŁ△ . Let us start by preparing two
useful notational conventions.
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First, for any formula 𝜑 of Ł, Ł△, or PŁ△ with (at most) n proposi-
tional variables p1, … , pn we denote by f𝜑 the function from [0, 1]n
to [0, 1] such that, for each evaluation e, we have

e(𝜑) = f𝜑(e(p1), … , e(pn)).

Second, for each function f ∶ Rn → R, we define the function f # ∶
[0, 1]n → [0, 1] as

f # = min{1,max{ f, 0}}.

Let us start by translating Prlin into PrŁ△ . Let t ⩾ c be a basic
inequality formula in lin, where t stands for ∑n

i=1 aiP(𝜑i), and
consider the linear polynomial with integer coefficients

f(x1, … , xn) =
n

∑
i=1

aixi − c + 1.

By the well-knownMcNaughton Theorem (see, e.g., its formulation
in Lemma 2.1.21 of chapter IX in the Handbook of Mathematical
Fuzzy Logic[8]) one can algorithmically build a formula𝜓 of Ł over
variables p1, … , pn, such that

f𝜓 = f#.

Let us denote by 𝜓(P(𝜑1), … , P(𝜑n)) the formula resulting from 𝜓
by replacing each variable pi in 𝜓 by P(𝜑i) and let us define

(t ⩾ c)• =△𝜓(P(𝜑1), … , P(𝜑n)).

Clearly, (t ⩾ c)• is a formula of Ł△
P . We can easily extend it to a

translation of all modal formulas fromlin by setting⊥• = ⊥Ł and
(𝛾 → 𝛿)• = 𝛾• →Ł 𝛿•. Let us denote as Γ• the set resulting from
applying the translation to each formula in Γ.
Theorem 1. Let Γ ∪ {𝛿} be a set of modal formulas of lin. Then,
Γ ⊨Prlin 𝛿 iff Γ• ⊨PrŁ△ 𝛿•.

Proof. It is easy to see that all we need to prove is that, for each
Kripke model M and each modal formula 𝛾 of lin, we have
||𝛾||M = 1 iff ||𝛾•||M = 1.
We prove the claim by induction over the complexity of 𝛾.
Assume that 𝛾 is a basic inequality formula ∑n

i=1 aiP(𝜑i) ⩾
c. Then, we can write the following sequence of equivalences:
||𝛾||M = 1 iff ∑n

i=1 ai𝜇(𝜑
M
i ) ⩾ c iff ∑n

i=1 ai||P(𝜑i)||M ⩾
c iff max{0,min{1,∑n

i=1 ai||P(𝜑i)||M − c + 1}} = 1 iff
f#(P(𝜑1), … , P(𝜑n)) = 1 iff f𝜓(P(𝜑1), … , P(𝜑n)) = 1 iff ||𝛾•||M = 1.
To prove the induction step, we only need to note that (1) for a basic
inequality formula 𝛾 we have that (thanks to the semantics of △)
||𝛾•||M < 1 implies ||𝛾•||M = 0 and (2) the Łukasiewicz implica-
tion behaves on values 0 and 1 as the classical one.

Now we will show a translation in the converse direction, from PrŁ
into Prlin. Consider any modal formula 𝛾 of PrŁ△ and the formula
̂𝛾 in the language of Ł△ resulting from 𝛾 by replacing each atomic

modal formula P(𝜑i) by a propositional variable pi. It is well known
[8] that

f�̂� = max
k∈K

min
j∈Jk

tk,j

where for each k ∈ K and j ∈ Jk, there is a linear function fk,j with
integer coefficients and

tk,j = f#k,j or tk,j = 1 −△(1 − f#k,j).

We define the translation 𝛾∘ of the formula 𝛾 as

𝛾∘ = ∨
k∈K

∧
j∈Jk

𝛾k,j

where for fk,j = ∑n
i=1 aixi + c, we have

𝛾k,j = {
∑n

i=1 aiP(𝜑i) ⩾ 1 − c if tk,j = f#k,j
∑n

i=1 aiP(𝜑i) < −c otherwise

As in the previous translation, for any set of modal formulas Γ of
PrŁ△ , we also let Γ∘ = {𝛾∘ ∣ 𝛾 ∈ Γ}.

Theorem 2. Let Γ ∪ {𝛿} be a set of modal formulas of Ł△
P . Then,

Γ ⊨PrŁ△ 𝛿 iff Γ∘ ⊨Prlin 𝛿
∘.

Proof. First note that, for each linear function f = ∑n
i=1 aixi + c

with integer coefficients and each Kripke model M, we have

• M satisfies∑n
i=1 aiP(𝜑i) ⩾ 1 − c iff

f#(||P(𝜑1)||M, … ||P(𝜑n)||M) = 1.

• M satisfies∑n
i=1 aiP(𝜑i) < −c iff

1 −△(1 − f#(||P(𝜑1)||M, … ||P(𝜑n)||M)) = 1.

Therefore, for each Kripke ModelM and each formula 𝛾 of PrŁ, we
have the following chain of equivalent statements which is clearly
all we need to prove the theorem:

• ||𝛾||M = 1
• f�̂�(||P(𝜑1)||M, … ||P(𝜑n)||M) = 1
• There is k ∈ K such that, for each j ∈ Jk, we have

tk,j(||P(𝜑1)||M, … , ||P(𝜑n)||M) = 1
• There is k ∈ K such that, for each j ∈ Jk, we have that 𝛾k,j is

satisfied in M

• The formula 𝛾∘ is satisfied in M

Now we extend the translation to Prpol and PrPŁ△ and show that
the classical probability logic Prpol can be faithfully translated into
the two-layered modal fuzzy logic PrPŁ△ and so, thanks to the
known simple and finitary axiomatization of PrPŁ△ , this transla-
tion provides us with an alternative indirect but simple and finitary
axiomatization of Prpol.

Let t ⩾ c be a basic inequality formula in pol of the form

n

∑
i=1

aiP(𝜑i,1)⋯ P(𝜑i,mi
) ⩾ c

As before, we consider the linear polynomial

f(x1, … , xn) =
n

∑
i=1

aixi − c + 1,
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and the corresponding formula 𝜓f of Ł over propositional variables
p1, … , pn, such that

e(𝜓f) = max{0,min{1, f(e(p1), … , e(pn))}}.

Let us denote as (t ⩾ c)• the formula resulting from△𝜓f by replac-
ing each propositional variable pi in 𝜓f by P(𝜑i,1)⊙ P(𝜑i,2)⊙⋯⊙
P(𝜑i,mi

). Clearly, (t ⩾ c)• is a formula of PrPŁ△ . We can easily
extend it to a translation of all modal formulas frompol by setting
⊥• = ⊥Ł and (𝛾 → 𝛿)• = 𝛾• →Ł 𝛿•. Let us denote as Γ• the set
resulting from applying the translation to each formula in Γ.
Theorem3. Let Γ∪{𝛿} be a set of formulas ofpol. Then, Γ ⊨Prpol 𝛿
iff Γ• ⊨PrPŁ△ 𝛿•.

Proof. Again, it is enough to show that, for each Kripke model M
and eachmodal formula 𝛾 ofpol, we have ||𝛾||M = 1 iff ||𝛾•||M =
1, which is proved in the same way as in Theorem 1.

To provide the inverse translation from PrPŁ△ into Prpol, we pro-
ceed analogously to the case of PrŁ△ into Prlin: we know [8] that
for formulas ̂𝛾 of PŁ△ we have an analogous description of f�̂�: the
only difference is that the functions fk,j can now be polynomial with
integer coefficients. Thus we have to change the definition of 𝛾k,j
accordingly; in particular for fk,j = ∑n

i=1 aixi,1 … xi,mi
+ c, we set

𝛾k,j =

{
∑n

i=1 aiP(𝜑i,1)⋯ P(𝜑i,mi
) ⩾ 1 − c if tk,j = f#k,j

∑n
i=1 aiP(𝜑i,1)⋯ P(𝜑i,mi

) < −c otherwise.

Having these new definitions, we can observe that the proof of
Theorem 2 also gives the fatihfulness of the final translation of this
section:

Theorem 4. Let Γ ∪ {𝛿} be a set of modal formulas of PŁ△
P . Then,

Γ ⊨PrŁ△ 𝛿 iff Γ∘ ⊨Prpol 𝛿
∘.

4. PROOF THEORY FOR Pr
Ł

This section is devoted to the proof theory of the two-layeredmodal
fuzzy logic PrŁ, seen as a logic on hypersequents instead of simple
formulas. In the first subsection, we will extend the known [16,17]
hypersequent calculus of relations HŁ for Łukasiewicz logic to a
system HŁres and show that it axiomatizes Łukasiewicz logic in a
stronger sense. In the second subsection, we will introduce another
hypersequent calculus of relations, HPrŁ, and (using a translation
into the calculusHŁres) show that it is an axiomatization of PrŁ.

Before delving into the details of the calculi, let us recall a few basic
notions concerningmultisets, that will repeatedly occur in the treat-
ment of sequents and hypersequents.

By a multiset over a set A we mean a function Γ from A to the set
ℕ of natural numbers. By℘M(A) we denote the set of all multisets
over A. The root set of a multiset Γ is the set

|Γ| = {a ∈ A ∣ Γ(a) > 0}.

If a ∈ |Γ|, we say that a is an element of Γ of multiplicity Γ(a). A
multiset Γ is finite if |Γ| is finite. The empty multiset, i.e., the con-
stant function 0, will be denoted by the same symbol∅ used for the

empty set—the context will always be sufficient to resolve ambigu-
ities. Given two multisets Γ and Δ, we define their multiset union
Γ ⊎ Δ as

(Γ ⊎ Δ)(a) = Γ(a) + Δ(a), for each a ∈ A.

As it is customary, we use square brackets for multiset abstraction;
so, e.g., [a, a, b, c] will denote the multiset Γ such that Γ(a) = 2,
Γ(b) = Γ(c) = 1, and Γ(d) = 0, for any d ∉ {a, b, c}. We will denote
as [a]n the multiset composed of n occurrences of a, and identify
[a]0 with∅.

4.1. A Strongly Complete Hypersequent
Calculus of Relations for Łukasiewicz
Logic

Let us start by recalling a proof-theoretic system for Łukasiewicz
logic introduced by Ciabattoni, Fermüller, andMetcalfe [17], which
we denote here asHŁ (see also themonograph byGabbay,Metcalfe,
and Olivetti [16]).

The basic building blocks of such calculi are sequents of relations,
i.e., syntactic objects of the kind Γ◃Δ where Γ and Δ are multisets
of formulas, and ◃ stands for either the symbol ⪯ or ≺.

A hypersequent of relations G is a finite multiset of sequents of rela-
tions, denoted as

Γ1◃1Δ1 ∣ … ∣ Γn◃nΔn

where each sequentΓi◃iΔi belonging to |G| is called a component of
the hypersequent. In the following we omit the “of relations” suffix;
as we do not work here with any other (hyper)sequents, there is no
risk of confusion.

We also adopt the following simplifying conventions: we identify a
sequent S with a hypersequent singleton [S] and, if on either side
of a sequent we have a multiset union of multisets of formulas, we
write simply a comma instead of ⊎ (let us stress that we do not use
this convention in other contexts, e.g., in the consequence relation
defined below, where we work with a set of hypersequents).

Let us define the semantics of hypersequents and the corresponding
consequence relation. We extend any evaluation e of formulas of
Łukasiewicz logic to multisets of formulas by setting e(∅) = 0 and

e([𝜑1, … , 𝜑n]) = ∑
i⩽n

(e(𝜑i) − 1).

Then, we say that e satisfies a hypersquentG if there is a component
Γ ⪯ Δ (or Γ ≺ Δ) of G such that e(Γ) ⩽ e(Δ) (resp. e(Γ) < e(Δ)).
Given hypersequents G,G1, … ,Gn, we denote as G1, … ,Gn ⊨Ł G
the fact that any evaluation e which satisfies G1, … ,Gn, satisfies G
as well.

Note that an evaluation e satisfies a formula 𝜑 iff it satisfies the
hypersequent∅ ⪯ 𝜑; indeed we have 0 = e(∅) ⩽ e([𝜑]) = e(𝜑)−1
iff 1 = e(𝜑). Therefore, the consequence relation just defined on
multisets actually contains the usual consequence relation on for-
mulas; indeed, for any set of formulas Ψ ∪ {𝜑} we have

Ψ ⊨Ł 𝜑 iff {∅ ⪯ 𝜓 ∣ 𝜓 ∈ Ψ} ⊨Ł ∅ ⪯ 𝜑.



P. Baldi et al. / International Journal of Computational Intelligence Systems, in press 7

Hypersequent calculi will be used to axiomatize the consequence
relation on hypersequents. Given a calculus HAX , a derivation of
a hypersequent G from hypersequents G1, … ,Gn in HAX is just
a labeled tree, where the root is G, each node is labeled by a rule
of HAX , and the leaves are either axioms or one of G1, … ,Gn. As
before, by G1, … ,Gn ⊢HAX G we mean that there exists such a
derivation.

It is known [16] that the hypersequent calculus HŁ displayed in
Table 4.13 axiomatizes the tautologies of Łukasiewicz logic, i.e., for
any hypersequent G, we have

⊨HŁ G iff ⊢HŁ G.

Let us now consider the extension ofHŁ with the rule

G |Γ ⪯ Δ G |Δ ≺ Γ
G (res)

and denote the resulting calculus as HŁres. The rule (res) clearly
makes HŁres not analytic,4 but it is needed for obtaining a calcu-
lus which, as proved in the next theorem, captures as well the con-
sequence relation (with finite sets of premises) of the Łukasiewicz
logic on formulas.

Theorem 5. For each hypersequent G and sequents S1, … , Sn, we
have:

S1, … , Sn ⊢HŁres G iff S1, … , Sn ⊨HŁ G.

Proof. The left-to-right direction holds in view of the soundness
of HŁ and of the soundness of the rule (res), which is easily prov-
able. For the converse direction, let us first introduce the following
notation: for any multisets Γ and Δ of formulas, we let

(Γ ≺ Δ)¬ = Δ ⪯ Γ
(Γ ⪯ Δ)¬ = Δ ≺ Γ

From S1, … , Sn ⊨HŁ G, we obtain

⊨HŁ G |S¬1 | … S¬n .

Indeed, if this were not the case, we would be able to find an eval-
uation which would satisfy neither G nor any of the S¬i . On the
other hand, any evaluation which does not satisfy S¬i , will satisfy Si.
Hence, we would obtain a counterexample to S1, … , Sn ⊨HŁ G.

Now, by the (weak) completeness of HŁ, we obtain that ⊢HŁ
G |S¬1 | … |S¬n . By repeated applications of the rule (res) to the latter
hypersequent and the sequents S1, … , Sn, we get the desired proof
of G from S1, … , Sn in the calculusHŁres.

3Note that we also include the rules for the connectives ∨, ∧, and
¬, although they are in principle derivable from those for → and ⊥
(recall that the former connectives are definable via the latter ones in
Łukasiewicz logic). Also, note that when the symbol◃ occurs in a rule
of the calculus, it has to be read as two rules, one for each uniform
instantiation of ◃.

4Let us recall that a calculus is said to be analytic when, for all of its
rules, all the formulas occurring in the premises already occur in the
conclusion. The prototypical example of rule that breaks the analyticity
of a proof-system is the (cut) rule; a variant thereof can actually be
shown to be derivable in our calculusHŁres.

4.2. A Hypersequent Calculus for Pr
Ł

In this subsection, we will introduce our hypersequent calculus
HPrŁ for the logic PrŁ, seen as a consequence relation on hyperse-
quents built over modal formulas of Ł

P . For ease of reference, we
say that a sequent Γ◃𝛥 is (modal) PrŁ-sequent, classical sequent,
or Ł-sequent whenever Γ and Δ are multisets of (modal) formu-
las ofŁ

P , formulas of classical logic, or formulas Łukasiewicz logic,
respectively. Furthermore, we say that a sequent Γ◃𝛥 is an atomic
(modal) PrŁ-sequent, classical sequent, or Ł-sequent whenever Γ
and Δ are multisets of atomic (modal) formulas of Ł

P , formulas of
classical logic, or formulas of Łukasiewicz logic, respectively. We
extend these conventions to hypersequents in the obvious way.

The semantics of modal PrŁ-hypersequents is defined in the
expected way: Given a (probabilistic) Kripke model M and a mul-
tiset of modal formulas [𝛾1,⋯𝛾n] of PrŁ, we let

||[𝛾1,⋯𝛾n]||M = ∑
i⩽n

(||𝛾i||M − 1)

and say that M satisfies a modal PrŁ-hypersequent G if ||Γ||M ⩽
||Δ||M (resp. ||Γ||M < ||Δ||M) for some component Γ ⪯ Δ (resp.
Γ ≺ Δ) of G; the consequence relation G1, … ,Gn ⊨PrŁ G is then
defined as expected. As in the case of Łukasiewicz logic, for every
set Γ ∪ {𝛿} of modal Ł

P-formulas, we have

Γ ⊨PrŁ 𝛿 iff {∅ ⪯ 𝛾 ∣ 𝛾 ∈ Γ} ⊨PrŁ ∅ ⪯ 𝛿.

To prove that HPrŁ axiomatizes PrŁ, we will make an essential
use of the analogous result that HŁres axiomatizes Ł and thus our
axiomatization results will share the restriction to premises being
sequents (which again suffices to capture PrŁ seen as a consequence
relation on formulas). The proof is based on a hypersequent vari-
ant of the translation of PrŁ into Ł, which is at the core of various
proofs of completeness of PrŁ (the original idea is due to Hájek,
Godo, and Esteva [4] and was further developed in subsequent
works) [2,12,13]. In particular, we reduce the validity of modal
PrŁ-hypersequents to the validity of certain consequences over
Ł-hypersequents and thus (due to our axiomatization result) also to
the derivability inHŁres. Then, we complete the proof by translating
Ł-hypersequents back into modal PrŁ-hypersequents and showing
that certain extra premises, corresponding to the axioms of proba-
bility, are derivable inHPrŁ.
Note that the translation does not depend on the proposed calcu-
lus HPrŁ, so let us deal with it first. We start by defining for each
classical formula 𝜑 its equivalence set

𝜑 = {𝜓 ∣⊢CL 𝜓 ↔ 𝜑}.

Now, for any atomic modal formula P(𝜑), we let P(𝜑)∗ = p𝜑,
where p𝜑 is a fresh propositional variable in the language of Ł, and
for complex modal formulas, we let (𝛾1 →Ł 𝛾2)∗ = 𝛾∗1 →Ł 𝛾∗2
and ⊥∗

Ł = ⊥Ł. We also extend the translation to multisets of for-
mulas in the expected way, i.e., [𝛾1, … , 𝛾n]∗ = [𝛾∗1 , … , 𝛾∗n ]. Then,
given a hypersequent G = Γ1◃1Δ1 ∣ … ∣ Γn◃nΔn, we define
G∗ = Γ∗1◃1Δ∗1 ∣ … ∣ Γ∗n◃nΔ∗n.
Finally, we include a translation of the axioms of probability into Ł-
sequents. In order to keep the translation finite, we need to make
it relative to a given finite set V of propositional variables. Let us
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define the setAX ∗
V as the union of the following sets of Ł-sequents

(by V𝜑 we denote the set of variables occurring in 𝜑):

TAUTV = {∅ ⪯ p𝜑 ∣ V𝜑 ⊆ V and ⊢CL 𝜑}

CONTRV = {p𝜑 ⪯ ⊥ ∣ V𝜑 ⊆ V and 𝜑 ⊢CL ⊥}

ADDV = {p𝜑∨𝜓, p𝜑∧𝜓 ⪯ p𝜑, p𝜓 ∣ V𝜑,V𝜓 ⊆ V}

∪{p𝜑, p𝜓 ⪯ p𝜑∨𝜓, p𝜑∧𝜓 ∣ V𝜑,V𝜓 ⊆ V}

By AXV we denote the corresponding set of PrŁ-sequents, obtained
by replacing each propositional variable p𝜑 by the atomic modal
formula P(𝜑).
Lemma 6. Let V be a set of propositional variables. Then, for any
modal PrŁ-hypersequent G containing only variables from  V, we
have 

⊨PrŁ G iff AX ∗
V ⊨Ł G∗.

Proof. We prove the right-to-left direction counterpositively.
Assume that ⊨6PrŁ G, i.e., there is a Kripke modelM such that, for
each componentΓ ⪯ Δ (resp.Γ ≺ Δ) ofG, we have ||Γ||M > ||Δ||M
(resp. ||Γ||M ⩾ ||Δ||M). Now, let ̂e be an evaluation of Łukasiewicz
logic such that ̂e(p𝜑) = ||P(𝜑)||M for each 𝜑. This evaluation is
well defined, since p𝜑 = p𝜓 means that ⊢CL 𝜑 ↔ 𝜓, hence
||P(𝜑)||M = ||P(𝜓)||M. It is straightforward to check that ̂e satisfies
all of the sequents inAX ∗

V, and none of the components of G∗, i.e.,
it provides a counterexample to AX∗V ⊨Ł G∗.

For the left-to-right direction, let ̂e be an evaluation satisfying the
Ł-sequents from AX ∗

V that does not satisfy G∗.

From the former assumption we know that, for each 𝜑, 𝜓 with
V𝜑,V𝜓 ⊆ V, we have

• ̂e(p⊤) = 1
• ̂e(p⊥) = 0
• ̂e(p𝜑∨𝜓) + ̂e(p𝜑∧𝜓) = ̂e(p𝜑) + ̂e(p𝜓).

Let W be the set of classical evaluations and consider the subset of
the powerset of W defined as

BV = {{w ∣ w(𝜑) = 1} ∣ 𝜑 a formula and V𝜑 ⊆ V}.

Clearly, BV is the domain of a Boolean subalgebra |(DT −
Algorithm)||(DT − Algorithm)|B|(/DT − Algorithm)||(/DT −
Algorithm)|V of the powerset algebra ofW. Then, we define a func-
tion 𝜇′ ∶ BV → [0, 1] as

𝜇′({w ∣ w(𝜑) = 1}) = ̂e(p𝜑).

Due to the properties of ̂e listed above, we know that 𝜇′ is a
finitely additive probability measure on |(DT − Algorithm)||(DT −
Algorithm)|B|(/DT − Algorithm)||(/DT − Algorithm)|V and so, by
theHorn–Tarski theorem [6,7], we know that there is a finitely addi-
tive probability measure 𝜇 on the powerset algebra of W such that
𝜇(X) = 𝜇′(X) for each X ∈ BV.

Then, M = ⟨W, ⟨w⟩w∈W, 𝜇⟩ is a Kripke model (the measurability
condition is trivial as all subsets ofW are𝜇-measurable) andweonly

need to check that G is not satisfied in M. This is a routine check,
since ||P(𝜑)||M = ̂e(p𝜑) and so ||Γ||M = ̂e(Γ∗) for each multiset Γ
of modal formulas occurring in G.

The calculus HPrŁ that we propose as axiomatization of the logic
PrŁ is composed of all the rules in Table 1, which are applicable to
classical hypersequents, and all the rules in Table 2, which consist of

• variants of all of the rules in Table 1, plus the rule (res)
applicable to modal PrŁ-hypersequents,

• the axiom

⪯ p | p ⪯ ⊥ (cl)

where the propositional variable p belongs to the language of
classical logic CL, i.e., to the nonmodal formulas of PrŁ,

• and the rule

𝜑1, … , 𝜑n◃𝜓1, … , 𝜓m, [⊥]l
P𝜑1, … , P𝜑n◃P𝜓1, … , P𝜓m, [⊥Ł]l

(gen)

where 𝜑1, … , 𝜑n, 𝜓1, … , 𝜓m are nonmodal.

A few additional words are needed on the rule (gen). First, note
that themultiset [⊥]l can also be empty (themultiplicity l is allowed
to be 0), i.e., the presence of ⊥ is not required for the application
of the rule. Second, it can only be applied to classical sequents (i.e.,
hypersequents with only one component) and produces a modal
PrŁ-sequent.

To establish the announced axiomatizability result, we only need to
prepare one crucial yet easy-to-prove lemma.

Lemma 7. Let G be a modal PrŁ-hypersequent such that ⊨PrŁ G.
Then, AXV ⊢HPrŁ G and there is a derivation of G from AXV which
does not use the rule (gen).

Proof. By Lemma 6 and Theorem 5 we know that AX∗V ⊢HŁres G∗.
Replacing each translated atom p𝜑 in the latter proof by an atomic
modal formula P(𝜑), and replacing each rule used in HŁ by its
modal counterpart in HPrŁ, we obtain a proof of G from AXV in
HPrŁ which does not make use of the rule (gen).

Theorem 8. For each modal PrŁ-hypersequent G and modal PrŁ-
sequents S1, … , Sn we have

S1, … , Sn ⊢HPrŁ G iff S1, … , Sn ⊨PrŁ G.

Proof. We prove the claim without premises; the extension to the
full claim is then done using the rule (res) as in the proof of
Theorem 5.

The soundness is easy. For the completeness direction, assume⊨PrŁ

G. Then, by the previous lemma, AXV ⊢HPrŁ G and thus it suffices
to show that, for each S ∈ AXV, we have ⊢HPrŁ S.

This can be obtained by suitable applications of the rule (gen). First,
observe that, for V𝜑,V𝜓 ⊆ V, the following sequents

𝜑 ∨ 𝜓, 𝜑 ∧ 𝜓 ⪯ 𝜑, 𝜓 and 𝜑, 𝜓 ⪯ 𝜑 ∨ 𝜓, 𝜑 ∧ 𝜓
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Table 1 Hypersequent calculus of relationsHŁ for Ł.

∅⪯∅ (emp) 𝜑⪯𝜑 (id)

⊥≺∅ (⊥ ≺) ⊥⪯𝜑 (⊥)

G
G |H

(ew)
G |H |H
G |H

(ec)

G |Φ1, Φ2 ⪯ Ψ1,Ψ2
G |Φ1 ⪯ Ψ1 |Φ2 ⪯ Ψ2

(split⪯)
G |Φ1, Φ2 ⪯ Ψ1,Ψ2
G |Φ1 ⪯ Ψ1 |Φ2 ≺ Ψ2

(splitŁ)

G |Φ1◃Ψ1 G |Φ2◃Ψ2
G |Φ1, Φ2◃Ψ1,Ψ2

(mix)

G |Φ◃Ψ
G |Φ,𝜑◃Ψ (wl)

G |Φ ⪯ Ψ
G |Φ,⊥ ≺ Ψ (w⊥)

G |Φ,𝜓◃𝜑,Ψ |𝜑 ⪯ 𝜓 G |Φ◃Ψ |𝜓 ≺ 𝜑
G |Φ,𝜑 → 𝜓◃Ψ (→ l)

G |Φ◃Ψ G |Φ,𝜑◃𝜓,Ψ |𝜑 ⪯ 𝜓
G |Φ◃𝜑 → 𝜓,Ψ (→ r)

G |Φ,𝜑◃Ψ |Φ,𝜓◃Ψ
G |Φ,𝜑 ∧ 𝜓◃Ψ (∧l) G |Φ◃𝜑,Ψ G |Φ◃𝜓,Ψ

G |Φ◃𝜑 ∧ 𝜓,Ψ (∧r)

G |Φ,𝜑◃Ψ G |Φ,𝜓◃Ψ
G |Φ,𝜑 ∨ 𝜓◃Ψ (∨l) G |Φ◃𝜑,Ψ |Φ◃𝜓,Ψ

G |Φ,◃𝜑 ∨ 𝜓,Ψ (∨r)

G |Γ,⊥◃𝜑,Ψ
G |Φ,¬𝜑◃Ψ (¬l) G |Φ,𝜑◃⊥,Ψ

G |Φ◃¬𝜑,Ψ (¬r)

Table 2 Additional rules for the hypersequent calculusHPrŁ for PrŁ .

𝜑1, … ,𝜑n◃𝜓1, … ,𝜓m, [⊥]l
P𝜑1, … , P𝜑n◃P𝜓1, … , P𝜓m, [⊥Ł]l

(gen)
p ⪯ ⊥ | ⪯ p

(cl)

∅ ⪯ ∅ (emp) 𝛾 ⪯ 𝛾 (id)

⊥Ł ≺ ∅ (⊥ ≺) ⊥Ł ⪯ 𝛾 (⊥)

G
G |H

(ew)
G |H |H
G |H

(ec)

G |Γ1, Γ2 ⪯ ∆1, ∆2
G |Γ1 ⪯ ∆1 |Γ2 ⪯ ∆2

(split⪯)
G |Γ1, Γ2 ⪯ ∆1, ∆2
G |Γ1 ⪯ ∆1 |Γ2 ≺ ∆2

(splitŁ)

G |Γ1◃∆1 G |Γ2◃∆2
G |Γ1, Γ2◃∆1, ∆2

(mix)
G |Γ ⪯ ∆ G |∆ ≺ Γ

G
(res)

G |Γ◃∆
G |Γ, 𝛾◃∆ (wl)

G |Γ ⪯ ∆
G |Γ,⊥Ł ≺ ∆ (w⊥)

G |Γ, 𝛿◃𝛾,∆ |𝛾 ⪯ 𝛿 G |Γ◃∆ |𝛿 ≺ 𝛾
G |Γ, 𝛾 → 𝛿◃∆ (→ l)

G |Γ◃∆ G |Γ, 𝛾◃𝛿,∆ |𝛾 ⪯ 𝛿
G |Γ◃𝛾 → 𝛿,∆ (→ r)

G |Γ, 𝛾◃∆ |Γ, 𝛿◃∆
G |Γ, 𝛾 ∧ 𝛿◃∆ (∧l) G |Γ◃𝛾,∆ G |Γ◃𝛿,∆

G |Γ◃𝛾 ∧ 𝛿,∆ (∧r)

G |Γ, 𝛾◃∆ G |Γ, 𝛿◃∆
G |Γ, 𝛾 ∨ 𝛿◃∆ (∨l) G |Γ◃𝛾,∆ |Γ◃𝛿,∆

G |Γ,◃𝛾 ∨ 𝛿,∆ (∨r)

G |Γ,⊥Ł◃𝛾,∆
G |Γ, ¬𝛾◃∆ (¬l) G |Γ, 𝛾◃⊥Ł, ∆

G |Γ◃¬𝛾,∆ (¬r)
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are derivable inHŁ, hence also inHPrŁ. Adding to their derivations
an application of the rule of (gen) results in a derivation of the cor-
responding sequent from AXV inHPrŁ.
Next, let us now show that the sequent ∅ ⪯ P(𝜑) is derivable in
HPrŁ, for any classical tautology 𝜑. First, note that if 𝜑 is a classical
tautology, letting p1, … , pn be the variables occurring in 𝜑, we have
that p1 ∨ ¬p1, … pn ∨ ¬pn ⊨[0,1]Ł 𝜑; hence, in particular,

∅ ⪯ p1 ∨ ¬p1, … ,∅ ⪯ pn ∨ ¬pn ⊨Ł ∅ ⪯ 𝜑

and, by the finite strong completeness ofHŁ(res), there is a derivation
d of ∅ ⪯ 𝜑 from the premises ∅ ⪯ p1 ∨ ¬p1, … ,∅ ⪯ pn ∨ ¬pn in
the calculus HŁ(res). Recall that all the rules of this calculus belong
toHPrŁ as well, and hence we obtain our desired derivation of∅ ⪯
P(𝜑) in HPrŁ by appending, after the conclusion ∅ ⪯ 𝜑 of d, an
application of the rule (gen), and before each premise∅ ⪯ pi ∨¬pi
the following:

Finally, let us consider the sequents in CONTRV. Applying an
argument similar to the one forTAUTV, we have that, for any non-
modal formula 𝜑 such that 𝜑 ⊢CL ⊥, the sequent

𝜑 ⪯ ⊥

is derivable in HPrŁ. A derivation of P(𝜑) ⪯ ⊥Ł is then obtained
by adding an application of (gen) to the derivation 𝜑 ⪯ ⊥.

5. ALTERNATIVE PROOF OF
COMPLETENESS OF Prlin AND
TRANSLATION INTO Pr

Ł

In this section, we will show that the logic Prlin can be semantically
translated into the logic PrŁ (seen as consequence relation of hyper-
sequents) and obtain an alternative translation into PrŁ△ (seen as
consequence on formulas).Wewill also use a converse of this trans-
lation and the fact that HPrŁ axiomatizes PrŁ to obtain an alter-
native proof of the fact that the axiomatic system AX Prlin intro-
duced in Subsection 2.4 is indeed an axiomatization of Prlin, i.e., we
show that

Γ ⊢AX Prlin
𝛿 iff Γ ⊨Prlin 𝛿.

Recall that modal formulas of Prlin are combinations of basic
inequality formulas using connectives of classical logic. Following
the usual classical terminology, let us call the basic inequality for-
mulas and their negation literals and their disjunctions clauses.
Then, we know that each modal formula of Prlin is equivalent to a
conjunction of certain clauses.

Let us start our work in this section by showing that the clauses
of Prlin can be faithfully translated into atomic modal PrŁ-
hypersequents. First, consider a basic inequality formula 𝛾 of the
form

n

∑
i=1

aiP(𝜑i) ⩾ c

and note that 𝛾 can be equivalently replaced (modulo a suitable per-
mutations) by another inequality

m

∑
i=1

aiP(𝜑i) ⩽
n

∑
i=m+1

aiP(𝜑i) − c

where all the ais are nonnegative.

Next, we define

Γ𝛾 = [P(𝜑1)]a1 , … , [P(𝜑m)]am

Δ𝛾 = [P(𝜑m+1)]am+1 , … , [P(𝜑n)]an

s(𝛾) =
m

∑
i=1

ai −
n

∑
i=m+1

ai + c

𝛾H = {Γ𝛾 ⪯ Δ𝛾, [⊥]s(𝛾) if s(𝛾) ⩾ 0
Γ𝛾, [⊥]−s(𝛾) ⪯ Δ𝛾 otherwise.

Given a basic inequality formula 𝛾 and given 𝛾H = Γ ⪯ Δ, we define
(¬𝛾)H asΔ ≺ Γ. Finally, given any clause 𝛿 = 𝛾1∨⋯∨𝛾n, we define
𝛿H as the hypersequent 𝛾H1 ∣ … ∣ 𝛾Hn .

Lemma 9. Let M be a Kripke model and 𝛿 a clause in lin. Then,
M satisfies 𝛿 iff it satisfies 𝛿H.

Proof. Let us first assume that 𝛿 is a basic inequality formula of the
form

m

∑
i=1

aiP(𝜑i) ⩽
n

∑
i=m+1

aiP(𝜑i) − c

where all ais are nonnegative. We know that M satisfies 𝛿 iff the
corresponding inequality holds with P(𝜑i) replaced by xi = 𝜇(𝜑M

i ).
Recall that, using the definition of s(𝛾), we can write that equiva-
lently as

m

∑
i=1

aixi −
m

∑
i=1

ai ⩽
n

∑
i=m+1

aixi −
n

∑
i=m+1

ai − s(𝛿)

Note that for each nonnegative integer k we have ||[⊥]k||M = −k
and we also have

||Γ𝛿||M =
m

∑
i=1

aixi −
m

∑
i=1

ai

||Δ𝛿||M =
n

∑
i=m+1

aixi −
n

∑
i=m+1

ai

Thus, indeed, 𝛿 is satisfied in M iff 𝛿H is (we only have to distin-
guish if s(𝛿) is negative or not and move it to the appropriate side of
the inequality, which clearly coincides with definition of 𝛿H).

The case of 𝛿 being a negated literal or a clause then easily follows
using the related definitions of satisfiability of formulas oflin and
PrŁ-hypersequents.

Theorem 10. Let Γ ∪ {𝛿} be a finite set of formulas of lin and 𝛿1 ∧
⋯ ∧ 𝛿m a conjunctive normal form of (∧𝛾∈Γ𝛾) → 𝛿. Then

Γ ⊨Prlin 𝛿 iff ⊨PrŁ 𝛿Hi for each i = 1,… ,m.
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Proof. First note that, due to a classical reasoning, we have Γ ⊨Prlin
𝛿 iff for each i we have ⊨Prlin 𝛿i and so the proof follows from
Lemma 9.

We can use this result to provide an alternative translation from
Prlin into PrŁ△ . It is well known [16] that any Ł-hypersequent G
can be interpreted (using again essentially McNaughton theorem)
as a formula I(G) of Ł△ (the operation△ is essential to capture the
sequents of the form Γ ≺ Δ) such that⊨Ł G if and only if⊨Ł△ I(G).
Recalling that the atomic modal formulas of PrŁ and PrŁ△ are the
same, we can replace the propositional atoms by such formulas and
extend the previous result to probability logics: ⊨PrŁ G if and only
if ⊨PrŁ△ I(G). Therefore, we easily obtain:

Corollary 11. Let Γ ∪ {𝛿} be a finite set of formulas of lin and
𝛿1 ∧⋯ ∧ 𝛿m a conjunctive normal form of (∧𝛾∈Γ𝛾) → 𝛿. Then,

Γ ⊨Prlin 𝛿 iff ⊨PrŁ△ I(𝛿H1 ) ∧⋯ ∧ I(𝛿Hm).

We will now provide a converse translation, from atomic modal
PrŁ-hypersequents to formulas of Prlin. This time we will proceed
syntactically: we will show that, if an atomic modal hypersequent
is provable in HPrŁ, its translation is derivable in AX Prlin . This,
together with the previous semantical translation, will provide us
with an alternative completeness proof for Prlin.

Consider a multiset Γ of atomic PrŁ-formulas (i.e., formulas of the
form P(𝜑) or ⊥Ł), and recall that we denote by Γ(𝛼) the number of
occurrences of the formula 𝛼 in Γ. We define a linear term tΓ:

tΓ = ∑
𝛼∈|Γ|, 𝛼≠⊥Ł

Γ(𝛼)𝛼

Let Γ, Δ be two multisets of atomic PrŁ-formulas; we define the
translation of atomic sequents Γ ⪯ Δ and Γ ≺ Δ as follows:

c(Γ ⪯ Δ) = ∑
𝛼∈|Γ|

Γ(𝛼) − ∑
𝛽∈|∆|

Δ(𝛽)

(Γ ⪯ Δ)♯ = tΓ ⩽ t∆ + c(Γ ⪯ Δ)

(Γ ≺ Δ)♯ = ¬ (Δ ⪯ Γ)♯

and, for any atomic modal PrŁ-hypersequent H =
Γ1◃1Δ1 | … |Γn◃nΔn, we define

H♯ = (Γ1◃1Γ1)♯ ∨⋯ ∨ (Γn◃nΓn)♯.

Let us now show that the translation (⋅)♯ is actually an inverse of
the translation (⋅)H, i.e., for any clause 𝛿 of lin, we have (𝛿H)♯ =
𝛿. We show the claim for 𝛿 being a basic inequality formula, the
generalization to clauses being easy. Let us assume, without loss of
generality, that 𝛿 is of the form

m

∑
i=1

aiP(𝜑i) ⩽
n

∑
i=m+1

aiP(𝜑i) − c

with ai > 0 for i = 1,… , n. We only handle the case when

s(𝛿) =
m

∑
i=1

ai −
n

∑
i=m+1

ai + c ⩾ 0,

since the case where s(𝛿) < 0 is similar. Therefore, by the definition
of the translation (⋅)H,

𝛿H = Γ𝛿 ⪯ Δ𝛿, [⊥]s(𝛿)

where

Γ𝛿 = [P(𝜑1)]a1 , … , [P(𝜑m)]am

Δ𝛿 = [P(𝜑m+1)]am+1 , … , [P(𝜑n)]an

Let us first note that

c(𝛿H) = ∑
𝛼∈|Γ|

Γ(𝛼) − ∑
𝛽∈|∆|

Δ(𝛽) − s(𝛿)

=
m

∑
i=1

ai −
n

∑
i=m+1

ai −
(

m

∑
i=1

ai −
n

∑
i=m+1

ai + c

)
= −c

Hence, we obtain

(𝛿H)♯ = tΓ𝛿 ⩽ t∆𝛿⊎[⊥Ł]s(𝛿) + c(𝛿H)

=
m

∑
i=1

aiP(𝜑i) ⩽
n

∑
i=m+1

aiP(𝜑i) − c

= 𝛿

We are now ready for showing our crucial lemma.

Lemma 12. Let H0 be an atomic modal PrŁ-hypersequent. If ⊨PrŁ

H0, then ⊢AX Prlin
H♯
0.

Proof. Due to Lemma 7, we know that there is a derivation d of
H0 from the set of sequents AXV in the calculus HPrŁ such that d
does not use the rule (gen). Note that, except for (res) all the rules
of the calculus are analytic, hence they cannot have premises using
nonatomic modal hypersequents, if the conclusions are atomic. On
the other hand, inspecting the proof of the mentioned Lemma 7,
we also know that the rule (res) needs to be applied in d only to
premises containing atomic modal formulas. Therefore, all PrŁ-
hypersequents occurring in d have to be atomic and modal. The
proof is done by showing that for each such hypersequent G0 (i.e.,
in particular, for the final hypersequent H0), we have ⊢AX Prlin

G♯
0.

We proceed by induction on the length of d. Let us first consider
the case that G0 is one of the axioms of HPrŁ, i.e., we need to find
proofs of the following formulas:

• P(𝜑) ⩽ P(𝜑) (if G0 is an instance of an axiom (id)): this is just
axiom (LQ1).

• 0 ⩽ P(𝜑) (if G0 is an instance of an axiom (⊥)): this is just
axiom (QU1).

• 0 ⩽ 0 (if G0 is an instance of axiom (emp)): this is just axiom
(LQ1).

• ¬(0 ⩽ −1) (if G0 is an instance of axiom (⊥ ≺)): it follows
using axioms (LQ1) and (LQ7).
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Next we deal with the case G0 ∈ AXV, i.e., we need to find proofs
of the following formulas:

• 1 ⩽ P(𝜑) whenever ⊢CL 𝜑: Clearly, in this case ⊢Prlin 𝜑 ↔ ⊤
and so, by the axiom (QU2) and the rule (QUGEN), we obtain
⊢Prlin 1 ⩽ P(𝜑).

• P(𝜑) ⩽ 0 whenever 𝜑 ⊢CL ⊥. Using (QU3) we have that
P(⊤ ∧ 𝜑) + P(⊤ ∧ ¬𝜑) = P(⊤). By (QU1) and (QUGEN), we
get P(𝜑) + P(¬𝜑) = 1. On the other hand, since ¬𝜑 is a
tautology, by the previous point we have P(¬𝜑) = 1, hence we
finally obtain a derivation of P(𝜑) = 0.

• P(𝜑 ∨ 𝜓) + P(𝜑 ∧ 𝜓) ⩽ P(𝜑) + P(𝜓) and
P(𝜑) + P(𝜓) ⩽ P(𝜑 ∨ 𝜓) + P(𝜑 ∧ 𝜓): We prove both
inequalities at once using two instances of axiom (QU3):

P(𝜑) = P(𝜑 ∧ 𝜓) + P(𝜑 ∧ ¬𝜓)
P(𝜑 ∨ 𝜓) = P((𝜑 ∨ 𝜓) ∧ 𝜓) + P((𝜑 ∨ 𝜓) ∧ ¬𝜓)

As the first one is equivalent (using the rule (QUGEN),
properties of classical logic, and rules for manipulation of
equalities in Prlin) to

P(𝜑 ∨ 𝜓) = P(𝜓) + P(𝜑 ∧ ¬𝜓),

the claim easily follows by simple manipulation of equalities in
the logic Prlin.

Now assume thatG0 is a consequence of some of the rules ofHPrŁ.
Note that, as d is a derivation of the atomic modal hypersequent
H0, we do not need to check the case of logical rules and have to
deal with the structural ones only. The case of rules (ew ) and (ec)
is simple. Indeed, whenever G0 = G ∣ H, then G♯

0 = G♯ ∨ H♯ and
so easily get ⊢AX Prlin

G♯
0 from either of the two possible induction

assumptions: ⊢AX Prlin
G♯ or ⊢AX Prlin

G♯ ∨H♯ ∨H♯.

Let us now consider an instance of the rule (split⪯) (the case of
(splitŁ) is handled analogously), i.e., the case where G0 = G |Γ1 ⪯
Δ1 |Γ2 ⪯ Δ2 and the premise is G |Γ1, Γ2 ⪯ Δ1, Δ2. By induction
hypothesis, we have⊢AX Prlin

G♯∨𝜖, where 𝜖 = (Γ1, Γ2 ⪯ Δ1, Δ2)♯.
Without loss of generality, let 𝜖1 = (Γ1 ⪯ Δ1)♯ = t1 ⩽ c1 and
𝜖2 = (Γ2 ⪯ Δ2)♯ = t2 ⩽ c2. We have then

𝜖 = t1 + t2 ⩽ c1 + c2

We want to prove that

⊢AX Prlin
G♯ ∨ (t1 ⩽ c1) ∨ (t2 ⩽ c2).

First, recalling that 𝜖 is the same as the formula−t1− t2 ⩾ −c1−c2,
and t2 ⩽ c2 is the same as −t2 ⩾ −c2, we have that

(𝜖 ∧ t1 ⩾ c1) → t2 ⩽ c2

is an instance of axiom (LQ4). On the other hand, we have that t1 ⩽
c1 ∨ t1 ⩾ c1 is an instance of axiom (LQ6). By classical reasoning,
we obtain thus a derivation in AX Prlin of

𝜀 → t1 ⩽ c1 ∨ t2 ⩽ c2

hence, a derivation in AX Prlin of G♯
0 ∨ 𝜀1 ∨ 𝜀2 from G♯

0 ∨ 𝜖.
For the rule (mix), we have G0 = G |Γ1, Γ2 ⪯ Δ1, Δ2 and, by
the induction hypothesis, we have ⊢AX Prlin

G♯ ∨ (Γ1 ⪯ Δ1)♯ and
⊢AX Prlin

G♯ ∨ (Γ2 ⪯ Δ2)♯. Note that, from axiom (LQ4), we know
that (Γ1 ⪯ Δ1)♯ ∧ (Γ2 ⪯ Δ2)♯ → (Γ1, Γ2 ⪯ Δ1, Δ2)♯ and so the
claim follows using a simple classical reasoning.

For the rules (wl), we have either G0 = G |Γ, 𝛾 ⪯ Δ or G0 =
G |Γ, 𝛾 ≺ Δ and, by the induction hypothesis, we have either
⊢AX Prlin

G♯ ∨ (Γ ⪯ Δ)♯ or ⊢Prlin G♯ ∨ (Γ ≺ Δ)♯. We deal
with the first case with the additional assumption that 𝛾 = P(𝜑);
the second case and the case 𝛾 = ⊥Ł are analogous. Assume that
(Γ ⪯ Δ)♯ = t ⩽ c and note that (Γ, 𝛾 ⪯ Δ)♯ = t + P(𝜑) ⩽ c + 1. So,
the following instance of (LQ4):

(−P(𝜑) ⩾ −1) ∧ (−t ⩾ −c) → −t − P(𝜑) ⩾ −c − 1

together with the known fact that⊢AX Prlin
P(𝜑) ⩽ 1, completes the

proof, using a simple classical reasoning.

For the rule (w⊥), we have G0 = (G |Γ,⊥Ł ≺ Δ) and, by the induc-
tion hypothesis, we know that⊢AX Prlin

G♯ ∨ (Γ ⪯ Δ)♯. Let us com-
pute that

(Γ,⊥ ≺ Δ)♯ = ¬(t∆ ⩽ tΓ − c(Γ ⪯ Δ) − 1)
= (t∆ − tΓ > −c(Γ ⪯ Δ) − 1)

and note that this formula follows from (Γ ⪯ Δ)♯ = t∆ − tΓ ⩾
−c(Γ ⪯ Δ) using axiom (LQ7). Thus, again, a classical reasoning
completes the proof.

Finally, we deal with the rule (res), i.e., when G0 = G and the
premises are G |Γ ⪯ Δ and G |Δ ≺ Γ. Thus, by the induction
hypothesis, we have ⊢Prlin G♯ ∨ (Γ ⩽ Δ)♯ and ⊢Prlin G♯ ∨ (Δ ≺ Γ)♯.
Note that the latter is equivalent to ⊢Prlin G♯ ∨ ¬((Γ ⩽ Δ)♯ which
due to classical reasoning entails ⊢Prlin G♯.

Using this lemma, together with Theorems 10 and 8, we obtain the
promised alternative proof of axiomatization of Prlin.

Theorem 13. Let Γ ∪ {𝛿} be a finite set of formulas of lin. Then,

Γ ⊢AX Prlin
𝛿 iff Γ ⊨Prlin 𝛿.

Proof. The left-to-right direction is easy to check. For the right-to-
left direction, by Theorem 10, we obtain that ⊨PrŁ 𝛿Hi for each i =
1,… ,m, where 𝛿1 ∧ ⋯ ∧ 𝛿m is a conjunctive normal form of
(∧𝛾∈Γ𝛾) → 𝛿. Then, by Lemma 12, since (𝛿Hi )♯ = 𝛿i, we get that
⊢AX Prlin

𝛿i for each i = 1,… ,m. As axioms and rules ofAX Prlin for
modal formulas are those of classical logic, we first obtain⊢AX Prlin
(∧𝛾∈Γ𝛾) → 𝛿 and, thus, also Γ ⊢AX Prlin

𝛿.

6. CONCLUSION

In this paper we have given a precise answer to the question about
the relationship between the logics of uncertainty introduced and
studied by Fagin, Halpern, Meggido, and others, and those devel-
oped in the area ofmathematical fuzzy logic byHájek,Godo, Esteva,
and others. Indeed, we have shown that Prlin and Prpol can be
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faithfully translated, respectively, into the two-layered modal fuzzy
logics PrŁ△ and PrPŁ△ , and vice versa. Moreover, we have con-
tributed to the proof theory of these logics by offering a hyperse-
quent calculus of relations HPrŁ for the logic PrŁ (which could be
easily extended to a calculus for PrŁ△ ). Interestingly enough, we
have obtained two benefits from the formalism of hypersequents
of relations for the study of Prlin: it allowed us to provide another
translation into a fuzzy logic without using the△ connective, and
it gave us a new proof of the axiomatization of Prlin. Therefore, this
paper has provided some further evidence that the mathematical
fuzzy logic approach to reasoning about uncertain events is a fruit-
ful one that, in a sense, can encompass other popular approaches.

Let us mention several possible future lines of research. First,
regarding proof theory, a crucially important open question is
whether the calculus HPrŁ can be reformulated as an analytic
one, i.e., without the rule (res) or any variant thereof. Note that,
however, in light of our completeness theorem, any valid PrŁ-
hypersequent G has a proof in HPrŁ with a well-structured form:
a part of the proof using only the modal rules, a part using only
the nonmodal rules and the rule (gen), and finally a series of
applications of the nonanalytic rule (res), in order to obtain a
derivation of G. This consideration might be instrumental in using
the calculus for establishing interesting computational complexity
bounds and/or finding conditions underwhich the rule (res) can be
eliminated.

Regarding the proof theory of other two-layered modal fuzzy log-
ics, we believe that the crucial trick used for proving completeness
of the calculus, i.e., the translation of modal hypersequents into
propositional ones, could be put to use to obtain complete hyper-
sequent calculi in a much more general framework [2,12]. On the
other hand, thismethod can be exploited in its full power onlywhen
we already possess a hypersequent calculus for the logic handling
the modal formulas. Since, to the best of our knowledge, such a cal-
culus is lacking for the logic PŁ, we do not see an easy way to extend
our approach for obtaining analogous results for the logics PrPŁ△
and Prpol.

Moreover, we plan to continue the investigation of translations
between logics of uncertainty: in particular we believe that also
other classical logics dealing with measures of uncertainty differ-
ent from probability, such as, e.g., plausibilities or belief func-
tions [12,15], are amenable to similar translations into suitable
two-layered modal fuzzy logics.

Finally, we plan to develop the existing abstract two-layered formal-
ism [2] in two directions: (1) to provide, in the style of abstract alge-
braic logic, general completeness theorems of two-layered modal
logics obtained by combination of arbitrary members of a fairly
wide family of nonclassical logics and (2) show that such general
results subsume most (if not all) completeness theorems provided
so far in the literature for particular systems.
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