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Recommended Books and Resources

This lecture course covers three topics: kinetic theory, stochastic processes and linear

response. Most decent books on statistical mechanics will have a section covering non-

equilibrium topics in general. However, if you’re looking for details beyond the basics,

you’ll probably need a different book for each topic. Some good general purpose books

are:

• Huang, Statistical Mechanics

• Kardar, Statistical Physics of Particles

• Reif, Fundamentals of Statistical and Thermal Physics

Both Huang and Kardar treat kinetic theory and the Boltzmann equation before they

move onto statistical mechanics. Much of Section 2 of these notes follows the path laid

down in the these books. Reif ends with a much wider ranging discussion of kinetic

theory, transport and stochastic processes.

For more details on kinetic theory:

• Chapman and Cowling, The Mathematical Theory of Non-Uniform Gases

• Lifshitz and Pitaevskii, Physical Kinetics

Both of these are old school. The first was published in 1939 although the latest edition,

written in 1970, is modern enough to cover all the developments that we touch upon

in this course. The last volume of the course by Landau and Lifshitz covers kinetic

theory. This book was written substantially later than the earlier volumes, decades

after Landau’s death.

For more details on stochastic processes:

• Van Kampen, Stochastic Processes in Physics and Chemistry

The topic of linear response is usually covered in books on many body theory or more

general condensed matter. Two excellent modern books, both with a chapter on re-

sponse theory, are

• Altland and Simons, Condensed Matter Field Theory

• Chaikin and Lubensky, Principles of Condensed Matter Physics

Finally, there are a number of good lecture notes and resources on the web, collated at

http://www.damtp.cam.ac.uk/user/tong/kinetic.html
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1. Things Bumping Into Other Things

1.1 Introduction

The purpose of this course is to describe a number of basic topics in non-equilibrium

statistical mechanics.

If you’ve taken a first course in Statistical Mechanics, you’ll know that the whole

machinery of ensembles and partition functions only works when applied to systems

in equilibrium. Equilibrium is defined to be a state in which, at least on the coarse

grained level, things don’t change. Of course, if you have a hot system and you look

closely enough, everything is flying around on the atomic level. But if you focus only

on macroscopic variables then, in equilibrium, all is calm.

At first, the restriction to equilibrium sounds rather limiting. But it’s not. This is

because the state of equilibrium is very special: if you take any system and wait long

enough then it will eventually relax down to equilibrium. (This is sometimes said to

be the −1th law of thermodynamics).

Of course, this begs the question of why equilibrium is special. Why do all systems

eventually reach this state. How do they approach this state? How does such irre-

versible behaviour arise from the fundamental laws of physics which are, for all intents

and purposes, invariant under time reversal? Moreover, what if you’re not happy to

just sit back and watch an equilibrium system? Suppose you want to stir it or splash

it or attach a couple of crocodile clips and zap it. How will it respond? These are the

kind of questions that we will begin to answer in this course.

While there is typically only a single equilibrium state, for a system with 1023 par-

ticles, there are many many ways to be out-of-equilibrium. Most of these states are

uninteresting in the sense that they will be so complicated that no general features will

emerge. Moreover, such states will be fleeting, rapidly changing to another complicated

configuration. If we’re to have any chance of making progress, we need to be careful

about the kind of states we discuss and the kind of questions that we ask. We would

like to identify features in the dynamics of 1023 particles that persist for long periods

of time. We will see that such features arise for systems that are close to equilibrium.

Indeed, throughout this course, the dramatic sounding “non-equilibrium” will really

mean “almost-equilibrium”.

Each of the four sections in these lecture notes can be read more or less independently.

In the rest of this introductory section, we will introduce a few basic tools to describe

how quantities change in a gas. This will really be a baby version of kinetic theory, with
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nothing more sophisticated than Newtonian thinking applied to a bunch of billiard balls.

But it will allow us to develop some basic intuition for the rudiments of the subject.

While many of the formulae we derive in this section are rather heuristic, all will be

revisited Section 2 where we use the Boltzmann equation to give a more rigorous view

on the subject, understanding transport phenomena and deriving the equations of fluid

mechanics starting from first principles. Section 3 introduces the subject of random

jittery motion, usually called stochastic processes. Finally, in Section 4 we turn the

stir-it-splash-it-zap-it question and develop the machinery necessary to describe how

systems respond when prodded.

1.2 Basics of Collisions

Let’s start by considering N molecules in a gas of volume V . We will begin by ignoring

all interactions between particles. Instead, we will treat the molecules as spheres of a

finite size which will allow collisions to occur. For the most part, we won’t rely on the

results of earlier courses on statistical mechanics. There is, however, one exception: in

the rest of this section, we will need the Maxwell-Boltzmann probability distribution

for the velocities in a gas1.

f(~v) d3v =

(
m

2πkBT

)3/2

e−mv
2/2kBT d3v (1.1)

The distribution f(~v)d3v is the probability that a molecule has velocity within a small

volume d3v in the neighbourhood of ~v.

We denote the diameter of the particle as d. Obviously its radius is d/2. Viewed

head on, the particle appears as a disc with area π(d/2)2. However, more relevant for

our purposes is the effective cross-sectional area of the particle, πd2. To see why this is,

focus on a single particle as it makes its way through the gas. If it travels a distance l,

it will sweep out a volume πd2l as shown in Figure 1 and collide with any other particle

whose centre lies within this volume.

The mean free path is defined to be the average distance travelled by the molecule

between each collision. This is given by πd2l = V/N , or

l =
V

N

1

πd2
=

1

nπd2
(1.2)

where n = N/V is the particle density.

1This result will be re-derived in Section 2 when we discuss the Boltzmann equation. You can also

find a simple derivation in the lectures on Statistical Physics.
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2d

l

Figure 1: A particle of radius d/2 travels, on average, a length l between each collision. In

this time it sweeps out a volume πd2l.

In what follows, we’ll assume that our gas is dilute, meaning l� d. For typical gases

d ∼ 10−10m while, at atmospheric pressure, l ∼ 10−7m.

1.2.1 Relaxation Time

The average time between collisions is called the scattering time or relaxation time,

τ =
l

v̄rel

You might think that v̄rel is the average speed of a given particle. This isn’t quite true.

Since we’re interested in the rate of collisions, the speed of other particles approaching

is just as important as the speed of the particle you’re looking at. So we should take

vrel to be the average relative speed of the molecules. For two particles with velocities

~v and ~v ′, the average relative speed is

v̄2
rel = 〈(~v − ~v ′)2〉 =

∫
d3~v

∫
d3~v ′ (~v − ~v ′)2f(~v)f(~v ′)

= 〈v2〉+ 〈v′ 2〉 − 2〈~v · ~v ′〉 (1.3)

where f(~v) in the first line is the Maxwell-Boltzmann distribution (1.1). The fact that

we have multiplied the distributions f(~v)f(~v′) together in the first line means that

we are assuming that the velocities of the two particles are uncorrelated. This is an

assumption that we shall return to in Section 2.

The last term in (1.3) vanishes: 〈~v · ~v′〉 = 0. This follows on rotational grounds.

Because the velocity of each particle is independent, it’s enough to know that the

average velocity (not speed!) in, say, the x-direction vanishes: 〈vx〉 = 0. Meanwhile,

〈v2〉 = 〈v′ 2〉 which means that v̄2
rel = 2〈v2〉. It is a simple exercise to compute 〈v2〉 from

the Maxwell-Boltzmann distribution (1.1) and the answer is the same as you would get
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by simply appealing to the equipartition of energy: 〈v2〉 = 3kBT/m. We have

v̄2
rel =

6kBT

m
and the relaxation time is given by

τ =
1

nπd2

√
m

6kBT

Notice that as the temperature drops, the mean free path remains unchanged. However,

the time between collisions increases.

There is a slightly different interpretation of the relaxation time that it is useful

to have in hand. Suppose that the probability that a molecule undergoes a collision

between time t and time t + dt is given by wdt, for some constant w, known as the

collision rate. Notice that in stating this, we have made more assumptions about the

nature of the collisions. In particular, the fact that w is a constant means that no

memory of previous collisions is kept: the chances of being hit again are not affected

just because you already were hit a short time ago.

If P (t) is the probability that the molecule makes it to time t unharmed, then the

probability that it further makes it to time t+ dt without collision is

P (t+ dt) = P (t)(1− wdt)

Writing this as a differential equation, we have

dP

dt
= −wP ⇒ P (t) = e−wt

where we’ve chosen the normalisation so that P (0) = 1 and P (∞) = 0. With this

in hand, we can compute the average time between collisions. But this is exactly the

quantity that we called the relaxation time above. It is

τ =

∫ ∞
0

P (t)dt =
1

w

We learn that 1/τ is the collision rate.

1.3 Basics of Transport

We now turn to the question of how things move. Of course, in a thermal system,

the microscopic constituents are always moving, even in equilibrium. Our goal here

is to understand how certain macroscopic properties move when out of equilibrium.

The properties that we will look at are all associated to a conserved quantity: particle

number, energy or momentum. Processes in which these quantities change over time

are usually referred to as transport. As we will see, all of these quantities typically flow

in such a way as to reach the equilibrium state.
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1.3.1 Diffusion

Drop a blob of ink into a glass of water. How does it spread? More generally, we are

interested in the motion of a particular kind of particle – one with a nice colour, or

funny smell – as it makes its way through a generic background of liquid or gas. The

true dynamics of any particle is, as you might expect, somewhat jittery. Here we’ll look

at a simple model that captures this physics.

Random Walk

Consider a lattice which, for now, we take to be one dimensional. The spacing between

the lattice sites is set by the mean free path, l, and after a time, τ , the particle jumps

either left or right. The direction of the jump is entirely random: 50% of the time it

goes left, 50% right. This model is known as a random walk.

The particle starts at the origin and we want to know the probability P (x, t) that it

sits at x = ml at time t = Nτ . (Here m is an integer; it’s not the mass of the particle!).

We’ll start by giving a simple combinatoric derivation of the answer. For simplicity,

we’ll take N to be even and we’ll look at m� N . To get to x = ml, the particle must

have made 1
2
(N +m) forward jumps and 1

2
(N −m) backwards jumps. The probability

is just the number of different ways we can do this, divided by 2N , the total number of

possible combinations.

P (x, t) =
2−NN !

[1
2
(N +m)]![1

2
(N −m)]!

≈
√

2

πN
e−m

2/2N =

√
2τ

πt
e−x

2τ/2l2t (1.4)

where, in the second step, the factorials have been replaced by Stirling’s approximation

and we’ve also expanded to leading order in m/N . (To get the prefactor, we need to

go to the third order in the Stirling expansion).

The probability distribution of the particle is an ever-spreading Gaussian ensemble.

The mean is simply 〈x〉 = 0, reflecting the fact that the particle is equally likely to

travel forwards as backwards. The variance is

〈x2〉 =
l2

τ
t (1.5)

The root-mean-square (rms) distance travelled by the particle grows as
√
〈x2〉 ∼

√
t.

This is characteristic behaviour of random walks.

It is simple to repeat our analysis of the random walk to three dimensions. For a

cubic lattice, we assume that the motion in each of the directions is independent and

equally likely. On average, the particle moves in the x-direction only every 3τ , so (1.5)
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should be replaced by 〈x2〉 = l2t/3τ . But this means that the total rms distance covered

remains unchanged

〈~x 2〉 = 〈x2〉+ 〈y2〉+ 〈z2〉 =
l2

τ
t

The Diffusion Equation

We can recast the above discussion in terms of a differential equation for the density

of particles, n = N/V . Away from equilibrium, the density is not a constant. It is, in

general, a function of time and space. We expect any gradient, ∇n, in the density of

particles to lead to a flow, from the high density region to the low.

We’ll again restrict first to the case of one-dimension. Consider the density at some

fixed time: n = n(x, t). We’d like to derive an expression for the density at the point

x a short time ∆t later. Of course, some particles will leave, but others will come in

to replace them. Any particle which is at x at time t + ∆t must have been sitting at

some other position x−∆x at time t. Here ∆x should be viewed as a random variable

since some move one way, some the other. This means that we can write an expression

for the density at time t+ ∆t as an average over all the different ∆x,

n(t+ ∆t, x) = 〈n(t, x−∆x)〉

= n(t, x)− ∂n

∂x
〈∆x〉+

1

2

∂2n

∂x2
〈∆x2〉+ . . .

The term with the first order derivative vanishes because, on average, particles are

equally likely to go either way, meaning 〈∆x〉 = 0. Taylor expanding the left-hand-

side, we arrive at the diffusion equation

∂n

∂t
= D

∂2n

∂x2

where the diffusion constant is D = 〈∆x2〉/2∆t. We expect this to be related to our

two quantities, the mean free path l and scattering time τ . On dimensional grounds,

we must have

D ∼ l2

τ

Solutions to the diffusion equation evolve so as to iron out any inhomogeneities in

particle density. As an example, suppose that all N particles start out life sitting at

the origin, giving us the initial condition n(x, t = 0) = Nδ(x). The solution to the

diffusion equation with this initial condition is an ever-spreading Gaussian,

n(x, t) = N

√
1

4πDt
e−x

2/4Dt
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This reproduces the discretised result (1.4). Viewing the average distance travelled as

the width of the cloud of particles, we again have the result

〈x2〉 = 2Dt

It is simple to extend the derivation above to three dimensions. Going through the

same steps, we now find the 3d diffusion equation,

∂n

∂t
= D∇2n

This is also known as Fick’s (second) law. We again expect that D ∼ l2/τ . (Although

the overall numerical factor is not necessarily the same as the 1d case. In fact, in simple

analysis it is a factor of 3 less). The Gaussian again provides a solution, now with

〈~x 2〉 = 6Dt

As we will now show, a number of other processes also follow this general diffusive

form.

1.3.2 Viscosity

Viscosity is a form of internal friction experienced by
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Figure 2:

a fluid. It can be measured by placing a fluid between

two plates, a distance d apart in the z direction. Holding

the lower plate stationary, the top plate is moved at a

constant speed, u, in the x direction. But you don’t get

to do this for free: the fluid pushes back. If you want to

keep the plate moving at a constant speed, you have to

apply a force F .

Near the upper plate, a friction force causes the fluid to be dragged along with the

same speed u. However, near the lower plate, the fluid remains stationary. This sets up

a velocity gradient, ux(z), with ux(d) = u and ux(0) = 0. Experimentally, it is found

that the force per unit area which must be exerted on the upper plate is proportional

to this velocity gradient,

F

A
= η

dux
dz
≈ η

u

d
(1.6)

where the second equality holds for small distances d. The coefficient of proportionality,

η, is called the viscosity. (Or, more correctly, the dynamic viscosity).

– 7 –



We would like to derive both the force law (1.6) and the viscosity η from first princi-

ples. It’s simple to get an intuition for what’s happening on the atomic level: when the

molecules collide with the upper plate, they pick up some x-momentum. They then

collide with other molecules lower down, imparting some of this x-momentum to new

molecules, which then collide with other molecules lower down, and so on. In this way,

we set up the velocity gradient in the z direction.

We’ll think of a slab of gas at some fixed value of z. To figure out the force acting on

this slab, we need to work out two things: the number of particles moving through the

slab per unit of time; and the extra momentum in the x-direction that each particle

imparts to the molecules in the slab.

Let’s first deal with the number of particles. The density of particles in the fluid is

n = N/V . How many of these pass through a slab in the z-direction in a given length

of time depends on how fast they’re travelling in the z-direction (obv!). But we know

how many particles there are with each speed: this is given by the Maxwell-Boltzmann

distribution (1.1). The net result is that the number of particles, per unit time, per

unit area, whose velocity is lies close to ~v (in a box of size d3~v), passing through a

horizontal slab is

# of particles per unit time per unit area = nvz f(~v) d3v (1.7)

Now let’s figure out the momentum that each of these molecules imparts. Consider a

particle at some position z. It gets hit from below, it gets hit from above. The hits

from above are likely to give it more momentum in the x direction; those from below,

less. Let’s consider those ariving from above. If they arrive from a position z + ∆z,

then they impart x-momentum

∆p = m(ux(z + ∆z)− ux(z)) ≈ m
dux
dz

∆z (1.8)

What is the distance ∆z here? Well, this depends

l cosθl
θ

Figure 3:

on the angle the particles come in at. They have

travelled the mean free path l, so if they arrive at

angle θ then we must have

∆z = l cos θ

Here θ ∈ [0, π/2) for particles arriving from above. But the same argument also holds

for particles coming in from below. These have θ ∈ (π/2, π] and, correspondingly,
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∆z < 0 which, from (1.8), tells us that these particles typically absorb momentum

from the layer at z.

Our goal is to work out the force per unit area acting on any z slice. This is given

by the rate of change of momentum

F

A
= − 1

A

∆p

∆t

where the minus sign arises because F defined in (1.6) is the force you need to apply to

keep the flow moving (while ∆p/∆t is the force of the fluid pushing back). The rate of

change of momentum per unit area is simply the product of our two expressions (1.7)

and (1.8). We have

F

A
= −n

∫
d3v∆p vz f(~v)

= −mndux
dz

∫
d3v vz

(
m

2πkBT

)3/2

e−mv
2/2kBT l cos θ

We’ve actually done something sly in this second line which is not really justified.

We’re assuming that the fluid has an average velocity 〈vx〉 = ux in the x-direction.

Yet, at the same time we’ve used the Maxwell-Boltzmann distribution for the velocity

of the particles which has 〈vx〉 = 0. Presumably this is not too bad if the speed of the

flow u � 〈v〉, the average speed of the particles in the fluid, but we really should be

more careful in quantifying this. Nonetheless, the spirit of this section is just to get a

heuristic feel for the physics, so let’s push on regardless. Writing the velocity integral

in polar coordinates, we have

F

A
= −mndux

dz

∫
dv v2

∫ π

0

dθ sin θ

∫ 2π

0

dφ (−v cos θ)l cos θ

(
m

2πkBT

)3/2

e
− mv2

2kBT (1.9)

At this stage we can trivially do the
∫
dφ integral and

∫ π
0
dθ cos2 θ sin θ = 2/3. We’re

left with

F

A
=
mnl

3

dux
dz

∫
dv 4π v3

(
m

2πkBT

)3/2

e−βmv
2/2 (1.10)

But the integral
∫
dv is simply the expression for the average speed 〈v〉 in the gas. We

have our final expression,

F

A
=

1

3
mnl〈v〉 dux

dz
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Comparing with (1.6), our expression for the viscosity is

η =
1

3
mnl〈v〉 (1.11)

There is something surprising about the viscosity: it is independent of the density

n = N/V of the gas. At first sight that looks like a wrong statement because, obvi-

ously, there is a factor of n sitting in (1.11). But remember that the mean free path

depends inversely on the density, l ∼ 1/n, as we can see from (1.2). The fact that the

viscosity does not depend on the fluid density is rather counterintuitive. You might

think that denser gasses should be more viscous. But the derivation above provides

the explanation for this behaviour: if you halve the density, there are half as many

molecules moving down. But each travels twice as far and therefore imparts twice the

momentum kick ∆p when they finally hit.

The expression (1.11) holds a special place in the history of physics. It was first

derived by Maxwell and is arguably the first truly novel prediction that was made

using kinetic theory, providing important evidence for the existence of atoms which, at

the time, were not universally believed. Indeed, Maxwell himself was surprised by the

fact that η is independent of the density of the gas, writing at the time

“Such a consequence of the mathematical theory is very startling and the

only experiment I have met with on the subject does not seem to confirm

it”.

Maxwell rose to the challenge, building the apparatus and performing the experiment

that confirmed his own prediction.

1.3.3 Thermal Conductivity

The next transport process we will look at is the conduction of heat. Place a fluid

between two plates, each held at a different temperature. Empirically, one finds a flow

of energy in the fluid. This is described by the heat flow vector, ~q, defined by the energy

per unit time passing through a unit area (which is perpendicular to ~q). Empirically,

the flow of heat is proportional to the temperature gradient,

~q = −κ∇T (1.12)

where κ is called the thermal conductivity. Once again, we would like to derive both

this empirical law, as well as an expression for κ.
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Our calculation follows the same path that we took to determine the viscosity. Let’s

set up a temperature gradient in the z-direction. The number of particles with velocity

~v that pass through a slab at position z per unit time per unit area is again given

by (1.7). We’ll use equipartition and assume that the average energy of a particle at

position z is given by

E(z) =
3

2
kBT (z)

We also need to know how particles deposit or gain energy when they reach the slab. If

a particle came from a hot place with temperature T (z+∆z), we’ll assume the particle

deposits the difference in energy. Similarly, if the particle arrives from a colder place,

we’ll assume it absorbs the difference. This means

∆E = E(z + ∆z)− E(z) =
3

2
kB
dT

dz
∆z

Recall that the height ∆z from which the particle arrives depends on both the mean

free path and the angle at which it comes in: ∆z = l cos θ.

As in the derivation of the viscosity, there is something a little dodgy in what we’ve

written above. We’ve equated the energy deposited or gained by a particle with the

average energy. But this energy transfer will certainly depend on the velocity of the

particle and which is dictated by the Maxwell-Boltzmann distribution in (1.7). As in

the derivation of the viscosity, we will simply ignore this fact and proceed. We’ll do

better in the next section.

Modulo the concerns above, we now have enough information to compute the heat

flow. It is

|~q| = n

∫
d3v ∆Evzf(v)

Doing the integrals
∫
d3v using the same steps that took us from (1.9) to (1.10), we

derive the law of heat flow (1.12)

|~q| = −1

2
kBnl〈v〉

dT

dz

The thermal conductivity is the proportionality constant. It is usually expressed in

terms of the specific heat, cV , of the ideal gas

κ =
1

3
cV l〈v〉〉 (1.13)

where

cV =
3

2
nkB

– 11 –



1.3.4 Conservation Means Diffusion

Thermal conductivity is all about the transport of energy; viscosity is about the trans-

port of momentum. But both energy and momentum have a very special property:

they are conserved.

What’s more, because physics is local, we can make a stronger statement than just

“the total energy doesn’t change”. If the energy in some region of space, E(~x), changes

then it must show up in a neighbouring region of space. But that’s exactly what the

heat flow ~q is telling us: how energy is moving from one point to the next. This local

conservation law is captured by the equation.

dE

dt
+∇ · ~q = 0

Once again equating energy with the thermal energy, E(~x) = 3
2
kBT (~x), the continuity

equation reads

dT

dt
= − 1

cV
∇ · ~q =

κ

cV
∇2T (1.14)

This is the heat equation. It tells us that any inhomogeneities in temperature are

smoothed out through diffusion with diffusion constant D = κ/cV = 1
3
l〈v〉 ∼ l2/τ .

There is a similar story for momentum, pi where i = 1, 2, 3 labels the three directions

of space. The continuity equation reads

dpi

dt
+
∂P ji

∂xj
= 0

where P ji is the pressure tensor which describes the flux of i-momentum in the j-

direction.

But looking back at our derivation of the viscosity in Section 1.3.2, this is precisely

what we equated to the force F/A: the flux of x-momentum in the z-direction. (Ac-

tually there’s an extra minus sign that follows from our previous definition of F ).

Combining the continuity equation with our earlier expression for the viscosity, we find

dpx

dt
= mn

dux
dt

= η
d2ux
dz2

where, as in Section 1.3.2, we’ve restricted to situations with no velocity gradients in the

x and y directions. The result is once again a diffusion equation, this time for gradients

in velocity. And, once again, the diffusion constant given by D = η/mn = 1
3
l〈v〉 ∼ l2/τ .
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We learn that all roads lead to diffusion. For any conserved quantity – whether par-

ticle number, energy or momentum – any inhomogeneities in the system are smoothed

away through the diffusion equation.

The equations that we’ve written down in this final section are rather hand-waving

and, in cases, missing some interesting physics. The proper equations are those of

hydrodynamics. The goal of the next section is the do a better job in deriving these.
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2. Kinetic Theory

The purpose of this section is to lay down the foundations of kinetic theory, starting

from the Hamiltonian description of 1023 particles, and ending with the Navier-Stokes

equation of fluid dynamics. Our main tool in this task will be the Boltzmann equation.

This will allow us to provide derivations of the transport properties that we sketched in

the previous section, but without the more egregious inconsistencies that crept into our

previous attempt. But, perhaps more importantly, the Boltzmann equation will also

shed light on the deep issue of how irreversibility arises from time-reversible classical

mechanics.

2.1 From Liouville to BBGKY

Our starting point is simply the Hamiltonian dynamics for N identical point particles.

Of course, as usual in statistical mechanics, here is N ridiculously large: N ∼ O(1023)

or something similar. We will take the Hamiltonian to be of the form

H =
1

2m

N∑
i=1

~p 2
i +

N∑
i=1

V (~ri) +
∑
i<j

U(~ri − ~rj) (2.1)

The Hamiltonian contains an external force ~F = −∇V that acts equally on all parti-

cles. There are also two-body interactions between particles, captured by the potential

energy U(~ri − ~rj). At some point in our analysis (around Section 2.2.3) we will need

to assume that this potential is short-ranged, meaning that U(r) ≈ 0 for r � d where,

as in the last Section, d is the atomic distance scale.

Hamilton’s equations are

∂~pi
∂t

= −∂H
∂~ri

,
∂~ri
∂t

=
∂H

∂~pi
(2.2)

Our interest in this section will be in the evolution of a probability distribution,

f(~ri, ~pi; t) over the 6N dimensional phase space. This function tells us the proba-

bility that the system will be found in the vicinity of the point (~ri, ~pi). As with all

probabilities, the function is normalized as∫
dV f(~ri, ~pi; t) = 1 with dV =

N∏
i=1

d3rid
3pi

Furthermore, because probability is locally conserved, it must obey a continuity equa-

tion: any change of probability in one part of phase space must be compensated by

– 14 –



a flow into neighbouring regions. But now we’re thinking in terms of phase space,

the “∇” term in the continuity equation includes both ∂/∂~ri and ∂/∂~pi and, corre-

spondingly, the velocity vector in phase space is (~̇ri, ~̇pi). The continuity equation of the

probability distribution is then

∂f

∂t
+

∂

∂~ri
·
(
~̇rif
)

+
∂

∂~pi
·
(
~̇pif
)

= 0

where we’re using the convention that we sum over the repeated index i = 1, . . . , N .

But, using Hamilton’s equations (2.2), this becomes

∂f

∂t
+

∂

∂~ri
·
(
∂H

∂~pi
f

)
− ∂

∂~pi
·
(
∂H

∂~ri
f

)
= 0

⇒ ∂f

∂t
+
∂f

∂~ri
· ∂H
∂~pi
− ∂f

∂~pi
· ∂H
∂~ri

= 0

This final equation is the Liouville’s equation. It is the statement that probability

doesn’t change as you follow it along any trajectory in phase space, as is seen by

writing the Liouville equation as a total derivative,

df

dt
=
∂f

∂t
+
∂f

∂~ri
· ~̇ri +

∂f

∂~pi
· ~̇pi = 0

To get a feel for how probability distributions evolve, one often evokes the closely

related Liouville’s theorem2. This is the statement that if you follow some region of

phase space under Hamiltonian evolution, then its shape can change but its volume

remains the same. This means that the probability distribution on phase space acts

like an incompressible fluid. Suppose, for example, that it’s a constant, f , over some

region of phase space and zero everywhere else. Then the distribution can’t spread out

over a larger volume, lowering its value. Instead, it must always be f over some region

of phase space. The shape and position of this region can change, but not its volume.

The Liouville equation is often written using the Poisson bracket,

{A,B} ≡ ∂A

∂~ri
· ∂B
∂~pi
− ∂A

∂~pi
· ∂B
∂~ri

With this notation, Liouville’s equation becomes simply

∂f

∂t
= {H, f}

2A fuller discussion of Hamiltonian mechanics and Liouville’s theorem can be found in the lectures

on Classical Dynamics.
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It’s worth making a few simple comments about these probability distributions. Firstly,

an equilibrium distribution is one which has no explicit time dependence:

∂f

∂t
= 0

which holds if {H, f} = 0. One way to satisfy this is if f is a function of H and the most

famous example is the Boltzmann distribution, f ∼ e−βH . However, notice that there

is nothing (so-far!) within the Hamiltonian framework that requires the equilibrium

distribution to be Boltzmann: any function that Poisson commutes with H will do the

job. We’ll come back to this point in Section 2.2.2.

Suppose that we have some function, A(~ri, ~pi), on phase space. The expectation

value of this function is given by

〈A〉 =

∫
dV A(~ri, ~pi)f(~ri, ~pi; t) (2.3)

This expectation value changes with time only if there is explicit time dependence in

the distribution. (For example, this means that in equilibrium 〈A〉 is constant). We

have

d〈A〉
dt

=

∫
dV A

∂f

∂t

=

∫
dV A

(
∂f

∂~pi

∂H

∂~ri
− ∂f

∂~ri

∂H

∂~pi

)
=

∫
dV

(
−∂A
∂~pi

∂H

∂~ri
+
∂A

∂~ri

∂H

∂~pi

)
f (2.4)

where we have integrated by parts to get to the last line, throwing away boundary

terms which is justified in this context because f is normalized which ensures that we

must have f → 0 in asymptotic parts of phase space. Finally, we learn that

d〈A〉
dt

=

∫
dV {A,H} f = 〈{A,H}〉 (2.5)

This should be ringing some bells. The Poisson bracket notation makes these expres-

sions for classical expectation values look very similar to quantum expectation values.

2.1.1 The BBGKY Hierarchy

Although we’re admitting some ignorance in our description of the system by consider-

ing a probability distribution over N -particle phase space, this hasn’t really made our

life any easier: we still have a function of ∼ 1023 variables. To proceed, the plan is
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to limit our ambition. We’ll focus not on the probability distribution for all N parti-

cles but instead on the one-particle distribution function. This captures the expected

number of partcles lying at some point (~r, ~p). It is defined by

f1(~r, ~p; t) = N

∫ N∏
i=2

d3rid
3pi f(~r, ~r2, . . . , ~rN , ~p, ~p2, . . . ~pN ; t)

Although we seem to have singled out the first particle for special treatment in the

above expression, this isn’t really the case since all N of our particles are identical.

This is also reflected in the factor N which sits out front which ensures that f1 is

normalized as ∫
d3rd3p f1(~r, ~p; t) = N (2.6)

For many purposes, the function f1 is all we really need to know about a system. In

particular, it captures many of the properties that we met in the previous chapter. For

example, the average density of particles in real space is simply

n(~r; t) =

∫
d3p f1(~r, ~p; t) (2.7)

The average velocity of particles is

~u(~r; t) =

∫
d3p

~p

m
f1(~r, ~p; t) (2.8)

and the energy flux is

~E(~r; t) =

∫
d3p

~p

m
E(~p)f1(~r, ~p; t) (2.9)

where we usually take E(~p) = p2/2m. All of these quantities (or at least close relations)

will be discussed in some detail in Section 2.4.

Ideally we’d like to derive an equation governing f1. To see how it changes with time,

we can simply calculate:

∂f1

∂t
= N

∫ N∏
i=2

d3rid
3pi

∂f

∂t
= N

∫ N∏
i=2

d3rid
3pi {H, f}

Using the Hamiltonian given in (2.1), this becomes

∂f1

∂t
= N

∫ N∏
i=2

d3rid
3pi

[
−

N∑
j=1

~pj
m
· ∂f
∂~rj

+
N∑
j=1

∂V

∂~rj
· ∂f
∂~pj

+
N∑
j=1

∑
k<l

∂U(~rk − ~rl)
∂~rj

· ∂f
∂~pj

]
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Now, whenever j = 2, . . . N , we can always integrate by parts to move the derivatives

away from f and onto the other terms. And, in each case, the result is simply zero

because when the derivative is with respect to ~rj, the other terms depend only on ~pi
and vice-versa. We’re left only with the terms that involve derivatives with respect

to ~r1 and ~p1 because we can’t integrate these by parts. Let’s revert to our previous

notation and call ~r1 ≡ ~r and ~p1 ≡ ~p. We have

∂f1

∂t
= N

∫ N∏
i=2

d3rid
3pi

[
− ~p

m
· ∂f
∂~r

+
∂V (~r)

∂~r
· ∂f
∂~p

+
N∑
k=2

∂U(~r − ~rk)
∂~r

· ∂f
∂~p

]

= {H1, f1}+N

∫ N∏
i=2

d3rid
3pi

N∑
k=2

∂U(~r − ~rk)
∂~r

· ∂f
∂~p

(2.10)

where we have defined the one-particle Hamiltonian

H1 =
p2

2m
+ V (~r) (2.11)

Notice that H1 includes the external force V acting on the particle, but it knows nothing

about the interaction with the other particles. All of that information is included in

the last term with U(~r−~rk). We see that the evolution of the one-particle distribution

function is described by a Liouville-like equation, together with an extra term. We

write

∂f1

∂t
= {H1, f1}+

(
∂f1

∂t

)
coll

(2.12)

The first term is sometimes referred to as the streaming term. It tells you how the

particles move in the absence of collisions. The second term, known as the collision

integral, is given by the second term in (2.10). In fact, because all particles are the

same, each of the (N − 1) terms in
∑N

k=2 in (2.10) are identical and we can write(
∂f1

∂t

)
coll

= N(N − 1)

∫
d3r2d

3p2
∂U(~r − ~r2)

∂~r
· ∂
∂~p

∫ N∏
i=3

d3rid
3pi f(~r, ~r2, . . . , ~p, ~p2, . . . ; t)

But now we’ve got something of a problem. The collision integral can’t be expressed

in terms of the one-particle distribution function. And that’s not really surprising. As

the name suggests, the collision integral captures the interactions – or collisions – of

one particle with another. Yet f1 contains no information about where any of the other

particles are in relation to the first. However some of that information is contained in

the two-particle distribution function,

f2(~r1, ~r2, ~p1, ~p2; t) ≡ N(N − 1)

∫ N∏
i=3

d3rid
3pi f(~r1, ~r2, . . . , ~p1, ~p2, . . . ; t)
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With this definition, the collision integral is written simply as(
∂f1

∂t

)
coll

=

∫
d3r2d

3p2
∂U(~r − ~r2)

∂~r
· ∂f2

∂~p
(2.13)

The collision term doesn’t change the distribution of particles in space. This is captured

by the particle density (2.7) which we get by simply integrating n =
∫
d3pf1. But, after

integrating over
∫
d3p, we can perform an integrating by parts in the collision integral

to see that it vanishes. In contrast, if we’re interested in the distribution of velocities –

such as the current (2.8) or energy flux (2.9) – then the collision integral is important.

The upshot of all of this is that if we want to know how the one-particle distribution

function evolves, we also need to know something about the two-particle distribution

function. But we can always figure out how f2 evolves by repeating the same calculation

that we did above for f1. It’s not hard to show that f2 evolves by a Liouville-like

equation, but with a corrected term that depends on the three-particle distribution

function f3. And f3 evolves in a Liouville manner, but with a correction term that

depends on f4, and so on. In general, the n-particle distribution function

fn(~r1, . . . ~rn, ~p1, . . . ~pn; t) =
N !

(N − n)!

∫ N∏
i=n+1

d3rid
3pi f(~r1, . . . ~rN , ~p1, . . . ~pN ; t)

obeys the equation

∂fn
∂t

= {Hn, fn}+
n∑
i=1

∫
d3rn+1d

3pn+1
∂U(~ri − ~rn+1)

∂~ri
· ∂fn+1

∂~pi
(2.14)

where the effective n-body Hamiltonian includes the external force and any interactions

between the n particles but neglects interactions with any particles outside of this set,

Hn =
n∑
i=1

(
~p 2
i

2m
+ V (~ri)

)
+
∑
i<j≤n

U(~ri − ~rj)

The equations (2.14) are known as the BBGKY hierarchy. (The initials stand for

Bogoliubov, Born, Green, Kirkwood and Yvon). They are telling us that any group

of n particles evolves in a Hamiltonian fashion, corrected by interactions with one of

the particles outside that group. At first glance, it means that there’s no free lunch;

if we want to understand everything in detail, then we’re going to have to calculate

everything. We started with the Liouville equation governing a complicated function

f of N ∼ O(1023) variables and it looks like all we’ve done is replace it with O(1023)

coupled equations.
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However, there is an advantage is working with the hierarchy of equations (2.14)

because they isolate the interesting, simple variables, namely f1 and other lower fn.

This means that the equations are in a form that is ripe to start implementing various

approximations. Given a particular problem, we can decide which terms are important

and, ideally, which terms are so small that they can be ignored, truncating the hierarchy

to something manageable. Exactly how you do this depends on the problem at hand.

Here we explain the simplest, and most useful, of these truncations: the Boltzmann

equation.

2.2 The Boltzmann Equation

“Elegance is for tailors”

Ludwig Boltzmann

In this section, we explain how to write down a closed equation for f1 alone. This

will be the famous Boltzmann equation. The main idea that we will use is that there

are two time scales in the problem. One is the time between collisions, τ , known as

the scattering time or relaxation time. The second is the collision time, τcoll, which

is roughly the time it takes for the process of collision between particles to occur. In

situations where

τ � τcoll (2.15)

we should expect that, for much of the time, f1 simply follows its Hamiltonian evolution

with occasional perturbations by the collisions. This, for example, is what happens for

the dilute gas. And this is the regime we will work in from now on.

At this stage, there is a right way and a less-right way to proceed. The right way is

to derive the Boltzmann equation starting from the BBGKY hierarchy. And we will do

this in Section 2.2.3. However, as we shall see, it’s a little fiddly. So instead we’ll start

by taking the less-right option which has the advantage of getting the same answer

but in a much easier fashion. This option is to simply guess what form the Boltzmann

equation has to take.

2.2.1 Motivating the Boltzmann Equation

We’ve already caught our first glimpse of the Boltzmann equation in (2.12),

∂f1

∂t
= {H1, f1}+

(
∂f1

∂t

)
coll

(2.16)

But, of course, we don’t yet have an expression for the collision integral in terms of

f1. It’s clear from the definition (2.13) that the second term represents the change in
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momenta due to two-particle scattering. When τ � τcoll, the collisions occur occasion-

ally, but abruptly. The collision integral should reflect the rate at which these collisions

occur.

Suppose that our particle sits at (~r, ~p) in phase space and collides with another

particle at (~r, ~p2). Note that we’re assuming here that collisions are local in space so

that the two particles sit at the same point. These particles can collide and emerge

with momenta ~p ′1 and ~p ′2. We’ll define the rate for this process to occur to be

Rate = ω(~p, ~p2|~p ′1, ~p ′2) f2(~r, ~r, ~p, ~p2) d3p2d
3p′1d

3p′2 (2.17)

(Here we’ve dropped the explicit t dependence of f2 only to keep the notation down).

The scattering function ω contains the information about the dynamics of the process.

It looks as if this is a new quantity which we’ve introduced into the game. But, using

standard classical mechanics techniques, one can compute ω for a given inter-atomic

potential U(~r). (It is related to the differential cross-section; we will explain how to

do this when we do things better in Section 2.2.3). For now, note that the rate is

proportional to the two-body distribution function f2 since this tells us the chance that

two particles originally sit in (~r, ~p) and (~r, ~p2).

We’d like to focus on the distribution of particles with some specified momentum

~p. Two particles with momenta ~p and ~p2 can be transformed in two particles with

momenta ~p ′1 and ~p ′2. Since both momenta and energy are conserved in the collision, we

have

~p+ ~p2 = ~p ′1 + ~p ′2 (2.18)

p2 + p2
2 = p′ 21 + p′ 22 (2.19)

There is actually an assumption that is hiding in these equations. In general, we’re

considering particles in an external potential V . This provides a force on the particles

which, in principle, could mean that the momentum and kinetic energy of the particles

is not the same before and after the collision. To eliminate this possibility, we will

assume that the potential only varies appreciably over macroscopic distance scales, so

that it can be neglected on the scale of atomic collisions. This, of course, is entirely

reasonable for most external potentials such as gravity or electric fields. Then (2.18)

and (2.19) continue to hold.

While collisions can deflect particles out of a state with momentum ~p and into a

different momentum, they can also deflect particles into a state with momentum ~p.
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This suggests that the collision integral should contain two terms,(
∂f1

∂t

)
coll

=

∫
d3p2d

3p′1d
3p′2

[
ω(~p ′1, ~p

′
2|~p, ~p2) f2(~r, ~r, ~p ′1, ~p

′
2)− ω(~p, ~p2|~p ′1, ~p ′2)f2(~r, ~r, ~p, ~p2)

]
The first term captures scattering into the state ~p, the second scattering out of the

state ~p.

The scattering function obeys a few simple requirements. Firstly, it is only non-

vanishing for scattering events that obey the conservation of momentum (2.18) and

energy (2.19). Moreover, the discrete symmetries of spacetime also give us some im-

portant information. Under time reversal, ~p→ −~p and, of course, what was coming in

is now going out. This means that any scattering which is invariant under time reversal

(which is more or less anything of interest) must obey

ω(~p, ~p2|~p ′1, ~p ′2) = ω(−~p ′1,−~p ′2| − ~p,−~p2)

Furthermore, under parity (~r, ~p)→ (−~r,−~p). So any scattering process which is parity

invariant further obeys

ω(~p, ~p2|~p ′1, ~p ′2) = ω(−~p,−~p2| − ~p ′1,−~p ′2)

The combination of these two means that the scattering rate is invariant under exchange

of ingoing and outgoing momenta,

ω(~p, ~p2|~p ′1, ~p ′2) = ω(~p ′1, ~p
′
2|~p, ~p2) (2.20)

(There is actually a further assumption of translational invariance here, since the scat-

tering rate at position −~r should be equivalent to the scattering rate at position +~r).

The symmetry property (2.20) allows us to simplify the collision integral to(
∂f1

∂t

)
coll

=

∫
d3p2d

3p′1d
3p′2 ω(~p ′1, ~p

′
2|~p, ~p2)

[
f2(~r, ~r, ~p ′1, ~p

′
2)− f2(~r, ~r, ~p, ~p2)

]
(2.21)

To finish the derivation, we need to face up to our main goal of expressing the collision

integral in terms of f1 rather than f2. We make the assumption that the velocities of

two particles are uncorrelated, so that we can write

f2(~r, ~r, ~p, ~p2) = f1(~r, ~p)f1(~r, ~p2) (2.22)

This assumption, which sometimes goes by the name of molecular chaos, seems innocu-

ous enough. But actually it is far from innocent! To see why, let’s look more closely
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at what we’ve actually assumed. Looking at (2.21), we can see that we have taken the

rate of collisions to be proportional to f2(~r, ~r, ~p1, ~p2) where p1 and p2 are the momenta

of the particles before the collision. That means that if we substitute (2.22) into (2.21),

we are really assuming that the velocities are uncorrelated before the collision. And

that sounds quite reasonable: you could imagine that during the collision process, the

velocities between two particles become correlated. But there is then a long time, τ ,

before one of these particles undergoes another collision. Moreover, this next collision

is typically with a completely different particle and it seems entirely plausible that the

velocity of this new particle has nothing to do with the velocity of the first. Nonethe-

less, the fact that we’ve assumed that velocities are uncorrelated before the collision

rather than after has, rather slyly, introduced an arrow of time into the game. And

this has dramatic implications which we will see in Section 2.3 where we derive the

H-theorem.

Finally, we may write down a closed expression for the evolution of the one-particle

distribution function given by

∂f1

∂t
= {H1, f1}+

(
∂f1

∂t

)
coll

(2.23)

with the collision integral(
∂f1

∂t

)
coll

=

∫
d3p2d

3p′1d
3p′2 ω(~p ′1, ~p

′
2|~p, ~p2)

[
f1(~r, ~p ′1)f1(~r, ~p ′2)− f1(~r, ~p)f1(~r, ~p2)

]
(2.24)

This is the Boltzmann equation. It’s not an easy equation to solve! It’s a differential

equation on the left, an integral on the right, and non-linear. You may not be surprised

to hear that exact solutions are not that easy to come by. We’ll see what we can do.

2.2.2 Equilibrium and Detailed Balance

Let’s start our exploration of the Boltzmann equation by revisiting the question of the

equilibrium distribution obeying ∂f eq/∂t = 0. We already know that {f,H1} = 0 if f

is given by any function of the energy or, indeed any function that Poisson commutes

with H. For clarity, let’s restrict to the case with vanishing external force, so V (r) = 0.

Then, if we look at the Liouville equation alone, any function of momentum is an

equilibrium distribution. But what about the contribution from the collision integral?

One obvious way to make the collision integral vanish is to find a distribution which

obeys the detailed balance condition,

f eq
1 (~r, ~p ′1)f eq

1 (~r, ~p ′2) = f eq
1 (~r, ~p)f eq

1 (~r, ~p2) (2.25)
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In fact, it’s more useful to write this as

log(f eq
1 (~r, ~p ′1)) + log(f eq

1 (~r, ~p ′2)) = log(f eq
1 (~r, ~p)) + log(f eq

1 (~r, ~p2)) (2.26)

How can we ensure that this is true for all momenta? The momenta on the right are

those before the collision; on the left they are those after the collision. From the form of

(2.26), it’s clear that the sum of log f eq
1 must be the same before and after the collision:

in other words, this sum must be conserved during the collision. But we know what

things are conserved during collisions: momentum and energy as shown in (2.18) and

(2.19) respectively. This means that we should take

log(f eq
1 (~r, ~p)) = β (µ− E(~p) + ~u · ~p ) (2.27)

where E(p) = p2/2m for non-relativistic particles and µ, β and ~u are all constants.

We’ll adjust the constant µ to ensure that the overall normalization of f1 obeys (2.6).

Then, writing ~p = m~v, we have

f eq
1 (~r, ~p) =

N

V

(
β

2πm

)3/2

e−βm(~v−~u)2/2 (2.28)

which reproduces the Maxwell-Boltzmann distribution if we identify β with the inverse

temperature. Here ~u allows for the possibility of an overall drift velocity. We learn

that the addition of the collision term to the Liouville equation forces us to sit in the

Boltzmann distribution at equilibrium.

There is a comment to make here that will play an important role in Section 2.4.

If we forget about the streaming term {H1, f1} then there is a much larger class of

solutions to the requirement of detailed balance (2.25). These solutions are again of

the form (2.27), but now with the constants µ, β and ~u promoted to functions of space

and time. In other words, we can have

f local
1 (~r, ~p; t) = n(~r, t)

(
β(~r, t)

2πm

)3/2

exp
(
−β(~r, t)

m

2
[(~v − ~u(~r, t)]2

)
(2.29)

Such a distribution is not quite an equilibrium distribution, for while the collision

integral in (2.23) vanishes, the streaming term does not. Nonetheless, distributions

of this kind will prove to be important in what follows. They are said to be in local

equilibrium, with the particle density, temperature and drift velocity varying over space.

The Quantum Boltzmann Equation

Our discussion above was entirely for classical particles and this will continue to be

our focus for the remainder of this section. However, as a small aside let’s look at how
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things change for quantum particles. We’ll keep the assumption of molecular chaos,

so f2 ∼ f1f1 as in (2.22). The main difference occurs in the scattering rate (2.17) for

scattering ~p1 + ~p2 → ~p ′1 + ~p ′2 which now becomes

Rate = ω(~p, ~p2|~p ′1, ~p ′2) f1(~p1)f1(~p2){ 1± f1(~p ′1)} {1± f(~p ′2)} d3p2d
3p′1d

3p′2

The extra terms are in curly brackets. We pick the + sign for bosons and the − sign

for fermions. The interpretation is particularly clear for fermions, where the number of

particles in a given state can’t exceed one. Now it’s not enough to know the probability

that initial state is filled. We also need to know that probability that the final state is

free for the particle to scatter into: and that’s what the {1− f1} factors are telling us.

The remaining arguments go forward as before, resulting in the quantum Boltzmann

equation(
∂f1

∂t

)
coll

=

∫
d3p2d

3p′1d
3p′2 ω(~p ′1, ~p

′
2|~p, ~p2)

[
f1(~p ′1)f1(~p ′2){1± f1(~p)} {1± f1(~p2}

−f1(~p)f1(~p2) {1± f1(~p ′1)} {1± f1(~r, ~p ′2)}
]

To make contact with what we know, we can look again at the requirement for equi-

librium. The condition of detailed balance now becomes

log

(
f eq

1 (~p ′1)

1± f eq
1 (~p ′1)

)
+ log

(
f eq

1 (~p ′2)

1± f eq
1 (~p ′2)

)
= log

(
f eq

1 (~p)

1± f eq
1 (~p)

)
+ log

(
f eq

1 (~p2)

1± f eq
1 (~p2)

)
Which is again solved by relating each log to a linear combination of the energy and

momentum. We find

f eq
1 (~p) =

1

e−β(µ−E(~p)+~u·~p) ∓ 1

which reproduces the Bose-Einstein and Fermi-Dirac distributions.

2.2.3 A Better Derivation

In Section (2.2.1), we derived an expression for the collision integral (2.24) using in-

tuition for the scattering processes at play. But, of course, we have a mathematical

expression for the collision integral in (2.13) involving the two-particle distribution

function f2. In this section we will sketch how one can derive (2.24) from (2.13). This

will help clarify some of the approximations that we need to use. At the same time,

we will also review some basic classical mechanics that connects the scattering rate ω

to the inter-particle potential U(r).
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We start by returning to the BBGKY hierarchy of equations. For simplicity, we’ll

turn off the external potential V (~r) = 0. We don’t lose very much in doing this because

most of the interesting physics is concerned with the scattering of atoms off each other.

The first two equations in the hierarchy are(
∂

∂t
+
~p1

m
· ∂
∂~r1

)
f1 =

∫
d3r2d

3p2
∂U(~r1 − ~r2)

∂~r1

· ∂f2

∂~p1

(2.30)

and (
∂

∂t
+
~p1

m
· ∂
∂~r1

+
~p2

m
· ∂
∂~r2

− 1

2

∂U(~r1 − ~r2)

∂~r1

·
[
∂

∂~p1

− ∂

∂~p2

])
f2 = (2.31)∫

d3r3d
3p3

(
∂U(~r1 − ~r3)

∂~r1

· ∂
∂~p1

+
∂U(~r2 − ~r3)

∂~r2

· ∂
∂~p2

)
f3

In both of these equations, we’ve gathered the streaming terms on the left, leaving

only the higher distribution function on the right. To keep things clean, we’ve sup-

pressed the arguments of the distribution functions: they are f1 = f1(~r1, ~p1; t) and

f2 = f2(~r1, ~r2, ~p1, ~p2; t) and you can guess the arguments for f3.

Our goal is to better understand the collision integral on the right-hand-side of (2.30).

It seems reasonable to assume that when particles are far-separated, their distribution

functions are uncorrelated. Here, “far separated” means that the distance between

them is much farther than the atomic distance scale d over which the potential U(r)

extends. We expect

f2(~r1, ~r2, ~p1, ~p2; t)→ f1(~r1, ~p1; t)f1(~r2, ~p2; t) when |~r1 − ~r1| � d

But, a glance at the right-hand-side of (2.30) tells us that this isn’t the regime of

interest. Instead, f2 is integrated ∂U(r)/∂r which varies significantly only over a region

r ≤ d. This means that we need to understand f2 when two particles get close to each

other.

We’ll start by getting a feel for the order of magnitude of various terms in the

hierarchy of equations. Dimensionally, each term in brackets in (2.30) and (2.31) is an

inverse time scale. The terms involving the inter-atomic potential U(r) are associated

to the collision time τcoll.

1

τcoll

∼ ∂U

∂~r
· ∂
∂~p

This is the time taken for a particle to cross the distance over which the potential U(r)

varies which, for short range potentials, is comparable to the atomic distance scale, d,
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itself and

τcoll ∼
d

v̄rel

where v̄rel is the average relative speed between atoms. Our first approximation will be

that this is the shortest time scale in the problem. This means that the terms involving

∂U/∂r are typically the largest terms in the equations above and determine how fast

the distribution functions change.

With this in mind, we note that the equation for f1 is special because it is the only

one which does not include any collision terms on the left of the equation (i.e. in

the Hamiltonian Hn). This means that the collision integral on the right-hand side

of (2.30) will usually dominate the rate of change of f1. (Note, however, we’ll meet

some important exceptions to this statement in Section 2.4). In contrast, the equation

that governs f2 has collision terms on the both the left and the right-hand sides. But,

importantly, for dilute gases, the term on the right is much smaller than the term on

the left. To see why this is, we need to compare the f3 term to the f2 term. If we were

to integrate f3 over all space, we get∫
d3r2d

3p3 f3 = Nf2

(where we’ve replaced (N − 2) ≈ N in the above expression). However, the right-

hand side of (2.31) is not integrated over all of space. Instead, it picks up a non-zero

contribution over an atomic scale ∼ d3. This means that the collision term on the

right-hand-side of (2.31) is suppressed compared to the one on the left by a factor of

Nd3/V where V is the volume of space. For gases that we live and breath every day,

Nd3/V ∼ 10−3− 10−4. We make use of this small number to truncate the hierarchy of

equations and replace (2.31) with(
∂

∂t
+
~p1

m
· ∂
∂~r1

+
~p2

m
· ∂
∂~r2

− 1

2

∂U(~r1 − ~r2)

∂~r1

·
[
∂

∂~p1

− ∂

∂~p2

])
f2 ≈ 0 (2.32)

This tells us that f2 typically varies on a time scale of τcoll and a length scale of d.

Meanwhile, the variations of f1 is governed by the right-hand-side of (2.30) which, by

the same arguments that we just made, are smaller than the variations of f2 by a factor

of Nd3/V . In other words, f1 varies on the larger time scale τ .

In fact, we can be a little more careful when we say that f2 varies on a time scale

τcoll. We see that – as we would expect – only the relative position is affected by the
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collision term. For this reason, it’s useful to change coordinate to the centre of mass

and the relative positions of the two particles. We write

~R =
1

2
(~r1 + ~r2) , ~r = ~r1 − ~r2

and similar for the momentum

~P = ~p1 + ~p2 , ~p =
1

2
(~p1 − ~p2)

And we can think of f2 = f2(~R,~r, ~P , ~p; t). The distribution function will depend on the

centre of mass variables ~R and ~P in some slow fashion, much as f1 depends on position

and momentum. In contrast, the dependence of f2 on the relative coordinates ~r and

~p is much faster – these vary over the short distance scale and can change on a time

scale of order τcoll.

Since the relative distributions in f2 vary much more quickly that f1, we’ll assume

that f2 reaches equilibrium and then feeds into the dynamics of f1. This means that,

ignoring the slow variations in ~R and ~P , we will assume that ∂f2/∂t = 0 and replace

(2.32) with the equilibrium condition(
~p

m
· ∂
∂~r
− ∂U(~r)

∂~r
· ∂
∂~p

)
f2 ≈ 0 (2.33)

This is now in a form that allows us to start manipulating the collision integral on the

right-hand-side of (2.30). We have(
∂f1

∂t

)
coll

=

∫
d3r2d

3p2
∂U(~r1 − ~r2)

∂~r1

· ∂f2

∂~p1

=

∫
d3r2d

3p2
∂U(~r)

∂~r
·
[
∂

∂~p1

− ∂

∂~p2

]
f2

=
1

m

∫
|~r1−~r2|≤d

d3r2d
3p2 (~p1 − ~p2) · ∂f2

∂~r
(2.34)

where in the second line the extra term ∂/∂~p2 vanishes if we integrate by parts and,

in the third line, we’ve used our equilibrium condition (2.33), with the limits on the

integral in place to remind us that only the region r ≤ d contributes to the collision

integral.

A Review of Scattering Cross Sections

To complete the story, we still need to turn (2.34) into the collision integral (2.24).

But most of the work simply involves clarifying how the scattering rate ω(~p, ~p2|~p ′1, ~p ′2)

is defined for a given inter-atomic potential U(~r1−~r2). And, for this, we need to review

the concept of the differential cross section.

– 28 –



b

bδ

dσ

dΩ

θ
φ

Figure 4: The differential cross section.

Let’s think about the collision between two particles. They start with momenta

~pi = m~vi and end with momenta ~p ′i = m~v ′i with i = 1, 2. Now let’s pick a favourite,

say particle 1. We’ll sit in its rest frame and consider an onslaught of bombarding

particles, each with velocity ~v2−~v1. This beam of incoming particles do not all hit our

favourite boy at the same point. Instead, they come in randomly distributed over the

plane perpendicular to ~v2 − ~v1. The flux, I, of these incoming particles is the number

hitting this plane per area per second,

I =
N

V
|~v2 − ~v1|

Now spend some time staring at Figure 4. There are a number of quantities defined

in this picture. First, the impact parameter, b, is the distance from the asymptotic

trajectory to the dotted, centre line. We will use b and φ as polar coordinates to

parameterize the plane perpendicular to the incoming particle. Next, the scattering

angle, θ, is the angle by which the incoming particle is deflected. Finally, there are two

solid angles, dσ and dΩ, depicted in the figure. Geometrically, we see that they are

given by

dσ = bdbdφ and dΩ = sin θdθdφ

The number of particles scattered into dΩ in unit time is Idσ. We usually write this as

I
dσ

dΩ
dΩ = Ib db dφ (2.35)
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Figure 5: On the left: a point particle scattering off a hard sphere. On the right: a hard

sphere scattering off a hard sphere.

where the differential cross section is defined as∣∣∣∣ dσdΩ

∣∣∣∣ =
b

sin θ

∣∣∣∣dbdθ
∣∣∣∣ =

1

2

∣∣∣∣ d(b2)

d cos θ

∣∣∣∣ (2.36)

You should think of this in the following way: for a fixed (~v2 − ~v1), there is a unique

relationship between the impact parameter b and the scattering angle θ and, for a given

potential U(r), you need to figure this out to get |dσ/dΩ| as a function of θ.

Now we can compare this to the notation that we used earlier in (2.17). There we

talked about the rate of scattering into a small area d3p′1d
3p′2 in momentum space. But

this is the same thing as the differential cross-section.

ω(~p, ~p2; ~p ′1, ~p
′
2) d3p′1d

3p′2 = |~v − ~v2|
∣∣∣∣ dσdΩ

∣∣∣∣ dΩ (2.37)

(Note, if you’re worried about the fact that d3p′1d
3p′2 is a six-dimensional area while

dΩ is a two dimensional area, recall that conservation of energy and momenta provide

four restrictions on the ability of particles to scatter. These are implicit on the left,

but explicit on the right).

An Example: Hard Spheres

In Section 1.2, we modelled atoms as hard spheres of diameter d. It’s instructive to

figure out the cross-section for such a hard sphere.

In fact, there are two different calculations that we can do. First, suppose that we

throw point-like particles at a sphere of diameter d with an impact parameter b ≤ d/2

From the left-hand diagram in Figure 5, we see that the scattering angle is θ = π− 2α,

where

b =
d

2
sinα =

d

2
sin

(
π

2
− θ

2

)
=
d

2
cos

θ

2
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or

b2 =
d2

4
cos2 θ

2
=
d2

8
(1 + cos θ)

From (2.36), we then find the differential cross-section∣∣∣∣ dσdΩ

∣∣∣∣ =
d2

16

The total cross-section is defined as

σT = 2π

∫ π

0

dθ sin θ
dσ

dΩ
= π

(
d

2

)2

This provides a nice justification for the name because this is indeed the cross-sectional

area of a sphere of radius d/2.

Alternatively, we could consider two identical hard spheres, each of diameter d, one

scattering off the other. Now the geometry changes a little, as shown in the right-hand

diagram in Figure 5. The impact parameter is now the distance between the centres of

the spheres, and given by

b = 2× d

2
sinα

Clearly we now need b ≤ d. The same calculation as above now gives

σT = πd2

This is the same effective cross-sectional area that we previously used back in Section

1.2 when discussing basic aspects of collisions.

Almost Done

With this refresher course on classical scattering, we can return to the collision integral

(2.34) in the Boltzmann equation.(
∂f1

∂t

)
coll

=

∫
|~r1−~r2|≤d

d3r2d
3p2 (~v1 − ~v2) · ∂f2

∂~r

We’ll work in cylindrical polar coordinates shown in Figure 6. The direction parallel

to ~v2 − ~v1 is parameterized by x; the plane perpendicular is parameterised by φ and
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Figure 6: Two particle scattering

the impact parameter b. We’ve also shown the collision zone in this figure. Using the

definitions (2.35) and (2.37), we have(
∂f1

∂t

)
coll

=

∫
d3p2 |~v1 − ~v2|

∫
dφ db b

∫ x2

x1

∂f2

∂x

=

∫
d3p2d

3p′1d
3p′2 ω(~p ′1, ~p

′
2|~p, ~p2) [f2(x2)− f2(x1)]

It remains only to decide what form the two-particle distribution function f2 takes just

before the collision at x = x1 and just after the collision at x = x2. At this point we

invoke the assumption of molecular chaos. Just before we enter the collision, we assume

that the two particles are uncorrelated. Moreover, we assume that the two particles

are once again uncorrelated by the time they leave the collision, albeit now with their

new momenta

f2(x1) = f1(~r, ~p1; t)f1(~r, ~p2; t) and f2(x2) = f1(~r, ~p ′1; t)f1(~r, ~p ′2; t)

Notice that all functions f1 are evaluated at the same point ~r in space since we’ve

assumed that the single particle distribution function is suitably coarse grained that it

doesn’t vary on scales of order d. With this final assumption, we get what we wanted:

the collision integral is given by(
∂f1

∂t

)
coll

=

∫
d3p2d

3p′1d
3p′2 ω(~p ′1, ~p

′
2|~p, ~p2)

[
f1(~r, ~p ′1)f1(~r, ~p ′2)− f1(~r, ~p)f1(~r, ~p2)

]
in agreement with (2.24).

– 32 –



2.3 The H-Theorem

The topics of thermodynamics and statistical mechanics are all to do with the equi-

librium properties of systems. One of the key intuitive ideas that underpins their

importance is that if you wait long enough, any system will eventually settle down to

equilibrium. But how do we know this? Moreover, it seems that it would be rather

tricky to prove: settling down to equilibrium clearly involves an arrow of time that dis-

tinguishes the future from the past. Yet the underlying classical mechanics is invariant

under time reversal.

The purpose of this section is to demonstrate that, within the framework of the

Boltzmann equation, systems do indeed settle down to equilibrium. As we described

above, we have introduced an arrow of time into the Boltzmann equation. We didn’t

do this in any crude way like adding friction to the system. Instead, we merely assumed

that particle velocities were uncorrelated before collisions. That would seem to be a

rather minor input but, as we will now show, it’s enough to demonstrate the approach

to equilibrium.

Specifically, we will prove the “H-theorem”, named after a quantity H introduced

by Boltzmann. (H is not to be confused with the Hamiltonian. Boltzmann originally

called this quantity something like a German E , but the letter was somehow lost in

translation and the name H stuck). This quantity is

H(t) =

∫
d3rd3p f1(~r, ~p; t) log(f1(~r, ~p; t))

This kind of expression is familiar from our first Statistical Mechanics course where we

saw that the entropy S for a probability distribution p is S = −kBp log p. In other

words, this quantity H is simply

S = −kBH

The H-theorem, first proven by Boltzmann in 1872, is the statement that H always

decreases with time. The entropy always increases. We will now prove this.

As in the derivation (2.4), when you’re looking at the variation of expectation values

you only care about the explicit time dependence, meaning

dH

dt
=

∫
d3rd3p (log f1 + 1)

∂f1

∂t
=

∫
d3rd3p log f1

∂f1

∂t
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where we can drop the +1 because
∫
f1 = N is unchanging, ensuring that

∫
∂f1/∂t = 0.

Using the Boltzmann equation (2.23), we have

dH

dt
=

∫
d3rd3p log f1

(
∂V

∂~r
· ∂f1

∂~p
− ~p

m
· ∂f1

∂~r
+

(
∂f1

∂t

)
coll

)
But the first two terms in this expression both vanish. You can see this by integrating

by parts twice, first moving the derivative away from f1 and onto log f1, and then

moving it back. We learn that the change in H is governed entirely by the collision

terms

dH

dt
=

∫
d3rd3p log f1

(
∂f1

∂t

)
coll

=

∫
d3rd3p1d

3p2d
3p′1d

3p′2 ω(~p ′1, ~p
′
2|~p1, ~p2) log f1(~p1)

×
[
f1(~p ′1)f1(~p ′2)− f1(~p1)f1(~p2)

]
(2.38)

where I’ve suppressed ~r and t arguments of f1 to keep things looking vaguely reasonable

I’ve also relabelled the integration variable ~p → ~p1. At this stage, all momenta are

integrated over so they are really nothing but dummy variables. Let’s relabel 1↔ 2 on

the momenta. All the terms remain unchanged except the log. So we can also write

dH

dt
=

∫
d3rd3p1d

3p2d
3p′1d

3p′2 ω(~p ′1, ~p
′
2|~p1, ~p2) log f1(~p2)

×
[
f1(~p ′1)f1(~p ′2)− f1(~p1)f1(~p2)

]
(2.39)

Adding (2.38) and (2.39), we have the more symmetric looking expression

dH

dt
=

1

2

∫
d3rd3p1d

3p2d
3p′1d

3p′2 ω(~p ′1, ~p
′
2|~p1, ~p2) log [f1(~p1) f1(~p2)]

×
[
f1(~p ′1)f1(~p ′2)− f1(~p1)f1(~p2)

]
(2.40)

Since all momenta are integrated over, we’re allowed to just flip the dummy indices

again. This time we swap ~p ↔ ~p ′ in the above expression. But, using the symmetry

property (2.20), the scattering function remains unchanged3. We get

dH

dt
= −1

2

∫
d3rd3p1d

3p2d
3p′1d

3p′2 ω(~p ′1, ~p
′
2|~p1, ~p2) log [f1(~p ′1) f1(~p ′2)]

3An aside: it’s not actually necessary to assume (2.20) to make this step. We can get away with

the weaker result ∫
d3p′1d

3p′2 ω(~p ′
1, ~p

′
2|~p1, ~p2) =

∫
d3p′1d

3p′2 ω(~p1, ~p2|~p ′
1, ~p

′
2)

which follows from unitarity of the scattering matrix.
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×
[
f1(~p ′1)f1(~p ′2)− f1(~p1)f1(~p2)

]
(2.41)

Finally, we add (2.40) and (2.41) to get

dH

dt
= −1

4

∫
d3rd3p1d

3p2d
3p′1d

3p′2 ω(~p ′1, ~p
′
2|~p1, ~p2)×[

log [f1(~p ′1) f1(~p ′2)]− log [f1(~p1) f1(~p2)]
][
f1(~p ′1)f1(~p ′2)− f1(~p1)f1(~p2)

]
(2.42)

The bottom line of this expression is a function (log x− log y)(x− y). It is positive for

all values of x and y. Since the scattering rate is also positive, we have the proof of the

H-theorem.

dH

dt
≤ 0 ⇔ dS

dt
≥ 0

And there we see the arrow of time seemingly emerging from time-invariant Hamiltonian

mechanics! Clearly, this should be impossible, a point first made by Loschmidt soon

after Boltzmann’s original derivation. But, as we saw earlier, everything hinges on the

assumption of molecular chaos (2.22). This was where we broke time-reversal symmetry,

ultimately ensuring that entropy increases only in the future. Had we instead decided

in (2.21) that the rate of scattering was proportional to f2 after the collision, again

assuming f2 ∼ f1f1 then we would find that entropy always decreases as we move into

the future.

There is much discussion in the literature about the importance of the H-theorem and

its relationship to the second law of thermodynamics. Notably, it is not particularly

hard to construct states which violate the H-theorem by virtue of their failure to obey

the assumption of molecular chaos. Nonetheless, these states still obey a suitable second

law of thermodynamics4.

The H-theorem is not a strict inequality. For some distributions, the entropy remains

unchanged. From (2.42), we see that these obey

f1(~p ′1)f1(~p ′2)− f1(~p1)f1(~p2)

But this is simply the requirement of detailed balance (2.25). And, as we have seen al-

ready, this is obeyed by any distribution satisfying the requirement of local equilibrium

(2.29).

4This was first pointed out by E. T. Jaynes in the paper “Violation of Boltzmann’s H Theorem in

Real Gases”, published in Physical Review A, volume 4, number 2 (1971).
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2.4 A First Look at Hydrodynamics

Hydrodynamics is what you get if you take thermodynamics and splash it. You know

from your first course on Statistical Mechanics that, at the most coarse grained level,

the equilibrium properties of any system are governed by the thermodynamics. In the

same manner, low energy, long wavelength, excitations of any system are described by

hydrodynamics.

More precisely, hydrodynamics describes the dynamics of systems that are in local

equilibrium, with parameters that vary slowly in space in time. As we will see, this

means that the relevant dynamical variables are, in the simplest cases,

• Density ρ(~r, t) = mn(~r, t)

• Temperature T (~r, t)

• Velocity ~u(~r, t)

Our goal in this section is to understand why these are the relevant variables to describe

the system and to derive the equations that govern their dynamics.

2.4.1 Conserved Quantities

We’ll start by answering the first question: why are these the variables of interest? The

answer is that these are quantities which don’t relax back down to their equilibrium

value in an atomic blink of an eye, but instead change on a much slower, domestic time

scale. At heart, the reason for they have this property is that they are all associated

to conserved quantities. Let’s see why.

Consider a general function A(~r, ~p) over the single particle phase space. Because we

live in real space instead of momentum space, the question of how things vary with

~r is more immediately interesting. For this reason, we integrate over momentum and

define the average of a quantity A(~r, ~p) to be

〈A(~r, t)〉 =

∫
d3p A(~r, ~p)f1(~r, ~p; t)∫

d3p f1(~r, ~p; t)

However, we’ve already got a name for the denominator in this expression: it is the

number density of particles

n(~r, t) =

∫
d3p f1(~r, ~p; t) (2.43)
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(As a check of the consistency of our notation, if you plug the local equilibrium dis-

tribution (2.29) into this expression, then the n(~r, t) on the left-hand-side equals the

n(~r, t) defined in (2.29)). So the average is

〈A(~r, t)〉 =
1

n(~r, t)

∫
d3p A(~r, ~p)f1(~r, ~p; t) (2.44)

It’s worth making a couple of simple remarks. Firstly, this is different from the average

that we defined earlier in (2.3) when discussion Liouville evolution. Here we’re inte-

grating only over momenta and the resulting average is a function of space. A related

point is that we’re at liberty to take functions which depend only on ~r (and not on ~p)

in and out of the 〈·〉 brackets. So, for example, 〈nA〉 = n〈A〉.

We’re interested in the how the average of A changes with time. We looked at this

kind of question for Liouville evolution earlier in this section and found the answer

(2.5). Now we want to ask the same question for the Boltzmann equation. Before we

actually write down the answer, you can guess what it will look like: there will be a

streaming term and a term due to the collision integral. Moreover, we know from our

previous discussion that the term involving the collision integral will vary much faster

than the streaming term.

Since we’re ultimately interested in quantities which vary slowly, this motivates look-

ing at functions A which vanish when integrated against the collision integral. We will

see shortly that the relevant criterion is∫
d3p A(~r, ~p)

(
∂f1

∂t

)
coll

= 0

We’d like to find quantities A which have this property for any distribution f1. Using

our expression for the collision integral (2.23), we want∫
d3p1d

3p2d
3p′1d

3p′2 ω(~p ′1, ~p
′
2|~p, ~p2)A(~r, ~p1)

[
f1(~r, ~p ′1)f1(~r, ~p ′2)− f1(~r, ~p)f1(~r, ~p2)

]
= 0

This now looks rather similar to equation (2.38), just with the log f replaced by A. In-

deed, we can follow the steps between (2.38) and (2.41), using the symmetry properties

of ω, to massage this into the form∫
d3p1d

3p2d
3p′1d

3p′2 ω(~p ′1, ~p
′
2|~p1, ~p2)

[
f1(~p ′1)f1(~p ′2)− f1(~p1)f1(~p2)

]
×
[
A(~r, ~p1) + A(~r, ~p2)− A(~r, ~p ′1)− A(~r, ~p ′2)

]
= 0
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Now it’s clear that if we want this to vanish for all distributions, then A itself must

have the property that it remains unchanged before and after the collision,

A(~r, ~p1) + A(~r, ~p2) = A(~r, ~p ′1) + A(~r, ~p ′2) (2.45)

Quantities which obey this are sometimes called collisional invariants. Of course, in

the simplest situation we already know what they are: momentum (2.18) and energy

(2.19) and, not forgetting, the trivial solution A = 1. We’ll turn to each of these in

turn shortly. But first let’s derive an expression for the time evolution of any quantity

obeying (2.45).

Take the Boltzmann equation (2.23), multiply by a collisional invariant A(~r, ~p) and

integrate over
∫
d3p. Because the collision term vanishes, we have∫
d3p A(~r, ~p)

(
∂

∂t
+
~p

m
· ∂
∂~r

+ ~F · ∂
∂~p

)
f1(~r, ~p, t) = 0

where the external force is ~F = −∇V . We’ll integrate the last term by parts (remem-

bering that the force ~F can depend on position but not on momentum). We can’t

integrate the middle term by parts since we’re not integrating over space, but nonethe-

less, we’ll also rewrite it. Finally, since A has no explicit time dependence, we can take

it inside the time derivative. We have

∂

∂t

∫
d3p Af +

∂

∂~r
·
∫
d3p

~p

m
Af −

∫
d3p

~p

m
· ∂A
∂~r
f −

∫
d3p ~F · ∂A

∂~p
f = 0

Although this doesn’t really look like an improvement, the advantage of writing it in

this way is apparent when we remember our expression for the average (2.44). Using

this notation, we can write the evolution of A as

∂

∂t
〈nA〉+

∂

∂~r
· 〈n~vA〉 − n〈~v · ∂A

∂~r
〉 − n〈~F · ∂A

∂~p
〉 = 0 (2.46)

where ~v = ~p/m. This is our master equation that tells us how any collisional invariant

changes. The next step is to look at specific quantities. There are three and we’ll take

each in turn

Density

Our first collisional invariant is the trivial one: A = 1. If we plug this into (2.46) we

get the equation for the particle density n(~r, t),

∂n

∂t
+

∂

∂~r
· (n~u) (2.47)
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where the average velocity ~u of the particles is defined by

~u(~r, t) = 〈~v〉

Notice that, once again, our notation is consistent with earlier definitions: if we pick

the local equilibrium distribution (2.29), the ~u(~r, t) in (2.29) agrees with that defined

above. The result (2.47) is the continuity equation, expressing the conservation of

particle number. Notice, however, that this is not a closed expression for the particle

density n: we need to know the velocity ~u as well.

It’s useful to give a couple of extra, trivial, definitions at this stage. First, although

we won’t use this notation, the continuity equation is sometimes written in terms of

the current, ~J(~r, t) = n(~r, t) ~u(~r, t). In what follows, we will often replace the particle

density with the mass density,

ρ(~r, t) = mn(~r, t)

Momentum

Our next collisional invariant is the momentum. We substitute A = m~v into (2.46) to

find

∂

∂t
(mnui) +

∂

∂rj
〈mnvjvi〉 − 〈nFi〉 = 0 (2.48)

We can play around with the middle term a little. We write

〈vjvi〉 = 〈(vj − uj)(vi − ui)〉+ ui〈vj〉+ uj〈vi〉 − iiuj
= 〈(vj − uj)(vi − ui)〉+ uiuj

We define a new object known as the pressure tensor,

Pij = Pji = ρ〈(vj − uj)(vi − ui)〉

This tensor is computing the flux of i-momentum in the j-direction. It’s worth pausing

to see why this is related to pressure. Clearly, the exact form of Pij depends on the

distribution of particles. But, we can evaluate the pressure tensor on the equilibrium,

Maxwell-Boltzmann distribution (2.28). The calculation boils down to the same one

we did in our first Statistical Physics course to compute equipartition: you find

Pij = nkBTδij (2.49)
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which, by the ideal gas law, is proportional to the pressure of the gas. Using this

definition – together with the continuity equation (2.47) – we can write (2.48) as

ρ

(
∂

∂t
+ uj

∂

∂rj

)
ui =

ρ

m
Fi −

∂

∂rj
Pij (2.50)

This is the equation which captures momentum conservation in our system. Indeed, it

has a simple interpretation in terms of Newton’s second law. The left-hand-side is the

acceleration of an element of fluid. The combination of derivatives is sometimes called

the material derivative,

Dt ≡
∂

∂t
+ uj

∂

∂rj
(2.51)

It captures the rate of change of a quantity as seen by an observer swept along the

streamline of the fluid. The right-hand side of (2.50) includes both the external force
~F and an additional term involving the internal pressure of the fluid. As we will see

later, ultimately viscous terms will also come from here.

Note that, once again, the equation (2.50) does not provide a closed equation for

the velocity ~u. You now need to know the pressure tensor Pij which depends on the

particular distribution.

Kinetic Energy

Our final collisional invariant is the kinetic energy of the particles. However, rather

than take the absolute kinetic energy, it is slightly easier if we work with the relative

kinetic energy,

A =
1

2
m (~v − ~u)2

If we substitute this into the master equation5 (2.46), the term involving the force

vanishes (because 〈vi − ui〉 = 0). However, the term that involves ∂E/∂ri is not zero

because the average velocity ~u depends on ~r. We have

1

2

∂

∂t
〈ρ(~v − ~u)2〉+

1

2

∂

∂ri
〈ρvi(~v − ~u)2〉 − ρ〈vi

∂uj
∂ri

(~v − ~u)2〉 = 0 (2.52)

5There is actually a subtlety here. In deriving the master equation (2.46), we assumed that A has

no explicit time dependence, but the A defined above does have explicit time dependence through

~u(~r, t). Nonetheless, you can check that (2.46) still holds, essentially because the extra term that you

get is ∼ 〈(~v − ~u) · ∂~u/∂t〉 = 〈~v − ~u〉 · ∂~u/∂t = 0.
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At this point, we define the temperature, T (~r, t) of our non-equilibrium system. To do

so, we fall back on the idea of equipartition and write

3

2
kBT (~r, t) =

1

2
m〈(~v − ~u(~r, t))2〉 (2.53)

This coincides with our familiar definition of temperature for a system in local equilib-

rium (2.29), but now extends this to a system that is out of equilibrium. Note that the

temperature is a close relative of the pressure tensor, TrP = 3ρkBT/m.

We also define a new quantity, the heat flux,

qi =
1

2
mρ〈(vi − ui) (~v − ~u)2〉 (2.54)

(This actually differs by an overall factor of m from the definition of ~q that we made in

Section 1. This has the advantage of making the formulae we’re about to derive a little

cleaner). The utility of both of these definitions becomes apparent if we play around

with the middle term in (2.52). We can write

1

2
mρ〈vi(~v − ~u)2〉 =

1

2
mρ〈(vi − ui) (~v − ~u)2〉+

1

2
mρui〈(~v − ~u)2〉

= qi +
3

2
ρuikBT

Invoking the definition of the pressure tensor (2.49), we can now rewrite (2.52) as

3

2

∂

∂t
(ρkBT ) +

∂

∂ri

(
qi +

3

2
ρuikBT

)
+mPij

∂uj
∂xi

= 0

Because Pij = Pji, we can replace ∂uj/∂ri in the last term with the symmetric tensor

known as the rate of strain (and I promise this is the last new definition for a while!)

Uij =
1

2

(
∂ui
∂rj

+
∂uj
∂ri

)
(2.55)

Finally, with a little help from the continuity equation (2.47), our expression for the

conservation of energy becomes

ρ

(
∂

∂t
+ ui

∂

∂ri

)
kBT +

2

3

∂qi
∂ri

+
2m

3
UijPij = 0 (2.56)

It’s been a bit of a slog, but finally we have three equations describing how the particle

density n (2.47), the velocity ~u (2.50) and the temperature T (2.56) change with time.

It’s worth stressing that these equations hold for any distribution f1. However, the
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set of equations are not closed. The equation for n depends on ~u; the equation for ~u

depends on Pij and the equation for T (which is related to the trace of Pij) depends

on a new quantity ~q. And to determine any of these, we need to solve the Boltzmann

equation and compute the distribution f1. But the Boltzmann equation is hard! How

to do this?

2.4.2 Ideal Fluids

We start by simply guessing a form of the distribution function f1(~r, ~p; t). We know that

the collision term in the Boltzmann equation induces a fast relaxation to equilibrium,

so if we’re looking for a slowly varying solution a good guess is to take a distribution

for which (∂f1/∂t)coll = 0. But we’ve already met distribution functions that obey this

condition in (2.29): they are those describing local equilibrium. Therefore, our first

guess for the distribution, which we write as f
(0)
1 , is local equilibrium

f
(0)
1 (~r, ~p; t) = n(~r, t)

(
1

2πmkBT (~r, t)

)3/2

exp

(
− m

2kBT (~r, t)
[(~v − ~u(~r, t)]2

)
(2.57)

where ~p = m~v. In general, this distribution is not a solution to the Boltzmann equation

since it does not vanish on the streaming terms. Nonetheless, we will take it as our

first approximation to the true solution and later see what we’re missing.

The distribution is normalized so that the number density and temperature defined

in (2.43) and (2.53) respectively coincide with n(~r, t) and T (~r, t) in (2.29). But we can

also use the distribution to compute Pij and ~q. We have

Pij = kBn(~r, t)T (~r, t) δij ≡ P (~r, t) δij (2.58)

and ~q = 0. We can substitute these expressions into our three conservation laws. The

continuity equation (2.47) remains unchanged. Written in terms for ρ = mn, it reads(
∂

∂t
+ uj

∂

∂rj

)
ρ+ ρ

∂ui
∂ri

= 0 (2.59)

Meanwhile, the equation (2.50) governing the velocity flow becomes the Euler equation

describing fluid motion (
∂

∂t
+ uj

∂

∂rj

)
ui +

1

ρ

∂P

∂ri
=
Fi
m

(2.60)

and the final equation (2.56) describing the flow of heat reduces to(
∂

∂t
+ uj

∂

∂rj

)
T +

2T

3

∂ui
∂ri

= 0 (2.61)
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These set of equations describe the motion of an ideal fluid. While they are a good

starting point for describing many properties of fluid mechanics, there is one thing that

they are missing: dissipation. There is no irreversibility sown into these equations, no

mechanism for the fluid to return to equilibrium.

We may have anticipated that these equations lack dissipation. Their starting point

was the local equilibrium distribution (2.57) and we saw earlier that for such distribu-

tions Boltzmann’s H-function does not decrease; the entropy does not increase. In fact,

we can also show this statement directly from the equations above. We can combine

(2.59) and (2.60) to find (
∂

∂t
+ uj

∂

∂rj

)
(ρT−3/2) = 0

which tells us that the quantity ρT−3/2 is constant along streamlines. But this is the

requirement that motion along streamlines is adiabatic, not increasing the entropy. To

see that this is the case, you need to go back to your earlier statistical mechanics or

thermodynamics course6. The usual statement is that for an ideal gas, an adiabatic

transformation leaves V T 3/2 constant. Here we’re working with the density ρ = mN/V

and this becomes ρT−3/2 is constant. Note, however, that in the present context ρ and

T are not numbers, but functions of space and time: we are now talking about a local

adiabatic change.

Sound Waves

It is also simple to show explicitly that one can set up motion in the ideal fluid that

doesn’t relax back down to equilibrium. We start with a fluid at rest, setting ~u = 0

and ρ = ρ̄ and T = T̄ , with both ρ̄ and T̄ constant. We now splash it (gently). That

means that we perturb the system and linearise the resulting equations. We’ll analyse

these perturbations in Fourier modes and write

ρ(~r, t) = ρ̄+ δρ e−i(ωt−
~k·~r) and T (~r, t) = T̄ + δT e−i(ωt−

~k·~r) (2.62)

Furthermore, we’ll look for a particular kind of perturbation in which the fluid motion

is parallel to the perturbation. In other words, we’re looking for a longitudinal wave

~u(~r, t) = ~̂k δu e−i(ωt−
~k·~r) (2.63)

The linearised versions of (2.59), (2.60) and (2.61) then read

ω

|~k|
δρ = ρ̄δu

6See, for example, the discussion of the Carnot cycle in the lectures on Statistical Physics.
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ω

|~k|
δu =

kBT̄

mρ̄
δρ+

kB
m
δT

ω

|~k|
δT =

2

3
T̄ δu

There is one solution to these equations with zero frequency, ω = 0. These have δu = 0

while δρ = −ρ̄ and δT = T̄ . (Note that this notation hides a small ε. It really means

that δρ = −ερ̄ and δT = εT̄ . Because the equations are linear and homogeneous, you

can take any ε you like but, since we’re looking at small perturbations, it should be

small). This solution has the property that P = mnkBT is constant. But since, in

the absence of an external force, pressure is the only driving term in (2.60), the fluid

remains at rest, which is why δu = 0 for this solution.

Two further solutions to these equations both have δρ = ρ̄, δT = 2
3
T̄ and δu = ω/|~k|

with the dispersion relation

ω = ±vs|~k| with vs =

√
5kBT̄

3m
(2.64)

These are sound waves, the propagating version of the adiabatic change that we saw

above: the combination ρT−3/2 is left unchanged by the compression and expansion of

the fluid. The quantity vs is the speed of sound.

2.5 Transport with Collisions

While it’s nice to have derived some simple equations describing fluid mechanics, as

we’ve seen they’re missing dissipation. And, since the purported goal of these lectures

is to understand how systems relax back to equilibrium, we should try to see what

we’ve missed.

In fact, it’s clear what we’ve missed. Our first guess for the distribution function was

local equilibrium

f
(0)
1 (~r, ~p; t) = n(~r, t)

(
1

2πmkBT (~r, t)

)3/2

exp

(
− m

2kBT (~r, t)
[(~v − ~u(~r, t)]2

)
(2.65)

We chose this on the grounds that it gives a vanishing contribution to the collision

integral. But we never checked whether it actually solves the streaming terms in the

Boltzmann equation. And, as we will now show, it doesn’t.
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Using the definition of the Poisson bracket and the one-particle Hamiltonian H1

(2.11), we have

∂f
(0)
1

∂t
− {H1, f

(0)
1 } =

∂f
(0)
1

∂t
+ ~F · ∂f

(0)
1

∂~p
+ ~v · ∂f

(0)
1

∂~r

Now the dependence on ~p = m~v in local equilibrium is easy: it is simply

∂f
(0)
1

∂~p
= − 1

kBT
(~v − ~u)f

(0)
1

Meanwhile all ~r dependence and t dependence of f
(0)
1 lies in the functions n(~r, t), T (~r, t)

and ~u(~r, t). From (2.65) we have

∂f
(0)
1

∂n
=
f

(0)
1

n

∂f
(0)
1

∂T
= −3

2

f
(0)
1

T
+

m

2kBT 2
(~v − ~u)2f

(0)
1

∂f
(0)
1

∂~u
=

m

kBT
(~v − ~u)f

(0)
1

Using all these relations, we have

∂f
(0)
1

∂t
− {H1, f

(0)
1 } =

[
1

n
D̃tn+

(
m(~v − ~u)2

2kBT 2
− 3

2T

)
D̃tT

+
m

kBT
(~v − ~u) · D̃t~u−

1

kBT
~F · (~v − ~u)

]
f

(0)
1 (2.66)

where we’ve introduced the notation D̃t which differs from the material derivative Dt

in that it depends on the velocity ~v rather than the average velocity ~u,

D̃t ≡
∂

∂t
+ ~v · ∂

∂~r
= Dt + (~v − ~u) · ∂

∂~r

Now our first attempt at deriving hydrodynamics gave us three equations describing

how n (2.59), ~u (2.60) and T (2.61) change with time. We substitute these into (2.66).

You’ll need a couple of lines of algebra, cancelling some terms, using the relationship

P = nkBT and the definition of Uij in (2.55), but it’s not hard to show that we

ultimately get

∂f
(0)
1

∂t
− {H1, f

(0)
1 } =

[
1

T

(
m

2kBT
(~v − ~u)2 − 5

2

)
(~v − ~u) · ∇T (2.67)

+
m

kBT

(
(vi − ui)(vj − uj)−

1

3
(~v − ~u)2δij

)
Uij

]
f

(0)
1
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And there’s no reason that the right-hand-side is zero. So, unsurprisingly, f
(0)
1 does

not solve the Boltzmann equation. However, the remaining term depends on ∇T and

∂~u/∂~r which means that we if we stick to long wavelength variations in the temperature

and velocity then we almost have a solution. We need only add a little extra something

to the distribution

f1 = f
(0)
1 + δf1 (2.68)

Let’s see how this changes things.

2.5.1 Relaxation Time Approximation

The correction term, δf1, will contribute to the collision integral (2.24). Dropping the

~r argument for clarity, we have(
∂f1

∂t

)
coll

=

∫
d3p2d

3p′1d
3p′2 ω(~p ′1, ~p

′
2|~p1, ~p2) [f1(~p ′1)f1(~p ′2)− f1(~p1)f1(~p2)]

=

∫
d3p2d

3p′1d
3p′2 ω(~p ′1, ~p

′
2|~p1, ~p2)

[
f

(0)
1 (~p ′1)δf1(~p ′2) + δf(~p ′1)f

(0)
1 (~p ′2)

−f (0)
1 (~p1)δf1(~p2)− δf(~p1)f

(0)
1 (~p2)

]
where, in the second line, we have used the fact that f

(0)
1 vanishes in the collision

integral and ignored quadratic terms ∼ δf 2
1 . The resulting collision integral is a linear

function of δf1. But it’s still kind of a mess and not easy to play with.

At this point, there is a proper way to proceed. This involves first taking more care

in the expansion of δf1 (using what is known as the Chapman-Enskog expansion) and

then treating the linear operator above correctly. However, there is a much easier way

to make progress: we just replace the collision integral with another, much simpler

function, that captures much of the relevant physics. We take(
∂f1

∂t

)
coll

= −δf1

τ
(2.69)

where τ is the relaxation time which, as we’ve already seen, governs the rate of change

of f1. In general, τ could be momentum dependent. Here we’ll simply take it to be a

constant.

The choice of operator (2.69) is called the relaxation time approximation. (Sometimes

it is referred to as the Bhatnagar-Gross-Krook operator). It’s most certainly not exact.
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In fact, it’s a rather cheap approximation. But it will give us a good intuition for what’s

going on. With this replacement, the Boltzmann equation becomes

∂(f
(0)
1 + δf1)

∂t
− {H1, f

(0)
1 + δf1} = −δf1

τ

But, since δf1 � f
(0)
1 , we can ignore δf1 on the left-hand-side. Then, using (2.67), we

have a simple expression for the extra contribution to the distribution function

δf1 = −τ
[

1

T

(
m

2kBT
(~v − ~u)2 − 5

2

)
(~v − ~u) · ∂T

∂~r

+
m

kBT

(
(vi − ui)(vj − uj)−

1

3
(~v − ~u)2δij

)
Uij

]
f

(0)
1 (2.70)

We can now use this small correction to the distribution to revisit some of the transport

properties that we saw in Section 1.

2.5.2 Thermal Conductivity Revisited

Let’s start by computing the heat flux

qi =
1

2
mρ〈(vi − ui) (~v − ~u)2〉 (2.71)

using the corrected distribution (2.68). We’ve already seen that the local equilibrium

distribution f
(0)
1 gave ~q = 0, so the only contribution comes from δf1. Moreover, only

the first term in (2.70) contributes to (2.71). (The other is an odd function and vanishes

when we do the integral). We have

~q = −κ∇T

This is the same phenomenological law that we met in (1.12). The coefficient κ is the

thermal conductivity and is given by

κ =
mτρ

2T

∫
d3p (~vi − ~ui)2(~v − ~u)2

[
m

2kBT
(~v − ~u)2 − 5

2

]
f

(0)
1

=
mτρ

6T

[
m

2kBT
〈v6〉0 −

5

2
〈v4〉0

]
In the second line, we’ve replaced all (v − u) factors with v by performing a (~r-

dependent) shift of the integration variable. The subscript 〈·〉0 means that these aver-

ages are to be taken in the local Maxwell-Boltzmann distribution f
(0)
1 with u = 0. These
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integrals are simple to perform. We have 〈v4〉0 = 15k2
BT

2/m2 and 〈v6〉0 = 105k3
BT

3/m3,

giving

κ =
5

2
τnk2

BT

The factor of 5/2 here has followed us throughout the calculation. The reason for its

presence is that its the specific heat at constant pressure, cp = 5
2
kB.

This result is parameterically the same that we found earlier in (1.13). (Although

you have to be a little careful to check this because, as we mentioned after (2.54),

the definition of heat flux differs and, correspondingly, κ, differs by a factor of m.

Moreover, the current formula is written in terms of slightly different variables. To

make the comparison, you should rewrite the scattering time as τ ∼ 1/mσn
√
〈v2〉,

where σ is the total cross-section and 〈v2〉 ∼ T/m by equipartition). The coefficient

differs from our earlier derivation, but it’s not really to be trusted here, not least

because the only definition of τ that we have is in the implementation of the relaxation

time approximation.

We can also see how the equation (2.56) governing the flow of temperature is related

to the more simplistic heat flow equation that we introduced in (1.14). For this we

need to assume both a static fluid ~u = 0 and also that we can neglect changes in the

thermal conductivity, ∂κ/∂~r ≈ 0. Then equation (2.56) reduces to the heat equation

ρkB
∂T

∂t
= −2

3
κ∇2T

2.5.3 Viscosity Revisited

Let’s now look at the shear viscosity. From our discussion in Section 1, we know that

the relevant experimental set-up is a fluid with a velocity gradient, ∂ux/∂z 6= 0. The

shear viscosity is associated to the flux of x-momentum in the z-direction. But this is

precisely what is computed by the off-diagonal component of the pressure tensor,

Pxz = ρ〈(vx − ux)(vz − uz)〉

We’ve already seen that the local equilibrium distribution gives a diagonal pressure

tensor (2.58), corresponding to vanishing viscosity. What happens if we use the cor-

rected distribution (2.68)? Now only the second term in (2.70) contributes (since the

first term is an odd function of (v − u)). We write

Pij = P δij + Πij (2.72)
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where the extra term Πij is called the stress tensor and is given by

Πij =
mτρ

kBT
Ukl

∫
d3p (vj − uj)(vi − ui)

(
(vk − ul)(vk − ul)−

1

3
(~v − ~u)2δkl

)
f

(0)
1

=
mτρ

kBT
Ukl

[
〈vivjvkvl〉0 −

1

3
δkl〈vivjv2〉0

]
Before we compute Πij, note that it is a traceless tensor. This is because the first

term above becomes 〈v2vkvl〉0 = δjk〈v2vxvx〉0 which is easily calculated to be 〈v2v2
x〉0 =

5k2
BT

2/m2 = 1
3
〈v4〉0. Moreover, Πij depends linearly on the tensor Uij. These two facts

mean that Πij must be of the form

Πij = −2η

(
Uij −

1

3
δij∇ · ~u

)
(2.73)

In particular, if we set up a fluid gradient with ∂ux/∂z 6= 0, we have

Πxz = −η∂ux
∂z

which tells us that we should identify η with the shear viscosity. To compute it, we

return to a general velocity profile which, from (2.73), gives

Πxz =
mτρ

kBT
Ukl

[
〈vxvzvkvl〉0 −

1

3
δkl〈vxvzv2〉0

]
=
mτρ

kBT
(Uxz + Uzx)〈vxvzvxvz〉0

=
2mτρ

15kBT
Uxz〈v4〉0

Comparing to (2.73), we get an expression for the coefficient η,

η = nkBTτ

Once again, this differs from our earlier more naive analysis (1.11) only in the overall

numerical coefficient. And, once again, this coefficient is not really trustworthy due to

our reliance on the relaxation time approximation.

The scattering time τ occurs in both the thermal conductivity and the viscosity. Tak-

ing the ratio of the two, we can construct a dimensionless number which characterises

our system. This is called the Prandtl number,

Pr =
cpη

κ
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With cp the specific heat at constant pressure which takes the value cp = 5kB/2 for a

monatomic gas. Our calculations above give a Prandtl number Pr = 1. Experimental

data for monatomic gases shows a range of Prandtl numbers, hovering around Pr ≈ 2/3.

The reason for the discrepancy lies in the use of the relaxation time approximation. A

more direct treatment of the collision integral, thought of as a linear operator acting

on δf1, gives the result Pr = 2/3, in much better agreement with the data7.

2.6 A Second Look: The Navier-Stokes Equation

To end our discussion of kinetic theory, we put together our set of equations governing

the conservation of density, momentum and energy with the corrected distribution

function. The equation of motion for density fluctuations doe not change: it remains,

∂ρ

∂t
+∇ · (ρ~u) = 0 (2.74)

Meanwhile the equation for momentum (2.50) now has an extra contribution from the

stress tensor contribution (2.72). Moreover, we typically assume that, to leading order,

variations in the viscosity can be neglected: ∇η ≈ 0. Written in vector notation rather

than index notation, the resulting equation is(
∂

∂t
+ ~u · ∇

)
~u =

~F

m
− 1

ρ
∇P +

η

ρ
∇2~u+

η

3ρ
∇(∇ · ~u) (2.75)

This is the Navier-Stokes equation. Finally, we have the heat conduction equation. We

again drop some terms on the grounds that they are small. This time, we set ∇κ ≈ 0

and UijΠij ≈ 0; both are small at the order we are working to. We’re left with

ρ

(
∂

∂t
+ ~u · ∇

)
T − 2

3
κ∇2T +

2m

3
P ∇ · ~u = 0

We can again look at fluctuations of these equations about a static fluid with ρ = ρ̄,

T = T̄ and ~u = 0. Longitudinal fluctuations (2.62) and (2.63) now give rise to the

linearised equations of motion,

ωδρ = ρ̄|~k|δu

ωδu =
kBT̄

mρ̄
|~k|δρ+

kB
m
|~k|δT − i4η|

~k|2

3ρ̄
δu

ωδT =
2

3
T̄ |~k|δu− i2κ|

~k|2

3kBρ̄
δT

7You can read about this improved calculations in the lectures by Daniel Arovas.
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Notice that terms involving transport coefficients η and κ each come with a factor of

i; this is a sign that they will give rise to dissipation. To compute the frequencies of

the different modes, it’s best to think of this as an eigenvalue problem for ω/|~k|; the

coefficients of the various terms on the right-hand-side define a 3× 3 matrix M , with

detM =
2i

3

κ|~k|4T̄
mρ̄

and TrM = −i
(

4

3
η +

2

3

κ

kB

)
|~k|2

ρ̄

The product of the three eigenvalues is equal to detM . We know that for the ideal

fluid, the eigenvalues are zero and ω = ±vs|~k| where vs is the sound speed computed

in (2.64). Let’s first look at the eigenvalue that was zero, corresponding to fluctuations

of constant pressure. Working to leading order in κ and η, we must have

−v2
s |~k|2ω = detM ⇒ ω = −2i

5

κ

kBρ̄
|~k|2

The purely imaginary frequency is telling us that these modes are damped. The ω ∼
i|~k|2 is characteristic of diffusive behaviour.

The remaining two modes are related to the sound waves. These too will gain a

dispersive contribution, now with

ω = ±vs|~k| − iγ (2.76)

Using the fact that the sum of the eigenvalues is equal to the trace, we find

γ =

(
2

3
η +

2

15

κ

kB

)
|~k|2

ρ̄
(2.77)

The fluctuations above are all longitudinal. There are also two shear modes, whose

fluctuations are in a direction perpendicular to the velocity. It is simple to check that

the linearised equations are solved by δρ = δT = 0 and δ~u ·~k, with the frequency given

by

ω = −i η|
~k|2

ρ̄

Once again, we see that these modes behave diffusively.

Navier Stokes Equation and Liquids

Our derivation of the Navier-Stokes equation relied on the dilute gas approximation.

However, the equation is more general than that. Indeed, it can be thought of as the
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most general expression in a derivative expansion for momentum transport (subject to

various requirements). In fact, there is one extra parameter that we could include:

ρ

(
∂

∂t
+ ~u · ∇

)
~u =

ρ~F

m
−∇P + η∇2~u+

(η
3

+ ζ
)
∇(∇ · ~u)

where ζ is the bulk viscosity which vanished in our derivation above. Although the

equation above governs transport in liquids, we should stress that first-principles com-

putations of the viscosity (and also thermal conductivity) that we saw previously only

hold in the dilute gas approximation.
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3. Stochastic Processes

We learn in kindergarten about the phenomenon of Brownian motion, the random

jittery movement that a particle suffers when it is placed in a liquid. Famously, it is

caused by the constant bombardment due to molecules in the surrounding the liquid.

Our goal in this section is to introduce the mathematical formalism that allows us to

model such random behaviour.

3.1 The Langevin Equation

In contrast to the previous section, we will here focus on just a single particle. However,

this particle will be sitting in a background medium. If we know the force F acting on

the particle, its motion is entirely deterministic, governed by

m~̈x = −γ~̇x+ ~F (3.1)

In contrast to the previous section, this is not a Hamiltonian system. This is because

we have included a friction term with a coefficient γ. This arises due to the viscosity, η,

of the surrounding liquid that we met in the previous section. If we model the particle

as a sphere of radius a then there is a formula due to Stokes which says γ = 6πηa.

However, in what follows we shall simply treat γ as a fixed parameter. In the presence

of a time independent force, the steady-state solution with ~̈x = 0 is

~̇x =
1

γ
~F

For this reason, the quantity 1/γ is sometimes referred to as the mobility.

Returning to (3.1), for any specified force ~F , the path of the particle is fully deter-

mined. This is seemingly at odds with the random behaviour observed in Brownian

motion. The way in which we reconcile these two points is, hopefully, obvious: in

Brownian motion the force ~F that the particle feels is itself random. In fact, we will

split the force into two pieces,

~F = −∇V + ~f(t)

Here V is a fixed background potential in which the particle is moving. Perhaps V

arises because the particle is moving in gravity; perhaps because it is attached to a

spring. But, either way, there is nothing random about V . In contrast, ~f(t) is the

random force that the particle experiences due to all the other atoms in the liquid. It is

sometimes referred to as noise. The resulting equation is called the Langevin equation

m~̈x = −γ~̇x−∇V + ~f(t) (3.2)
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Although it looks just like an ordinary differential equation, it is, in fact, a different

beast known as a stochastic differential equation. The reason that it’s different is that

we don’t actually know what ~f(t) is. Yet, somehow, we must solve this equation

anyway!

Let’s clarify what is meant by this. Suppose that you did know the microscopic

force ~f(t) that is experienced by a given particle. Then you could, in principle, go

ahead and solve the Langevin equation (3.2). But the next particle that you look at

will experience a different force ~f(t) so you’ll have to solve (3.2) again. And for the

third particle, you’ll have to solve it yet again. Clearly, this is going to become tedious.

What’s more, it’s unrealistic to think that we will actually know ~f(t) in any specific

case. Instead, we admit that we only know certain crude features of the force ~f(t)

such as, for example, its average value. Then we might hope that this is sufficient

information to figure out, say, the average value of ~x(t). That is the goal when solving

the Langevin equation.

3.1.1 Diffusion in a Very Viscous Fluid

We start by solving the Langevin equation in the case of vanishing potential, V =

0. (For an arbitrary potential, the Langevin equation is an unpleasant non-linear

stochastic differential equation and is beyond our ambition in this course. However, we

will discuss some properties of the case with potential is the following section when we

introduce the Fokker-Planck equation). We can simplify the problem even further by

considering Brownian motion in a very viscous liquid. In this case, motion is entirely

dominated by the friction term in the Langevin equation and we ignore the inertial

term, which is tantamount to setting m = 0.

When m = 0, we’re left with a first order equation,

~̇x(t) =
1

γ
~f(t)

For any ~f(t), this can be trivially integrated to give

~x(t) = ~x(0) +
1

γ

∫ t

0

dt′ ~f(t′) (3.3)

At this point, we can’t go any further until we specify some of the properties of the

noise ~f(t). Our first assumption is that, on average, the noise vanishes at any given

time. We will denote averages by 〈 · 〉, so this assumption reads

〈~f(t)〉 = 0 (3.4)
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Taking the average of (3.3) then gives us the result:

〈~x(t)〉 = ~x(0)

This is deeply unsurprising: if the average noise vanishes, the average position of the

particle is simply where we left it to begin with. Nonetheless, it’s worth stressing that

this doesn’t mean that all particles sit where you leave them. It means that if you

drop many identical particles at the origin, ~x(0) = ~0, then they will all move but their

average position — or their centre of mass — will remain at the origin.

We can get more information by looking at the variance of the position,

〈 (~x(t)− ~x(0))2 〉

This will tell us the average spread of the particles. We can derive an expression for

the variance by first squaring (3.3) and then taking the average,

〈 (~x(t)− ~x(0))2 〉 =
1

γ2

∫ t

0

dt′1

∫ t

0

dt′2 〈 ~f(t′1) · ~f(t′2) 〉 (3.5)

In order to compute this, we need to specify more information about the noise, namely

its correlation function 〈 fi(t1)fj(t2) 〉 where we have resorted to index notation, i, j =

1, 2, 3 to denote the direction of the force. This is specifying how likely it is that the

particle will receive a given kick fj at time t2 given that it received a kick fi at time t1.

In many cases of interest, including that of Brownian motion, the kicks imparted by

the noise are both fast and uncorrelated. Let me explain what this means. Suppose

that a given collision between our particle and an atom takes time τcoll. Then if we

focus on time scales less than τcoll then there will clearly be a correlation between the

forces imparted on our particle because these forces are due to the same process that’s

already taking place. (If an atom is coming in from the left, then it’s still coming in

from the left at a time t� τcoll later). However if we look on time scales t� τcoll, the

force will be due to a different collision with a different atom. The statement that the

noise is uncorrelated means that the force imparted by later collisions knows nothing

about earlier collisions. Mathematically, this means

〈 fi(t1)fj(t2) 〉 = 0 when t2 − t1 � τcoll

The statement that the collisions are fast means that we only care about time scales

t2 − t1 � τcoll and so can effectively take the limit τcoll → 0. However, that doesn’t
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quite mean that we can just ignore this correlation function. Instead, when we take

the limit τcoll → 0, we’re left with a delta-function contribution,

〈 fi(t1)fj(t2) 〉 = 2Dγ2 δij δ(t2 − t1) (3.6)

Here the factor of γ2 has been put in for convenience. We will shortly see the inter-

pretation of the coefficient D, which governs the strength of the correlations. Noise

which obeys (3.4) and (3.6) is often referred to as white noise. It is valid whenever the

environment relaxes back down to equilibrium much faster than the system of interest.

This guarantees that, although the system is still reeling from the previous kick, the

environment remembers nothing of what went before and kicks again, as fresh and

random as the first time.

Using this expression for white noise, the variance (3.5) in the position of the particles

is

〈 (~x(t)− ~x(0))2 〉 = 6D t (3.7)

This is an important result: the root-mean square of the distance increases as
√
t with

time. This is characteristic behaviour of diffusion. The coefficient D is called the

diffusion constant. (We put the factor of γ2 in the correlation function (3.6) so that

this equation would come out nicely).

3.1.2 Diffusion in a Less Viscous Liquid

Let’s now return to the Langevin equation (3.2) and repeat our analysis, this time

retaining the inertia term, so m 6= 0. We will still set V = 0.

As before, computing average quantities — this time both velocity 〈 ~̇x(t) 〉 and posi-

tion 〈 ~x(t) 〉 is straightforward and relatively uninteresting. For a given ~f(t), it is not

difficult to solve (3.2). After multiplying by an integrating factor eγt/m, the equation

becomes

d

dt

(
~̇xeγt/m

)
=

1

m
~f(t)eγt/m

which can be happily integrated to give

~̇x(t) = ~̇x(0)e−γt/m +
1

m

∫ t

0

dt′ ~f(t′) eγ(t′−t)/m (3.8)

We now use the fact that the average of noise vanishes (3.4) to find that the average

velocity is simply that of a damped particle in the absence of any noise,

〈~̇x(t)〉 = ~̇x(0)e−γt/m
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Similarly, to determine the average position we have

~x(t) = ~x(0) +

∫ t

0

dt′ ~̇x(t′) (3.9)

From which we get

〈~x(t)〉 = ~x(0) +

∫ t

0

dt′ 〈~̇x(t′)〉

= ~x(0) +
m

γ
~̇x(0)

(
1− e−γt/m

)
Again, this is unsurprising: when the average noise vanishes, the average position of

the particle coincides with that of a particle that didn’t experience any noise.

Things get more interesting when we look at the expectation values of quadratic

quantities. This includes the variance in position 〈 ~x(t) ·~x(t) 〉 and velocity 〈 ~̇x(t) · ~̇x(t) 〉,
but also more general correlation functions in which the two quantities are evaluated at

different times. For example, the correlation function 〈 ẋi(t1)ẋj(t2) 〉 tells us information

about the velocity of the particle at time t2 given that we know where its velocity at

time t1. From (3.8), we have the expression,

〈ẋi(t1)ẋj(t2)〉 = 〈 ẋi(t1) 〉〈 ẋj(t2) 〉+
1

m2

∫ t1

0

dt′1

∫ t2

0

dt′2 〈fi(t′1)fj(t
′
2)〉 eγ(t′1+t′2−t1−t2)/m

where we made use of the fact that 〈~f(t)〉 = 0 to drop the terms linear in the noise
~f . If we use the white noise correlation function (3.6), and assume t2 ≥ t1 > 0, the

integral in the second term becomes,

〈ẋi(t1)ẋj(t2)〉 = 〈 ẋi(t1) 〉〈 ẋj(t2) 〉+
2Dγ2

m2
δij e

−γ(t1+t2)/m

∫ t1

0

dt′ e2γt′/m

= 〈 ẋi(t1) 〉〈 ẋj(t2) 〉+
Dγ

m
δij
(
e−γ(t2−t1)/m − e−γ(t1+t2)/m

)
For very large times, t1, t2 → ∞, we can drop the last term as well as the average

velocities since 〈 ~̇x(t) 〉 → 0. We learn that the correlation between velocities decays

exponentially as

〈ẋi(t1)ẋj(t2)〉 → Dγ

m
δij e

−γ(t2−t1)/m

This means that if you know the velocity of the particle at some time t1, then you can

be fairly confident that it will have a similar velocity at a time t2 < t1 + m/γ later.

But if you wait longer than time m/γ then you would be a fool to make any bets on

the velocity based only on your knowledge at time t1.
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Finally, we can also use this result to compute the average velocity-squared (which,

of course, is the kinetic energy of the system). At late times, the any initial velocity

has died away and the resulting kinetic energy is due entirely to the bombardment by

the environment. It is independent of time and given by

〈~̇x(t) · ~̇x(t) 〉 =
3Dγ

m
(3.10)

One can compute similar correlation functions for position 〈xi(t1)xj(t2) 〉. The ex-

pressions are a little more tricky but still quite manageable. (Combining equations

(3.9) and (3.8), you can see that you will a quadruple integral to perform and figuring

out the limits is a little fiddly). At late times, it turns out that the variance of the

position is given by the same expression that we saw for the viscous liquid (3.7),

〈 (~x(t)− ~x(0))2 〉 = 6D t (3.11)

again exhibiting the now-familiar
√
t behaviour for the root-mean-square distance.

3.1.3 The Einstein Relation

We brushed over something important and lovely in the previous discussion. We com-

puted the average kinetic energy of a particle in (3.10). It is

E =
1

2
m〈~̇x · ~̇x 〉 =

3

2
Dγ

But we already know what the average energy of a particle is when it’s bombarded by

its environment: it is given by the equipartition theorem and, crucially, depends only

on the temperature of the surroundings

E =
3

2
kBT

It must be therefore that the diffusion constant D is related to the mobility 1/γ by

D =
kBT

γ
(3.12)

That’s rather surprising! The diffusion constant captures the amount a particle is

kicked around due to the background medium; the mobility expresses the how hard it

is for a particle to plough through the background medium. And yet they are related.

This equation is telling us that diffusion and viscosity both have their microscopic origin

in the random bombardment of molecules. Notice that D is inversely proportional to

γ. Yet you might have thought that the amount the particle is kicked increases as the

viscosity increases. Indeed, looking back at (3.6), you can see that the amount the

particle is kicked is actually proportional to Dγ2 ∼ Tγ. Which is more in line with our

intuition.
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Equation (3.12) is known as the Einstein relation. It is an important example of

the fluctuation-dissipation theorem. The fluctuations of the particle as it undergoes

its random walk are related to the drag force (or dissipation of momentum) that the

particle feels as it moves through the fluid.

The Einstein relation gives an excellent way to determine Boltzmann’s constant ex-

perimentally. Watch a particle perform a Brownian jitter. After time t, the distance

travelled by the particle (3.7) should be

〈~x 2〉 =
kBT

πηa
t

where we have used the Stokes formula γ = 6πηa to relate the mobility to the viscosity

µ and radius a of the particle. This experiment was done in 1909 by the French physicist

Jean Baptiste Perrin and won him the 1926 Nobel prize.

3.1.4 Noise Probability Distributions

So far, we’ve only needed to use the two pieces of information about the noise, namely,

〈 ~f(t) 〉 = 0 (3.13)

〈 fi(t1)fj(t2) 〉 = 2Dγ2δijδ(t1 − t2) (3.14)

However, if we wanted to compute correlation functions involving more than two ve-

locities or positions, it should be clear from the calculation that we would need to

know higher moments of the probability distribution for ~f(t). In fact, the definition of

white noise is that there are no non-trivial correlations other than 〈 fi(t1)fj(t2) 〉. This

doesn’t mean that the higher correlation functions are vanishing, just that they can be

reduced to the two-time correlators. This means that for N even,

〈 fi1(t1) . . . fiN (tN) 〉 = 〈fi1(t)fi2(t2) 〉 . . . 〈fiN−1
(tN−1)fiN (tN) 〉+ permutations

while, for N odd

〈 fi1(t1) . . . fiN (tN) 〉 = 0

Another way of saying this is that all but the second cumulant of the probability

distribution vanish.

Instead of specifying all these moments of the distribution, it is often much more

useful to specify the probability distribution for ~f(t) directly. However, this is a slightly

subtle object because we want to specify the probability for an entire function ~f(t),

rather than a single random variable. This means that the probability distribution

must be a functional: you give it a function ~f(t) and it spits back a number which, in

this case, should be between zero and one.
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The good news is that, among the class of probability distributions over functions,

the white noise distribution is by far the easiest! If we were dealing with a single

random variable, the distribution that has only two-point correlators but no higher is

the Gaussian. And, suitably generalised, this also works for our functional probability

distribution. The probability distribution that gives white noise is

Prob[f(t)] = N exp

(
−
∫ +∞

−∞
dt

~f(t) · ~f(t)

4Dγ2

)
where N is a normalization factor which is needed to ensure that the sum over all

probabilities gives unity. This “sum” is really a sum over all functions ~f(t) or, in other

words, a functional integral. The normalization condition which fixes N is then∫
Df(t) Prob[f(t)] = 1 (3.15)

With this probability distribution, all averaging over the noise can now be computed

as a functional integral. If you have any function g(x), then its average is

〈 g(x) 〉 = N
∫
Df(t) g(xf ) e

−
∫
dt ~f 2/4Dγ2

where the notation xf means the solution to the Langevin equation in the presence of

a fixed source f .

Let’s now show that the Gaussian probability distribution indeed reproduces the

white noise correlations as claimed. To do this, we first introduce an object Z[ ~J(t)]

known as a generating function. We can introduce a generating function for any prob-

ability distribution, so let’s keep things general for now and later specialise to the

Gaussian distribution.

Z[ ~J(t)] =

∫
Df(t) Prob[f(t)] exp

(∫ +∞

−∞
dt ~J(t) · ~f(t)

)
This generating function is a functional: it is a function of any function ~J(t) that we

care to feed it. By construction, Z[0] = 1, courtesy of (3.15).

As the notation Z suggests, the generating function has much in common with the

partition function that we work with in a first course of Statistical Mechanics. This is

most apparent in the context of statistical field theories where the generating function

is reminiscent of the partition function. Both are functional, or path, integrals. These

objects are also important in quantum field theory where the names partition function

and generating function are often used synonymously.
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The function ~J that we have introduced is, in this context, really little more than

a trick that allows us to encode all the correlation functions in Z[ ~J ]. To see how this

works. Suppose that we differentiate Z with respect to ~J evaluated at some time t = t1
and then set ~J = 0. We have

δZ

δJi(t1)

∣∣∣∣
~J=0

=

∫
Df(t) fi(t1) Prob[f(t)] = 〈 fi(t1) 〉

Playing the same game, first taking n derivatives, gives

δnZ

δJi1(t1)δJi2(t2) . . . Jin(tn)

∣∣∣∣
~J=0

=

∫
Df(t) fi1(t1)fi2(t2) . . . fin(tn) prob[f(t)]

= 〈 fi1(t1)fi2(2) . . . fin(tn) 〉

So we see that if we can compute Z[ ~J ], then successive correlation functions are simply

the coefficients of a Taylor expansion in ~J . This is particularly useful for the Gaussian

distribution where the generating function is,

Z[ ~J(t)] = N
∫
Df(t) exp

(
−
∫ +∞

−∞
dt

~f(t) · ~f(t)

4Dγ2
− ~J(t) · ~f(t)

)
But this is nothing more than a Gaussian integral. (Ok, it’s an infinite number of

Gaussian integrals because it’s a functional integral. But we shouldn’t let that phase

us). We can easily compute it by completing the square

Z[ ~J(t)] = N
∫
Df(t) exp

(
− 1

4Dγ2

∫ +∞

−∞
dt
[
~f(t)− 2Dγ2 ~J(t)

]2

− 4D2γ4 ~J(t) · ~J(t)

)
After the shift of variable, ~f → ~f − 2Dγ2 ~J , the integral reduces to (3.15), leaving

behind

Z[ ~J(t)] = exp

(
Dγ2

∫ +∞

−∞
dt ~J(t) · ~J(t)

)
Now it is an easy matter to compute correlation functions. Taking one derivative, we

have
δZ

δJi(t1)
= 2Dγ2 Ji(t1)Z[ ~J ]

But this vanishes when we set J = 0, in agreement with our requirement (3.13) that

the average noise vanishes. Taking a second derivative gives,

δ2Z

δJi(t1)δJj(t2)
= 2Dγ2δijδ(t1 − t2)Z[ ~J ] + 4D2γ4Ji(t1)Jj(t2)Z[ ~J ]

Now setting ~J = 0, only the first term survives and reproduces the white noise corre-

lation (3.14). One can continue the process to see that all higher correlation functions

are entirely determined by 〈fi fj 〉.
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3.1.5 Stochastic Processes for Fields

Finally, it’s worth mentioning that Langevin-type equations are not restricted to par-

ticle positions. It is also of interest to write down stochastic processes for fields. For

example, we may want to consider a time dependent process for some order parameter

m(~r, t), influenced by noise

∂m

∂t
= c∇2m− am− 2bm2 + f

where f(~r, t) is a random field with correlations 〈f〉 = 0 and

〈 f(~r1, t1)f(~r2, t2) 〉 ∼ δd(~r1 − ~r2)δ(t1 − t2)

A famous example of a stochastic process is provided by the fluctuating boundary

between, say, a gas and a liquid. Denoting the height of the boundary as h(~r, t), the

simplest description of the boundary fluctuations is given by the Edwards-Wilkinson

equation,

∂h

∂t
= ∇2h+ f

A somewhat more accurate model is given by the Kardar-Parisi-Zhang equation,

∂h

∂t
= ∇2h+ λ(∇h)2 + f

We won’t have anything to say about the properties of these equations in this course.

An introduction can be found in the second book by Kardar.

3.2 The Fokker-Planck Equation

Drop a particle at some position, say ~x0 at time t0. If the subsequent evolution is noisy,

so that it is governed by a stochastic Langevin equation, then we’ve got no way to know

for sure where the particle will be. The best that we can do is talk about probabilities.

We will denote the probability that the particle sits at ~x at time t as P (~x, t; ~x0, t0).

In the previous section we expressed our uncertainty in the position of the particle

in terms of correlation functions. Here we shift perspective a little. We would like to

ask: what probability distribution P (~x, t; ~x0, t0) would give rise to the same correlation

functions that arose from the Langevin equation?

We should stress that we care nothing about the particular path ~x(t) that the particle

took. The probability distribution over paths would be a rather complicated functional

(rather like those we saw in Section 3.1.4). Instead we will ask the much simpler

question of the probability that the particle sits at ~x at time t, regardless of how it got

there.
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It is simple to write down a formal expression for the probability distribution. Let’s

denote the solution to the Langevin equation for a given noise function ~f as ~xf . Of

course, if we know the noise, then there is no uncertainty in the probability distribution

for ~x. It is simply P (~x, t) = δ(~x − ~xf ). Now averaging over all possible noise, we can

write the probability distribution as

P (~x, t) = 〈 δ(~x− ~xf ) 〉 (3.16)

In this section, we shall show that the P (~x, t) obeys a simple partial differential equation

known as the Fokker-Planck equation.

3.2.1 The Diffusion Equation

The simplest stochastic process we studied was a particle subject to random forces in

a very viscous fluid. The Langevin equation is

~̇x(t) =
1

γ
~f(t)

In Section 3.1.1 we showed that the average position of the particle remains unchanged:

if ~x(t = 0) = ~0 then 〈~x(t)〉 = ~0 for all t. But the variance of the particle undergoes a

random walk (3.7),

〈 ~x(t)2 〉 = 6Dt (3.17)

For this simple case, we won’t derive the probability distribution: we’ll just write it

down. The probability distribution that reproduces this variance: it is just a Gaussian

P (~x, t) =

(
1

4πDt

)3/2

e−~x
2/4Dt (3.18)

where the factor out front is determined by the normalization requirement that∫
d3xP (x, t) = 1

for all time t. Note that there is more information contained in this probability dis-

tribution that the just the variance (3.17). Specifically, all higher cumulants vanish.

(This means, for example, that 〈~x 3 〉 = 0 and 〈 ~x 4 〉 = 3〈 ~x 2 〉 and so on). But it simple

to check that this is indeed what arises from the Langevin equation with white noise

described in Section 3.1.4.
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The probability distribution (3.18) obeys the diffusion equation,

∂P

∂t
= D∇2P

This is the simplest example of a Fokker-Planck equation. However, for more com-

plicated versions of the Langevin equation, we will have to work harder to derive the

analogous equation governing the probability distribution P .

3.2.2 Meet the Fokker-Planck Equation

Let’s now consider the a more general stochastic process. We’ll still work in the viscous

limit for now, setting m = 0 so that we have a first order Langevin equation,

γ~̇x = −∇V + ~f (3.19)

A quadratic V corresponds to a harmonic oscillator potential and the Langevin equation

is not difficult to solve. (In fact, mathematically it is the same problem that we solved

in Section 3.1.2. You just have to replace ~̇x = ~v → ~x). Any other V gives rise to a non-

linear stochastic equation (confusingly sometimes called “quasi-linear” in this context)

and no general solution is available. Nonetheless, we will still be able to massage this

into the form of a Fokker-Planck equation.

We begin by extracting some information from the Langevin equation. Consider a

particle sitting at some point x at time t. If we look again a short time δt later, the

particle will have moved a small amount

δ~x = ~̇x δt = −1

γ
∇V δt+

1

γ

∫ t+δt

t

dt′ ~f(t′) (3.20)

Here we’ve taken the average value of the noise function, f , over the small time interval.

However, we’ve assumed that the displacement of the particle δ~x is small enough so

that we can evaluate the force ∇V at the original position ~x. (It turns out that this

is ok in the present context but there are often pitfalls in making such assumptions in

the theory of stochastic processes. We’ll comment on one such pitfall at the end of this

Section). We can now compute the average. Because 〈~f(t)〉 = 0, we have

〈 δ~x 〉 = −1

γ
∇V δt (3.21)

The computation 〈 δxi δxj〉 is also straightforward,

γ2〈 δxiδxj〉 = 〈∂iV ∂jV 〉δt2 − δt
∫ t+δt

t

dt′ 〈∂iV fj(t′) + ∂j V fi(t
′)〉

+

∫ t+δt

t

dt′
∫ t+δt

t

dt′′〈 fi(t′) fj(t′′) 〉

– 64 –



Both the first two terms are order δt2. However, using (3.6), one of the integrals in

the third term is killed by the delta function, leaving just one integral standing. This

ensures that the third term is actually proportional to δt,

〈 δxiδxj 〉 = 2δijD δt+O(δt2) (3.22)

We will ignore the terms of order δt2. Moreover, It is simple to see that all higher

correlation functions are higher order in δt. For example, 〈~x 4〉 ∼ δt2. These too will

be ignored.

Our strategy now is to construct a probability distribution that reproduces (3.21)

and (3.22). We start by considering the conditional probability P (~x, t + δt; ~x ′, t) that

the particle sits at ~x at time t + δt given that, a moment earlier, it was sitting at ~x ′.

From the definition (3.16) we can write this as

P (~x, t+ δt; ~x ′, t) = 〈 δ(~x− ~x ′ − δ~x) 〉

where δx is the random variable here; it is the distance moved in time δt. Next,

we do something that may look fishy: we Taylor expand the delta-function. If you’re

nervous about expanding a distribution in this way, you could always regulate the delta

function in your favourite manner to turn it into a well behaved function. However,

more pertinently, we will see that the resulting expression sits inside an integral where

any offending terms make perfect sense. For now, we just proceed naively

P (~x, t+ δt; ~x ′, t) =

(
1 + 〈 δxi 〉

∂

∂x′i
+

1

2
〈 δxi δxj 〉

∂2

∂x′i∂x
′
j

+ . . .

)
δ(~x− ~x ′) (3.23)

We have truncated at second order because we want to compare this to (3.27) and, as

we saw above, 〈 δ~x 〉 and 〈 δ~x 2 〉 are the only terms that are order δt.

We now have all the information that we need. We just have to compare (3.27) and

(3.23) and figure out how to deal with those delta functions. To do this, we need one

more trick. Firstly, recall that our real interest is in the evolution of the probability

P (~x, t; ~x0, t0), given some initial, arbitrary starting position ~x(t = t0) = ~x0. There is an

obvious property that this probability must satisfy: if you look at some intermediate

time t0 < t′ < t, then the particle has to be somewhere. Written as an equation, this

“has to be somewhere” property is called the Chapman-Kolmogorov equation

P (~x, t; ~x0, t0) =

∫ +∞

−∞
d3~x,′ P (~x, t; ~x′, t′)P (~x′, t′; ~x0, t0) (3.24)

Replacing t by t + δt, we can substitute our expression (3.23) into the Chapman-

Kolmogorov equation, and then integrate by parts so that the derivatives on the delta
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function turn and hit P (~x′, t′; ~x0, t0). The delta-function, now unattended by deriva-

tives, kills the integral, leaving

P (~x, t+ δt; ~x0, t0) = P (~x, t; ~x0, t0)− ∂

∂xi

(
〈 δxi 〉P (~x, t; ~x0, t0)

)
+

1

2
〈 ∂xi ∂xj 〉

∂2

∂xi∂xj
P (~x, t; ~x0, t0) + . . . (3.25)

Using our expressions for 〈δx〉 and 〈δxδx〉 given in (3.21) and (3.22), this becomes

P (~x, t+ δt; ~x0, t0) = P (~x, t; ~x0, t0) +
1

γ

∂

∂xi

(
∂V

∂xi
P (~x, t; ~x0, t0)

)
δt

+D
∂2

∂x2
P (~x, t; ~x0, t0) δt+ . . . (3.26)

But we can also get a much simpler expression for the left-hand side simply by Taylor

expanding with respect to time,

P (~x, t+ δt; ~x0, t0) = P (~x, t; ~x0, t0) +
∂

∂t
P (~x, t; ~x0, t0) δt+ . . . (3.27)

Equating (3.27) with (3.26) gives us our final result,

∂P

∂t
=

1

γ
∇ · (P∇V ) +D∇2P (3.28)

This is the Fokker-Planck equation. This form also goes by the name of the Smolu-

chowski equation or, for probabilists, Kolomogorov’s forward equation.

Properties of the Fokker-Planck Equation

It is useful to write the Fokker-Planck equation as a continuity equation

∂P

∂t
= ∇ · ~J (3.29)

where the probability current is

~J =
1

γ
P∇V +D∇P (3.30)

The second term is clearly due to diffusion (because there’s a big capital D in front of

it); the first term is due to the potential and is often referred to as the drift, meaning

the overall motion of the particle due to background forces that we understand.

– 66 –



One advantage of writing the Fokker-Planck equation in terms of a current is that

we see immediately that probability is conserved, meaning that if
∫
d3xP = 1 at some

point in time then it will remain so for all later times. This follows by a standard

argument,

∂

∂t

∫
d3xP =

∫
d3x

∂P

∂t
=

∫
d3x ∇ · ~J = 0

where the last equality follows because we have a total derivative (and we are implicitly

assuming that there’s no chance that the particle escapes to infinity so we can drop the

boundary term).

The Fokker-Planck equation tells us how systems evolve. For some systems, such as

those described by the diffusion equation, there is no end point to this evolution: the

system just spreads out more and more. However, for generic potentials V there are

time-independent solutions to the Fokker-Planck equation obeying ∇ · ~J = 0. These

are the equilibrium configurations. The solution is given by

P (~x) ∼ e−V (~x)/γD

Using the Einstein relation (3.12), this becomes something very familiar. It is simply

the Boltzmann distribution for a particle with energy V (~x) in thermal equilibrium

P (~x) ∼ e−V (~x)/kBT (3.31)

Isn’t that nice! (Note that there’s no kinetic energy in the exponent as we set m = 0

as our starting point).

An Application: Escape over a Barrier

As an application of the Fokker-Planck equation, consider thermal escape from the

one-dimensional potential shown in Figure 7. We’ll assume that all the particles start

off sitting close to the local minimum at xmin. We model the potential close to this

point as

V (x) ≈ 1

2
ω2

min(x− xmin)2

and we start our particles in a distribution that is effectively in local equilbrium (3.31),

with

P (x, t = 0) =

√
ω2

min

2πkBT
e−ω

2
min(x−xmin)2/2kBT (3.32)
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V(x)

x

xmin x xmax *

Figure 7: Escape over a Barrier.

But, globally, xmin is not the lowest energy configuration and this probability distribu-

tion is not the equilibrium configuration. In fact, as drawn, the potential has no global

minimum and there is no equilibrium distribution. So this isn’t what we’ll set out to

find. Instead, we would like to calculate the rate at which particles leak out of the trap

and over the barrier.

Although we’re clearly interested in a time dependent process, the way we proceed is

to assume that the leakage is small and so can be effectively treated as a steady state

process. This means that we think of the original probability distribution of particles

(3.32) as a bath which, at least on the time scales of interest, is unchanging. The steady

state leakage is modelled by a constant probability current J = J0, with J given by

(3.30). Using the Einstein relation D = kBT/γ, we can rewrite this as

J =
kBT

γ
e−V (x)/kBT

∂

∂x

(
e+V (x)/kBTP

)
The first step is to integrate J0 e

+V (x)/kBT between the minimum xmin and some distance

far from all the action, x� xmax, which we may as we call x = x?,∫ x?

xmin

dx J0 e
V (x)/kBT =

kBT

γ

[
eV (xmin)/kBTP (xmin)− eV (x?)/kBTP (x?)

]
But we can take the probability P (x?) to be vanishingly small compared to P (xmin)

given in (3.32), leaving us with

∫ x?

xmin

dx J0 e
V (x)/kBT ≈ kBT

γ

√
ω2

min

2πkBT
(3.33)
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Meanwhile, the integral on the left-hand-side is dominated by the maximum of the

potential. Let’s suppose that close to the maximum, the potential looks like

V (x) ≈ Vmax −
1

2
ω2

max(x− xmax)2

Then we’ll write the integral as

J0

∫ x?

xmin

dx eV (x)/kBT ≈ J0 e
Vmax/kBT

√
2πkBT

ω2
max

(3.34)

Combining the two expressions (3.33) and (3.34), we get our final result for the rate of

escape over the barrier

J0 ≈
ωminωmax

2πγ
e−Vmax/kBT

3.2.3 Velocity Diffusion

So far we’ve ignored the inertia term, setting m = 0. Let’s now put it back in. We can

start by setting the potential to zero, so that the Langevin equation is

m~̈x = −γ~̇x+ ~f(t)

But, we can trivially rewrite this as a first order equation involving ~v = ~̇x,

m~̇v = −γ~v + ~f(t)

This means that if we’re only interested in the distribution over velocities, P (~v, t), then

we have exactly the same problem that we’ve just looked at, simply replacing ~x → ~v

and γ → m. (Actually, you need to be a little more careful. The diffusion constant

D that appears in (3.28) was really Dγ2/γ2 where the numerator arose from the noise

correlator and the denominator from the γ~̇x term in the Langevin equation. Only the

latter changes, meaning that this combination gets replaced by Dγ2/m2). The resulting

Fokker-Planck equation is

∂P

∂t
=

1

m

∂

∂~v
·
(
γP~v +

Dγ2

m

∂P

∂~v

)
(3.35)

The equilibrium distribution that follows from this obeys ∂P/∂t = 0, meaning

∂P

∂~v
= − m

Dγ
P~v ⇒ P =

(
m

2πkBT

)3/2

e−m~v
2/2kBT

where we’ve again used the Einstein relationDγ = kBT . This, of course, is the Maxwell-

Boltzmann distribution.
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In fact, we can do better than this. Suppose that we start all the particles off at

t = 0 with some fixed velocity, ~v = ~v0. This mean that the probability distribution is

a delta-function, P (~v, t = 0) = δ3(~v − ~v0). We can write down a full time-dependent

solution to the Fokker-Planck equation (3.35) with this initial condition.

P (~v, t) =

(
m

2πkBT (1− e−2γt/m)

)3/2

exp

(
− m(~v − ~v0e

−γt/m)2

2kBT (1− e−2γt/m)

)
As t → ∞, we return to the Maxwell-Boltzmann distribution. But now this tells us

how we approach equilibrium.

The Kramers-Chandrasekhar Fokker-Planck Equation

As our final example of a Fokker-Planck equation, we can consider the Langevin equa-

tion with both acceleration term and potential term,

m~̈x = −γ~̇x−∇V + ~f(t)

Now we are looking for a probability distribution over phase space, P (~x, ~̇x, t). The

right way to proceed is to write this as two first-order equations. The first of these is

simply the definition of velocity ~v = ẋ. The second is the Langevin equation

m~̇v = −γ~v −∇V + ~f(t)

These can now be combined into a single Langevin equation for six variables. Once

armed with this, we need only follow the method that we saw above to arrive at a

Fokker-Planck equation for P (~x,~v, t),(
∂

∂t
+ vi

∂

∂xi

)
P =

1

m

∂

∂vi

(
γviP + P

∂V

∂xi

)
+
Dγ2

m2

∂2P

∂vi∂vi
(3.36)

This form of the Fokker-Planck equations is sometimes called the Kramers equation

and sometimes called the Chandrasekhar equation.

Note that this equation is now capturing the same physics that we saw in the Boltz-

mann equation: the probability distribution P (~x,~v, t) is the same object that we called

f1(~r, ~p; t) in Section 2. Moreover, it is possible to derive this form of the Fokker-Planck

equation, starting from the Boltzmann equation describing a heavy particle in a sur-

rounding bath of light particles. The key approximation is that in small time intervals

δt, the momentum of the heavy particle only changes by a small amount. Looking back,

you can see that this was indeed an assumption in the derivation of the Fokker-Planck

equation in Section 3.2.2, but not in the derivation of the Boltzmann equation.
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Integrating over Velocity

The equation (3.36) governing the probability distribution over phase space P (~x,~v, t)

looks very different from the Fokker-Planck equation governing the probability distri-

bution over configuration space (3.28). Yet the related Langevin equations are simply

related by setting m = 0 or, equivalently, looking at systems with large γ. How can we

derive (3.28) from (3.36)?

The computation involves a careful expansion of (3.36) in powers of 1/γ. Let’s see

how this works. Firstly, we use the Einstein relation to write Dγ = kBT , and the

rearrange the terms in (3.36) to become

∂

∂vi

(
kBT

m2

∂

∂vi
+
vi

m

)
P =

1

γ

(
∂

∂t
+ vi

∂

∂xi
− 1

m

∂V

∂xi
∂

∂vi

)
P (3.37)

We’re going to solve this perturbatively in 1/γ, writing

P = P (0) +
1

γ
P (1) +

1

γ2
P (2) + . . .

As our first pass at this, we drop anything that has a 1/γ, which mean that P (0) must

be annihilated by the left-hand-side of (3.37). and This is a simple differential equation,

with solution

P (0)(v, x, t) = e−mv
2/2kBT φ(0)(x, t)

for any function φ(0)(x, t). Of course, the velocity dependence here is simply the

Maxwell-Boltzmann distribution. To figure out what restrictions we have on φ(0), we

need to go to the next order in perturbation theory. Keeping terms of O(1/γ), the

differential equation (3.37) becomes

∂

∂vi

(
kBT

m2

∂

∂vi
+
vi

m

)
P (1) =

(
∂

∂t
+ vi

∂

∂xi
+

vi

kBT

∂V

∂xi

)
φ(0)e−mv

2/2kBT (3.38)

But this equation cannot be solved for arbitrary φ(0). This is simplest to see if we just

integrate both sides over
∫
d3v: the left-hand-side is a total derivative and so vanishes.

On the right-hand-side, only one term remains standing and this must vanish. It is

∂φ(0)

∂t
= 0

So φ(0) = φ(0)(x). With this constraint, the solution to (3.38) is, again, straightforward

to write down. It is

P (1)(x, v, t) =

(
−mvi∂φ

(0)

∂xi
− m

kBT
vi
∂V

∂xi
φ(0) + φ(1)(x, t)

)
e−mv

2/2kBT
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At this point, it doesn’t look like we’re making much progress. We still don’t know what

φ(0)(x) is and we’ve now had to introduce yet another arbitrary function, φ(1)(x, t) which

carries all the time dependence. Let’s plug this once more into (3.37), now working to

order O(1/γ2). After a little bit of algebra, the equation becomes

∂

∂vi

(
kBT

m2

∂

∂vi
+
vi

m

)
P (2) =

[
−mvivj ∂

∂xi

(
∂

∂xj
+

1

kBT

∂V

∂xj

)
φ(0)

+
∂V

∂xi

(
δij −

m

kBT
vivj

)(
∂

∂xj
+

1

kBT

∂V

∂xj

)
φ(0)

+

(
∂

∂t
+ vi

∂

∂xi
+

vi

kBT

∂V

∂xi

)
φ(1)

]
e−mv

2/2kBT

Once again, there’s a consistency condition that must be realised if this equation is

to have a solution. Integrating over
∫
d3v, the left-hand-side is a total derivative and

therefore vanishes. Any term linear in v on the right-hand-side also vanishes. But so

too do the terms on the second line: you can check that the Gaussian integral over the

δij term exactly cancels the vivj term. The resulting consistency condition is

∂φ(1)

∂t
= kBT

∂

∂xi

(
∂

∂xi
− 1

kBT

∂V

∂xi

)
φ(0) (3.39)

where the overall factor of kBT on the right-hand-side comes only arises when you do

the Gaussian integral over
∫
d3v.

Now we’re almost there. (Although it probably doesn’t feel like it!). Collecting what

we’ve learned, to order O(1/γ), the probability distribution over phase space takes the

form

P (x, v, t) =

(
φ(0) − mvi

γ

∂φ(0)

∂xi
− mvi

γkBT

∂V

∂xi
φ(0) +

φ(1)

γ

)
e−mv

2/2kBT

But to make contact with the earlier form of the Fokker-Planck equation (3.28), we

want a distribution over configuration space. We get this by simply integrating over

velocities. We’ll also denote the resulting probability distribution as P (x, t), with only

the arguments to tell us that it’s a different object:

P (x, t) =

∫
d3v P (x, v, t) =

√
2πkBT

m

(
φ(0)(x) +

1

γ
φ(1)(x, t)

)
But now we can use the consistency condition (3.39) to compute ∂P/∂t. Working only

to order O(1/γ), this reads

∂P

∂t
=
kBT

γ

∂

∂xi

(
∂

∂xi
+

1

kBT

∂V

∂xi

)
P

Which is precisely the Fokker-Planck equation (3.28) that we saw previously.

– 72 –



3.2.4 Path Integrals: Schrödinger, Feynman, Fokker and Planck

There is a close similarity between the Fokker-Planck equation and the Schrödinger

equation in quantum mechanics. To see this, let’s return to the first order Langevin

equation

~̇x =
1

γ

(
−∇V + ~f

)
(3.40)

and the corresponding Fokker-Planck equation (3.28). We can change variables to

P (x, t) = e−V (x)/2γDP̃ (x, t) (3.41)

Substituting into the Fokker-Planck equation, we see that the rescaled probability P̃

obeys

∂P̃

∂t
= D∇2P̃ +

(
1

2γ
∇2V − 1

4γ2D
(∇V )2

)
P̃ (3.42)

There are no first order gradients ∇P̃ ; only ∇2P̃ . This form of the Fokker-Planck

equation looks very similar to the Schrödinger equation.

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + U(~x)ψ

All that’s missing is a factor of i on the left-hand-side. Otherwise, with a few trivial

substitutions, the two equations look more or less the same. Note, however, that

the relationship between the potentials is not obvious: if we want to relate the two

equations, we should identify

U = − 1

2γ
∇2V +

1

4Dγ2
(∇V )2 (3.43)

The relationship between the evolution of quantum and classical probabilities is also

highlighted in the path integral formulation. Recall that the Schrödinger equation

can be reformulated in terms of function integrals, with the quantum amplitude for a

particle to travel from ~x = ~xi at time t = ti to ~xf at time tf given by8.

〈~xf , tf |~xi, ti〉 = N
∫
Dx(t) exp

(
i

~

∫
dt

~̇x 2

2m
− U(~x)

)

8A derivation of the path integral from the Schrödinger equation can be found in the lectures on

Classical Dynamics.
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Figure 8: From Chapman-Kolmogorov to Feynman.

where N is a normalization factor. Here the integral is over all paths which start at

(~xi, ti) and end at ~xf , tf ). By analogy, we expect there to be a similar path integral

formulation of the classical probability for a particle in the Langevin environment (3.40)

to travel from ~xi to ~xf . Indeed, the existence of a path integral formulation for this

problem is very natural. The essence of this can already be seen in the Chapman-

Kolmogorov equation (3.24)

P (~x, t; ~x0, t0) =

∫ +∞

−∞
d3~x,′ P (~x, t; ~x′, t′)P (~x′, t′; ~x0, t0)

This simply says that to get from point A to point B, a particle has to pass through

some position in between. And we sum up the probabilities for each position. Adding

many more intervening time steps, as shown in Figure 8, naturally suggests that we

should be summing over all possible paths.

Deriving the Path Integral

Here we will sketch the derivation of the path integral formula for the Fokker-Planck

equation. We’ve already met function integrals in Section 3.1.4 where we introduced

the probability distribution for a given noise function ~f(t)

Prob[f(t)] = N exp

(
−
∫
dt

~f(t) · ~f(t)

4Dγ2

)
(3.44)

subject to the normalization condition∫
Df(t) Prob[f(t)] = 1 (3.45)

But given a fixed noise profile ~f(t) and an initial condition, the path of the particle is

fully determined by the Langevin equation (3.40). Let’s call this solution ~xf . Then the

– 74 –



probability that the particle takes the path ~xf is the same as the probability that the

force is ~f ,

Prob[~xf (t)] = Prob[~f(t)] = N exp

(
−
∫
dt

~f(t) · ~f(t)

4Dγ2

)

= N exp

(
− 1

4Dγ2

∫
dt (γ~̇xf +∇V (~xf ))

2

)
where, in the last line, we’ve used the Langevin equation (3.40) to relate the force to

the path taken. But since this equation holds for any path ~xf , we can simply drop the

f label. We have the probability that the particle takes a specific path ~x(t) given by

Prob[~x(t)] = N exp

(
− 1

4Dγ2

∫
dt (γ~̇x+∇V )2

)
The total probability to go from ~xi to ~xf should therefore just be the sum over all these

paths. With one, slightly fiddly, subtlety: the probability is normalized in (3.45) with

respect to the integration measure over noise variable ~f . And we want to integrate over

paths. This means that we have to change integration variables and pick up a Jacobian

factor for our troubles. We have

Prob[~xf , tf ; ~xi, ti] = N
∫
Df(t) exp

(
− 1

4Dγ2

∫
dt (γ~̇xf +∇V (~xf )

2

)
= N

∫
Dx(t) detM exp

(
− 1

4Dγ2

∫
dt (γ~̇x+∇V )2

)
(3.46)

Here the operator M(t, t′) that appears in the Jacobian be thought of as δf(t)/δx(t′).

It can be written down by returning to the Langevin equation (3.40) which relates fand

x,

M(t, t′) = γ
∂

∂t
δ(t− t′) +∇2V δ(t− t′)

If we want to think in a simple minded way, we can consider this as a (very large)

matrix Mtt′ , with columns labelled by the index t and rows labelled by t′. We’ll write

the two terms in this matrix as M = A+B so the determinant becomes

det(A+B) = detA det(1 + A−1B) (3.47)

The first operator A = γ∂/∂t δ(t− t′) doesn’t depend on the path and its determinant

just gives a constant factor which can be absorbed into the normalization N . The

operator A−1 in the second term is defined in the usual way as∫
dt′A(t, t′)A−1(t,′ t′′) = δ(t− t′′)
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where the integral over
∫
dt′ is simply summing over the rows of A and the columns of

A−1 as in usual matrix multiplication. It is simple to check that the inverse is simply

the step function

A−1(t′, t′′) =
1

γ
θ(t′ − t′′) (3.48)

Now we write the second factor in (3.47) and expand,

det(1 + A−1B) = exp
(

Tr log(1 + A−1B)
)

= exp
(∑

n

Tr(A−1B)n/n
)

(3.49)

Here we should look in more detail at what this compact notation means. The term

TrA−1B is really short-hand for

TrA−1B =

∫
dt dt′ A−1(t, t′)B(t′, t)

where the integral over
∫
dt′ is multiplying the matrices together while the integral over∫

dt comes from taking the trace. Using (3.48) we have

TrA−1B =
1

γ

∫
dt dt′ θ(t− t′)∇2V δ(t− t′) =

θ(0)

γ

∫
dt ∇2V

The appearance of θ(0) may look a little odd. This function is defined to be θ(x) = +1

for x > 0 and θ(x) = 0 for x < 0. The only really sensible value at the origin is

θ(0) = 1/2. Indeed, this follows from the standard regularizations of the step function,

for example

θ(x) = lim
µ→0

(
1

2
+

1

π
tan−1

(
x

µ

))
⇒ θ(0) =

1

2

What happens to the higher powers of (A−1B)n? Writing them out, we have

Tr(A−1B)n =

∫
dt

∫
dt1 . . . dt2n−1 θ(t− t1)δ(t1 − t2)θ(t2 − t3)δ(t3 − t4) . . .

. . . θ(t2n−2 − t2n−1)δ(t2n−1 − t)
(∇2V )n

γn

where we have been a little sloppy in writing (∇2V )n because each of these is actually

computed at a different time. We can use the delta-functions to do half of the integrals,

say all the tn for n odd. We get

Tr(A−1B)n =

∫
dt

∫
dt2dt4 . . . θ(t− t2)θ(t2 − t4)θ(t4 − t6) . . . θ(t2n−2 − t)

(∇2V )n

γn
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But this integral is only non-vanishing only if t > t2 > t4 > t6 > . . . > tn > t. In

other words, the integral vanishes. (Note that you might think we could again get

contributions from θ(0) = 1/2, but the integrals now mean that the integrand has

support on a set of zero measure. And with no more delta-functions to rescue us, gives

zero. The upshot of this is that the determinant (3.49) can be expressed as a single

exponential

det(1 + A−1B) = exp

(
1

2γ

∫
dt ∇2V

)
We now have an expression for the measure factor in (3.46). Using this, the path

integral for the probability becomes,

Prob[~xf , tf ; ~xi, ti] = N ′
∫
Dx(t) exp

(
− 1

4Dγ2

∫
dt (γ~̇x+∇V )2 +

1

2γ

∫
dt ∇2V

)
= N ′e[V (xf )−V (xi)]/2γD

∫
Dx(t) exp

(
−
∫
dt

~̇x 2

4D
+ U

)
where U is given in (3.43). Notice that the prefactor e[V (xf )−V (xi)]/2γD takes the same

form as the map from probabilities P to the rescaled P̃ in (3.41). This completes our

derivation of the path integral formulation of probabilities.

3.2.5 Stochastic Calculus

There is one final generalization of the Langevin equation that we will mention but

won’t pursue in detail. Let’s return to the case m = 0, but generalise the noise term

in the Langevin equation so that it is now spatially dependent. We write

γ~̇x = −∇V + b(~x) ~f(t) (3.50)

This is usually called the non-linear Langevin equation. The addition of the b(~x) multi-

plying the noise looks like a fairly innocuous change. But it’s not. In fact, annoyingly,

this equation is not even well defined!

The problem is that the system gets a random kick at time t, the strength of which

depends on its position at time t. But if the system is getting a delta-function impulse

at time t then its position is not well defined. Mathematically, this problem arises when

we look at the position after some small time δt. Our equation (3.20) now becomes

δ~x = ~̇x δt = −1

γ
∇V δt+

1

γ

∫ t+δt

t

dt′ b(~x(t′)) ~f(t′)

and our trouble is in making sense of the last term. There are a couple of obvious ways

we could move forward:
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• Ito: We could insist that the strength of the kick is related to the position of the

particle immediately before the kick took place. Mathematically, we replace the

integral with ∫ t+δt

t

dt′ b(~x(t′)) ~f(t′) −→ b(~x(t))

∫ t+δt

t

dt′ ~f(t′)

This choice is known as Ito stochastic calculus.

• Stratonovich: Alternatively, we might argue that the kick isn’t really a delta

function. It is really a process that takes place over a small, but finite, time. To

model this, the strength of the kick should be determined by the average position

over which this process takes place. Mathematically, we replace the integral with,∫ t+δt

t

dt′ b(~x(t′)) ~f(t′) −→ 1

2
[b(~x(t+ δt)) + b(~x(t))]

∫ t+δt

t

dt′ ~f(t′)

This choice is known as Stratonovich stochastic calculus.

Usually in physics, issues of this kind don’t matter too much. Typically, any way of

regulating microscopic infinitesimals leads to the same macroscopic answers. However,

this is not the case here and the Ito and Stratonovich methods give different answers

in the continuum. In most applications of physics, including Brownian motion, the

Stratonovich calculus is the right way to proceed because, as we argued when we first

introduced noise, the delta-function arising in the correlation function 〈f(t)f(t′)〉 is just

a convenient approximation to something more smooth. However, in other applications

such as financial modelling, Ito calculus is correct.

The subject of stochastic calculus is a long one and won’t be described in this course.

For the Stratonovich choice, the Fokker-Planck equation turns out to be

∂P

∂t
=

1

γ
∇ ·
[
P (∇V −Dγ2b∇b)

]
+D∇2(b2P )

This is also the form of the Fokker-Planck equation that you get by naively dividing

(3.50) by b(~x) and the defining a new variable ~̇y = ~̇x/b which reduces the problem to

our previous Langevin equation (3.19). In contrast, if we use Ito stochastic calculus,

the b∇b term is absent in the resulting Fokker-Planck equation.
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4. Linear Response

The goal of response theory is to figure out how a system reacts to outside influences.

These outside influences are things like applied electric and magnetic fields, or applied

pressure, or an applied driving force due to some guy sticking a spoon into a quantum

liquid and stirring.

We’ve already looked at a number of situations like this earlier in these lectures. If

you apply a shearing force to a fluid, its response is to move; how much it moves is

determined by the viscosity. If you apply a temperature gradient, the response is for

heat to flow; the amount of heat is determined by the thermal conductivity. However, in

both of these cases, the outside influence was time independent. Our purpose here is to

explore the more general case of time dependent influences. As we’ll see, by studying

the response of the system at different frequencies, we learn important information

about what’s going on inside the system itself.

4.1 Response Functions

Until now, our discussion has been almost entirely classical. Here we want to deal with

both classical and quantum worlds. For both cases, we start by explaining mathemat-

ically what is meant by an outside influence on a system.

Forces in Classical Dynamics

Consider a simple dynamical system with some generalized coordinates xi(t) which

depend on time. If left alone, these coordinates will obey some equations of motion,

ẍi + gi(ẋ, x) = 0

This dynamics need not necessarily be Hamiltonian. Indeed, often we’ll be interested

in situations with friction. The outside influence in this example arises from perturbing

the system by the addition of some driving forces Fi(t), so that the equations of motion

become,

ẍi + gi(ẋ, x) = Fi(t) (4.1)

In this expression, xi(t) are dynamical degrees of freedom. This is what we’re solving

for. In contrast, Fi(t) are not dynamical: they’re forces that are under our control, like

someone pulling on the end of a spring. We get to decide on the time dependence of

each Fi(t).
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It may be useful to have an even more concrete example at the back of our minds.

For this, we take every physicist’s favorite toy: the simple harmonic oscillator. Here

we’ll include a friction term, proportional to γ, so that we have the damped harmonic

oscillator with equation of motion

ẍ+ γẋ+ ω2
0x = F (t) (4.2)

We will discuss this model in some detail in section 4.2.

Sources in Quantum Mechanics

In quantum mechanics, we introduce the outside influences in a slightly different man-

ner. The observables of the system are now operators, Oi. We’ll work in the Heisenberg

picture, so that the operators are time dependent: O = O(t). Left alone, the dynamics

of these operators will be governed by a Hamiltonian H(O). However, we have no

interest in leaving the system alone. We want to give it a kick. Mathematically this is

achieved by adding an extra term to the Hamiltonian,

Hsource(t) = φi(t)Oi(t) (4.3)

The φi(x) are referred to as sources. They are external fields that are under our

control, analogous to the driving forces in the example above. Indeed, if we take a

classical Hamiltonian and add a term of the form xφ then the resulting Euler-Lagrange

equations include the source φ on the right-hand-side in the same way that the force

F appears in (4.2).

4.1.1 Linear Response

We want to understand how our system reacts to the presence of the source or the

driving force. To be concrete, we’ll chose to work in the language of quantum mechanics,

but everything that we discuss in this section will also carry over to classical systems.

Our goal is to understand how the correlation functions of the theory change when we

turn on a source (or sources) φi(x).

In general, it’s a difficult question to understand how the theory is deformed by the

sources. To figure this out, we really just need to sit down and solve the theory all over

again. However, we can make progress under the assumption that the source is a small

perturbation of the original system. This is fairly restrictive but it’s the simplest place

where we can make progress so, from now on, we focus on this limit. Mathematically,

this means that we assume that the change in the expectation value of any operator is

linear in the perturbing source. We write

δ〈Oi(t)〉 =

∫
dt′ χij(t; t

′)φj(t
′) (4.4)
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Here χij(t; t
′) is known as a response function. We could write a similar expression for

the classical dynamical system (4.1), where δ〈Oi〉 is replaced by xi(t) and φ is replaced

by the driving force Fj(t). In classical mechanics, it is clear from the form of the

equation of motion (4.1) that the response function is simply the Green’s function for

the system. For this reason, the response functions are often called Green’s functions

and you’ll often see them denoted as G instead of χ.

From now on, we’ll assume that our system is invariant under time translations. In

this case, we have

χij(t; t
′) = χij(t− t′)

and it is useful to perform a Fourier transform to work in frequency space. We define

the Fourier transform of the function f(t) to be

f(ω) =

∫
dt eiωtf(t) and f(t) =

∫
dω

2π
e−iωtf(ω) (4.5)

In particular, we will use the convention where the two functions are distinguished only

by their argument.

Taking the Fourier transform of (4.4) gives

δ〈Oi(ω)〉 =

∫
dt′
∫
dt eiωtχij(t− t′)φj(t′)

=

∫
dt′
∫
dt eiω(t−t′)χij(t− t′) eiωt

′
φj(t

′)

= χij(ω)φj(ω) (4.6)

We learn the response is “local” in frequency space: if you shake something at frequency

ω, it responds at frequency ω. Anything beyond this lies within the domain of non-

linear response.

In this section we’ll describe some of the properties of the response function χ(ω)

and how to interpret them. Many of these properties follow from very simple physical

input. To avoid clutter, we’ll mostly drop both the i, j indices. When there’s something

interesting to say, we’ll put them back in.

4.1.2 Analyticity and Causality

If we work with a real source φ and a Hermitian operator O (which means a real

expectation value 〈O〉) then χ(t) must also be real. Let’s see what this means for the
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Fourier transform χ(ω). It’s useful to introduce some new notation for the real and

imaginary parts,

χ(ω) = Reχ(ω) + iImχ(ω)

≡ χ′(ω) + iχ′′(ω)

This notation in terms of primes is fairly odd the first time you see it, but it’s standard

in the literature. You just have to remember that, in this context, primes do not mean

derivatives!

The real and imaginary parts of the response function χ(ω) have different interpre-

tations. Let’s look at these in turn

• Imaginary Part: We can write the imaginary piece as

χ′′(ω) = − i
2

[χ(ω)− χ?(ω)]

= − i
2

∫ +∞

−∞
dt χ(t)[eiωt − e−iωt]

= − i
2

∫ +∞

−∞
dt eiωt[χ(t)− χ(−t)]

We see that the imaginary part of χ(ω) is due to the part of the response func-

tion that is not invariant under time reversal t → −t. In other words, χ′′(ω)

knows about the arrow of time. Since microscopic systems are typically invariant

under time reversal, the imaginary part χ′′(ω) must be arising due to dissipative

processes.

χ′′(ω) is called the dissipative or absorptive part of the response function. It is

also known as the spectral function. It will turn out to contain information about

the density of states in the system that take part in absorptive processes. We’ll

see this more clearly in an example shortly.

Finally, notice that χ′′(ω) is an odd function,

χ′′(−ω) = −χ′′(ω)

• Real Part: The same analysis as above shows that

χ′(ω) =
1

2

∫ +∞

−∞
dt eiωt[χ(t) + χ(−t)]
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The real part doesn’t care about the arrow of time. It is called the reactive part

of the response function. It is an even function,

χ′(−ω) = +χ′(ω)

Before we move on, we need to briefly mention what happens when we put the labels

i, j back on the response functions. In this case, a similar analysis to that above shows

that the dissipative response function comes from the anti-Hermitian part,

χ′′ij(ω) = − i
2

[χij(ω)− χ?ji(ω)] (4.7)

Causality

We can’t affect the past. This statement of causality means that any response function

must satisfy

χ(t) = 0 for all t < 0

For this reason, χ is often referred to as the causal Green’s function or retarded Green’s

function and is sometimes denoted as GR(t). Let’s see what this simple causality

requirement means for the Fourier expansion of χ,

χ(t) =

∫ +∞

−∞

dω

2π
e−iωt χ(ω)

When t < 0, we can perform the integral by completing the contour in the upper-half

place (so that the exponent becomes −iω×(−i|t|)→ −∞). The answer has to be zero.

Of course, the integral is given by the sum of the residues inside the contour. So if

we want the response function to vanish for all t < 0, it must be that χ(ω) has no poles

in the upper-half plane. In other words, causality requires:

χ(ω) is analytic for Imω > 0

4.1.3 Kramers-Kronig Relation

The fact that χ is analytic in the upper-half plane means that there is a relationship

between the real and imaginary parts, χ′ and χ′′. This is called the Kramers-Kronig

relation. Our task in this section is to derive it. We start by providing a few general

mathematical statements about complex integrals.
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A Discontinuous Function

First, consider a general function ρ(ω). We’ll ask that ρ(ω) is meromorphic, meaning

that it is analytic apart from at isolated poles. But, for now, we won’t place any

restrictions on the position of these poles. (We will shortly replace ρ(ω) by χ(ω) which,

as we’ve just seen, has no poles in the upper half plane). We can define a new function

f(ω) by the integral,

f(ω) =
1

iπ

∫ b

a

ρ(ω′)

ω′ − ω
dω′ (4.8)

Here the integral is taken along the interval ω′ ∈ [a, b] of the real line. However, when

ω also lies in this interval, we have a problem because the integral diverges at ω′ = ω.

To avoid this, we can simply deform the contour of the integral into the complex plane,

either running just above the singularity along ω′ + iε or just below the singularity

along ω′ − iε. Alternatively (in fact, equivalently) we could just shift the position of

the singularity to ω → ω ∓ ε. In both cases we just skim by the singularity and the

integral is well defined. The only problem is that we get different answers depending

on which way we do things. Indeed, the difference between the two answers is given by

Cauchy’s residue theorem,

1

2
[f(ω + iε)− f(ω − iε)] = ρ(ω) (4.9)

The difference between f(ω+iε) and f(ω−iε) means that the function f(ω) is discontin-

uous across the real axis for ω ∈ [a, b]. If ρ(ω) is everywhere analytic, this discontinuity

is a branch cut.

We can also define the average of the two functions either side of the discontinuity.

This is usually called the principal value, and is denoted by adding the symbol P before

the integral,

1

2
[f(ω + iε) + f(ω − iε)] ≡ 1

iπ
P
∫ b

a

ρ(ω′)

ω′ − ω
dω′ (4.10)

We can get a better handle on the meaning of this principal part if we look at the real

and imaginary pieces of the denominator in the integrand 1/[ω′ − (ω ± iε)],
1

ω′ − (ω ± iε)
=

ω′ − ω
(ω′ − ω)2 + ε2

± iε

(ω′ − ω)2 + ε2
(4.11)

By taking the sum of f(ω+ iε) and f(ω− iε) in (4.10), we isolate the real part, the first

term in (4.11). This is shown in the left-hand figure. It can be thought of as a suitably

cut-off version of 1/(ω′−ω). It’s as if we have deleted an small segment of this function

lying symmetrically about divergent point ω and replaced it with a smooth function

going through zero. This is the usual definition of the principal part of an integral.
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Figure 9: The real part of the function

(4.11), plotted with ω′ = 1 and ε = 0.5.

Figure 10: The imaginary part of the

function (4.11), plotted with ω′ = 1 and

ε = 0.5

We can also see the meaning of the imaginary part of 1/(ω′ − ω), the second term

in (4.11). This is shown in the right-hand figure. As ε → 0, it tends towards a delta

function, as expected from (4.9). For finite ε, it is a regularized version of the delta

function.

Kramers-Kronig

Let’s now apply this discussion to our response function χ(ω). We’ll be interested in

the integral

1

iπ

∮
C

dω′
χ(ω′)

ω′ − ω
ω ∈ R (4.12)

where the contour C skims just above the real axis, before closing at infinity in the

upper-half plane. We’ll need to make one additional assumption: that χ(z) falls off

faster than 1/|z| at infinity. If this holds, the integral is the same as we consider in

(4.8) with [a, b] → [−∞,+∞]. Indeed, in the language of the previous discussion, the

integral is f(ω − iε), with ρ = χ.

We apply the formulae (4.9) and (4.10). It gives

f(ω − iε) =
1

iπ
P
[∫ +∞

−∞
dω′

χ(ω′)

ω′ − ω

]
− χ(ω)

But we know the integral in (4.12) has to be zero since χ(ω) has no poles in the

upper-half plane. This means that f(ω − iε) = 0, or

χ(ω) =
1

iπ
P
∫ +∞

−∞
dω′

χ(ω′)

ω′ − ω
(4.13)
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The important part for us is that factor of “i” sitting in the denominator. Taking real

and imaginary parts, we learn that

Reχ(ω) = P
∫ +∞

−∞

dω′

π

Imχ(ω′)

ω′ − ω
(4.14)

and

Imχ(ω) = −P
∫ +∞

−∞

dω′

π

Reχ(ω′)

ω′ − ω
(4.15)

These are the Kramers-Kronig relations. They follow from causality alone and tell

us that the dissipative, imaginary part of the response function χ′′(ω) is determined

in terms of the reactive, real part, χ′(ω) and vice-versa. However, the relationship is

not local in frequency space: you need to know χ′(ω) for all frequencies in order to

reconstruct χ′′ for any single frequency.

There’s another way of writing these relations which is also useful and tells us how

we can reconstruct the full response function χ(ω) if we only know the dissipative part.

To see this, look at ∫ +∞

−∞

dω′

iπ

Imχ(ω′)

ω′ − ω − iε
(4.16)

where the −iε in the denominator tells us that this is an integral just below the real

axis. Again using the formulae (4.9) and (4.10), we have∫ +∞

−∞

dω′

iπ

Imχ(ω′)

ω′ − ω − iε
= Imχ(ω) + P

∫ +∞

−∞

dω′

iπ

Imχ(ω′)

ω′ − ω − iε
= Imχ(ω)− iReχ(ω) (4.17)

Or, rewriting as χ(ω) = Reχ(ω) + i Imχ(ω), we get

χ(ω) =

∫ +∞

−∞

dω′

π

Imχ(ω′)

ω′ − ω − iε
(4.18)

If you know the dissipative part of the response function, you know everything.

An Application: Susceptibility

Suppose that turning on a perturbation φ induces a response 〈O〉 for some observable

of our system. Then the susceptibility is defined as

χ =
∂〈O〉
∂φ

∣∣∣∣
ω=0
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We’ve called the susceptibility χ which is the same name that we gave to the response

function. And, indeed, from the definition of linear response (4.4), the former is simply

the zero frequency limit of the latter:

χ = lim
ω→0

χ(ω)

A common example, which we met in our first course in Statistical Mechanics, is the

change of magnetization M of a system in response to an external magnetic field B.

The aptly named magnetic susceptibility is given by χ = ∂M/∂B.

From (4.18), we can write the susceptibility as

χ =

∫ +∞

−∞

dω′

π

Imχ(ω′)

ω′ − iε
(4.19)

We see that if you can do an experiment to determine how much the system absorbs

at all frequencies, then from this information you can determine the response of the

system at zero frequency. This is known as the thermodynamic sum rule.

4.2 Classical Examples

The definitions and manipulations of the previous section can appear somewhat ab-

stract the first time you encounter them. Some simple examples should shed some

light. The main example we’ll focus on is the same one that accompanies us through

most of physics: the classical harmonic oscillator.

4.2.1 The Damped Harmonic Oscillator

The equation of motion governing the damped harmonic oscillator in the presence of a

driving force is

ẍ+ γẋ+ ω2
0x = F (t) (4.20)

Here γ is the friction. We denote the undamped frequency as ω0, saving ω for the

frequency of the driving force as in the previous section.. We want to determine the

response function, or Green’s function, χ(t − t′) of this system. This is the function

which effectively solves the dynamics for us, meaning that if someone tells us the driving

force F (t), the motion is given by

x(t) =

∫ +∞

−∞
dt′ χ(t− t′)F (t′) (4.21)
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Figure 11: The real, reactive part of the response function for the underdamped harmonic

oscillator, plotted with ω0 = 1 and γ = 0.5.

There is a standard method to figure out χ(t). Firstly, we introduce the (inverse)

Fourier transform

χ(t) =

∫
dω

2π
e−iωtχ(ω)

We plug this into the equation of motion (4.20) to get∫ +∞

−∞

dω

2π

∫ +∞

−∞
dt′[−ω2 − iγω + ω2

0]e−iω(t−t′)χ(ω)F (t′) = F (t)

which is solved if the
∫
dω gives a delta function. But since we can write a delta

function as 2πδ(t) =
∫
dωe−iωt, that can be achieved by simply taking

χ(ω) =
1

−ω2 − iγω + ω2
0

(4.22)

There’s a whole lot of simple physics sitting in this equation which we’ll now take some

time to extract. All the lessons that we’ll learn carry over to more complicated systems.

Firstly, we can look at the susceptibility, meaning χ(ω = 0) = 1/ω2
0. This tells us

how much the observable changes by a perturbation of the system, i.e. a static force:

x = F/ω2
0 as expected.

Let’s look at the structure of the response function on the complex ω-plane. The

poles sit at ω2
∗ + iγω∗ − ω2

0 = 0 or, solving the quadratic, at

ω? = −iγ
2
±
√
ω2

0 − γ2/4

There are two different regimes that we should consider separately,
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Figure 12: The imaginary, dissipative part of the response function for the underdamped

harmonic oscillator, plotted with ω0 = 1 and γ = 0.5.

• Underdamped: ω2
0 > γ2/4. In this case, the poles have both a real and imag-

inary part. They both sit on the lower half plane. This is in agreement with

our general lesson of causality which tells us that the response function must be

analytic in the upper-half plane

• Overdamped: ω2
0 < γ2/4. Now the poles lie on the negative imaginary axis.

Again, there are none in the upper-half place, consistent with causality.

We can gain some intuition by plotting the real and imaginary part of the response

function for ω ∈ R. Firstly, the real part is shown in Figure 11 where we plot

Reχ(ω) =
ω2

0 − ω2

(ω2
0 − ω2)2 + γ2ω2

(4.23)

This is the reactive part. The higher the function, the more the system will respond

to a given frequency. Notice that Reχ(ω) is an even function, as expected.

More interesting is the dissipative part of the response function,

Imχ(ω) =
ωγ

(ω2
0 − ω2)2 + γ2ω2

(4.24)

This is an odd function. In the underdamped case, this is plotted in Figure 12. Notice

that Imχ is proportional to γ, the coefficient of friction. The function peaks around

±ω0, at frequencies where the system naturally vibrates. This is because this is where

the system is able to absorb energy. However, as γ → 0, the imaginary part doesn’t

become zero: instead it tends towards two delta functions situated at ±ω0.
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4.2.2 Dissipation

We can see directly how Imχ(ω) is related to dissipation by computing the energy

absorbed by the system. This what we used to call the work done on the system before

we became all sophisticated and grown-up. It is

dW

dt
= F (t)ẋ(t)

= F (t)
d

dt

∫ +∞

−∞
dt′ χ(t− t′)F (t′)

= F (t)

∫ +∞

−∞
dt′
∫ +∞

−∞

dω

2π
(−iω)e−iω(t−t′)χ(ω)F (t′)

=

∫ +∞

−∞

dω

2π

dω′

2π
[−iωχ(ω)]e−i(ω+ω′)tF (ω)F (ω′) (4.25)

Let’s drive the system with a force of a specific frequency Ω, so that

F (t) = F0 cos Ωt = F0 Re(e−iΩt)

Notice that it’s crucial to make sure that the force is real at this stage of the calculation

because the reality of the force (or source) was the starting point for our discussion

of the analytic properties of response functions in section 4.1.2. In a more pedestrian

fashion, we can see that it’s going to be important because our equation above is not

linear in F (ω), so it’s necessary to take the real part before progressing. Taking the

Fourier transform, the driving force is

F (ω) = 2πF0 [δ(ω − Ω) + δ(ω + Ω)]

Inserting this into (4.25) gives

dW

dt
= −iF 2

0 Ω
[
χ(Ω)e−iΩt − χ(−Ω)e+iΩt

] [
e−iΩt + eiΩt

]
(4.26)

This is still oscillating with time. It’s more useful to take an average over a cycle,

dW

dt
≡ Ω

2π

∫ 2π/Ω

0

dt
dW

dt
= −iF 2

0 Ω [χ(Ω)− χ(−Ω)]

But we’ve already seen that Reχ(ω) is an even function, while Imχ(ω) is an odd

function. This allows us to write

dW

dt
= 2F 2

0 Ω Imχ(Ω) (4.27)
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We see that the work done is proportional to Imχ. To derive this result, we didn’t

need the exact form of the response function; only the even/odd property of the

real/imaginary parts, which follow on general grounds. For our damped harmonic

oscillator, we can now use the explicit form (4.24) to derive

dW

dt
= 2F 2

0

γΩ2

(ω2
0 − Ω2)2 + (γΩ)2

This is a maximum when we shake the harmonic oscillator at its natural frequency,

Ω = ω0. As this example illustrates, the imaginary part of the response function tells

us the frequencies at which the system naturally vibrates. These are the frequencies

where the system can absorb energy when shaken.

4.2.3 Hydrodynamic Response

For our final classical example, we’ll briefly return to the topic of hydrodynamics. One

difference with our present discussion is that the dynamical variables are now functions

of both space and time. A typical example that we’ll focus on here is the mass density,

ρ(~x, t). Similarly, the driving force (or, in the context of quantum mechanics, the

source) is similarly a function of space and time.

Rather than playing at the full Navier-Stokes equation, here we’ll instead just look

at a simple model of diffusion. The continuity equation is

∂ρ

∂t
+ ~∇ · ~J = 0

We’ll write down a simple model for the current,

~J = −D~∇ρ+ ~F (4.28)

where D is the diffusion constant and the first term gives rise to Fick’s law that we met

already in Section 1. The second term, ~F = ~F (~x, t), is the driving force. . Combining

this with the continuity equation gives,

∂ρ

∂t
−D∇2ρ = −~∇ · ~F (4.29)

We want to understand the response functions associated to this force. This includes

both the response of ρ and the response of ~J ,
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For simplicity, let’s work in a single spatial dimension so that we can drop the vector

indices. We write

ρ(x, t) =

∫
dx′dt′ χρJ(x′, t′;x, t)F (x′, t)

J(x, t) =

∫
dx′dt′ χJJ(x′, t′;x, t)F (x′, t)

where we’ve called the second label J on both of these functions to reflect the fact that

F is a driving force for J . We follow our discussion of Section 4.1.1. We now assume

that our system is invariant under both time and space translations which ensures that

the response function depend only on t′− t and x′−x. We then Fourier transform with

respect to both time and space. For example,

ρ(ω, t) =

∫
dxdt ei(ωt−kx)ρ(x, t)

Then in momentum and frequency space, the response functions become

ρ(ω, k) = χρJ(ω, k)F (ω, k)

J(ω, k) = χJJ(ω, k)F (ω, k)

The diffusion equation (4.29) immediately gives an expression for χρJ . Substituting

the resulting expression into (4.28) then gives us χJJ . The response functions ar

χρJ =
ik

−iω +Dk2
, χJJ =

−iω
−iω +Dk2

Both of the denominator have poles on the imaginary axis at ω = −iDk2. This is the

characteristic behaviour of response functions capturing diffusion.

Our study of hydrodynamics in Sections 2.4 and 2.5 revealed a different method of

transport, namely sound. For the ideal fluid of Section 2.4, the sound waves travelled

without dissipation. The associated response function has the form

χsound ∼
1

ω2 − v2
sk

2

which is simply the Green’s function for the wave equation. If one includes the effect of

dissipation, the poles of the response function pick up a (negative) imaginary part. For

sound waves in the Navier-Stokes equation, we computed the location of these poles in

(2.76).
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4.3 Quantum Mechanics and the Kubo Formula

Let’s now return to quantum mechanics. Recall the basic set up: working in the

Heisenberg picture, we add to a Hamiltonian the perturbation

Hsource(t) = φj(t)Oj(t) (4.30)

where there is an implicit sum over j, labelling the operators in the theory and, corre-

spondingly, the different sources that we can turn on. Usually in any given situation we

only turn on a source for a single operator, but we may be interested in how this source

affects the expectation value of any other operator in the theory, 〈Oi〉. However, if we

restrict to small values of the source, we can address this using standard perturbation

theory. We introduce the time evolution operator,

U(t, t0) = T exp

(
−i
∫ t

t0

Hsource(t
′)dt′

)
which is constructed to obey the operator equation idU/dt = HsourceU . Then, switching

to the interaction picture, states evolve as

|ψ(t)〉I = U(t, t0)|ψ(t0)〉I
We’ll usually be working in an ensemble of states described by a density matrix ρ. If,

in the distant past t→∞, the density matrix is given by ρ0, then at some finite time

it evolves as

ρ(t) = U(t)ρ0U
−1(t)

with U(t) = U(t, t0 → −∞). From this we can compute the expectation value of any

operator Oj in the presence of the sources φ. Working to first order in perturbation

theory (from the third line below), we have

〈Oi(t)〉|φ = Tr ρ(t)Oi(t)
= Tr ρ0(t)U−1(t)Oi(t)U(t)

≈ Tr ρ0(t)

(
Oi(t) + i

∫ t

−∞
dt′ [Hsource(t

′),Oi(t)] + . . .

)
= 〈Oi(t)〉|φ=0 + i

∫ t

−∞
dt′〈[Hsource(t

′),Oi(t)]〉+ . . .

Inserting our explicit expression for the source Hamiltonian gives the change in the

expectation value, δ〈Oi〉 = 〈Oi〉φ − 〈Oi〉φ=0,

δ〈Oi〉 = i

∫ t

−∞
dt′ 〈[Oj(t′),Oi(t)]〉φj(t′)

= i

∫ +∞

−∞
dt′ θ(t− t′) 〈[Oj(t′),Oi(t)]〉φj(t′) (4.31)
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where, in the second line, we have done nothing more than use the step function to

extend the range of the time integration to +∞. Comparing this to our initial definition

given in (4.4), we see that the response function in a quantum theory is given by the

two-pont function,

χij(t− t′) = −iθ(t− t′) 〈[Oi(t),Oj(t′)]〉 (4.32)

This important result is known as the Kubo formula. (Although sometimes the name

“Kubo formula” is restricted to specific examples of this equation which govern trans-

port properties in quantum field theory. We will derive these examples in Section 4.4).

4.3.1 Dissipation Again

Before we make use of the Kubo formula, we will first return to the question of dis-

sipation. Here we repeat the calculation of 4.2.2 where we showed that, for classical

systems, the energy absorbed by a system is proportional to Imχ. Here we do the same

for quantum systems. The calculation is a little tedious, but worth ploughing through.

As in the classical context, the work done is associated to the change in the energy

of the system which, this time, can be written as

dW

dt
=

d

dt
Tr ρH = Tr(ρ̇H + ρḢ)

To compute physical observables, it doesn’t matter if we work in the Heisenberg or

Schrödinger picture. So lets revert momentarily back to the Schrödinger picture. Here,

the density matrix evolves as iρ̇ = [H, ρ], so the first term above vanishes. Meanwhile,

the Hamiltonian H changes because we’re sitting there playing around with the source

(4.30), providing an explicit time dependence. To simplify our life, we’ll assume that

we turn on just a single source, φ. Then, in the Schrödinger picture

Ḣ = Oφ̇(t)

This gives us the energy lost by the system,

dW

dt
= Tr(ρO φ̇) = 〈O〉φφ̇ = [〈O〉φ=0 + δ〈O〉] φ̇

We again look at a periodically varying source which we write as

φ(t) = Re(φ0 e
−iΩt)

and we again compute the average work done over a complete cycle

dW

dt
=

Ω

2π

∫ 2π/Ω

0

dt
dW

dt
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The term 〈O(~x)〉0 cancels out when integrated over the full cycle. This leaves us with

dW

dt
=

Ω

2π

∫ 2π/Ω

0

dt

∫ +∞

−∞
dt′ χ(t− t′)φ(t′) φ̇(t)

=
Ω

2π

∫ 2π/Ω

0

dt

∫ +∞

−∞
dt′
∫
dω

2π
χ(ω)e−iω(t−t′)

×1

4

[
φ0e

−iΩt′ + φ?0e
+iΩt′

] [
− iΩφ0e

−iΩt + iΩφ?0e
+iΩt

]
=

1

4
[χ(Ω)− χ(−Ω)] |φ0|2 iΩ

where the φ2 and φ? 2 terms have canceled out after performing the
∫
dt. Continuing,

we only need the fact that the real part of χ is even while the imaginary part is odd.

This gives us the result

dW

dt
=

1

2
Ωχ′′(Ω)|φ0|2 (4.33)

Finally, this calculation tells us about another property of the response function. If we

perform work on a system, the energy should increase. This translates into a positivity

requirement Ωχ′′(Ω) ≥ 0. More generally, the requirement is that Ωχ′′ij(Ω) is a positive

definite matrix.

Spectral Representation

In the case of the damped harmonic oscillator, we saw explicitly that the dissipation

was proportional to the coefficient of friction, γ. But for our quantum systems, the

dynamics is entirely Hamiltonian: there is no friction. So what is giving rise to the

dissipation? In fact, the answer to this can also be found in our analysis of the harmonic

oscillator, for there we found that in the limit γ → 0, the dissipative part of the response

function χ′′ doesn’t vanish but instead reduces to a pair of delta functions. Here we

will show that a similar property holds for a general quantum system.

We’ll take the state of our quantum system to be described by a density matrix

describing the canonical ensemble, ρ = e−βH . Taking the Fourier transform of the

Kubo formula (4.32) gives

χij(ω) = −i
∫ ∞

0

dt eiωt Tr
(
e−βH [Oi(t),Oj(0)]

)
We will need to use the fact that operators evolve asOi(t) = U−1Oi(0)U with U = e−iHt

and will evaluate χij(ω) by inserting complete basis of energy states

χij(ω) = −i
∫ ∞

0

dt eiωt
∑
mn

e−Emβ
[
〈m|Oi|n〉〈n|Oj|m〉ei(Em−En)t
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−〈m|Oj|n〉〈n|Oi|m〉ei(En−Em)t
]

To ensure that the integral is convergent for t > 0, we replace ω → ω + iε. Then

performing the integral over
∫
dt gives

χij(ω + iε) =
∑
m,n

e−Emβ

[
(Oi)mn(Oj)nm

ω + Em − En + iε
− (Oj)mn(Oi)nm
ω + En − Em + iε

]
=
∑
m,n

(Oi)mn(Oj)nm
ω + Em − En + iε

(
e−Emβ − e−Enβ

)
which tells us that the response function has poles just below the real axis,

ω = En − Em − iε

Of course, we knew on general grounds that the poles couldn’t lie in the upper half-

plane: we see that in a Hamiltonian system the poles lie essentially on the real axis (as

ε→ 0) at the values of the frequency that can excite the system from one energy level

to another. In any finite quantum system, we have an isolated number of singularities.

As in the case of the harmonic oscillator, in the limit ε → 0, the imaginary part of

the response function doesn’t disappear: instead it becomes a sum of delta function

spikes

χ′′ ∼
∑
m,n

ε

(ω + Em − En)2 + ε2
−→

∑
m,n

δ (ω − (En − Em))

The expression above is appropriate for quantum systems with discrete energy levels.

However, in infinite systems — and, in particular, in the quantum field theories that

we turn to shortly — these spikes can merge into smooth functions and dissipative

behaviour can occur for all values of the frequency.

4.3.2 Fluctuation-Dissipation Theorem

We have seen above that the imaginary part of the response function governs the

dissipation in a system. Yet, the Kubo formula (4.32) tells us that the response formula

can be written in terms of a two-point correlation function in the quantum theory.

And we know that such two-point functions provide a measure of the variance, or

fluctuations, in the system. This is the essence of the fluctuation-dissipation theorem

which we’ll now make more precise.

– 96 –



First, the form of the correlation function in (4.32) — with the commutator and

funny theta term — isn’t the simplest kind of correlation we could image. The more

basic correlation function is simply

Sij(t) ≡ 〈Oi(t)Oj(0)〉

where we have used time translational invariance to set the time at which Oj is evalu-

ated to zero. The Fourier transform of this correlation function is

Sij(ω) =

∫
dt eiωtSij(t) (4.34)

The content of the fluctuation-dissipation theorem is to relate the dissipative part of

the response function to the fluctuations S(ω) in the vacuum state which, at finite

temperature, means the canonical ensemble ρ = e−βH .

There is a fairly pedestrian proof of the theorem using spectral decomposition (i.e.

inserting a complete basis of energy eigenstates as we did in the previous section). Here

we instead give a somewhat slicker proof although, as we will see, it requires us to do

something fishy somewhere. We proceed by writing an expression for the dissipative

part of the response function using the Kubo formula (4.32),

χ′′ij(t) = − i
2

[χij(t)− χji(−t)]

= −1

2
θ(t)

[
〈Oi(t)Oj(0)〉 − 〈Oj(0)Oi(t)〉

]
+

1

2
θ(−t)

[
〈Oj(−t)Oi(0)〉 − 〈Oi(0)Oj(−t)〉

]
By time translational invariance, we know that 〈Oj(0)Oi(t)〉 = 〈Oj(−t)Oi(0)〉. This

means that the step functions arrange themselves to give θ(t) + θ(−t) = 1, leaving

χ′′ij(t) = −1

2
〈Oi(t)Oj(0)〉+

1

2
〈Oj(−t)Oi(0)〉 (4.35)

But we can re-order the operators in the last term. To do this, we need to be sitting

in the canonical ensemble, so that the expectation value is computed with respect to

the Boltzmann density matrix. We then have

〈Oj(−t)Oi(0)〉 = Tr e−βHOj(−t)Oi(0)

= Tr e−βHOj(−t)eβHe−βHOi(0)

= Tr e−βHOi(0)Oj(−t+ iβ)

= 〈Oi(t− iβ)Oj(0)〉
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The third line above is where we’ve done something slippery: we’ve treated the density

matrix ρ = e−βH as a time evolution operator, but one which evolves the operator in

the imaginary time direction! In the final line we’ve used time translational invariance,

now both in real and imaginary time directions. While this may look dodgy, we can

turn it into something more palatable by taking the Fourier transform. The dissipative

part of the response function can be written in terms of correlation functions as

χ′′ij(t) = −1

2

[
〈Oi(t)Oj(0)〉 − 〈Oi(t− iβ)Oj(0)〉

]
(4.36)

Taking the Fourier transform then gives us our final expression:

χ′′ij(ω) = −1

2

[
1− e−βω

]
Sij(ω) (4.37)

This is the fluctuation-dissipation theorem, relating the fluctuations in frequency space,

captured by S(ω), to the dissipation, captured by χ′′(ω). Indeed, a similar relationship

holds already in classical physics; the most famous example is the Einstein relation

that we met in Section 3.1.3.

The physics behind (4.37) is highlighted a little better if we invert the equation. We

can write

Sij(ω) = −2 [nB(ω) + 1]χ′′ij(ω)

where nB(ω) = (eβω − 1)−1 is the Bose-Einstein distribution function. Here we see

explicitly the two contributions to the fluctuations: the nB(ω) factor is due to thermal

effects; the “+1” can be thought of as due to inherently quantum fluctuations. As usual,

the classical limit occurs for high temperatures with βω � 1 where nB(ω) ≈ kBT/ω.

In this regime, the fluctuation dissipation theorem reduces to its classical counterpart

Sij(ω) = −2kBT

ω
χ′′ij(ω)

4.4 Response in Quantum Field Theory

We end these lectures by describing how response theory can be used to compute some

of the transport properties that we’ve encountered in previous sections. To do this,

we work with Quantum Field Theory where the operators become functions of space

and time, O(~x, t). In the context of condensed matter, this is the right framework

to describe many-body physics. In the context of particle physics, this is the right

framework to describe everything.
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Suppose that you take a quantum field theory, place it in a state with a finite amount

of stuff (whatever that stuff is) and heat it up. What is the right description of the

resulting dynamics? From our earlier discussion, we know the answer: the low-energy

excitations of the system are described by hydrodynamics, simply because this is the

universal description that applies to everything. (Actually, we’re brushing over some-

thing here: the exact form of the hydrodynamics depends on the symmetries of the

theory, both broken and unbroken). All that remains is to identify the transport co-

efficients, such as viscosity and thermal conductivity, that arise in the hydrodynamic

equations. But how to do that starting from the quantum field?

The answer to this question lies in the machinery of linear response that we developed

above. For a quantum field, we again add source terms to the action, now of the form

Hsource(t) =

∫
dd−1~x φi(~x, t)Oi(~x, t) (4.38)

The response function χ is again defined to be the change of the expectation values of

O in the presence of the source φ,

δ〈Oi(~x, t)〉 =

∫
dd~x ′dt′ χij(~x, t; ~x

′, t′)φj(~x
′, t′) (4.39)

All the properties of the response function that we derived previously also hold in the

context of quantum field theory. Indeed, for the most part, the label ~x and ~x ′can be

treated in the same way as the label i, j. Going through the steps leading to the Kubo

formula (4.32), we now find

χij(~x, ~x
′; t− t′) = −iθ(t− t′)〈[Oi(~x, t),Oj(~x ′, t′)]〉 (4.40)

We learned in our first course on Quantum Field Theory that the two-point functions

are Green’s functions. Usually, when thinking about scattering amplitudes, we work

with time-ordered (Feynman) correlation functions that are relevant for building per-

turbation theory. Here, we interested in the retarded correlation functions, characterised

by the presence of the step function sitting in front of (4.40).

Finally, if the system exhibits translational invariance in both space and time, then

the response function depends only on the differences t− t′ and ~x−~x ′. In this situation

it is useful to work in momentum and frequency space, so that the (4.39) becomes

δ〈Oi(~k, ω) = χij(~k, ω)φj(~k, ω) (4.41)
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Electrical Conductivity

Consider a quantum field theory with a U(1) global symmetry. By Noether’s theorem,

there is an associated conserved current Jµ = (J0, J i), obeying ∂µJ
µ = 0. This current

is an example of a composite operator. It couples to a source which is a gauge field

Aµ(x),

Hsource =

∫
dd−1~x AµJ

µ (4.42)

Here Aµ is the background gauge field of electromagnetism. However, for the purposes

of our discussion, we do not take Aµ to have dynamics of its own. Instead, we treat it

as a fixed source, under our control.

There is, however, a slight subtlety. In the presence of the background gauge field,

the current itself may be altered so that it depends on Aµ. A simple, well known,

example of this occurs for a free, relativistic, complex scalar field ϕ. The conserved

current in the presence of the background field is given by

Jµ = ie[ϕ†∂µϕ− (∂µϕ†)ϕ]− e2Aµϕ†ϕ (4.43)

where e is the electric charge. With this definition, the Lagrangian can be written in

terms of covariant derivatives Dµϕ = ∂µϕ− ieAµϕ,

L =

∫
dd−1~x |∂µϕ|2 + AµJ

µ =

∫
dd−1~x |Dµϕ|2 (4.44)

For non-relativistic fields (either bosons or fermions), similar Aµ terms arise in the

current for the spatial components.

We want to derive the response of the system to a background electric field. Which,

in more basic language, means that we want to derive Ohm’s law in our quantum field

theory. This is

〈Ji(~k, ω)〉 = σij(~k, ω)Ej(~k, ω) (4.45)

Here Ei is the background electric field in Fourier space and σij is the conductivity

tensor. In a system with rotational and parity invariance (which, typically means in

the absence of a magnetic field) we have σij = σδij, so that the current is parallel to

the applied electric field. Here we will work with the more general case. Our goal is to

get an expression for σij in terms of correlation functions in the field theory. Applying

(4.41) with the perturbation (4.42), we have

δ〈Jµ〉 = 〈Jµ〉 − 〈Jµ〉0 = −i
∫ t

−∞
dt′d3~x 〈[Jµ(~x, t), Jν(~x

′, t′)]〉0Aν(~x ′, t′) (4.46)
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The subscript 0 here means the quantum average in the state Aµ = 0 before we turn

on the background field. Let’s start by looking at the term 〈Ji〉0. You might think that

there are no currents before we turn on the background field. But, in fact, the extra

term in (4.43) gives a contribution even if – as we’ll assume – the unperturbed state

has no currents. This contribution is

〈Ji〉0 = e2Ai〈ϕ†ϕ〉0 = eAiρ

where ρ is the background charge density. Notice it is not correct to set Ai = 0 in this

expression; the subscript 0 only means that we are evaluating the expectation value in

the Ai = 0 quantum state.

Let’s now deal with the right-hand side of (4.46). If we work in A0 = 0 gauge (where

things are simplest), the electric field is given by Ei = −Ȧi. In Fourier transform space,

this becomes

Ai(ω) =
Ei(ω)

iω
(4.47)

We can now simply Fourier transform (4.46) to get it in the form of Ohm’s law (4.45).

The conductivity tensor has two contributions: the first from the background charge

density; the second from the retarded Green’s function

σij = −eρ
iω
δij +

χij(~k, ω)

iω
(4.48)

with the Fourier transform of the retarded Green’s function given in terms of the

current-current correlation function

χij(~k, ω) = −i
∫ ∞
−∞

dt d3~x θ(t) ei(ωt−
~k·~x) 〈[Ji(~x, t), Jj(~0, 0)]〉

This is the Kubo formula for conductivity.

Viscosity

We already saw in Section 2 that viscosity is associated to the transport of momentum.

And, just as for electric charge, momentum is conserved. For field theories that are

invariant under space and time translations, Noether’s theorem gives rise to four cur-

rents, associated to energy and momentum conservation. These are usually packaged

together into the stress-energy tensor T µν , obeying ∂µT
µν = 0. (We already met this

object in a slightly different guise in Section 2, where the spatial components appeared

as the pressure tensor Pij and the temporal components as the overall velocity ui).
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The computation of viscosity in the framework of quantum field theory is entirely

analogous to the computation of electrical conductivity. The electric current is simply

replaced by the momentum current. Indeed, as we already saw in Section 2.5.3, the

viscosity tells us the ease with which momentum in, say, the x-direction can be trans-

ported in the z-direction. For such a set-up, the relevant component of the current is

T xz. The analog of the formula for electrical conductivity can be re-interpreted as a

formula for viscosity. There are two differences. Firstly, there is no background charge

density. Secondly, the viscosity is for a constant force, meaning that we should take

the ω → 0 and ~k → 0 limit of our equation. We have

χxz,xz(~k, ω) = −i
∫ ∞
−∞

dt d3~x θ(t) ei(ωt−
~k·~x) 〈[Txz(~x, t), Txz(~0, 0)]〉

and

η = lim
ω→0

χxz,xz(0, ω)

iω

This is the Kubo formula for viscosity.
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