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Phase space
◼ We move from an exact description to a description using probabilities.

◼ Distribution functions

N interacting particles, ---- each obeys the laws of classical dynamics.

The element dG in G space as: dG =dr1 dr2…..drN dp1…..dpN=drNdpN

The system file represents a "cloud" with a density of r(t, r1, r2,…..rN, p1,…..pN)

rA "cloud" with density

Vectors ri , pi impulseCoordinate,

r(t, r1, r2,…..rN, p1,…..pN)



Phase space 6N dimensional space

N interacting particles, ---- each obeys the laws of classical dynamics.

Element d G in G space as: dG =dr1 dr2…..drN dp1…..dpN=drNdpN

The system file represents a "cloud" with a density of r(t, r1, r2,…..rN, p1,…..pN)

The total number of phases in the file is 

∫ r(t, r1, r2,…..rN, p1,…..pN) drNdpN = W

Probability density .

..density of probability

PN=  r(t, r1, r2,…..rN, p1,…..pN) / W

By integrating P over a subset of variables, we obtain a "projection" independent of rN-qpN-q

Pq(t, ra1, p aq) = ∫ PN (t, r1, r2,…..rN, p1,…..pN) drN-qdpN-q

r(t, r1, r2,…..rN, p1,…..pN)

impulsecoordinate

We introduce several new functions

the ensemble of files

soubor ensemble  ….  file



N interacting particles ----

point (phase) in 6N dimensional space G

point in G has coordinates r1, r2,…..rN, p1,…..pN

We introduce several new functions

Phase space

Probability density 

PN=  r(t, r1, r2,…..rN, p1,…..pN) / W

Element dG in G space as: d G =dr1 dr2…..drN dp1…..dpN=drNdpN

The system file represents a "cloud" with a density of r(t, r1, r2,…..rN, p1,…..pN)



Phase space

N interacting particles, ---- each obeys the laws of classical dynamics.

Element d G in G space as: d G =dr1 dr2…..drN dp1…..dpN=drNdpN

The system file represents a "cloud" with a density of r(t, r1, r2,…..rN, p1,…..pN)

has coordinates

The total number of phases in the file is 

∫ r(t, r1, r2,…..rN, p1,…..pN) drNdpN = W

Probability density 

PN=  r(t, r1, r2,…..rN, p1,…..pN) / W

By integrating P over a subset of variables, we obtain a "projection" independent of coordinates rN-qpN-q

Pq(t, ra1, p aq) = ∫ PN (t, r1, r2,…..rN, p1,…..pN) drN-qdpN-q

If we integrate through impulses, we get the probability that the system has a certain configuration 

of distribution in space

PN (t, r1,…… rN) = ∫ PN (t, r1, r2,…..rN, p1,…..pN) dpN

r(t, r1, r2,…..rN, p1,…..pN)

impulsecoordinate



If we integrate through impulses, we get the probability that the system has a certain configuration 

of distribution in space

PN (t, r1,…… rN) = ∫ PN (t, r1, r2,…..rN, p1,…..pN) dpN



Liouvillův teorém ◼ Hamiltonian N Particles

◼ Generalized coordinates

We follow the time evolution of the set of N particles... 

each particle moves in accordance with Hamilton's equations:

The motion of the particles of the system can be viewed as canonical transformations of the Jacobian transformation 

J=1 and therefore the 

∫ dG  = ∫ drNdpN = const, (1.10)

The phase volume does not change. The phase volume moves like an incompressible liquid...

Therefore, we can write a "continuity equation"

r(t, r1, r2,…..rN, p1,…..pN)
J=1



Therefore, we can write a "continuity equation"



Introduction ◼ Forms of Liouvil's theorem

◼ External and internal forces 
Pořadí 

deriivací 

 

Collisions 

If we integrate through impulses ... 

PN (t, r1,…… rN) = ∫ PN (t, r1, r2,…..rN, p1,…..pN) dpN

Dependence on time and position

r(t, r1, r2,…..rN, p1,…..pN)

Probability density 

PN=  r(t, r1, r2,…..rN, p1,…..pN) / W



1.3 Gibbs' H theorem ◼ entropy

◼ Reversibility and Irreversibility of the processes

This means that the system does not evolve over time..... 

…that is, an unequilibrium system can never reach a state of equilibrium.

Paradox - classical mechanics leads to a strictly reversible description, while nature behaves 

irreversibly ...

S=-kH=-k∫PNlnPNdG,    kde H = ∫PNlnPNdG

dH/dt=0 dS/dt=0

Using Liouville's theorem, we obtain the expression

=0

Time development – entropy increases

System entropy increases, dS/dt>0

density of the probability

PN=  r(t, r1, r2,…..rN, p1,…..pN) / W

Or our approximations are inaccurate....



1.3 Gibbs' H theorem ◼ entropy

◼ Reversibility and Irreversibility of processes

This means that the system does not evolve over time..... 

That is, an unequilibrium system can never reach a state of equilibrium.

Paradox - classical mechanics leads to a strictly reversible description, while nature behaves 

irreversibly. (?...) ...

S=-kH=-k∫PNlnPN,    kde H = ∫PNlnPN

dH/dt=0 dS/dt=0

Using Liouville's theorem, we arrive at the expression

Time evolution – entropy increases ...... System entropy increases, dS/dt>0

Or our approximations are inaccurate....



1.4 BBGKY equation
1.4 BBGKY equation

The function PN (t, r1, r2,…..rN, p1,…..pN) has certain properties resulting from its relationship to particles... 

Using this feature  we can determine some macroscopic quantities characterizing a given set of particles at point r

J(t,r) = ∫ J(r) PN (t, r1, r2,…..rN, p1,…..pN) drN dpN (1.27)

where J(r) is the current density operator

J(r)= S pid(r-ri) (1.28)

ĵ(r)= S e/m*pid(r-ri)

Hustota pravděpodobnosti 

PN=  r(t, r1, r2,…..rN, p1,…..pN) / W

(Bogoljubov, Born, Green, Kirkwood, Yvon)

Current Density (Charge Flow) Operator



Introduction to BBGKY 
(Bogoljubov, Born, Green, Kirkwood, Yvon)

 

V-sFs(t,r1, ......rs,p1....ps) is the probability that the group of S particles from the set of 

N particles will be in time t in the element dr1, ......drs,dp1....dps regardless of the state 

of the remaining (N-s) particles.



For interacting particles ◼ Let's narrow down the generality of the Hamiltonian a bit

  Probability density 
PN=  r(t, r1, r2,…..rN, p1,…..pN) / W

V-sFs(t,r1, ......rs,p1....ps) is the probability that the group of S particles from the set of N particles will be located at 

time t in the element dr1, ....drs,dp1...dps regardless of the state of the remaining (N-s) particles.

For N-s particles we obtaine



Fij is interaction potential between particles i and j

Fs is a function of Fs+1 system of equations

BBGKY Equation

We are where we were!!

S+1

◼ After many modifications ....

◼ After many restrictions 

◼ After many simplifications
In the limit….



◼ After many modifications ....

◼ After many restrictions 

◼ After many simplifications

 

BBGKY equation of application at s=1, s=2

S=1

S=2



Derivation of the Boltzmann equation

 

for



Finding solutions to B. equation ◼ In the shape of a row

 

Fs
(0)

Fs
(1)

 

Fs
(2)



2. Mutual Interaction of particles
◼ We will analyze elastic collissions 

◼ Collisions e- neutral, e- ion, e-e.....
We already have the equations

 

.... What we need is the knowledge of particle interaction .... 

Elementary Processes in a Different Concept

Fij is the interaction potential between the particle i and particle j 

Fs is a function of Fs+1 system of equations

Fs
(0)

Fs
(1)

V-sFs(t,r1, ......rs,p1....ps)  is the probability that the group s of particles from the set of 

N particles will be at time t located in the element dr1, ......drs,dp1....dps regardless of 

the state of the remaining (N-s) particles.



Interaction of particles
◼ Conservation Laws

The center of gravity of a two-particle system 

moves at a constant speed throughout the collision process

◼ We will analyze elastic collisions

◼ Collisions e- neutral, e- ion, e-e.....
The force exerted by particle 2 on particle 1 is F12 

F12 = -F21 2.1
We will assume that the forces decrease fast enough with r

Laboratory and centrum of gravity of system

Attention m1 and m2 are dimensionless

????.....



Relative velocity during a collision
◼ Maintaining Relative Velocity

◼ Movement around the power center

The laws of conservation of energy imply

The absolute value of the relative velocities is conserved during 

a collision, only their direction can change

g12=ŕ12Relative velocity 

????..is ok...



Motion of a fictitious particle ◼ Motion in a plane

S polohou těžiště ???

Parallel

Vectors



Center of mass system ◼ Motion in the center of mass system 

◼ It is advantageous to work in the center 

of mass system

Fiction of the motion of a particle in a force field



Motion in the Field of Central Forces ◼ Collision parametr 

◼ Dispersion angle

Fiction - the movement of a particle in a force field

Derivation



e- with Ar

D~2(1/2000)/40=1/40 000

Elementary consequences ◼ Energy transfer in a collision 

◼ A large difference in masses

◼ Equal masses
The laws of conservation of energy imply

What Leads to a Relationship

 

Ar+ with Ar

D~1/2

before after

h=m2/m1

before

after



Differential cross-section. ◼ Elastic collisions. 

◼ Differential cross-section.

N

N particles per second

dn=s(c) N dW 

dn=Nb db d(e) 

dn=Nb db d(e) =s(c) N dW = N s(c) sinc dc d(e) 

s(c) = (b/sinc). db / dc

Differential cross-section of elastic collision

Differential cross-section of elastic collision



Total effective cross-section ◼ Total effective cross-section

◼ The Problem with the Experiment

N(v)

dn=s(c) N dW dn=Nb db d(e) 

sc(v) = ∫s(c) dW = 2p∫s(c) sinc dc = 2p∫ b db 

s(c) = b db / dc sinc

c …..0-p b  …..0-infinity

Divergent integral ????

sc(v) = pD2 for the collision of two perfectly flexible spheres

Total cross-section of elastic collision



Transport cross-section ◼ Transport cross-section.

◼ cross-section of deflection

(1-cosc)

Transport cross-section

Deflection cross-section



Coulomb particle scattering ◼ Coulomb particle scattering

◼ Rutherford's formula

U(r) = Z1 Z2e
2/4pe0r .. Interaction potential

We gett g(c/2)=b0/b, which is the relation c, b0 a b

Dropped b

U(r) = mg2*b0/r

Coulomb particle 
scattering



Rutherford's formula
◼ Rutherford's formula

◼ Experiment.

Detector

c

Collision chamber (beam)

Zdroj

sc(v) = ∫s(c) dW = 2p∫s(c) sinc dc = 2p∫ b db 

The problem is with the determination of sc

The problem of long-range collisions



Distribution functions

),,( tvrf


vdrfd


The number of particles with a 
coordinates r,v,t  in drdv

vdrdtvrf
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),,(

Particle concentration ),( trn


Mean particle velocity ),(0 trv
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Flow of quantity y through 

unit area moving with velocity v0
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Zákony zachování – řešení B.   
◼ A

2003

„EEDF Cooling in He and in Ar“   



Only collisional term

„EEDF Cooling in He and in Ar“   



He

He

„EEDF Cooling in He and in Ar“   



Ar

He

e

t

Ar, 0.5 Torr
ne=107cm-3

„EEDF Cooling in He and in Ar“   



Ar

He

e

t

Ar, 0.5 Torr

ne=1010cm-3

Ar, 0.5 Torr
ne=107cm-3

ne=107cm-3

ne=1010cm-3

„EEDF Cooling in He and in Ar“   



Large Kracik Derivation of the Boltzmann Equation

 

BBGKY equation applied for s=1, s=2

Taylor function for G

Na pohyb částic systému je možno se  dívat jako na 

kanonické transformace Jakobian transformace je 1 a proto je 

∫ dG  = ∫ drNdpN = const,

Fázový objem se nemění. Fázový objem se pohybuje jako nestlačitelná 

kapalina… proto můžeme napsat „rovnici kontinuity“

GXAGXAG A+=+ .)()(




Velký Kracík

“volume” element

Number of particles

in an element

All such j-th particles 

hits the i-th particle at the origin

The i particles in the element is:

i

j
fj

fi
After the collision

leaves the element

A-
ij

A+
ij

Number of collisions 

= the number of particles that leave the drdvi element is:



Next steps
◼ Summarize what is expected of the participants. 

◼ Summarize what is expected of you.


