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Preface

Gas discharges are of interest to physicists and engineers in a number of fields.
Several decades ago excellent textbooks were written by von Engel and Steen-
beck, Loeb, Brown, Kaptsov and several other authors. These books faithfully
served many generations of students, and specialists still refer to them. Never-
theless, their usefulness does suffer from the time elapsed since publication: It
is not that the material they present has become obsolete and irrelevant — this
has happened to a very minor extent, if at all. Rather, the subject has greatly
advanced both in scope and in depth, and its emphases have somewhat shifted.
Of course, new books have been written, mostly monographs devoted to narrow
branches of gas discharge physics. But these books are typically intended for the
specialist and not so much for the novice in the field.

The need for a new textbook that is understandable to a beginner in gas
discharge physics, and that conveys the right amount of information (even more
important: information of the right kind) making it also useful to the specialist is
apparent. With this in mind, our intention has been to produce a book that serves
both as a textbook and a handbook.

From an immense amount of material we have selected, as best we could,
the parts that are required for an understanding of the physics and those points
that are most frequently needed in research. As a convenient and comprehensive
volume, the book contains a maximum of useful data: experimental results, results
of calculations, and reference data; formulas required for estimates have been
reduced to a form suitable for computations.

This work was published in Russian in 1987 as a substantially larger volume.
The English edition has been abridged at the expense of ancillary material con-
cerning collisions, elementary processes, plasma radiation, plasma diagnostics,
and other topics, though the chapters dealing with the central themes of discharge
Physics are retained in full, and even expanded by the addition of new data.

We have decided not to cover actual circuits, techniques, or methods (we will
cover the ideas, though) of experiments and measurements; instead we concen-
trate on the physics of the processes of interest. Purely technical applications of
gas discharges are not discussed for the same reason.
suc;t a\:/]oil::sn t; inl\poss?;blc to givefa co.m;?rehensivc pipliography when ‘covering
when seomn sely wi c. scope of topics; hence, original papers are cited qnly

sults are discussed. In all other cases we refer to a book or review
Paper where more complete references are given.
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1. Introduction

1.1 What Is the Subject of Gas Discharge Physics

The term “gas discharge” originates with the process of discharge of a capacitor
into a circuit incorporating a gap between electrodes. If the voltage is sufficiently
high, electric break down occurs in the gas and an ionized state is formed. The
circuit is closed and the capacitor discharges. Later the term “discharge” was
applied to any flow of electric current through ionized gas, and to any process of
ionization of the gas by the applied electric field. As gases ionized to a sufficient
degree emit light, it has become customary to say that a discharge “lights up,”
or is “burning.”

As a rule, the flow of electric current is associated with the notion of a circuit
composed of conductors. Actually, a closed circuit or electrodes are not needed
for a directed motion of charges (electric current) in rapidly oscillating elec-
tric fields, and even less so in the field of electromagentic radiation. However,
quite a few effects observed in gases subjected to oscillating electric fields and
electromagnetic waves (breakdown, maintaining the state of ionization, dissipa-
tion of energy of the field) are not different, in principle, from dc phenomena.
Nowadays all such processes are referred to as discharges and included within
gas discharge physics. The fact that electric current flow in open circuits in the
field of electromagnetic waves is of no general significance. In such cases, the
dissipation of the energy of the field is described not as the release of the Joule
heat by electric current, but as the absorption of radiation.

The modern field of gas discharge physics is thus occupied with processes
connected with electric currents in gases and with generating and maintaining
the ability of a gas to conduct electricity and absorb electromagnetic radiation.

Gas discharge physics covers a great variety of complex, multi-faceted phe-
nomena; it is full of an enormous amount of experimental facts and theoretical
models. Before we begin their analysis, it is expedient to single out the main
types of discharge processes and clarify them.

1.2 Typical Discharges in a Constant Electric Field
A relatively simple experiment introduces us to several fundamental types of
discharge. Two metal electrodes connected to a dc power supply are inserted

into a glass tube (Fig.1.1). The tube can be evacuated and filled with various
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Fig. 1.1. Typical gas discharge tube

gases at different pressures. The quantities measured in the experiment are the
voltage between the electrodes and the current in the circuit. This classical device
served the study of discharge processes for nearly 150 years, and still remains
useful.

If a low voltage is applied to the electrodes, say several tens of volts, no
visible effects are produced, although a supersensitive instrument would record
an extremely low current, on the order of 1015 A. Charges are generated in the
gas by cosmic rays and natural radioactivity. The field pulls them to the opposite-
sign electrodes, producing a current. If the gas is intentionally irradiated by a
radioactive or X-ray source, a current of up to 107 A can be produced. The
resultant ionization is nevertheless too small to make the gas emit light. A dis-
charge and an electric current that survive only while an external ionizing agent
or the emission of electrons or ions from electrodes is deliberately maintained
(e.g. by heating the cathode) are said to be non-self-sustaining. As the voltage is
raised, the non-self-sustaining current first increases because most of the charges
produced by ionization are pulled away to electrodes before recombination oc-
curs. However, if the field manages to remove all new charges, the current ceases
to grow and reaches saturation, being limited by the rate of ionization.

As the voltage is raised further, the current sharply increases at a certain value
of V and light emission is observed. These are the manifestations of breakdown,
one of the most important discharge processes. At pressure p ~ 1 Torr and in-
terelectrode gap L ~ 1cm, the breakdown voltage is several hundred volts.
Breakdown starts with a small number of spurious electrons or electrons injected
intentionally to stimulate the process: The discharge immediately becomes self-
sustaining. The energy of electrons increases while they move in the field. Hav-
ing reached the atomic ionization potential, the electron spends this energy on
knocking out another electron. Two slow electrons are thus produced, which go
on to repeat the cycle described above. The result is an electron avalanche, and
electrons proliferate. The gas is appreciably ionized in 10~7 to 10~3 s, which is
sufficient for the current to grow by several orders of magnitude.

Several conditions determine how the process develops at higher voltage.
At low pressure, say 1 to 10 Torr, and high resistance of the external circuit (it
prevents the current from reaching a large value), a glow discharge develops.
This is one of the most frequently used and important types of discharge. It is
characterized by low current, i ~ 1076 —10~! A in tubes of radius R ~ 1cm, and
fairly high voltage: hundreds to thousands of volts. A beautiful radiant column,
uniform along its length, is formed in sufficiently long tubes of, say, L ~ 30cm at
p ~ 1 Torr. (This is how glowing tubes for street adv_ertisements are made.) The
ionized gas in the column is electrically neutral practically everywhere except in
the regions close to the electrodes; hence, this is a plasma. The glow discharge
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plasma is very weakly ionized, to z = 10~ — 106 (where z denotes the fraction
of jonized atoms), and is nonequilibrium in two respects. Electrons that get
energy directly from the field have a mean energy £ ~ 1eV and a temperature
T, ~ 10*K. The temperature T of the gas, including the ions, is not much
higher than the ambient temperature of 300K. This state, with widely separated
electron and gas temperatures, is sustained by a low rate of Joule heat release
under conditions of relatively high specific heat of the gas and high rate of its
natural cooling. Also as a result of the high rate of charge neutralization in a
cold gas, its degree of ionization is many orders of magnitude lower than the
thermodynamic equilibrium value corresponding to the electron temperature.

If the pressure in the gas is high (about the atmospheric level) and the re-
sistance of the external circuit is low (the circuit allows the passage of a high
current), an arc discharge usually develops soon after breakdown. Arcs typically
burn at a high current (z > 1A) at a low voltage of several tens of volts; they
form a bright column. The arc releases large thermal power that can destroy
the glass tube: Arcs are often started in open air! Atmospheric-pressure arcs
usually form thermodynamic equilibrium plasmas (the so-called low-temperature
plasma), with T, ~ T ~ 10K and the ionization of z = 10-3 = 10~! cor-
responding to such temperatures. The arc discharge differs essentially from the
glow discharge in the mechanism of electron emission from the cathode, which
is vital for the flow of dc current of the arc. In the glow discharge, electrons
are knocked from the surface of the cold metal by impacts of positive ions. In
the arc discharge, the high current heats up the cathode,and thermionic emission
develops.

If p ~ 1atm, the interelectrode gap L > 10cm, and the voltage is sufficiently
high, sparking occurs. The breakdown in the gap develops by rapid growth of the
plasma channel from one electrode to another. Then the electrodes are as if short-
circuited by the strongly ionized spark channel. Lightning, whose “electrodes”
are a charged cloud and the ground, is a giant variety of the spark discharge.
Finally, a corona discharge may develop in strongly nonuniform fields that are
insufficient for the breakdown of the entire gap: A radiant corona appears at sharp

ends of wires at sufficiently high voltage and also around power transmission
line conductors.

1.3 Classification of Discharges

Discharges in a dc electric field can be classified into (a) non-self-sustaining
and (b) self-sustaining types. The latter are more widespread, more diversified,
and richer in physical effects; and they are the subject of this book. Steady and
quasi-steady self-sustaining discharges contain (1) glow and (2) arc discharges.
We have already mentioned in Sect. 1.2 that the cathode processes of two types
differ in principle. A close relation of the glow discharge is (3) Townsend’s dark
discharge. It proceeds with a cold cathode and at very weak current. The (4)
corona discharge, also self-sustaining and also at a low current, is a special case.
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Corona has common features with glow and dark discharges. Among transient
discharges, the (5) spark discharge stands out sharply, among others.

Many features of purely plasma processes, characterizing breakdown in a dc
electric field, as well as the glow and arc discharges, are typical for discharges in
rapidly oscillating fields, where electrodes are not necessary at all. It is therefore
expedient to construct a classification avoiding the attributes related to electrode
effects, and the following two properties will be basic for the classification: the
state of the ionized gas and the frequency range of the field. The former serves
to distinguish between (1) breakdown in the gas, (2) sustaining nonequilibrium
plasma by the field, and (3) sustaining equilibrium plasma. Frequency serves
to classify fields into (1) dc, low-frequency, and pulsed fields (excluding very
short pulses), (2) radio-frequency fields (f ~ 10° — 108 Hz), (3) microwave
fields (f ~ 10° — 10" Hz, A ~ 102 — 10~ cm), and (4) optical fields (far from
infrared to ultraviolet light). The field of any subrange can interact with each
type of discharge plasma. In total, we have 12 combinations. All of them are
experimentally realizable, and quite a few are widely employed in physics and
technology. Typical conditions under which each of the combinations can be
observed are summarized in Table 1.1.

Table 1.1. Classification of discharge processes

Brcakdown Noncquilibrium plasma Equilibrium plasma
Constant clectric  Initiation of glow Positive column of glow  Positive column of high-
ficld discharge in tubes discharge pressure arc
Radio frequencies  Initiation of f discharge Capacitively coupled rf Inductively coupled
in vessels filled with discharges in rarefied plasma torch
rarcfied gascs gascs
Microwave range ~ Breakdown in wavcguides  Microwave discharges in  Microwave plasmatron
and resonators rarcficd gases
Optical range Gas brcakdown by lascr Final stages of optical Continuous optical
radiation breakdown discharge

1.4 Brief History of Electric Discharge Research

Leaving lightning aside, man’s first acquaintance with electric discharges was
the observation, dating back to 1600, that friction-charged insulated conductors
lose their charge. Coulomb proved experimentally in 1785 that charge leaks
through air, not through imperfect insulation. We understand now that the cause
of leakage is the non-self-sustaining discharge.

Occasional experiments were conducted in the 18th century with sparks pro-
duced by charging a body by an electrostatic generator, and with atmospheric
electricity, experiments with lightning sometimes having tragic consequences.

Sufficiently powerful electric batteries were developed at the beginning of
the 19th century to allow the discovery of the arc discharge. V.V. Petrov, who
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worked in the Saint Petersburg Medical Surgery Academy in Russia, reported
the discovery in 1803. The arc was obtained by bringing two carbon electrodes
connected to battery terminals into contact and then secparating them. Several
years later Humphrey Davy in Britain produced and studied the arc in air. This
type of discharge became known as “arc” because its bright horizontal column
between two electrodes bends up and arches the middle owing to the Archimedes’
force. In 1831-1835, Faraday discovered and studied the glow discharge. Faraday
worked with tubes evacuated to a pressure p ~ 1Torr and applied voltages up
to 1000V.

The history of physics of gas discharges in the late 19th and early 20th
centuries is inseparable from that of atomic physics. After William Crookes’s
cathode ray experiments and J.J. Thomson’s measurements of the e/m ratio, it
became clear that the current in gases is mostly carried by electrons. A great
deal of information on elementary processes involving electrons, ions, atoms,
and light fields was obtained by studying phenomena in discharge tubes.

Beginning in 1900, J.S.E. Townsend, a student of J.J. Thomson and the cre-
ator of a school in the physics of gas discharges discovered the laws governing
ionization and the gaseous discharge (known as the Townsend discharge) in a uni-
form electric field. Numerous experimental results were gradually accumulated
on cross sections of various electron-atom collisions, drift velocities of electrons
and ions, their recombination coefficients, etc. This work built the foundations
of the current reference sources, without which no research in discharge physics
would be possible. The concept of a plasma was introduced by 1. Langmuir and
L. Tonks in 1928. Langmuir made many important contributions to the physics
of gas discharge, including probe techniques of plasma diagnostics.

As regards different frequency ranges, the development of field generators
and the research into the discharges they produce followed the order of increasing
frequencies. Radio frequency (rf) discharges were observed by N. Tesla in 1891.
This kind of discharge is easily produced if an evacuated vessel is placed inside
a solenoid coil to which high-frequency voltage is applied. The electric field
induced by the oscillating magnetic field produces breakdown in the residual
gas, and discharge is initiated. The understanding of the mechanism of discharge
initiation came much latter, in fact, after the work of J.J. Thomson in 1926-1927.
Inductively coupled rf discharges up to tens of kW in power were obtained by
G.I. Babat in Leningrad around 1940,

The progress in radar technology drew attention to phenomena in microwave
fields. S.S. Brown in the USA began systematic studies of microwave discharges
in the late 1940s. Discharges in the optical frequency range were realized after
the advent of the laser: A spark flashed in air when the beam of a ruby laser
producing so-called giant pulses (of more than 10MW in power) was focused
by a lens, this success being achieved in 1963.

Continuously burning optical discharges, in which dense steady-state plasma
is sustained by the energy of light radiation, were first initiated in 1970 by a
cw CO laser. Optical discharges (this term reflects a large degree of similarity
with conventional discharges) immediately attracted considerable attention. Both
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microwave and optical discharges have by now been studied with at least the
same thoroughness that the discharges in constant electric fields has been during
nearly 100 years of research.

The physics of the glow discharge, one of the oldest and, presumably, best-
studied fields, has lived through an unparallel revival in the past 15-20 years,
and numerous new aspects of this phenomenon have been revealed. This surge
of attention was stimulated by the use of glow discharges in electric-discharge
CO, lasers developed for the needs of laser technologies. Likewise, the applica-
tion of plasmatrons (generators of dense low-temperature plasma) to metallurgy,
plasma chemistry, plasma welding and cutting, etc. provided a stimulus for new
extensive, detailed studies of arc plasma at p ~ 1atm, T ~ 10*K, and of similar
discharges in all frequency ranges. These, and many other practical applications
of gas discharge physics place it within the range of sciences that lie at the
foundation of modern engineering.

1.5 Organization of the Book. Bibliography

A long-standing tradition demands that a general-type book on gas discharges
begin with a discussion of elementary processes: possible types of collisions of
electrons and ions with atoms and molecules, the fundamentals of kinetic theory
of gases, statistical physics, theory of radiation, and so forth. In this book, we
mostly ignore these topics, wishing to use to maximum effect the severely limited
space; besides, these topics are well represented in the literature, including some
general textbooks. The reader is expected to have mastered a university general
physics course, although some required information is cited in direct relation to
processes to be studied.

The book starts by describing the behaviour of charged particles of an ionized
gas in constant and oscillating electric fields. Chapters 2 and 3 treat the behavior
of electrons in a field in terms of elementary theory. Its essential feature is that
the attention is focused on one “mean” electron. Averaged behaviour of one
electron is considered, and when a quantity characterizing the electron gas as a
whole is to be calculated, all electrons are assumed to have the same mean free
time between collisions. Chapter 4 briefly discusses the processes of creation and
removal of charges in a gas placed in the field. This is necessary for avoiding later
on an infinite number of digressions while presenting discharge phenomena. As
we remarked previously, here we spend little time on physical details of collision
processes and reactions. In fact, we have tried to compile a large amount of data
useful in discharge research. Chapter 5 elaborates a rigorous approach based on
the kinetic equation, to the velocity and energy distribution functions. Chapter 6
is devoted to the fundamental probe method of studying gas discharge plasma.
These chapters prepare the ground for the following eight chapters, which discuss
systematically and in detail the discharges of various types in fields belonging
to different frequency ranges. The order in which this is done is clear from the
elaboratory detailed table of contents, a list that hardly requires comment.
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For reasons of restricted space, it was necessary to omit mentioning a large
number of facts from discharge practice and discharge theory. Quite a few of them
are discussed in available books, including the older ones. We will list several
popular textbooks and general-type handbooks that treat a number of subjects
of discharge physics and some elementary processes [1.1-1.10]. The Russian
version of the present book [1.11] contains a modern treatise, dropped from
the English edition, of collisions and radiation phenomena in plasmas, useful
for discharge research. The kinetics and radiation of low-temperature plasmas
T ~ 10*K) are treated in [1.12,13]. A number of fields in the physics of
discharges are represented in recent volumes of collected papers [1.14,15], in
which each chapter was written by an appropriate specialist. The data book on
electron collisions [1.16] is very useful in discharge work. The list of references
to each chapter of the book cites monographs on elementary processes and on
various types of discharge.

The book leaves out all aspects of discharges and plasma behavior in mag-
netic fields. This is also caused by shortage of space and also by the fact that
magnetic fields are not much employed in traditional types of discharges; except
in magnetohydrodynamic generators which are not discussed here (see [1.17]).
Plasmas in magnetic ficlds as well as high-temperature plasmas for thermonu-
clear fusion (T ~ 10°K), have also become objects of a special science, viz.
Plasma Physics represented by a copious literature (see, e.g., [1.18,19]). We
do not consider these aspects here, even though it is not very easy to draw a
very clear-cut separation of the “spheres of influence” of gas discharge physics
and plasma physics. Neither do we treat here the technical applications of gas
discharges, except for CO; lasers and plasmatrons.

A survey of technical applications of gas discharges can be found in [1.9];
detailed discussion of applications to gas lasers is given in [1.10].

At present, there is a growing interest in radio-frequency discharge. Two major
applications have stimulated its study: the use of moderate pressure capacitive dis-
charges (p ~ 10— 100 Torr) for high-efficiency, reliable and small size CO; lasers
and the use of low-pressure discharges (p = 10~3—1Torr) for etching, deposi-
tion and other technologies. A detailed book about the physics and applications of
radio-frequency discharges was recently published (see Further Reading [11).

The units used in the book are traditional for gas discharge physics. Energy
of particles is measured in eV, macroscopic energy and power — in J and W,
respectively. Electrical quantities are measured in V, A, Ohm, etc.; pressure is
measured in Torr (mm Hg) and atm, and temperature in K and eV.



2. Drift, Energy and Diffusion of Charged Particles
in Constant Fields

2.1 Drift of Electrons in a Weakly Ionized Gas

In the interval between two collisions, an electron is accelerated along the line
of force of the electric field E. A collision changes the direction of motion
sharply and in a random way, after which the electron is again accelerated, etc.
Encounters of charged particles are rare in a weakly ionized gas; electrons mostly
collide with neutral molecules. The systematic motion along the direction of the
external force amid the random motion background is known as drift.

2.1.1 Equation of Averaged Motion

The duration of the act of scattering being very short in comparison with the
average time 7. between collisions, we can write the equation for the true velocity
v, of an electron in the form

mbe = —eE+ Y mAvi6(t—t;), Av;=v.—v,, @2.1)

where Aw; is the change in the velocity vector in the ith collision at a moment ti,
6 is the Dirac delta function, and . is the velocity after collision. The equation
has to be averaged because monitoring the trajectory of an individual particle
would be a hopeless task. The true velocity v, is then turned into the average
velocity v. The sum is also averaged over collision moments ¢; and scattering
angles 6 between the vectors v, and v,. It is now interpretable as the mean change
of momentum per unit time, m(Av) /7. This is the resistive force (“friction”)
applied to the electron by the medium.

Let us decompose Av into components that are perpendicular and parallel
to the mean velocity v before the collision. In view of the collision symmetry,
(Av,) = (v',) = 0. The electron and molecule masses, m and M, are so vastly
different that the electron velocity v is almost unchanged in elastic collisiions.
Hence,

(v") = (vil) —v=v{cosf) —v =—v(l —cos ) ,

where cos 6 is the mean cosine of the scattering angle. Inelastic scattering events
(those that change v) are much less frequent than elastic collisions, and will be
neglected here.



As a result, (2.1) yields an equation for the mean velocity
mo =—eE —mvvy, vm=v(l—cosh), 2.2)

where v = Tc_l = Nvo, is the frequency of collisions of the electron, IV is the
number of molecules in 1 cm?, o, is the cross section of elastic collisions, and v
is the velocity of random motion. It will be shown in Sect.2.3.6 that v is much
greater than the drift velocity. The frequency vy, is called the effective collision
frequency for momentum transfer, and o = oc(1 — cos6) is the momentum
ransfer cross section. If the scattering is isotropic then, cosé = 0, o = o,
vm = ve. If electrons are scattered mostly forward, then cos§ ~ 1, vy =~ 0, the
momentum remains almost unchanged by the collision, and the resistive force is
small. If the scattering is mostly backward, then cos § ~ —1 and vm ~ 2v¢: the
momentum change is doubled. In most gases at electron energies ¢ ~ 1-10eV,
typical for discharges, o, is slightly less than o (by up to 10%); at more high
energies, it is less by a factor of about 1.5.

2.1.2 Drift Velocity
Integrating (2.2) results in

v(t) = —(e E/mum)[1 — exp(—vnt)] + v(0) exp(—vnt) . 2.3)

We find that the initial oriented velocity v(0) of the electron vanishes (is ran-
domized) after several collisions. The mean velocity becomes

vg=—eE/muy; 2.4)

this is the drift velocity. The electric force applied to drifting electrons compen-
sates for the resistive force. The arguments above are valid for electrons having
a definite random velocity v. Usually the cross section and frequency of colli-
sions depend on the electron energy € = mv?/2 in a complicated manner [2.1],
(Figs. 2.1,2.2), so that (2.4) must be averaged over the spectrum.

A consistent approach to calculating the drift velocity is based on analyzing
the kinetic equation for the electron velocity distribution function (Chap. 5). This
approach shows how to average a formula of type (2.4) correctly. It is then found
that the assumption of the independence of the effective collision frequency on
velocity, which is quite acceptable in a number of cases, reduces the rigorous
expression for vg exactly to (2.4); there is no need, then, to average (2.4). This
fact is an obvious justification of the broadest use of the simplest formula (2.4)
in theoretical models and estimates. The easiest way of numerical evaluation is
to make use of the experimental data on o(v) [2.2, 4] and refer vy to the mean

electron energy. Although this energy is field-dependent, the relevant reference
data are available (see Sect. 2.3).
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2.1.3 Mobility

Mobility is defined as the proportionality coefficient between the drift velocity
of a charged particle and the field. The mobility of electrons is

e 17610 cm?
He = ivm  vmls—1] V.-s’

va = peE . @2.5)

The mean energy of electrons is field-dependent; hence, vq4 is not a strictly
linear function of E, and the mobility depends on field strength. However, the
convenient linear relation (2.5) with pe = const is used for theoretical analysis
of various discharge processes. A reasonable effective value of y. is chosen
for numerical estimates (see Table 2.1). As a rule, this simplification does not
interfere with the qualitative validity of the theory; nevertheless, in some cases the
nonlinearity of the function v4(F) causes well-pronounced effects (Sect.2.4.4).

Table 2.1. Estimated values of electron mobility, effective collision frequency for momentum transfer,
conductivity, and mean free path length

Gas HeDy 2 Vm/Pv UP/ncy 2 range of E/p) Ip)
106 % 10°s~'Torr~!  10-13 Togl;:lm o -V'I‘orr 10~2cm - Torr
He 0.86 2.0 1.4 0.6-10 6
Ne 1.5 1.2 2.4 0.4-2 12
Ar 0.33 53 0.53 1-13 3
H, 0.37 4.8 0.58 4-30 2
N; 0.42 42 0.67 2-50 3
air 0.45 39 0.72 4-50 3
CO, 1.1 1.8 1.8 3-30 3
CcO 0.31 5.7 0.5 5-50 2

[Mobilities were found by approximating the experimental curves v4( E/p) with the function vy =
teE; vm and o were calculated using the value of u.. Mean free path lengths, | = (Noy)~!, refer
to electron energies of 1 to 10eV, typical for the positive column of glow discharges.]

2.1.4 Similarity, Results of Measurements, Drift in Mixtures

The collision frequency vy, is proportional to the density N of the gas or to its
pressure p.! If the frequency is constant, e < p~! and vq x E/p. The energy
spectrum and the mean electron energy also depend on E and N (or p) not
independently, but in the combination E /p (Sect.2.3; Chap. 5). Hence, the drift
velocity is invariably a function of the ratio E /p. We will see that similarity laws
manifest themselves in quite a few characteristics of gas discharge. Their impor-
tance is considerable. Similarity serves to reduce the amount of measurements
and the results can be plotted not as functions of two variables (say, F and p),

! Traditionally, gas discharge physics operates with p instead of V; p is measured in Torr = 1 mm Hg
— this is very convenient. At room temperature 20°C, N = 3.295 - 106 plTorrlcm 2. If the
gas is heated, however, the N-p correspondence is not one-to-one: at low temperatures, N =
3.3 .10 p[Torr] (293/T [K]) cm—3. Hereafter, p in numerical formulae is always expressed in
Torr.

1
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but as functions of, say E/p, like vq = va(E/p). The drift velocity always in-
creases with E /p (Figs. 2.3,2.4) but this growth is not necessarily close to direct
proportionality, since v and vy depend on the electron energy distribution. For
example, anomalously fast drift is observed in argon at those values of E/ p a}t
which the characteristic electron energies fall in the range of the Ramsauer mini-
mum of the collision cross section, E/p ~ 1073 —10~! V/(cm-Torr). When drift
velocities are evaluated for gas mixtures, the averaging over percentage contents
of the components must be carried out not for velocities or mobilities, but for
their inverse values (“resistances”) because the quantities that are summed in a
mixture are collision frequencies. A small error is inevitable, since the electron
spectrum of a mixture is different from those of the component gases.

2.2 Conduction of Ionized Gas

2.2.1 Weakly Ionized Plasma

The mobilities of massive ions are hundreds of times less than for light electrons.
The contribution of ions to electric current is thus small, except in those rare
cases when the ion densities n,, n_ exceed by an appropriate number of times
the electron density n.. The current density j and conductivity o in a plasma
with n. ~ n, are

J=—enevg =encpe L =oF , ' (2.6)
2 -3

0 = epiene = —£ =2.82. 10"‘"—3[&1]om-1 cm~! . Q@
mvny Vm[s™1]

The conductivity of a weakly ionized gas is mostly determined by the degree of
ionization n,/N.

2.2.2 Strongly Ionized Plasma

The scattering of electrons by ions impedes their drift along the field as much as
that by molecules. If ionization is not too weak and n, = n., then

vm = Nvoyg + nevocou ,

where oy is the cross section of electron-ion collisions dominated by Coulomb
forces.

The scale of the Coulomb cross section is g, where the Coulomb radius
rcou = (2/3)e?/kT, is found by equating the mean thermal energy of an electron
to the energy of its interaction with the ion. An electron passing by the ion at an
impact distance r < rcou is deflected strongly, and if r > rcou, the deflection
is small. Nevertheless, trajectories passing at a large distance give appreciable
contributions to the momentum transfer cross section, owing to the long-range
nature of Coulomb forces. For this reason, 772, is multiplied by the so-called
Coulomb logarithm:

13



_4m €'lnA _287-107"%In A

=7 = 2 (2.8)
TS LR T T (TeviE ™

_n [ 3 ampr
ln/l—ln [2\/;1: —83727 = 1357+1510g{1:3[CV]} —O-SIOgne .

For example, if T, = 1eV (and n, = 103em=3 InA = 7.1), then ocom ~
210" Bcm?, while oy ~ 10716 — 1015 ¢m2. Ag 2 result of a high Coulomb
cross section, electron-ion collisions are already appreciable at ionizations greater
than 1073,

These collisions become dominant at still higher degrees of ionization. In this
Case vy  ne, S0 that conductivity is inde nit of electren density (or rather,
depends only weakly, via In A). The conductivity is

2 2 Te \V 3/2
mvocow 4me2muvln A InA

Ohm~'em™! .
(2.9)

The numerical formula was obtained with the mean thermal velocity of electrons
and the coeffcient was refined by a factor of about 2 [2.8].

2.2.3 Why Electron-Electron Collisions
Do not Contribute to Electric Resistance

The point is that the resistive force (“friction”) in the drift of electrons is caused
by the loss of momentum along the field in scattering events. As to the total
momentum of any pair of interacting electrons, mwvy + mvy, it is conserved
under scattering although the velocity of each one changes both in magnitude
and in direction. This means that scattering preserves the total electric current
of the pair, which is proportional to —ewv; — ev,. Hence, the motion of a group
of electrons colliding only with electrons would be accelerated on average; this
means that the electric resistance would be zero. Note that electron-electron
collisions can affect the conductivity indirectly, namely, by changing the energy
spectrum of the electron gas (by “Maxwellizing” it).

2.3 Electron Energy

2.3.1 Joule Heat

The work done by an electric field on an electron moving at a velocity v, is
—eE - ve per unit time. Let us represent the electron’s velocity as a sum of
random v and drift v4 components: v, = v + vy. By definition, averaging over a
large number of electrons gives (v) = 0 and (ve) = vq. The mean work of the
field equals —(eE - v.) = eEvq. The energy released by the current in 1 cm? of
the gas in 1s is eEvan. = jE. This is the Joule heat of the electric current. The
field does work to overcome the resistive force. The Joule heat equals the energy
of the field dissipated in response to resistance.
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2.3.2 Mean Energy Gained by an Electron in One Effective Collision
This quantity equals

2E2
YL a— (2.10)
Vm muvZ

and coincides, in order of magnitude, with the “kinetic energy of drift motion”,
muv3 /2. On average, the total kinetic energy of an electron is composed of the
random £ and drift components:

2 2 2 2
muv mv muv - mv
< c>=< >+ d=€+—-d-, (v-vd)=0.

2 2 2 2
Qualitatively, the result (2.10) can be given the following interpretation. On
average, the velocity of the electron immediately after a collision (“effective”
collision) is completely randomized: on average, its vector is zero. By the next
collision, the electron has built up the drift velocity along the field, with the
corresponding kinetic energy. The collision transfers this new portion of energy
into the random part (the electron “heat”) and the process starts anew.

2.3.3 True Change of Electron Energy in a Collision

Formula (2.10) reflects only the final result of various, sharply opposing situations
that arise in different collisions. In fact, an electron in the interval between two
collisions can be accelerated by the field or decelerated, it can store up energy
or lose it. It depends on whether the motion after the collision started along or
against the direction of the force, at a large or small velocity. A very simple
example will be useful.

Let us fix our attention on two electrons that have velocities of identical
magnitude v and start moving parallel to the field in opposite directions. Their
initial kinetic energies are equal, mv?/2. The electron moving along the force
(against the field) reaches the velocity v + e E/muy = v + vy by the time of the
next collision, picking up the additional energy

_m+ve  m? mv}

Ag, = > - = movg + —3 |
‘ The electron that started moving along the field is decelerated some of the
time (or all of it), and reaches the velocity —v + vg by the moment of collision.
The additional energy is

Ae. = m(—v +vg9)?  mo? mvﬁ
E_= > - = —muovg + 5 :

2
if v > vg /'2, this increment is negative, that is, the electron loses energy. This is
a typical situation: we will see in Sect. 2.3.6 that random velocities v are usually
much greater than the drift velocity.
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On average, the additional energy gained in these two scenarios is

A€++AE__ 2
T =myy,

which is independent of v, is always positive, and coincides with (2.10). Clearly,
electrons with arbitrary initial vectors v can be divided into similar pairs with
oppositely directed velocities, producing the same result, at least to the order of
magnitude.

We have already mentioned, referring to Sect.2.3.6, that the mean random
velocity © 3> vg; hence, the resulting average energy gained per one collision is
a small net difference between large actual gains and losses; these are of order
|Ae+| =~ mvg > Aeg = mv3. In their turn, the actual changes of energy |Ac. |
are small in comparison with the mean electron energy & ~ m? /2. The ratio of
these quantities is

AGE IAE:;:' Vd AEE (vd)2

~ — —_—
y

|Aey| g v 3 211

v

2.3.4 Equation of Electron Energy Balance

Electrons gain energy from the field and pass it on to atoms and molecules. The
current density and Joule heat released are small when the ionization is low.
The gas heats up slightly. But the mean energy and temperature of electrons
in the discharge cannot be too low, since electrons would be unable to ionize
atoms and sustain the conductive state in the gas. In such cases 7, > T at low
pressures, so that the energy exchange in elastic collisions is a one-way process:
from electrons to the gas (if T, ~ T, the exchange is mutual, on average). Let us
find the mean energy lost by an electron in an elastic collision with a molecule.

When an electron loses momentum Ap, the molecule gains the same mo-
mentum. If it was “at rest” before the collision, the energy gained is (Ap)?/2M.
The electron loses the same amount of energy; on the average, this amount is
(m?/2M){(Av)?). Since

{(Av)?) = (0" — v)) = v* — 20"vc0s B+ v? = 20%(1 — Cos B)

the mean fraction of energy ¢ = muv?/2 that the electron loses in an elastic
collision is (2m/M)(1 —cos ). We denote § = 2m /M and can write the equation
of energy balance for the “mean” electron undergoing only elastic collisions:

de e?E?

Et- = (AEE — 56)1/,,. = (mllgl — 56) Vm - (2.12)

The mean electron energies in discharge plasmas are usually quite low
compared to the fairly high potentials of excitation and ionization of atoms,
I ~ 10eV, and the corresponding energy losses are small. The gas is ion-
ized by “super-energetic” electrons, and these are rare. For this reason, the
main mechanism of energy transfer from electrons to the gas is the elastic
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loss. Electrons in molecular gases mostly dissipate energy by exciting the vi-
prational (and rotational) energy levels of molecules. This case too can be
described by (2.12), but the coefficient § is not calculated as simply as for
elastic losses. Inelastic losses are usually greater than elastic ones by one to
two orders of magnitude; nevertheless, the corresponding coefficient § is small:
5~ 1073 —10"22m/M ~ 10~ — 1075).

2.3.5 Mean Energy

The equilibrium value of energy of the “mean” electron corresponds to energy
gains compensated for by losses; in the approximation above it can be treated
as the mean energy of electrons, €, in the field (the rigorous calculation of
this quantity requires the solution of the kinetic equation; see Chap. 5). Assume
that the coefficient § and scattering cross section oy, are independent of energy,
that is, the free path of electrons, ! = 1/Noy,, is energy-independent. Note that
vm = /1 ~ \/e. We also specify that mo? = (16/3x)E, as in the case of the
Maxwellian distribution. Equating the right-hand side of (2.12) to zero, we obtain

s V3T Bl gePl e E : (2.13)

4 V5T Ve /6N

The mean energy is proportional to E/N and exceeds by a factor 1/ /6 the
energy eEl that the electron builds up while moving along the direction of the
electric force. The assumption of constant free path length corresponds to the
square root dependence of drift velocity on the electric field. Indeed, substituting
% = (16¢/37m)!/? into vy = Noo, and defining £ by (2.13), we find from (2.5)
that

I 1/4 eE 172 eE 172
=|—6 ~ 0.96'/4 . .
vd (16 ) (mau-N) 0.96 (mau—N) 2.1%

On the other hand, the assumption of constant collision frequency, with u, =
const and vg ~ E/N, corresponds to the quadratic dependence of energy on
field strength (provided & = const). In this case (2.12) implies

F= e?E? _ e? EV - Vm
T bmuZ §miZ, N) > ™=N- 2.15)

n

The choice of a particular model thus produces a dilemma: assume either
Vm, pe =CONSt , vy ~ E/N, &~ 6" (E/N)?,

or
O, I = const, vy ~ 8YYE/N)/2 & ~ 67VI2E/N) .

The. actual dependence of vq and £ on E/N found in experiment or obtained
by solving the kinetic equation is usually quite complicated and, at best, is well
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approximated by a specific model within certain intervals of E/N for specific
gases. Consequently, for a theoretical analysis of various effects, for revealing
characteristics of qualitative behavior and achieving more profound understand-
ing of the physics of processes, one is forced to choose a version that is better
suited for analysis. If an effect is determined by drift or electric current, it is
expedient to choose constant mobility. If attention is focused on the energy as-
pects of electron behavior in the field as is the case in this section, it is better to
use the approximation ! = const and the clearly descriptive formula (2.13); this
is what we propose to do below.

Formula (2.13) gives reasonable numerical results. For instance, in he-
lium (6 = 2.7 - 10~*), the momentum transfer cross section changes little in
the characteristic energy range and is approximately o, ~ 5.5 - 1016 cm?
(I = 0.055/p[Torr]em); hence we find for E/N =33 .10"1V .cm? [E/p =
1V/(cm - Torr)] that £ ~ 2.5eV. Experiment gives £ ~ 2eV. It did not prove
possible to calculate £ in molecular gases in a simple manner because serious
difficulties are encountered in finding the loss coefficient 6. However, this does
not make (2.13) useless. Quite the opposite, it makes the estimation of § pos-
sible because an independent way of determining ¢ is available (see Sect. 2.4).
Thus £ =~ 1.5¢V in nitrogen at E/p = 3V/(cm - Torr); the cross section in the
characteristic energy range is of order oy ~ 10~ cm? (I ~ 0.03/p[Torr] cm),
and (2.13) yields § ~ 2.1 x 1073, in agreement with the result obtained by an
independent method. The elastic loss coefficient of nitrogen is much smaller,
2m/M =3.9 x 1075,

2.3.6 Relation of Random to Drift Velocity
It is immediately implied by (2.5) and (2.13) that

v _ elE _V3r v 12
= —mﬁz—T\/ENO.S\/S, by (2.16)

The random velocity that an electron develops in the field is greater than the
drift velocity by a factor of 1 / \/3, that is, of tens or hundreds. Relation (2.16),
which clarifies the physical meaning of the smallness of va/v, is closely tied
to the parameters of smallness of the energy characteristics of electrons. In a
collision, an electron gains or loses an energy of order |Acy| ~ V& = eEl,
which corresponds to the potential difference traversed in an arbitrary direction
across one free path length. The energy Ae, is slightly greater than | Ae_|, by the
amount Ae g = v/8| Ae, | that an electron picks up, on average, per one collision.

Now, several words on the limits of applicability of the relations above. On
the side of very weak fields, it is restricted by the assumption of one-way energy
exchange between electrons and the gas, £ > k7. Indeed, in the absence of the
field, electrons are thermalized and acquire the gas temperature 7, unless they
perish first! The condition £ >> kT is usually met in weakly ionized discharge
plasmas “many times over.” Considerable inelastic losses become important in
high-strength fields, at electron energies € = 10eV. Even the formal transition to
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the limit of maximal possible losses § ~ 1 in (2.13,16) shows that the oriented
and random components of velocity become comparable. Hence, strong asymme-
try in motion and in true energy exchange between electrons and the field must
develop. An electron builds up considerable energy between subsequent colli-
sions, excites or ionizes an atom, losing energy and rushes forward again. This
is not quite the picture that was taking shape before. Such phenomena may occur
in the cathode layer of a glow discharge (Sect.5.9, 8.4). Sometimes relatively
high drift velocities are also observed outside the cathode layer. In low pressure
mercury vapour the drift velocity is of one quarter of the random velocity [2.9].

2.3.7 Energy Relaxation; Criteria of Constant and Homogeneous Fields

We refer to the quantity v, = §vy as the frequency for energy losses. If the field
is instantaneously switched off, an electron dissipates its energy in a time of
order

Tu=Vy =Tm/6, .17

that is, after about 1/§ effective collisions. A very slow electron picks up the
appropriate energy in about the same time, because in one collision it acquires
a fraction § of it. As follows from (2.12), 7, characterizes the rate at which
equilibrium energy builds up in a given field. This is the energy relaxation time.
If the field changes little over the time 7,, the mean energy (and hence the
electron energy distribution) track the changing field and is thus quasi-steady. If
changes are fast, tracking becomes impossible. The field “constancy” criterion
can thus be written as (dE/dt)r, < 1.

On the average, the electrons are systematically displaced in the direction of
the electric field, so that energy equilibration proceeds not only in time but in
space as well. Over one relaxation time 7, electrons drift over a distance

Ay = var, ~0.81/V/5 . (2.18)

This quantity can be called the energy relaxation length. It is greater than the
electron mean free path by a factor 1/+/8, not by the 1/§ that characterizes the
ratio of relaxation time to time between collisions. According to (2.13,18),

E=eEA,, (2.19)

that is, an electron builds up the mean energy in the potential difference across
one A,.

A dc field can be treated as homogeneous if it varies only slightly over dis-
tances of order A,, that is, if (dE/dz)A, < 1. The opposite case is that of
strongly inhomogeneous fields in which the energy distribution and the mean en-
ergy of electrons cease to be functions of only the local ratio E/N. For instance,
the energy may be determined by the potential difference crossed by electrons
after being emitted from the atoms.

The loss term in parentheses in the energy balance equation (2.12) increases
with increasing ¢, while the energy gain generally decreases; under the assump-
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tion I = const, it varies as 1/¢. Therefore, electron energy always tends to the
stationary value . If ¢ < £, then de/dt > O; if ¢ > £, then de/dt < 0. This
shows that the stationary state is stable because energy invariably returns to &
(at the relaxation rate) after any random deviation of ¢ from &.

2.4 Diffusion of Electrons

2.4.1 Equation of Continuity

If the density of particles moving in a gas is spatially noniuniform, a diffusion
flux appears that tends to level it off. The total flux consists of the drift and
diffusion components. The flux densities of positively and negatively charged
particles are

I'y =4+nuyE — DVn. (2.20)

(If the gas flows at a velocity u, convective components nu are added to I'.)
Note that subscripts + with n, u, and D are dropped. The diffusion coefficients
are

D= (v?/3vn) ~15/3, Dxp'. (2.21)
Particle number densities satisfy the continuity equations
% +divl=gq, 2.22)

which generalize the standard diffusion equation; ¢ are the bulk sources of cre-
ation or annihilation of particles in 1cm3s~!.

2.4.2 Relation Between Diffusion Coefficient, Mobility, and Mean Energy

Assuming that the collision frequency is constant, we find from (2.5) and (2.21)
that

De/pe = mv?[3e = (2/3)é/e (223)

where £ is the true mean energy of electrons, regardless of their energy spectrum.
If the spectrum is Maxwellian, (2.23) is valid regardless of the dependence of v
on v. One only needs to substitute for u. a rigorous expression implied by the
kinetic equation (Sect. 5.6.1). This is natural since here £ = (3/2)kT. and (2.23)
reduces to the Einstein relation

D/u=kT/e, (2:24)

which is thermodynamic in nature. Indeed, there are no fluxes in the state of
thermodynamic equilibrium, and charge densities in the field E = — Vo (p is
the potential) satisfy Boltzmann’s law n+ o« exp(Fep/kT). This gives (2.24).
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If the electron spectrum is non-Maxwellian and vy(v) # const (this is typ-
ical of weakly ionized gases in electric fields), the quantity (3/2)D./pe also
characterizes the mean electron energy, but does not exactly coincide with it.
The ratio De/pte, corresponding to the electron “temperature”, is known as the
characteristic energy. Like the spectrum, it is a function of E/p.

Experimentally, the ratio De/p. is measured by determining the spreading,
due to diffusion, of electrons drifting in the field E. At a distance z = vyt from
the point where electrons start, the beam has spread in the transverse direction
10 a radius r ~ v/Det = /Dex/va = \/(De/pe)(z/ E). Experimental curves of
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Ta / 7;, Fig.2.6. The ratio of electron and
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D,/ as a function of E/p (Figs.2.5,2.6) can be successfully fitted for Ne and
Hy, with reasonable accuracy, by a straight line through the origin in the ranges
of E/p typical for glow discharges. Formula (2.19) then gives some idea about
electron energy relaxation lengths A,. Namely,

Ne: £=x97 (E) ev, £~0.1—1.2V/(cm-Torr);
p p
A 9.7

A ————Cm
“ p[Torr]

Hy: £=0.17 (E) eV —E—j ~0.5-13V/(cm - Torr) ;
p p
0.17

plTorr]

=N

~

u cm .

2.4.3 Calculation of Diffusion Coefficients

The measurement of drift velocities and characteristic electron energies is per-
fectly feasible. On the other hand, it is exceptionally difficult to measure diffusion
coefficients directly in the presence of an electric field. In fact, only diffusion
coefficients of thermalized electrons that have come into- thermal equilibrium
with the gas in zero field have been measured in direct experiments. At room
temperature, De herm = K - 10° /p[Torr]cm? /s, where

He Ne Ar H, N O;
K= 2 20 63 13 29 12°
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The value of D, can be estimated using the data on vy and D,/ u.. Thus in Ne at
E/p=1V/(cm-Torr), we have vg = 1.46 x 10 cm/s, T, ~ 5.5eV [2.10], whence
D, ~ vaTe/E ~ 8x10°/pcm?/s. In air at E/p = 20, we find va = 8.5x 10 cm /s,
T, ~ 1.5eV[2.11], from this D ~ 6.3 x 10°/pcm?/s.

2.4.4 Longitudinal and Transverse Diffusion

The ratio D./ 1 found from the measured diffusional spreading of electron pack-
ets along the direction of drift differs systematically from the results obtained by
recording transverse spreading. The physical reason for the difference between
the coefficients of longitudinal Dy and transverse Dy diffusion is the dependence
of the collision frequency vm on electron energy [2.12]. According to (2.20), the
mean electron flux consists of drift and diffusion components:

v = Fe/ne =v4 — DeVne/nc = v4 + Vdif ;

in the zeroth approximation, D, is the “ordinary” coefficient characterizing the
diffusion perpendicular to the drift direction. If there is a gradient of n. along the
field, the field does additional work per second on the electrons, in comparison
with the case of pure drift motion —e Evgis = e Dc(EVne)/n.. The mean electron
energy £ gets an increment Ae proportional to the projection of the gradient on
the direction of the vector E, Vn.. If 1, increases with increasing ¢ (this is
the typical situation), the mobility reduces by Ag., which is proportional to
Vne. The effect of this response is equivalent to the drift velocity remaining
unchanged but the velocity due to longitudinal diffusion, v )| = —DeV|ne/ne,
getting an increment proportional to Ape ~ V| ne. In its turn, this effect means
a drop in the longitudinal diffusion coefficient. In the first approximation, in a
small gradient, we find [2.12] that

7, Oln v,
=D ={1-—= P = = . .
Dr=De, Do ( 1+29,,,)D°’ "m = BIne 2.25)
The logarithmic derivative 7y, characterizes the steepness of the function. Thus

for vy ~ e*, we have Dy, = k. Experimentally, Dy is seen to diminish by a factor
of up to 2 in comparison to Dr.

2.5 Ions

2.5.1 Collisions with Molecules

An ion of mass M; comparable with that of a gas molecule M exchanges larges
portions of energy with molecules. If the field is not strong, an ion gets from
the field an energy less than kT ions then reach the gas temperature 7". These
conditions are typical for the positive column of a glow discharge. The cross
section of elastic scattering of slow ions is determined by polarization forces.
An ion at a distance r from a molecule induces in it a dipole moment d = ae/r?,
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where « is the polarizability of the molecule, and is attracted to the molecule with
a force 2ed/r3. The ion is scattered strongly if it passes at a distance r < po,
where g ~ (ae?/2¢')!/* corresponds to the equality of the potential energy
of interaction |U| = ae?/2r* and the kinetic energy of relative motion of the
particles ¢'. To an order of magnitude, therefore, the scattering cross section is
Ou & wg%. Including the corrective factor of 2v/2 [2.13], we have

ow ~ 2my/ae? [e! = 2v/2ndd (a/ad) (In/e') . (2.26)

To indicate the scale, we have substituted e? = 2agly into oy (ao is the Bohr
radius and Iy is the ionization potential of the hydrogen atom; see Appendix).
In the polarization interaction, oy o< 1/’ and the collision frequency is vy o
v'ay = const, where v’ is the relative velocity of the particles.

When the “radius” of polarization foces gy becomes less than the molecular
size, scattering occurs only when particles come into “contact.” The polarization
cross section is replaced with the gas-kinetic one, which weakly depends on v';
now vm  v'. In Ar, Ny, and O, (where a/ag ~ 10 — 12), as well as in He, this
occurs when €' > £ =~ 0.5 — 0.6eV, in Ne when it is 0.15 eV, and in H, when
itis 0.9eV.

Ions moving in their own gases, (e.g., He" in He, N3 in N;) lose momentum
intensively via charge transfer. An ion accelerated by the field appropriates an
electron from a neutral molecule. This happens so quickly that the new ion (the
former neutral) fails to move at all. The charge transfer cross section, o, , is
usually even greater than the elastic scattering cross section [2.4] (Fig.2.7). In
the center-of-mass reference frame, the molecule and the ion move towards each
other at equal velocities, while after charge transfer the charge moves at the same
velocity but in the opposite direction. This is equivalent to scattering by 180°,
so that in charge transfer, oy = 20, . Charge transfer considerably reduces the
mobility of ions in their own gas.

2.5.2 Drift in Weak and Moderate Fields

In the general case, the mean rate of momentum loss by a particle in a collison
(resistive force) is determined by the reduced mass M' = M; M /(M;+ M) and the
relative velocity v’. The quantity M’ (v’ vy (v’ )) is averaged over the velocities of
molecules for a fixed ion velocity v. The situation looks simpler when electrons
are considered (Sect.2.1.1) because m < M and M' ~ m, v' ~ v.. There is
also no need for averaging if the ion cross section is determined by polarization
forces and charge transfer, since vy (v') = const and (v'vy) = vy, where v is
the mean velocity of ions. Equating the resistive forces and fields, we obtain the
drift velocity and ion mobilities similar to (2.4,5):

Vid = eE/M’I/m , M= C/M,Vm . (2-27)

If no charge transfer occurs and the cross section is purely polarization-
induced, then
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(2.28)

where A is the molecular weight of the gas. Formula (2.28), with a slightly
different coefficient, was derived by Langevin in 1905. It is in good agreement
with experimental data [2.1]. Ions often tend to join with molecules and atoms

into complexes of the type Nj,

+, Ne3 and Hej (in contrast to Ne; and He;,
these complexes are sufficiently stable). This process affects mobility since it
eliminates charge transfer (Fig.2.8). As an example, consider the drift of NeZ in
Ne. For Ne, a/a3 = 2.76. From (2.28), we have y; = 4.5x10% /p [Torr] cm?/(V s).
The experimental value is y; =5 x 10°/p. In a field typical of glow discharges,
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E/p=1V /(cm-Torr), we have v4 = 50m/s. The corresponding thermal velocity
at T = 300K is vt = 400m/s.

2.5.3 Mean Energy

The equation for the mean ion energy ¢; in the approximation vy = const, in
which the problem of averaging over the particle velocities is greatly simplified,
is

- = M' = (2.29)

M'V%_M-FM(&_EM) Vm , MM,
If the mean energy of molecules &y = (3/2)kT < ¢; and M; < M, then (2.29) is
identical to (2.12) for electrons undergoing only elastic energy loss (§ = 2m/M).
The equilibrium energy of ions is
(1+M;/M)® e2E?

2M; /M) M2
If the field is not too strong, this energy is only slightly greater than the thermal
value 3kT'/2. Electrons exchange energy very poorly with a gas and are ther-
malized only in extremely weak fields of E/p < 1072 — 1072V /(cm - Torr). The
masses M; and M being comparable, ions reach the temperature of the gas in
fields that are not necessarily weak, say E/p ~ 1 — 10 V/(cm - Torr).

If the field is strong, an ion acquires in a free path length [ an energy eEl
much greater than £y, so that its energy & runs much ahead of the thermal
energy. The collision cross section becomes close to the gas-kinetic value and
I =~ const. For example, if o = 3 x 10~!3cm?, then I = 10~2/p[Torr] cm. For
room temperature and E/p > 40V /(cm - Torr), we find eEl > 10ém ~ 0.4€V.
Such conditions are characteristic of the cathode layer of a glow discharge. We
now approximate (2.30) for the case of [ = const and vm = v/l ~ v. Replacing v
with the approximation /2&;/M;, we find

_ (L MM
TV YE

d&; [62E2 2M' MM

(2.30)

. _3
61—2kT+

eEl . (2.31)
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In the limit M; <« M, (2.31) transforms into (2.13). In contrast to electrons, an
jon with a mass M; ~ M does not store energy pumped by the field: it sheds it
in each collision, so that & ~ eEl.

2.5.4 Drift in Strong Field

Assuming vy, = v/l and ! = const, expressing velocity v through &; [as in deriving
(2.31)] and substituting it into (2.27), we find vig:

/4 M\Y* [eEl
am(— 1+=— —. .
Ui (M) < M M) M, (2.32)

This is proportional not to E/p, as in moderate fields, but to \/E/p. If M; =~ M,
v is approximately equal to the ion velocity & ~ |/2&;/M; that corresponds
to its mean energy, because the motion of the ion is sharply oriented. Ions in
a heavy gas, however, drift more slowly than they move randomly: v4/? =
(M;/(M; + MI'? ~ /M;/M [cf. (2.16)]. Like electrons, they store energy
& ~ (M/M)/2eEl

The transition from the mobility law vig o< E/p to the law vg ox \/E/p is
gradual (Fig.2.9). It begins usually in fields in which ion energies reach about
leV and the polarization forces are replaced with short-range forces and the
cross section becomes gas-kinetic. If ions move in their own gas and charge
transfer dominates, this occurs when the ion energy is appreciably greater than
the thermal energy.
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Fig.2.9. Drift velocities of ions in inert gases. Change in mobility laws: from viq ~ E (dashed line
on the left) t0 viq ~ V'E (dashed line on the right); T = 300K. From [2.17]
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2.5.5 Diffusion

The Einstein relation (2.24) is valid in not too strong fields when ions are in
thermal equilibrium with the gas and their energy is & = 3kT/2. Direct studies
of ion diffusion are much less numerous than mobility measurements, so that the
diffusion coefficients D; are typically found in this way. In the case of moderate
E/p, D; varies with E/p as little as y; does. For instance, in the case of nitrogen
jons in nitrogen, p; &~ 1.5 x 10*/p[Torr] cm?/(V - 5), D; ~ 40/pcm?/s.

2.6 Ambipolar Diffusion

When the density of charged particles, n. and n,, is very low, the charges
of opposite signs diffuse independently of each other. This is known as free
diffusion. Electrons are more mobile and thus diffuse faster; if there is a charge
density gradient in the plasma, electrons may leave their less mobile partners far
behind. If, however, the densities n. and n, are not low, a considerable space
charge is formed as a result of charge separation, and the generated polarization
field impedes further violation of charge neutrality (Fig.2.10). Charge separation
and the field so adjust to each other that the field restrains the run-away electrons
and pulls forward the heavy ions, making them diffuse only as a team. This
diffusion is known as ambipolar; the concept was introduced by Schottky in
1924.

2.6.1 Ambipolar Diffusion Coefficient

Let us turn to the general expressions (2.20) for charge particle fluxes. We will
be interested in the cases of no external field or of diffusion in the direction
normal to it. Then the field E entering these formulas is connected exclusively
with the polarization of the plasma. It satisfies the electrostatics equation

divE = 47re(n+ - ne) . (2.33)

Let the separation of charges be small: [n, — ne| < ne = n. = n. For the
separation not to grow appreciably, the electron and ion fluxes must be almost

>0
< ~./7e  Fig.2.10a,b. Plasma polarization in the presence of
= = electron and ion density gradients. (a) Initial distri-

butions ne = ns+; (b) distributions ne, n., and space-

E p E charge density ¢ = e(ny — ne) some time later. Ar-
-_—— T T rows indicate the direction of the polarization field
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equal: Tex & Itz & I';, where the z axis is chosen to be perpendicular to the
external field, provided it exists. In order to eliminate the polarization field from
the expressions
on on
I,~—pkEn— D°5£ , Te=+usEgn— D+E ,
we divide the first by ., the second by p., and add up the results. We find that
the flux of charged particles of both signs is written in the form standard for
diffusion:

(2.34)

on D,pe+ Depus

=-Dyb—, Dy=—m 2.35
I P a et (2.35)
with an effective coefficient D,, the ambipolar diffusion coefficient. Since u, >
p+ and De > D, the quantity D, =~ Dy + De(p+ /ie) is greater than D, but
less than De, in accord with the remarks on “speeding-up of the ions” and
“restraining” electrons. For an equilibrium plasma, where the electron, T;, and
ion, T, temperatures are equal, the Einstein relations (2.24) yield D, =2D,. For
a nonequilibrium plasma, where the electron temperature is much higher than

that of the ions (the latter is equal to the gas temperature), we have

Te kT, 2

Dam DAt =D, 28 =y, = = Zp,5 [eV]. (2.36)
e T e 3

2.6.2 What Are the Conditions Under Which the Diffusion Is Ambipolar?

This question is very important because the free and ambipolar diffusion coeffi-
cients differ by a factor of ten and more. For the flux I, of (2.34) not to exceed
I',, despite the strong inequalities De > D, and p, > p., the diffusion and
drift terms of I, with opposite signs must compensate each other to within the
relatively small flux I'y,. Hence, the polarization field that appears automatically
in ambipolar diffusion equals

De10n kI 10n KI:
fe n Or e ndr eR’

(2.37)

_Where R is the length characterizing the scale of the charge density gradient. This
1s the distance over which the electron density varies considerably. For example,
R is the radius of plasma in a tube because the density at the axis is much greater
than at the tube walls, where the charges are neutralized.

) The polarization field is a result of charge separation; in its turn, the separation
1s caused by the random (thermal) motion of the faster (electron) component and
stc.ms from the electron thermal energy. Indeed, where the polarization field
exists, its potential difference over the entire length R is such that the electric
energy to which the charge is accelerated over it is of the order of the thermal
energy of electrons: efp ~ eE, R ~ kT.. The polarization field is generated by
the space charge eén = e(n, —n.); according to (2.33), this charge is determined,
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to within an order of magnitude, from the relation E, /R ~ 4reén. Using (2.37),
we find

2 12
bn KL 1 (i), d=(_’£) , (2.38)

n 4ne?n R? = R 4reln

The quantity d is the Debye radius of a plasma.?2 It gives the distance char-
acterizing strong charge separation and plasma polarization. If R > d, that is,
if large density differences appear over distances greater than the Debye radius,
then én/n < 1, deviations from charge neutrality are small, and the diffusion
is ambipolar. If R < d, electrons and ions diffuse independently. For exam-
ple, for T, = 1eV, ne = 108cm=3, and R = lcm, we have d = 0.052cm and
én/n=2.5-1073, that is, the diffusion is clearly ambipolar. If T, and R are the
same but n, < 108 cm~3, the diffusion of charges is free.

2.6.3 Definition of “Plasma”

The condition (d/R)? < 1, where R is the characteristic size of the region of
large density difference, gives the quantitative criterion that distinguishes between
plasma as an electrically neutral ionized medium and other cases of the presence
of charges in a gas.

2.7 Electric Current in Plasma in the Presence
of Longitudinal Gradi>nts of Charge Density

2.7.1 Continuity Equation for Charges and Currents

If plasma is placed in an external electric field and if the current is nonzero, then
in contrast to Sect.2.6.1 the densities of electron and ion fluxes are not equal,
and the current density is j = e(I'y — I';). The continuity equation (2.22) for
particles of a given species and the fact that positive and negative charges are
created and annihilated only in pairs (if negative ions are absent, g. = ¢,) imply
the following continuity equation:

%’+divj=0, g=e(n+—ne). (2.39)

In electrically neutral media, and under steady-state conditions in all media, the
current has no source:

divj=0. (2.40)

2 The Debye radius of an equilibrium plasma (T = T is less than (2.38) by a factor of v/2. When
considering charge screening in plasmas with T3 < Te, one should not subject the density of
low-mobility ions around a charge to Boltzmann's law ny = n,o exp(—e@/kT:), but assume it
to be constant, n+ = n4oo. Then d is given by (2.38).
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In the one-dimensional plane case dj/dz = O along the current direction z,
j(z) = const, and the current density does not change. It is usually determined
not by local characteristics, but by conditions of the entire system, including the
circuit external to the discharge.

2.7.2 Diffusion Current and the Distortion of the Field by Gradients
Under the conditions of quasineutrality (ne &~ n; & n), formulas (2.20) yield

jle=e(Il's = T¢) = (De— Dy)Vn+ (e + pi ) En (2.41)

7 D, — D, Vn

E= —_

e(pe + p)n pe+ps N
The electric field is made up of the external one, which drives the current, and the
polarization field due to the presence of gradients (in fact, temperature gradients
generate additional, thermodiffusion currents but their role is usually minor). Of
course, these components are indistinguishable: measuring a field, say, by a probe
(Chap. 6), we determine the total field (2.42).

If the charge density falls steeply in the direction opposite to that of the
external field, the total field may be completely suppressed or may even reverse in
direction with respect to the current (such effects are observed in glow discharges,
low-voltage arcs, etc.). The electric current cannot be affected by this [see (2.40)]
and is carried through by electron diffusion: if E = 0, then (2.41), taking into
account that D, > D, yields j & D.Vn. The diffusion is then free (ambipolar
diffusion cannot transfer charge). Indeed, electrons in zero field do not pull
ions behind. In gases, this situation cannot, however, exist on too long a path,
as we see from (2.42). Note that the diffusion coefficient D, depends on the
electron energy distribution, which reaches a state corresponding to the field
after an energy relaxation length A, =1/ V& > 1 (Sect.2.3.7). Strictly speaking,
it strengthens the usual condition of applicability of diffusion concepts, namely,
a small drop in n over a length I; at any rate, it calls for very careful analysis in
treating diffusion in highly nonuniform fields.

(2.42)

2.7.3 Plasma Density Equation

Using (2.42) in the formulas (2.20) for I'. and I, and recalling definition (2.35),
we find that

Ie=-Dvn——t 3 p __pwpsts 1 (2.43)

’

He+ py € Hetpe €

Electron and ion fluxes are made up of identical ambipolar diffusion fluxes (they
Can also have a component along the current) and fluxes due to the electric
Current. In contrast to ambipolar fluxes, these latter fluxes differ greatly, by a
fact(?r o_f He/p+ > 1. Substituting any of expressions (2.43) into the appropriate
contm'ulty equation (2.22) and recalling (2.40), we arrive at the general balancing
€quation for the number of charged particles:

on
E—D.An=q, NN BN, . (2.44)
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This looks like an ordinary diffusion equation (with ambipolar coefficient) for a
problem with bulk sources of charge; it manifests no signs of the possibility of
electric current in the medium. This current affects charge fluxes (2.43), not the
balance. The balance is current-independent because, metaphorically speaking,
the amount of electricity flowing into somewhere is exactly equal, in view of
(2.40), to the amount flowing out of it.

2.7.4 Charge Neutrality Criterion

This requires different descriptions for two different situations. If the drift current
is zero or small in comparison with the electron diffusion current [the polarization
field is greater than the external one in (2.42)], we return to the situation treated
in Sect.2.6.2 and the criterion (d/R)2 < 1 [see (2.38)]. If the drift current is
greater than the diffusion current, then (2.42) implies that § ~ ey, En and we
have, in accord with (2.40, 33),

—FE -Vn=ndivE = 47ren(n+ — ne) =4mendn ,

n _E kT, eE & <d>2 L (2.45)

n  4xenLl  4reln KL LA, \L

Ay’

where A, is the electron temperature relaxation length (or that of the mean
electron energy) of (2.18) and (2.19), and L is the characteristic length of strong
variation of ne and conductivity. The Debye radius must be compared with the
geometric mean of L and A, . The actual conditions decide whether the criterion
based on (2.45) is stronger or weaker than that based on (2.38) and whether
the gradient along the current or transverse to it violates charge neutrality more
strongly.

2.7.5 Ambipolar Flow of Charges Along a Nonuniform Field

In contrast to the diffusion flux, this flow is of a drift nature, and is caused by
a space charge [2.18]. Let us use in the continuity equations (2.22) for n. and
n, the expressions (2.20) for the fluxes I'c and I'. Multiplying the equation for
ne by p./pe and assuming, for simplification, that y. and g, are constant, we
then add the result to the equation for n,. When summing up the drift fluxes,
we retain the “small” difference én because we are interested in the effect of
space charge; this charge may be considerable even in quasineutral plasma (in the
sense of én/n < 1). Substituting én = (4we)~!div E and neglecting the terms
proportional to p., /pe (this ratio is less than 10~2), we arrive at the equation

%+div (—D.Vn+4ﬂ—7:6’EdivE)=q, NN XN, (2.46)

which is a refinement of (2.44). The ambipolar diffusion flux is now supplemented
with the “ambipolar drift” flux.

In the one-dimensional case, the latter term equals u. /8re x E?/Jz. It is
not related directly to charge density. However, the current is constant along its
direction z, j = en.puE = const, so that a field gradient is invariably accompa-
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nied with a plasma density gradient. The ambipolar drift flux is thus equivalent
to a diffusion flux,

H+ 3E2 ~ _H+E2 an = an Dy = H+E2

8re Oz  4men Oz oz’ E™ dren’

with effective diffusion coefficient Dg to be added to D, [2.19]. The relative
roles of the two fluxes are characterized by the ratio of the energy density of
electric field to the density of the thermal energy of electrons,

2.47)

Dg/D, = E*/4nnkT, = {E[V/cm]}*/{1.8 x 10~*nTe[eV]} . (2.48)

For example, for n =6 x 10° cm= and T = 1 eV, the ambipolar drift dominates
ambipolar diffusion if £ > 10 V/cm or, in view of the E/p values typical for
plasma, 1-10V/(cm-Torr) if p> 102-10 Torr. As a result of the two effects,
plasma is pumped from regions of weaker field and higher density to those of
stronger field and lower density. Details concerning the application of (2.46) are
given in Sect. 8.6.6.

2.8 Hydrodynamic Description of Electrons

A partially ionized gas is a three-component mixture of electrons, ions, and neu-
tral particles. Its behavior in a field can be described in terms of the ordinary
equations of gas dynamics. We will consider here a simplified and more fre-
quently used (for discharge conditions) version of equations, assumming the gas
to be at rest as a whole, weakly ionized, and quasineutral. Actually, it is then
sufficient to write the equations only for the electron gas. Its state is charac-
terized by the electron density n., the vector of macroscopic velocity v., and
temperature 7; (or pressure pe = nekTe).

2.8.1 Equations of Continuity and Motion
The former has already been written out, see (2.22). The latter is

d;tc = -—neeE — Vp. — nemvetm , % = %}tﬁ +(ve - V)ve . (2.49)
In fact, this result has already been used above. The inertia term can be dropped
from (2.49) because of the smallness of the electron mass. Then (2.49) reduces to
(2.20) for the flux density I'e = neve, considered together with (2.21) and (2.24),
and differs from (2.20) only in the additional thermodiffusion flux proportional
to —VT.. This last term is usually smaller than the diffusion term, and has been
accordingly neglected.

mne
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2.8.2 Energy Equation
This equation is of the form [2.20]

o /(3 ) 3
% (EnekTe) +divF = —neeE - v, — inechuu —ql, (2.50)
F = 3inckTove = AVT,, Ao =3kn,D, . 2.51)

The flux density of electron energy F is composed of the hydrodynamic flux of
enthalpy and the heat conduction flux; ). is its coefficient.? The terms containing
the electron kinetic energy of drift motion, mv? /2 < kT, are neglected; accord-
ing to (2.16), ve ~ v4 < . Electron energy losses in collisions with molecules
are written in (2.50) in accordance with (2.12,17). The last term in (2.50) de-
scribes energy spent to create new electrons, ¢ is the resultant creation rate that
enters the continuity equation (2.22), and I is the ionization potential.

The combination of (2.22,49-51) implies that the equation for the rate of
heating of a moving particle of the electron gas is

3 dT. _ 3 1.
Ek e eFE v, — 2kTeuu - ncdw (peve)
+ Ldiv O VTL) — (1 + ék:/;) % (2.52)
Tle 2 Tle

where dT;/dt is the total derivative with respect to time, as in (2.49).

Equation (2.52) generalizes (2.12), covering the effects caused by spatial
inhomogeneity: work of pressure forces and the contribution of heat conduction.
The last term describes energy spent on ionization and passing thermal energy to
the created electron; it is usually small in comparison with the term proportional
0 v, = éuy in (2.12).

2.8.3 Current-Carrying Plasma

It is convenient to present the velocity v or nev. in (2.22,50-52) in the form
(2.43), where the current J satisfying (2.40) is singled out of I,. Ignoring the
ambipolar thermodiffusion flux and taking into account that u, < y., we obtain

NeVe = ~j/e — D,Vn,, divi=0. (2.53)
According to (2.24,42), the field E in (2.50, 52) is, to the same accuracy,

E =j/epene — (kTe/e) Vne/ne . (2.549)
The outlined system of equations will be employed in Sect.9.7.

3 The expression for neve, derived from (2.49), and expression (2.51) for F and ). stem from the
kinetic equation for electrons (Chap. 5), assuming Maxwellian distribution functions and uy(e) =
const. If I(e) = const, vm ~ /¢, and the coefficients in F and ), 3, are set equal to 2; the
thermal diffusion coefficient is found to be twice as small.
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3. Interaction of Electrons in an Ionized Gas
with Oscillating Electric Field
and Electromagnetic Waves

3.1 The Motion of Electrons in Oscillating Fields

Both the equations of electrodynamics and the equations of motion of electrons
are linear with respect to the fields E, H and the velocity v of the electron. For
this reason, the superposition principle holds. Any periodical field can be resolved
into harmonic components, so that it is sufficient to consider only the sinusoidal
field, all the more so because one normally deals with monochromatic fields and
waves. In the case of nonrelativistic motion, the magnetic force of the wave,
e(v/c)H, is much less than the electric force eE. Furthermore, the amplitude of
electron oscillations in discharge processes is usually small in comparison with
wavelength A. We assume, therefore, that the electron is in a spatially uniform
electric field E = FEysinwt, Ey = const.

3.1.1 Free Oscillations

Assume that an electron moves without collisions, an assumption that is meaning-
ful if the electron performs a large number of oscillations in the interval between
collisions, w > vy,. We integrate the equation of collisionless motion,

mt = —eFEpsinwt, +=v,

to give

eEy eEy .
=——coswt+vg, r=—>sinwt+vot+ry. 3.1
mw mw

An electron oscillates at the frequency of the field; these oscillations are
superimposed onto an arbitrary translation velocity vg. The displacement and
oscillation velocities are

0= eFp _ ek
me?’ T e 32)
The displacement is in phase with the field, while the velocity is out of phase by
7/2. The limiting case of “collisionless” oscillations is approximately realized

at optical frequencies, and also at microwave frequencies at low pressures, p <
10 Torr.

3.1.2 Effect of Collisions

Collisions “throw off” the phase, thereby disturbing the purely harmonic course
of the electron’s oscillations. A sharp change in the direction of motion after
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scattering stops the electron from achieving the full range of displacement (3.2)
that the applied force can produce; the electron starts oscillating anew after each
collision, with a new phase and new angle relative to the instantaneous direction
of velocity. In order to take this factor into account, we add the rate of loss of
momentum due to collisions to the equation of motion of the “mean” electron.
As in the case of constant fields (Sect.2.1.1), we have the equation for the mean
velocity:

mv = —eEgsinwt —mvy,, #=v. 3.3)

The solution of (3.3), valid after several collisions, is

v cFo cos(wt + ) arctan 2™
= T w ) p= R}

my/w? + V2 14 w 34
. eEo (3.4

mwm sin(wt + ¢) .

The amplitudes of displacement and velocity of the electron are less by a
factor of {/1+ 1/ /w? than those for free oscillations. The higher the effective
collision frequency v, the smaller they are (v, is determined by the velocity of
random motion, which is much greater in discharges than the oscillation velocity;
see Sect. 3.2). The displacement is shifted in phase relative to the field, the phase
shift increasing from 0 to 7 /2 as the relative role of collisons vy, /w increases
from 0 to co.

The oscillation displacement and velocity (3.4) can always be resolved into
two components, one proportional to the magnitude of the field E = Eysin wt,
and the other to its rate of change, E = wFy coswt:

eFE . Vm CEO
m(w® + %) w m(w*+vE) 3.5)
wekFy . vmeEo sinwt
= ————— COSwt — —————sinwt .
m(w? + v2) m(w? + 12)

The ratio of the components is determined by the relative role of collisions
and is unambiguously related to the phase shift . This form of presenting the
solution adds visual clarity to the results of the subsequent sections.

Expressions (3.4,5) show that the role of collisions is characterized by the
ratio of the effective frequency vy, and the circular frequency of the field w = 27 f,
which is greater than the frequency f by nearly an order of magnitude.! In
the limit 12 < w?, formulas (3.4,5) are close to (3.1) for free oscillations.
To illustrate numerical values, consider an example of microwave radiation at
frequency f = 3GHz; A = 10cm, w = 1.9 x 10'%s~'. Let p ~ 1Torr, then
vm = 3 x 10%s~! « w; Eg =500V /cm, roughly corresponding to the threshold

! When the degree of spatial uniformity of the field is evaluated, the displacement amplitude must
be compared not with wavelength A = ¢/ f, but with X= A/2x: a/ X = eEp/mw?® X = u/c.
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of microwave breakdown at such pressures. Formulas (3.2) show that @ = 2.5 x
103cm, u=47 x 107 cm/s. We find that ¢ < X = 1.6 cm, that is, the field in
the electromagnetic wave is “uniform”.

3.1.3 Drift Oscillations
In the limit of very frequent collisions or relatively low frequencies, V‘%l > w?,
the oscillation velocity drops to

Eo eE(t)

sinwt = —
MUm MUm

v — = —pe E(t) = v4(t) . (3.6)
At each moment of time, the oscillation velocity coincides with the drift velocity
that corresponds to the field vector at this moment. For brevity, we refer to such
oscillations in the mobility regime as drift oscillations.

An electron behaves as it would in a constant field, responding to relatively
slow changes of the field. Its displacement,

r =~ Acoswt, A=—é€o—=ﬁeﬂ, 3.7

Mipw w
has an amplitude A less than that of free oscillations in the same field by a factor
of vm/w > 1.

The oscillations of electrons in rf fields (and of course, at lower frequencies)
are of drift type. For example, the collision frequency at f ~ 10MHz, vy ~
3x 10° ps~!, exceeds w ~ 108 s™! even at fairly low pressures of p ~ 0.03 Torr.
In order to maintain a low-pressure, weakly ionized plasma by an rf field, one
usually needs the values of Eg/p of the same order as E'/p in a constant field.
Therefore, at f ~ 10MHz and Ey/p ~ 10V /(cm - Torr), we have A ~ 0.1cm
regardless of pressure.

3.2 Electron Energy

3.2.1 Collisionless Motion

If collisions do not occur, the field does no work, on the average, on an electron;
indeed, (3.1) implies that

2

E
(—eE-v) = —i—nzo(sinwtcosm) —eFEp - vy(sinwt) =0

7

where angle brackets denote time averaging.

The electric field pumps up the motion of the electron only once, when it is
switched on; then the electron’s energy mwv?/2 pulsates but remains unchanged
on the average. The time averaged energy (mwv?/2) is made up of the energy
of translational motion mu? /2, corresponding to the mean velocity vg = (v(®)),
and that of oscillations. In the case of free oscillations, the latter energy is
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212

_ € EO _ 2
Efrosc. = dmw? =mu /4 . (38)

In the example given at the end of Sect.3.1.2, f=3GHz, Ey =500V/s, and
the oscillation energy e osc. = 0.31€V, which is much less than the mean energy
of random motion (1-10eV) necessary to sustain a discharge. The absence of
collisions thus means no dissipation of the energy of the field and no deposition
of energy in the matter.

3.2.2 Gaining of Energy From the Field

The collisions lead to a net transfer of energy to the electrons, via the electric
field. According to (3.5), the mean work per unit time that the field performs on
an electron,

252
(—eE-v) = e By

= ml/m = AEEVm 5 (39)

is determined by that component of velocity that oscillates in phase with the
field and is proportional to vy. The term shifted in phase by m /2 does no work,
on the average, over one period. The random motion is not associated with any
transfer of energy. In one effective collision an electron gains the mean energy
Ae g, equal to twice the mean kinetic energy of oscillations:

e E2 mwv?
= =2 =2 SC * -
Ao = 7R < 2 > co ©3-10)

This result can be given the following interpretation. In the interval between
two collisions, the electric field imparts to an electron an average kinetic energy
€osc. If the electron goes through a large number of oscillations in this period,
then e is of the order of the free oscillation energy (3.8). An act of elastic
scattering of an electron by an atom sharply changes the direction of motion but
leaves the absolute value of velocity unaltered. Then the field starts swinging the
electron in a new direction with respect to its velocity, that is, imparts to it an
energy of order e as if anew. The mean amount of energy gained from the field
in each scattering event following the preceding collision is thus transformed into
the energy of translational random motion. Microscopically, the field does work
on overcoming the friction due to collisions of the electron. Everything proceeds
as in a constant field (see Sect.2.3.2), but the role of the drift energy is played
by that of oscillations.

3.2.3 Balancing of the Electron Energy

The balance is made up of gaining energy from the field and transferring it to
heavy particles as a result of elastic and inelastic losses. If an electron loses in
each collision a fraction é of its energy ¢, then

252
de e‘E
== (Acp — be)vm = [m - 56] Vm , (3.11)
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where the amplitude Ey is replaced with the mean-square field E defined by the
equality E? = (EX(t)) = E3/2. If w* < 14, then (3.11) transforms into (2.12).
In the w — O limit, the R.M.S. of E plays the role of a constant field.

3.2.4 Mean Equilibrium Energy

The mean energy reached by electrons under stationary conditions, when they
transfer the entire energy gained from the field, is

£= Acp/6=2e0sc/6 = EE*/mE(w? +12) . (3.12)

Low-frequency fields (w? < 12) behave indistinguishably from constant
fields; the similarity £ = f(E/p) holds. At high frequencies, w? >> 2, the mean
electron energy is independent of vy, p, and the similarity in field frequency
holds: £ = fi(E/w). If § = const, & (E/w)z. In equivalent situations, E « w.
This is the reason why gas breakdown at optical frequencies (w ~ 10%s~1)
requires enormous fields (E ~ 107 V/cm) in the light wave, realizable only
when giant laser pulses are focused (Sect. 7.6). Indeed, electron avalanches can
develop only if the electron energies are of the order of 10eV.

3.2.5 Actual Change in Electron Energy in a Collision

The situation in ac fields is also similar in this respect to that found in dc fields
(Sect.2.3.3). An electron may either gain energy from the field or lose energy
to it, in arnounts that much exceed the mean change Acp averaged over a large
number of collisions. The relative directions of the motion and the field and the
phase of field oscillations at the moment of collision decide whether the electron
is to gain or lose energy. This is a fact of fundamental importance, which contains
a classical analogue of such purely quantum phenomena as the true absorption
and stimulated emission of photons.

To illustrate this, we calculate directly the change in the energy of an electron
in a collision. Let an electron undergo its most recent collision at a moment ¢,
and have, immediately after scattering, a velocity vy and energy & = mv?/2.
Effective collisions occurring at a frequency vy, each time give the velocity a
completely random direction; hence, ¢; is the energy of random motion at the
moment of collision ¢;. In the time ¢ > #; and until the next collision, the electron
is driven by the force —eEjpsinwt at a velocity v(t) = u(cos wt — coswty) + vy,
u = eFo/mw. Its energy € = mv?/2 at each moment of this period is

m
e(t) =7 [v,z +2viu(coswt — coswt;)
+u? (cos2 wt — 2¢0s wt coswty +cos? wtl)] .

At the moment ¢, of the next collision, the velocity is again directed in an
arbitrary direction but remains virtually unchanged in magnitude. The electron
resumes motion at an energy £(¢;), which is also the energy of random motion.
Therefore, between two collisions the random-motion energy changes by

Ae(t1, t2) = e(t2) — &1 ~ moy - u(coswiz — coswty) .
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This last (approximate) transition takes into account that the random-motion
velocity v1 is much greater than the oscillation velocity u; hence, we can ignore
the specific form of the small term of order mu?.

For the sake of simplicity, assume that collisions are rare: v, < w. Then
many oscillations occur in the time ¢; —#; between two collisions, and the corre-
lation between the field phases at the moments of collisions wt; and wt; vanishes
owing to the random nature of collisions, i.e., the phases may be arbitrary. The
value of Ae then varies in this interval from the maximum gain Ae, = 2muu
and the maximum loss Ae_ = —2muu, the extremal values corresponding to
parallel velocities v and u and certain phases, wt;, wt;. When averaged over
many collisions, however, that is, over moments ¢; and #;, an electron gains the
energy

Aep = (Ac(ty, t2))ey, 1, = Mu?/2 = e 05c.

which we found above by calculating the mean work done by the field.? Since
u/v < 1, the actual changes that the electron energy experiences in collisions, be
they positive or negative, are of first order of smallness in u/v, |Ac4|/e ~ u/v,
while the resulting positive Acg/e ~ (u/v)2 is of second order. This latter
quantity is a small difference of two relatively large ones; in symbolic form,
Aep ~ (Aey — |Ae_)).

3.2.6 Why Electron-Electron Collisions
Do not Dissipate the Energy of the Field

Electrons of a weakly ionized gas collide with atoms and molecules. In a strongly
ionized gas they collide with ions and other electrons with nearly equal frequency.
However, only electron-ion collisions need to be taken into account in considering
the effects of the interaction with the field.

To reveal the reason, consider an electron gas (an even more general case
can be taken: a gas of particles with an identical e/m ratio) and assume that
electrons collide only with electrons. Sum up over all electrons the equation of
motion mv = —eEy sinwt+p,;, where p,, is the rate of change of an electron’s
momentum due to collisions. As the total momentum of interacting particles is
conserved, the total momentum ) mu of the gas oscillates as coswt, with a 7/2
phase shift. Recalling that the total energy of particles is also conserved under
elastic collisions, we can find the rate of change of the gas energy:

% mTvz = va Lpi=— (;ne—Eo sinwt) (Z mv)

o sinwt cos wt o sin 2wt .

2 In the general case of um ~ w, only one of the phases is arbitrary because the moments of
consecutive collisions are correlated. The probability of the interval ¢, — ¢, is exp[—uvm(t2 —
1)]mdt, . Correlations add an additional factor to Acg of (3.10): w?/(w? + 12) [3.1].
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The total energy of particles oscillates at double frequency, as in collisionless
motion, and remains unchanged on average. No dissipation of the field energy
occurs. Recall that electron-electron collisions in a dc field do not contribute to
resistance and Joule heat release (Sect.2.2.3), though as in dc fields, electron-
electron collisions may affect dissipation indirectly, by changing the electron
energy distribution and vp,.

3.3 Basic Equations of Electrodynamics of Continuous Media

Sections 3.1 and 3.2 outlined what happens with electrons of an ionized gas
placed in an ac electric field. Let us turn to a different aspect of the electron-field
interaction: the effect of the ionized state on the behavior of ac fields and the
propagation of electromagnetic waves.

3.3.1 Maxwell’s Equations

The electromagnetic field and the state of the medium are described in terms
of field strengths E, H and inductions D, B. By definition, D = E +4rP
and B = H +4n M, where P and M are the electric and magnetic moments,
respectively, per unit volume. The vectors E, H, D, B satisfy the system of
Maxwell’s equations:

47 . 10D

1H=— - — A

curl H I Al et (3.13)
cull E = —% ‘%B , (3.13)
divB=0, (3.15)
divD =4rmp. (3.16)

This system is not completely closed because the electric current 7, polar-
ization P, and magnetization M generated by the field, depend on material
properties. Both experience and theory indicate that direct proportionality reigns
in constant fields and fields that vary not too rapidly: 7 = ¢E, P = x.FE,
M = xH. Instead of the electric x. and magnetic susceptibility x, one intro-

duces the permittivity ¢ = 1 + 47y, and magnetic permeability y = 1 + 47 x.
Together with the equations

j=oE, D=¢E, B=uH, (3.17)

where the material constants ¢,  and conductivity o are assumed to be known,
system (3.13-17) is closed. In gases and plasmas, the approximation x = 1 can
be used with extremely high accuracy.

3.3.2 Displacement, Polarization, Conduction, and Charge Currents

The right-hand side of (3.13) can be treated as a current density
+i92=j+_a_£+ia_E (3.18)
47 Ot ot 4rx Ot ° ’
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times 4 /c. Maxwell called the term (1/47)dD /8%, which he postulated should
be added to the conduction current, the displacement current. Without the dis-
placement current, (3.13, 16) contradict the unassailable law of charge conserva-
tion, (2.39).

A variable field changes the polarization of matter with time, namely, dis-
places negative charges relative to positive ones by applying the electric force. In
fact, any displacement of charges in space is a current, so that the term 9P /ot
in the displacement current is indeed a current density: that of the polarization
current. Together with the conduction current j, it forms the total charge current
J:- The term (1/4x)0E /8t is in no way connected with the motion of charge and
therefore, is not literally a current. (Its meaning will be discussed in Sect. 13.5.)

The total charge current was divided into the conduction and polarization
components only to facilitate the application of the equations to ideal dielectrics,
where o, 3 = 0. This partition is by no means mandatory. The total polarization
vector Py can be defined for any electrically neutral medium; P, is related to
the total charge current j,, so that it is sufficient to operate with just one of these
quantities. Indeed, by definition

Pz=Ze.'7'i, Z€i=0, jt:‘zeivi:%a (3.19)

where =; is the radius vector of the charge e;, v; = #; is its velocity, and
summation is extended to absolutely all charges (free, bound, electrons, nuclei)
within a unit volume.

3.3.3 Expansion into Harmonics

Equations (3.17) fail in rapidly varying fields. Owing to the inertia of the pro-
cesses that produce polarization and current, they cease to track the variations
of the field. The polarization and current at ¢; are now determined less by the
value of E(t1) than by the evolution of E(t) in the preceding period ¢t < ¢,. For
instance, if the field E pointed for a long time in one direction and then was
suddenly reversed, the current would flow for some time in the former direction,
against the new field, until the charges are brought to rest.

Obtaining the material equations (like D = ¢E) that take into account re-
tardation effects is greatly facilitated because the motion of charges in matter is
described by equations linear in E, r, v. Since Maxwell’s equations are also lin-
ear, all time-dependent quantities can be expanded into Fourier series or integrals;
in view of the superposition principle, one can operate only with harmonic com-
ponents, as we have already done in Sects. 3.1,2. Three parameters completely
determine the evolution of harmonic quantities: amplitude, frequency, and phase,
so that the entire retardation effect is contained in the relation between these pa-
rameters for material characteristics and the field. If the field for some harmonic
is E, = E o sinwt, then the total current is j,,, = Jy0 Sin(wt + ,,), with 7,0
and ¢, being the functions of E ¢ and w.
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3.3.4 Material Equations for Harmonic Components

These can be given a convenient and lucid form if we retain the concepts of
conductivity and dielectric permittivity, which are familiar from working with
constant fields. The total current j,, is given by a linear combination of sin wt and
cos wt, which corresponds to a linear combination of E and OE/0t. Returning to
the original concepts of conduction current ¢ E' and polarization current 9P /0t,
which is equal to [(e — 1)/47]0E /3t if the field varies slowly, and equipping the
new coefficients o and ¢ with the subscript w (because now they are frequency-
dependent), we rewrite the material equation in the form

tw—1 0FE,
47 ot ’
The quantities o, and ¢,, are called the high-frequency conductivity and di-

electric permittivity of the medium. It is these characteristics of the medium that
affect the behavior of variable fields in it.

Jio =0wEL+ E,=E, sinwt. (3.20)

3.3.5 Energy Equation

We now form the scalar products of (3.13) with E and of (3.14) with H,
and subtract the resulting equations from each other. In view of the fact that
H curl E — Ecurl H = div[E x H], assuming the relations between D and E,
B and H are linear, we obtain the relation

0 E-D+H-B
ot 8r
This formula expresses the law of conservation of energy of the electromag-

netic field. The quantity E - D /8~ is the electric energy density, and H - B/87
is that of magnetic energy;

+div-=[ExH]=-j-E. (3.21)
4

S = f—[E x H) (3.22)
vis

is the electromagnetic energy flux density (Poynting vector); and j - E is the
energy released per second in 1cm? of the medium, equal to the decrease in
electromagnetic energy. As a time average, the dissipation of energy in harmonic
fields in a plasma is caused only by the conduction current. The polarization
current does not result in dissipation because it is shifted by 7 /2 with respect to
the field, and (sinwt cos wt) =0 (cf. the results of Sects. 3.2.1,2).

3.4 High-Frequency Conductivity
and Dielectric Permittivity of Plasma

The results of Sect.3.1 permit the immediate calculation of these quantities, but
two qualifications will be made first. We assume that ions do not move and
make a negligible contribution to conduction and polarization currents. Next, we
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single out the term em — 1 in ¢, — 1 due to the electrons bound in molecules
and ions. This term is of the same order of magnitude as in nonionized gases
(unless the polarizability of the excited molecules in the plasma is greater than
that of nonexcited ones). Under normal conditions, ey — 1 = 5.28 x 10~* in air,
2.65 x 10~* in Hy, and 0.67 x 10~ in He; it is even smaller at low pressure
because em — 1 is proportional to density. These figures refer to the visible part
of the spectrum and to lower frequencies. The contribution of the molecular part
to the bulk polarizability of plasma is very small for any appreciable ionization.

3.4.1 Calculation of o, and ¢,

First we substitute the general expression (3.5) of the mean electron velocity v
into (3.19) for the charge current j,. Replacing the summation over all electrons
with the multiplication by n. (the term with random velocity vanishes upon
averaging) and comparing the obtained expression with (3.20), we find:

Ow = € Nelm/m (w2 + V,%,) , (3.23)

€w=1—4me’ne/m (WP +13) . (3.24)

These formulas are of fundamental importance for the physics of interac-
tion between plasma and electromagnetic fields. The ratio of the amplitudes of
conduction and polarization currents,

jcond,O _ 4ro,
jpo]ar,o wlsw -1

| =tm/w, (3.25)

is determined by the ratio of collision and field frequencies.

3.4.2 The High-Frequency Limit (Collisioniess Plasma)

This regime is reached when w? > 12, that is, at not particularly high frequen-
cies, i.e., the microwave or very far IR range, even at atmospheric pressure. In
fact, the molecular polarizability of most dielectrics and nonionized gases retains
the value typical for dc fields up to optical frequencies. In the high-frequency
limit,

€e“ne 4rein,
7Vm, Ew= 1- 2

(3.26)

mw

that is, conductivity is proportional to collision frequency, while dielectric per-
mittivity is independent of w. According to (3.25), the conduction current is small
compared with the polarization current. This limit corresponds to the collisionless
plasma model (Sects. 3.1,3.2.1).

3.4.3 Static Limit
If w? < V2, then

2 e 4we*n
Go= | Ey=1———=. (3.27)
MUy myg
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The conductivity is indistinguishable from the ordinary dc conductivity of
the ionized gas. The dielectric permittivity also reaches a value independent of
frequency. The polarization current is small in comparison with the conduction
current, and vanishes completely in the limit w — 0.

3.4.4 Why Dielectrics Usually Have ¢ > 1, and Plasma ¢ < 1

Electrons in atoms and molecules are bound, while in plasmas (and metals, where
also ¢ < 1) some of them are free. An absolutely free electron, moving without
collisions, oscillates in phase with the field [see (3.1)]. It shifts away from the
center of equilibrium along E, against the direction of the electric force; having
a negative charge, it induces the negative polarizability of the medium, so that
e < L.

Electrons in molecules are like particles that feel an elastic restoring force
in response to displacement. If wp is the frequency of natural vibrations of an
elastically bound electron, then

2 eFEy eFy

FHwyr=———sinwt, 7= sinwt .
m

m(w% —w?)
The displacement in a static field and at frequencies less than the natural fre-
quency (the latter usually lie in the optical range) is directed against E, so that
polarizability is positive (the situation at w > wp is reversed; this results in the
anomalous dispersion of light). In solid and liquid dielectrics ¢ has usually a
value between 1 and 10.

3.5 Propagation of Electromagnetic Waves in Plasmas

In ideal dielectrics, where the conduction current is zero and free charges are
absent, the system of Maxwell’s equations yields equations for E and H that
describe the propagation of electromagnetic waves. Similar equations are ob-
tained for a monochromatic field in an electrically neutral conducting medium
such as a plasma. The simplest way to do this is to represent harmonic quantities
in complex form. In general, this is expedient in the presence of phase shifts,

because it removes the need to operate constantly with combinations of sines
and cosines.

3.5.1 Complex Dielectric Permittivity

In th.e case of a monochromatic field [E, H « exp(—iwt)], the first Maxwell
equaiton (3.13), taken together with the material equation (3.20), transforms to

culH = (4n/c)oF —i(we/)E, o=0,, c=e¢, (3.28)

(hcreaft(?r we drop the subscript w with o, €,,). It is convenient to eliminate the
conduction current in (3.28), introducing the complex dielectric permittivity

e =¢+idmojw . (3.29)
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The resulting equation,
curl H = —i(we'/c)E (3.30)

is apparently identical to the corresponding equation for dielectrics, where o = 0,
!
e'=e.

3.5.2 Plane Electromagnetic Wave

First we substitute 0B/dt = —iw H into (3.14) and take the curl of the resulting
equation, using the formula curl (curl E) = — AE + grad(div E), remarking that
for ¢ = 0 (3.16) implies that div E = 0, and replacing curl H with (3.30), we
arrive at the equation

AE + (c'w?/*)E=0. (3.31)

In fact, this is a result of substituting exp(—iwt) for E into the wave equation,
Eliminating E, instead of H, from (3.13, 14) and using (3.15), we obtain for H
an equation similar to (3.31). Equation (3.31) admits a travelling-wave type solu-
tion, E, H x exp(—iwt+ik-r), where k is the wave vector. The pre-exponential
coefficients are certain complex numbers that characterize the amplitudes of the
fields and the phase shifts between them. Substitution of these expressions into
the original equations (3.13) or (3.30) and (3.14) yields

(kx H] = —~(we'/)E, [k x E]l=(w/c)H . (3.32)

These equalities imply that if &'#0, all three vectors E, H, and k are
mutually perpendicular, that is, the wave is transverse. If ¢’ = 0 (meaning that
¢ = 0 in weakly conducting media, where ¢ ~ 0), the equations admit the
existence of longitudinal purely electric waves with H = 0, E||k: these are the
plasma waves (see Sect. 3.6.3).

3.5.3 Refractive Index and Attenuation of Waves

Equations (3.32) imply that the wave vector is a function of frequency (the
dispersion relation) and give a relation between the complex amplitudes of the
fields,

k=W/eoVe', H=VE. (3.33)

The wave vector is a complex quantity because ¢’ is complex. In order to find
k = ki +ik;, we introduce the dimensionless numbers n and x via the formula
ck/w = n+ix = /e'. Squaring this quantity, substituting ¢’ from (3.29), and
equating the real and imaginary parts, we find that

n—w=c¢, 2nx=4rofw,

e+ /e +(@4no/w)? v —e+ /€2 + (470 Jw)? (3.34)
= > , = 5 )

n
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The physical meaning of the quantities n and x follows from the expression
for the travelling wave:

E, H x e 7“2 = exp [—iw (t - n£> - x%x] .

[+

The number n determines the phase velocity c¢/n and wavelength A = )\o/n in
the medium (¢ = 27c/w is the wavelength in vacuum) and corresponds to the
refractive index. The number x characterizes the attenuation of the wave: its
amplitude is reduced by a factor e over the path length Az = Xo/27x or by a
factor €* over a path length Xo. The numbers n and x» determine the relation
between the amplitudes of the field and the phase shift between them:

H=mn+inE=Vnt+2e¢¥YE, 1 =arctan(x/n).

3.5.4 The Law of Attenuation of the Energy Flux

Only the value of the energy flux density averaged over one period is of practical
importance. In order to calculate the mean value of two harmonic variables given
in complex form, we have to multiply one variable by the complex conjugate of
the other and divide by two.? In a homogeneous medium, the energy flux of a
wave decays exponentially,
c 1 cn cn 9 _
= *\ = __—EE*=_—"|E( boz 335

S 47 ZRC{EH j 87rE 87rI O e ’ (3.35)
where the averaging subscript with S is dropped, E(0) is the amplitude at the
point z =0, and

Po=2mw/c=4rc/nc (3.36) -

is the absorption coefficient. The energy flux decreases by a factor e over the
length 3},

It follows from (3.35) and also from the general equation for energy (3.21),
that if (3.35) is averaged over one period of time, the Bouguer law is valid:

ds
P —HoS . 3.37)

The electromagnetic energy dissipated per second in 1cm? (the energy deposited
in the medium) is (j - E) = o(E?) = p,S. The proportionality between the
a‘bsorption coefficient and conductivity is in perfect agreement with the propor-
tionality of the rate of Joule heat release to the conductivity of the medium.

* Indeed, if A = Agcos(wt+ ¢ 4)and B = By cos(wt +¢p), then (AB) = (1/2) Ag By - cos(pg —

¥a). In the complex representation, A = A, exp(—iwt +ip4) and B = Byexp(—iwt +ipp).
Hence,

3Re{AB*} =1 4B, Re{exp[~i(pp — va)l }= 3A40Bocos(pp — @a) = (AB) .
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In the limit of a nonconducting medium (o = 0), the dielectric permittivity
¢' = ¢ is areal quantity, n = \/e, x = 0, and y,, = 0, i.e., the medium is absolutely
transparent. Waves in it are not damped, because on the average the polarization
current does not dissipate any Joule heat within one period.

3.5.5 Wave Absorption Coefficient in Plasma

If the imaginary part of ¢’ is much less than the real part, 4wo/we < 1, and
¢ is positive, then equations (3.34) yield n ~ /e and » =~ 270 /wn < 1. The
refractive index of the medium is typical for a dielectric, but the absorption is
weak, in the sense that the wave is only slightly attenuated over a path length
of order A. The absorption coefficient is given by (3.36), where we use n = /¢,
This situation is normally realized in the propagation of light, and partly in the
propagation of microwave radiation in laboratory plasmas.

According to (3.23, 36), the absorption coefficient of an electromagnetic wave
in an ionized gas is

4reln.u, Vm _
= A 0.106n,———cm™! . (3.38)

“)2'*'”31

Hhoo

Here we assume n ~ /e ~ 1, since this is the most typical case under the
conditions (weak ionization, weak absorption) in which (3.38) is definitely valid.
The absorption coefficient is proportional to the electron density. In the high-
frequency limit (w? > »2), absorption is characterized by inverse square fre-
quency dependence: y,, x w2 « A% hence short waves are better transmitted
through plasma than long waves.

3.5.6 Quasistationary Field and the Skin Layer

Assume that the imaginary part of ¢’ is much greater than the real part (or more
accurately, than the absolute value of the real part, because typically for such
cases ¢ < 0). This is the case, for example, in good conductors if the field
frequency is not excessively high. The conduction current then dominates the
displacement current:

Jeond| _ &im _ 470

— ==t =—>1.
ligso|  lerel — wlel

In this limiting case, (3.34) gives n ~ x ~ /270 /w, and the field is strongly
damped over a distance of order A. It is then meaningless to speak of a travelling
wave or wave propagation, although these, formally, still exist. Electromagnetic
waves are possible because of the displacement current. In the absence of this
term, Maxwell’s equation (3.13) is identical to the equation for the magnetic field
of a dc current. This gives the limit of the quasistationary field.

The effective depth of penetration of the quasisteady field into a conductor
can also be found from the formulas for the electromagnetic wave, as the distance
over which the amplitude of a wave with purely imaginary €' is reduced by a
factor e
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“wx  2rmow  {o[Ohm~'cm-1f[MHZ]}'/2
This quantity is called the skin depth, and ac current in good conduc-
tors flows only in this surface (skin) layer. For example, in copper (¢ =
6 x 10°0hm~'cm!) at f = 10MHz, we have § = 2 x 10~ cm. However,
the limiting case we discuss here is realized not only in metals but also in plas-
mas in the rf range (Sect. 11.3).

(3.39)

3.6 Total Reflection of Electromagnetic Waves
from Plasma and Plasma Oscillations

3.6.1 Nonabsorbing Medium with Negative Dielectric Permittivity

Let a medium have ¢ < 0 and the conductivity o be, if not zero, then so
small that 4ro/wle| < 1. As follows from (3.34), this medium has n = 0,
P \/E . Electromagnetic waves cannot penetrate into such a medium, as in
the case of purely imaginary &', albeit for a different reason. The phase velocity
and wavelength tend to infinity as o — 0, the field oscillates only in time, and
its amplitude decreases exponentially into the medium. However, the energy of
the field is not dissipated, in contrast to the case of a good conductor, where
the amplitude decreases away from the boundary owing to the strong absorption
of energy. The depth of penetration into a medium with ¢ < 0 and 0 = 0 is
independent of o and equals Xy /\/|5_| This situation corresponds to the total
reflection of the electromagnetic wave and is frequently realized in the collision-
less plasmas when 2 < w?. For example, let the wave frequency be f = 3 GHz,
Ao =10cm, p=0.1Torr (N = 3.3 x 1013 cm~3). In the case of weak ionization,
vm & 3 x 108571 and 12 fw? ~ 1074,

3.6.2 Critical Electron Density

Let us rewrite the dielectric permittivity (3.24) for a collisionless plasma in the
form

e=1-wh/w?, wp=/4nelne/m =565 x 10*n}/2s" . (3.40)

It is negative if w < wy, or if the electron density is greater than the critical value
Near = muw’ [4me? = 1.24 x 10*{ f[MHz]}? = 1.11 x 10 {\g[em]} 2 cm~? .

(341

In the example above, ne o = 1.1 x 10! cm~3. The wave with Ay = 10cm cannot
penetrate the region with high electron density: it undergoes total reflection.

If nc in a plasma increases in the direction of the z axis, and an electromag-
netic wave propagates through the plasma in the same direction, it will reach
roughly the point of n. = n, , be reflected, and travel back. If plane symmetry
holds, then the geometrical optics law is obeyed: the angle of incidence is equal
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(7]
% Fig.3.1. Reflection of electromagnetic waves from plasma.

AN Increasing electron density is shown by crowding of horizon-
A\ tal lines. The beam is turned back approximately at the point
\ where the electron density reaches the critical value for the

y 4
7
/ \ given wave frequency

to that of reflection (Fig.3.1). This effect is of enormous practical importance
and is widely used in experimental work and in technology. It lies at the foun-
dation of one of the most efficient methods of both laboratory and ionospheric
diagnostics of plasmas. The plasma is irradiated with signals of various frequen-
cies, and one records which frequencies are transmitted (w > wp) and which are
stopped (w < wp). The value of n. is found from (3.40) once the cutoff fre-
quency w = wp is known. A low-pressure (collisionless) laboratory plasma with
ne ~ 10"-10"° cm~3 may be investigated in this way with microwave radiation
of Ao ~10—0.1cm.

'3.6.3 Plasma Frequency

Longitudinal electric waves with E||k and H = 0 in collisionless plasma are
realized if ¢’ = ¢ = 0; from (3.40), this corresponds to w = wp. The bulk charge
density ¢ also undergoes oscillations. Indeed, if the polarization due to free
electrons (which is described by oscillations of ) is eliminated from D, we find
from (3.16) that (k - E) = 479/cpound, WheTe epomg is the dielectric permittivity
due to bound electrons. The frequency w, defined by (3.40) is called the plasma,
or Langmuir, frequency. This is the natural oscillation frequency of electrons
in plasma established by Tonks and Langmuir in 1929. Strictly speaking, wp
corresponds to the oscillations of the gas as a whole, that is, to waves of “infinite”
wavelength.

Let all the electrons be initially shifted, for some reason, to the right with
respect to the ion, which we assume to be at rest (Fig.3.2). The separation
of charges produces the attractive force that tends to return the electrons to
where they “belong”. Being accelerated by this force, the electrons overshoot
the equilibrium position and move to the left of the ions, and so forth. If Az

E

——

Az

IR EERE

+H+++F 4+

Fig.3.2. Plasma oscillations. Electrons are displaced rightward
with respect to ions by a distance Az

9]
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is the displacement of electrons from the equilibrium, then the surface charge
density at the boundaries of the plasma layers is en Az, the strength of the field
of polarization being E = 4men.Az. Therefore, the equation of electron motion,

m(A%) = —eE = —4re’ne Az, (AF)+wlAr =0,

describes harmonic oscillations at a frequency w, as implied by (3.40). The
plasma frequency, Debye radius, and mean electron velocity are related by the
formula
dnetn, kKT \'* _ (kT\'
wpd=(—1‘ﬁ : ) =( ) =0.627 .
m

m 4reln,

The velocity of the oscillating electrons is randomized at a rate given by the
collision frequency vy, which determines the rate of damping of free oscillations.
The notion of oscillations remains meaningful as long as v, < wp Or ne >
2 x 10° (p [Torr})? cm~3. Plasma oscillations were discovered experimentally by
Penning in 1926.
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4. Production and Decay of Charged Particles

4.1 Electron Impact Ionization in a Constant Field

4.1.1 Ionization Frequency

Ionization of atoms and molecules by electron impact is the most important
mechanism of charge generation in the bulk of a gas discharge. The rate of this
process, (dn./dt)i = vine = k; Nne, is characterized by the ionization Jfrequency
v, that is, the number of ionization events performed by an electron per second,
or by the reaction rate constant k;. If n(e) is the electron energy distribution
function (density-normalized), and o;(¢) is the ionization cross section of atoms
in their ground state (Fig. 4.1), then

y= N/n(e)va;(s)de/ /n(e)de = N(vo;) = Nk; . “.1)

The electron energy distribution of a weakly ionized plasma in an electric
field depends on a number of elastic and inelastic collision processes. Under these
conditions, the ionization frequency is found either by solving the kinetic equation
for n(e) (Chap. 5) or experimentally. If the jonization by electrons proceeds under
unvarying conditions, so that 1, = const., and the removal of electrons can be

Rlem ™ Torr) g/10 %cm?

d3
70+

2
5l

-7

Fig.4.1. Cross sections and probabilities of elec-
! tron impact ionization. From [4.1]
g 50 700 150 cleV)
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neglected, electrons proliferate exponentially: ne = ne(0)exp(14): an electron
avalanche develops.

4.1.2 Maxwellian Distribution

This distribution arises when the degree of ionization is not too small and
electron-electron collisions are important. The dependence of 14 on the field and
collisions with molecules in the case of a Maxwellian distribution (see Appendix)
is contained implicitly in the electron temperature that determines the ionization
frequency. As a rule, the temperature of a gas discharge plasma is substantially
Jower than the jonization potential I, because strong ionization occurs when kT,
is less than I by a factor in the range of 5 to 10. Atoms are ionized by high-
energy electrons in the tail of the Maxwellian distribution. In this energy range,
n(e) « exp(—e/kT,) falls off steeply, so that a linear function can be used for
the cross section, ai(€) = Ci(e — I, in integral (4.1); the linearity is valid if ¢ is
slightly greater than the ionization threshold I, which gives

u = NoG(I +2kT.) exp(—I/kT:) , o= (8kTe/xm)'/>. (42)

For example, in argon, C; = 2 - 10~ cm?/eV. If T, = 1eV, then % =
6.7-10"cm/s and ki = (vo;) =3 - 107 cm?/s. If p = 50Torr and T = 300K,
then N = 1.7 - 108 cm=3. This gives 1, = 510s~!. At these T, and N, the
equilibrium degree of ionization is (ne)eg/N = 0.021. The values of C, for
several other gases (in 10717 cm?/eV) are

He —0.13, Ne —0.16 , Hg—7.9, N; ~0.85, O, —0.68 , H, — 0.59 .

4.1.3 Townsend’s Ionization Coefficient

An electron avalanche generated by an electron in a dc field evolves not only in
time but also in space, along the direction of drift of the knocked-out electrons.
It is more convenient, therefore, to characterize the rate of ionization not by
frequency 1457, but by the ionization coefficient acm™! that is, the number

of ionization events performed by an electron in a 1cm path along the field.
Obviously,

a=vfva, u=avy. 4.3)

Note that the primary and complete characteristic of the rate of ionization is the
frequency u;, not a. The distribution function gives us this frequency, as well as
the drift velocity. The ionization coefficient « is a derived quantity, found from

(4.3). Actually, o is not very meaningful in fast-oscillating fields. However, dc
measurements give us a, not .

4.1.4 Measurement of o and Similarity Laws

If we place plane electrodes at a separation d, apply a voltage V, and irradiate the
cathode with UV light, knocking out A electrons in 15, the number of electrons
in the avalanche grows towards the anode:

dN/dz =aN , N(z)=MNoexp(az). “4.4)
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The electron current at the anode is i = eAyexp(ad). In the steady state, the
positive ions produced in the discharge gap arrive at the cathode in the same
numbers as the electrons at the anode. The current in the closed circuit is
everywhere identical and equal to i. The low-mobility ions accumulate in the
gap between the electrodes in much larger numbers than the electrons, which are
removed more quickly by the field. As a result, the gap contains positive space
charge. However, this space charge causes little distortion of the field at small
currents, and the field is known: E = V/d. If ; is measured with varying d, and
Inz is plotted as a function of d for constant E, the coefficient is found from the
slope of the straight line In: = const + ad.

The energy distribution, mean electron energy, and drift velocity are functions
of the ratio E/p. Hence, a similarity law of the type a = pf(E/p) holds for both
v; and «. Experimentally, therefore, one can vary p instead of d, keeping E/p
constant: In: = const + (a/p)(pd). Experimental data show that points fall on
straight lines quite well up to a certain limit of pd (see Sect.4.7.1); the values
of a for a number of gases were measured in this way (Figs. 4.2-5).
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Fig. 4.2. Ionization coefficient in a) He, b) air, c) Ar, d) N,. From [4.2]
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4.1.5 Interpolation Formula for o

The theoretical and numerical analysis of discharges widely uses a conventional
empirical formula suggested by Townsend:

a = Apexp(—Bp/E) . 4.5)

The constants A and B are determined by approximating the experimental curves
(Table 4.1). In a number of cases the relation (4.5) can be attributed a certain
physical meaning. Assume, for example, that an electron undergoes only ionizing
collisions. (This assumption may be realistic at high E/p and moderate energies.)
The energy picked up by an electron along a free path length z is slightly greater
than the ionization potential I. The probability that it will move the distance
z = I/eE without collisions and then be involved in an ionizing collision in a
distance dz is a dz = dz 1~ exp(~I/eEl), where | = I} /p is the mean-free-path
length. This gives us (4.5) with A =I7!, B =1I/el;. If 0 =510~ cm?, then
[ =0.06cm - Torr; if I = 15¢eV, then A = 17, B = 250, which is quite close to
tabulated values.

The fraction of electrons in a Maxwellian spectrum that are capable of ion-
izing an atom is proportional to exp(—I/kT.). If T. < E/p (see Sect.2.3.5), we
again arrive at a dependence of v; and « on E of type (4.5), but now the constant
B has a different meaning. It will be shown in Sect.7.4.7 that an approximate
solution of the kinetic equation that takes into account the large role of inelastic
losses of electron energy on excitation also leads to a relation of type (4.5), but
again with a changed meaning of B. For inert gases, the formula

a = Cpexp[-D(p/E)'/? (4.6)

Table 4.1. Constants in the formulas for the ionization coefficient, and regions of applicability [4.4, 5]

Gas A B E/p c D E/p<

em~!Tor=1 V/(cm-Torr) V/(cm-Torr) cm~'Torr=! V/(cm -Torr)!/2 V/(cm - Torr)

He 3 34 20-150 a4 14 100
Ne 4 100 100-400 82 17 250
Ar 12 180 100600 292 26.6 700
Kr 17 240 100-1000 357 282 900
Xe 26 350 200-800 653 36.1 1200
Hg 20 370 150-600
H 5 130 150-600
N, 12 342 100-600
N, 88 275 27-200
Air 15 365 100-800
co, 20 466 500-1000
H0 13 290 150-1000
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[4.4] is sometimes used since it gives a better fit to experimental data then (4.5),
even though it is less convenient for the theory (Table 4.1). Note also a useful
empirical formula for air at relatively high E/p (see also Table 12.1):

a/p=117-107%E/p — 322> cm~! Torr ! @7
E/p~ 44 — 176V /(cm - Torr) . )

4.1.6 Optimal Conditions for Ionization

An electron passing through a potential difference of 1V generates «/ E electrons
(pairs of ions). In order to create one pair, it must be accelerated by the field
to an energy W = eE/a. The function W(E/p) has a minimum, which, when
using approximation (4.5), is given by Wyn = éeB/A at (E/p)m = B, where
g = 2.718 ... . Even under these most favorable conditions for proliferation,
the creation of one pair of ions consumes the energy Wrin (Stoletov’s constant),
which is several times the ionization potential. Electrons have to devote much
energy to the excitation of atoms: In air, Wiy, = 66 eV/pair of ions for (E/p)y =
365V /(cm - Torr).!

Note that (4.5) implies that as E/p — oo, a — const = Ap. Indeed, at
E/p > 2000 — 3000, a decreases as E/p increases, because the ionization cross
section at high energies falls off with increasing ¢ (Fig. 2.1). Howeveg, such high
values of E/p are not typical for discharges.

4.1.7 Stepwise Ionization

The atoms of a weakly ionized gas are mostly ionized from the ground state.
Many excited atoms and molecules may be formed if the gas is highly ionized,
and stepwise ionization may be predominant. Atoms are first excited by electron
impact and then ionized by subsequent collisions. Long-lived metastable excited
particles play an important role in this process (Table 4.2); their ionization cross
sections are rather high (Fig. 4.6).

4.2 Other Ionization Mechanisms

4.2.1 Photoionization

This mechanism cannot compete with electron impact ionization under discharge
conditions. Sometimes, however, it supplies seed electrons that start electron
avalanches, as they do in streamer propagation (Chap. 12). Photoionization cross
sections close to the threshold are rather high (see Table 4.3) but as a rule, a gas
has few quanta of Aw > I capable of photoionization.

! Th%s figure must not be confused with another frequently encountered quantity: 33 eV/ion pair.
This the energy dissipated by a fast electron with energy € > 4keV when it is being stopped in
air. Fast electrons have smaller energy losses.
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Table 4.2. Energies of the lower resonance and metastable levels, lifetimes of metastable states, and
excitation cross sections

Atom, Excitation Lifetime, Interpolation of the total

molecule energy, E*eV s excitation cross section at
(metastable the threshold, ¢* = C*(c — E*)
levels: *)

* —18 2 *
C*, 107 cm?®/eV  Ej.eV

H(2s) 10.20* 0.142 25 10

H(2p) 10.20

He(2351) 19.82* 6-10°

He(z1 so) 20.6* 2.102 46 20

He 21.21

Ne 16.62*
16.7* 15 16
16.85

Ar(#P))  1155° >13
11.61 7 115
11.72¢ >13

H, 8.7 76 8.7
115

N, (A’Z;) 6.2 13-26

N, (alZ7)  84* 05

0, (*4,) 0.98* 27-10°

0, (v'zy) 164 12

Hg (6% Fo) 4.65*

6*P) 487 otax = 17 - 10-1%cm?

54+ for e = 6.5¢eV
6.7

T T T
b
. Ne Is i
2 | // ’ He 2 ‘ZS‘ 2 g
/ cleV) ‘ 7
g 1 i ] 1 ! 17 1 ] i | L L
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Fig. 4.6. Cross sections of ionization of excited metastables by electron impact: (a) He 23S; experi-
mental data [4.6] — solid curve; theory [4.7] - dashed curve; (b) Ne 1ss — theory. From [4.7]
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Table 4.3. Cross sections of photoionization of atoms and molecules from the ground state close to
the threshold

Gas hw=I,eV MNA o, 10-8cm?

H 136 912 63
He 246 504 74
Ne 216 5715 40
Ar 158 787 35
Na 514 112 0.12
K 434 2860 0.012
Cs 389 3185  0.22
N 146 852 9

o 136 910 26
0, 122 1020 ~1
N, 1558 798 26
H, 154 805 7

4.2.2 Ionization by Excited Atoms

Even the high kinetic energy of slow heavy particles is not effective in ioniza-
tion processes. Ionization requires the velocities of atoms and molecules to be
comparable to the electron velocity in atoms, 10% cm/s, which corresponds to
energies of 10 to 100keV, not realizable in discharge conditions. On the other
hand, the atomic excitation energy E* is easily spent on liberating an electron
from another atom, provided, of course, that it exceeds the ionization potential I.
Resonance-excited atoms are especially effective in this respect. Thus the ioniza-
tion cross sections of Ar, Kr, Xe, N,, and O; in impacts by He(2! P) atoms with
E* =21.2eV is o =~ 2- 10~ cm?, which is much greater than the gas-kinetic
value [4.8]. Cross sections for ionization by metastable atoms, also with E* > I
(Penning effect), are smaller but metastable atoms are much more numerous than
short-lived resonance-excited atoms. Cross sections for ionization of Ar, Xe, N,
CO; by metastable He(23S) atoms with E* = 19.8¢eV reach 10~'5 cm?, and that
of Hg is exceptionally large: 1.4 - 10~1% cm? [4.8].

4.2.3 Associative Ionization

This process of type A+ A* — A} + e, discovered by Hombeck and Molnar
in 1951, is sometimes important in inert gases. The separation of an electron is
facilitated by the release of a small binding energy of order 1eV in the association
of an ion and an atom into a molecular ion. A reaction in helium involves atoms
excited to states with the principal quantum number n = 3; their electron binding
energies are from 1.52 to 1.62 eV. The binding energy of Hej is somewhat higher,
2.23eV, so that the electron can be ejected. At T = 400K, the reaction cross

. -1 ~ e
sections are 2-107'6 —2-10~"5 cm?. The associative ionization in mercury vapor
involves two excited atoms,

Hg (6P, E*=49eV) +Hg (6P, E* =4.7eV) — Hg} +e,
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the first atom being in a resonance and the second, in a metastable state. The total
energy is 9.6eV, less than that required to ionize an Hg atom (Iy; = 10.4eV);
together with the binding energy of an Hg) molecular ion, however (0.15¢V), it
is sufficient to ionize the molecule (g, = 9.7¢€V).

4.3 Bulk Recombination

4.3.1 Decay of Plasma

In the absence of an electric field, the charge densities n. = n, in a plasma
without electronegative components decay with time according to the law

0
(dne) = —Bneny, ne= —=o— ! (4.8)
b o

a T 1+pndt =0 Bt

For example, if the electron-ion recombination coefficient 8 = 10~7 cm3/s and
the initial plasma density nl = 10'®cm~3, then the characteristic decay time
T = (ﬂng)" = 10~3s. The recombination coefficient can be determined experi-
mentally, by measuring n(#) and plotting n;"! as a function of ¢. The slope of
the straight line gives 5.

4.3.2 Dissociative Recombination

This mechanism follows the scheme A3 +e — A+ A*. This is the fastest mech-
anism of bulk recombination in weakly ionized plasma, for example, in a glow
discharge. In this case the gas is cold and the plasma usually includes molecular
ions. The released energy is mostly transformed into the excitation energy of the
atom. The dissociative recombination coefficients B4; ~ 10~7 cm3/s; at tempera-
tures from room to several kK, (4, decreases with increasing T, as Tc—l/ 2, and as
T3/ at still higher temperatures (Fig.4.7). This is the way recombination pro-
ceeds, even in weakly ionized inert gases. Molecular ions are formed from atomic
ones, generated in the course of the conversion reaction A* + A+ A — A} + A.
The rate of conversion, (dN A /d)cony = koonv N 4+ - Nﬁ, is far from small (Table
4.4). Thus the atomic ion lifetime at p = 10 Torr with respect to the conversion
iS Teony = (kconvN4) ™! ~ 10™*s, and at 100 Torr it is 10~6s. If n, = 10'"°cm =3
and Bgs = 10~ cm? /s, then Teony K Tgiss = 10~3 5. Conversion replenishes the
amount of molecular ions almost instantaneously, without impeding the disso-
ciative recombination. In helium, B4 is less by a factor of 10 to 100 than in
other gases. Conversion can also produce complicated ion complexes Oy, N,
and some others that have large coefficients up to 10~ cm¥/s.

4.3.3 Radiative Recombination

Cross sections of the process A* +e — A + hv are very small: o, ~ 10~ cm?.
The recombination coefficient is correspondingly small [4.9]

-3/4

Be = (vae) = 2.7-107B (T [eV]} cm®/s ~ 1072 cm3/s . 4.9)
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Fig. 4.7a—d. Dissociative recombination coefficients from the data of a number of authors. From [4.8]

Table 4.4. Measured reaction rate constants for the conversion of A* into A} in triple collisions
with atoms A at T = 300K [4.8]

Gas A keonv, 1073 cmS /s

He
Ne
Ar
Kr
Xe
Hg
Cs

0.63-1.15
0.42-0.79
1.46-3.9
19 -27
3.6
1
150

(T' =700K)

Electrons are more often captured by the ground state of an atom, emitting a
quantum hw =~ 10eV in the VUV range, A < 1000A. However, capture by
excited states, with subsequent photon emission in the visible at A =~ 4000 —
7000 A is also possible. Radiative recombination in gas discharge plasma may

happen to be important, not as a channel for electron removal but as a mechanism
for light emission.



4.3.4 Radiative Recombination in Three-Body Collisions

This process follows the scheme A* +e+e — A +e; it is the main process in
high-density low-temperature equilibrium plasma where T ~ T, ~ 10* and the
concentration of molecular ions is too low for dissociative recombination to be
significant. In three-body collisions, electrons are captured by ions to form very
high by excited atoms with a binding energy of order kT. An excited atom is
then gradually deactivated by subsequent electron impacts, it “cascades” down
the level staircase, and finally falls to the ground state from the lower excited
state by radiative transition. This completes the process of recombination; its
coefficient is [4.9]

Bar = 8.75 - 1077 {T[eV]} ~*/*n,
=52-107B{TKK]} ~**n. cm?/s . (4.10)

According to (4.9, 10), Bar exceeds the radiative recombination coefficient if
ne > 3.1-10%{TeV]}*™ =32 10°{TkK]}* P em™3 . (4.11)

The recombination rate constant of triple collisions involving an atom as a
third particle, §/N, is less than By /ne of (4.10) by a factor of 107 — 10%. This
process is not typical for discharge conditions and can manifest itself only at
very weak ionization and high pressures.

4.3.5 Ion-Ion Recombination

This is the main mechanism of charge neutralization in gases where electron
attachment is important. In this process, (dn_/dt); = (dn./dt) = —fin_n,. If
ne < n_, then n_ = n, =~ n%/(1 + Bnlt). Recombination at low pressure
takes place through binary collisions of the type A~ + B* — A+ B* (Table
4.5). The process is similar to charge transfer. The energy thus released goes
to excite the former ion B, the excitation later being released in collisions.

Table 4.5. Coefficients of binary ion-ion recombination at room temperature [4.8]

Tons Bi, 10~ cm?/s
H*+H™ 39
O*+0~ 2.7
N*+0- 2.6
05+0; 42
Nj+0; 16
0*+0; 20
05+0- 10

NO* + 0~ 49
NO*+NO; 5.1-18
SFS’ + SFG' 0.39
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Fig. 4.8. Coefficient of ion-ion recombination in air.
2 From [4.8]
7+
ast
o254 1

L
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At moderate pressures, recombination proceeds through triple collisions of the
type A~ +B*+C — A+ B+ C (Thomson’s theory, developed in 1924). The
recombination coefficient is §; = ky N. o« p. The recombination rate constant for
the ions O and O in oxygen is ki ~ 1.55 - 10~25cm®/s at p ~ 100 Torr. For
the ions NO* and NO;, ki ~ 3.4-10~% in oxygen and 1.0-10~% in N, (both at
T = 300K). Frequent collisions of ions with molecules at high pressures impede
an ion from approaching another ion with opposite charge required for mutual
neutralization. The 4 o p law is replaced with the B « p~! law (Langevin’s
theory, developed in 1903). The maximum £ max ~ 10~6cm>/s is reached at
p ~ 1atm (Fig. 4.8).

4.4 Formation and Decay of Negative Ions

4.4.1 Attachment

Atoms and molecules, such as O, H, Oz, H,0, Hg, Cs, halogens, Cl, Cl;, or
halogen-containing compounds CCly, SFg, have an electrons affinity of 0.5-
3eV. Antachment is an important, sometimes the main, mechanism of removing
electrons in electronegative gases and gases with electronegative additives. At-
tachment impedes break-down and makes it difficult to sustain the ionized state
and the current. Sometimes this may be useful: to improve the insulating prop-
erties of the gas, or to speed up the removal of electrons in counters of nuclear
particles.

The process in cold air in the absence of an electric field is e + O, + M —
0, + M (M = 0, Nz, H;0), with reaction rate constants km = ko, =
25-107 cmS/s, kn, = 0.16 - 107, ky,0 = 14-10~® at T = T, = 300K.
The electron density decreases according to the law (dn./dt)y = —vane, ne =
nd exp(—vyt). The attachment frequency of electrons in dry air at p = 1atm is
va = ko, N§, + kn, NN, No, = 0.9 - 103 s~1. The electron lifetime with respect to
attachment is 7, = v;7! = 1.1. 103,

When an electron attaches itself to a complex molecule, the binding en-
ergy is immediately distributed over its vibrational degrees of freedom. As a
result, each electron capture in a binary collision forms a stable negative ion.
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For an electron energy ¢ = 0.05eV, most active molecules of CCl, and SF¢ have
eapt ~ 1.2:1071* cm?, and 0cape o 1/e. The attachment rate constant correspond-
ing to this is ky = va/N =~ 1.6-1077 cm? /s. The dissociation potentials of halogen
molecules are very low (1.5-2.5eV). The electron affinity energy is sufficient for
the dissociative attachment e + A, — A + A~. In iodine at 300K, the attach-
ment cross section is o, ~ 3.2 - 10~ cm? and k, & Beoa ~ 3.4 - 10~8cm3/s.
In triple collisions, in which v, ~ p?, attachment can exceed the dissociative
recombination with v, ~ p only at p 2 100atm.

In contrast, the molecules O,, CO;, H;O are strongly bound; a fairly high
energy is then required for the dissociative attachment of an electron:

e+0,+3.6eV-0+0",
e+C0O,+3.85¢V - CO+0™ ,
e+H;0+425¢V - OH+H™ |
e+H,0+3.6eV—-H,+07 |
e+H;0+32eV->H+OH™.

However, an electric field produces enough energetic electrons in discharges,
so that such processes are usually faster than attachment in triple collisions
(Figs. 4.9-11). Attachment in triple collisions involving a second electron and
radiative attachment (0ra ~ 102! — 102 cm?) both play insignificant roles in
laboratory plasmas.

4.4.2 Attachment Coefficient

Like ionization, the attachment of electrons in dc fields occurs in the course
of drift. The attachment coefficient a = v,/vq4, similar to «, gives the number
of attachment events per 1cm of path along the field. Dissociative attachment
mostly occurs in not too weak fields and obeys the same similarity law, a =
pf(E/p). In the case of triple collisions, dominating in very weak fields, a =

”a'//a_,gcmz/l T |

ol 02TETT T s

T 1
C[]2+3—>U'+...

Fig. 4.9. Dissociative attachment cross
a b cfeV/| section of electrons in a) O, and b)
L1 CO,. From [4.10}
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Fig. 4.11. Dissociative attachment rate constant of O, as a func-
tion of mean electron energy. From [4.12)
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Fig.4.12. Electron attachment coefficient in pure oxygen at T = 300K and various pressures. From
[4.12]

Fig. 4.13. Electron atiachment coefficient in moist air, for various air humidity values: A: dry air; B:
total pressure 150 Torr, water vapor pressure 2.5 Torr (150/2.5); C (150/5); D (150/9); E (150/15); F
and G - air with negligible amount of water vapor. From {4.13, 14]
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p*fi (E/p) (Figs.4.12,13). A change of mechanism is apparent in Fig.4.12.
The multiplication of electrons in an avalanche is determined by the effective
coefficient aesr = a — a. If @ < a (this happens at E/p less than a certain value
for a given gas, see Sect.7.2.5), multiplication becomes impossible.

4.4.3 Detachment

Experiments show that steady-state weakly ionized plasma is sustainable in elec-
tronegative gases at much lower values of E/p than short pulsed discharges
require. This observation indicates that a discharge sustained for a long time accu-
mulates active particles (in all likelihood, excited molecules) that release electrons
upon collisions with negative ions. The detachment frequency 14 and rate constant
kq are determined by the equations (dne/dt)s = —(dn_/dt)a = van— = kaNn_.
The constant per active molecule is kqaaq ~ 1071%cm? /s (Table 4.6). Metastable
molecules No(A% X7), and also O(b! I}) in air, are presumably efficient in air and
laser mixtures of CO,, N, and He (Table 4.2). The constants kg o are unknown
for them but are assumed to be of the same order of magnitude. Indirect estimates
(Sect. 8.8.4) show that discharges are characterized by kg ~ 107 cm? /s per any
molecule. If kq sz ~ 1071, the concentrations of active particles are about 10~*.
The O~ ions formed in laser mixtures and in air in the reactions

O~ +CO,+M - CO; +M, k=11-10"cm®/s for M =CO,,
O +0,+M 505 + M, k=105-10"cm®/s for M=0;,

Table 4.6, Rate constants for the decay of negative ions at room temperature [4.8]

Reaction Release of  Rate constant kg, 10~°
energy, eV cm’/s

0" +0—-0;+e¢ 3.6 2

O~ +N - NO+e 5.1 2

O~ +NO — NO, +e 14 1.6
0~+CO—-COz+¢ 4 4

0~ +C0O; - COz +¢ <0 103

0= +0; (144) - O3 +¢¥ 0.5 3

0; +0; = 02 +02 +¢ —043 22.10-%,3-10~4(T = 600K)
O; +N; = O+ Ny +e —0.43 1.8 - 10~ (T = 600K)
O; +N - NOz +e 4.1 5

04 +0, (lAg)—>02+02+e 0.6 2

H-+H—-H;+e 38 13

H- +0y > HO+e 1.25 12

OH- +0 — HOz +¢ 0.9 2

OH- +H — H;O+e¢ 32 10

9 0,(! Ag); see Table 4.2.
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are transformed into more stable complexes, namely, O; and COj5 clusters. It
was established that CO molecules are efficient in destroying O~ ions but very
inefficient in destroying CO;" (this is important for laser discharges).

4.5 Diffusional Loss of Charges

Breakdown and low-pressure discharges are usually greatly affected by electron
losses due to the electron diffusion toward walls. These losses are irreversible:
electrons go into the metal or attach to dielectrics and there recombine with
ions. Obviously, the mean electron lifetime with respect to the diffusional loss
is 74t = A?/D, where A is a length of the order of the minimal size of the
vessel and D is the diffusion coefficient (for free or ambipolar processes). The
value of A can be elaborated by solving the stationary diffusion equation of
type (2.44) taking into account ionization sources, DAn. + yyn. = 0 (without
attachment). Assume the field to be homogeneous, that is, v;(r) = const, with
ne = 0 at the walls. This gives us an eigenvalue problem, solvable by the method
of separation of variables. For example, in a cylinder of radius R and length L, we
have ne o Jop (2.4r/R)cos(wz/L); Jo is the Bessel function and z has its origin
at the center of the cylinder’s axis. The solution exists only if 1 = vgr = D/ A?,
where

(cylinder)  (1/A)?
(sphere) (1/4)?
(parallelepiped) (1/A)?

(2.4/R)* + (x/ L)* '
(r/R}?*, A=R/x 4.12)
(w/L1)? + (n [ La)? + (n | L3)?

(L1,23 are the lengths of the sides). Obviously, vy = *rd;fl is the mean frequency
of diffusional removal of electrons; A is known as the characteristic diffusion
length.

For example, the ambipolar diffusion coefficient in the positive column of a
nitrogen glow discharge at p = 10 Torr is D, = 200cm?/s. If the discharge is
sustained in a long tube of radius R = 1cm, then A = R/2.4 = 0.42cm. The
diffusion frequency is vgs=1.1-103s~1. Charges diffuse to the wall in a mean
time 7g¢ = 0.9-1073 5. The rate of diffusional losses (dne/dt)ar = —vaine can be
evaluated for more complicated and nonsteady cases as well, using the formula
vair = D/ A* with A given by (4.12). Thus, if the source is distributed uniformly
on the axis of a long cylinder, the diffusion time is only (2.4/2)* = 1.44 times
longer than the average value above.

]
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4.6 Electron Emission from Solids

4.6.1 Work Function

A dc current in a gas discharge is sustained by the emission of electrons from
the surface of the cathode. To extract an electron from a metal, it is necessary
to spend a certain amount of energy; its minimum value is called the work
function (Table 4.7). It is a function of the state of the surface, its contamination
and roughness; on single crystals, it varies from face to face within 1eV. The
binding of electrons to a metal, ey, can be interpreted as the work ¢? /4a against
the attractive image force e?/4r?; this work is done to remove an electron from
a distance a of the order of one interatomic spacing to infinity. If there is an
external field E, the force applied to an electron is F' = ¢?/4r* —eE. The electron
breaks loose of the metal if it is pulled to a distance rx at which F' = 0 and
reverses its sign. The work function is reduced in comparison with ep = €?/4a
by a quantity

TK
eAp = ep — / Fdr=&/*E'?* =38.10~* {E[V/cm]}/?eV . (4.13)
a

This is the so-called Schottky effect established in 1914.

Table 4.7. Work function of polycrystalline materials and the constant of thermionic emission. (The
values of ¢ recommended in the handbook [4.15] on the basis of an analysis of measurements
reported by numerous authors.)

Element ¢, eV Ap, A/(cm® -K?)

C 47 30-170
Al 425

Fe 431 60-700
Ni 45 30- 50
Cu 44 60-100
Mo 43 60-150
Ba 2.49 60

w 4.54 40-100
Pt 532 10-170

4.6.2 Thermionic Emission

This occurs when a metal is heated: some electrons acquire sufficient energy to
escape from the potential well that the metal represents for them. In the absence
of an external field, the escaping electrons accumulate near the surface, and the
field of this space charge prevents other electrons from escaping from the metal.
The space charge is easily removed by a weak accelerating field. Unimpeded
emission corresponds to the saturation current

2, o= dmmek?

jv= AoDT?exp (-2 73

T =120A/(ecm*K?) .  (4.14)
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Fig. 4.14. Current density of thermionic emission as a function of cathode temperature for a number
of materials. From [4.16]

The factor D in this Dushman-Richardson formula covers the quantum-mechani-
cal effect of the reflection of electrons into the metal from the wall of the potential
well, and A; = AgD is in the range from 15 to 300 (Table 4.7, Fig. 4.14).
Electrons leave the metal with a mean energy of 2kT. The Schottky effect can
greatly affect the thermionic current (Table 4.8). Thermionic emission is present
in arc discharges.

Table 4.8. The currents of the thermionic (j7), field electron (jr), and thermionic field (j1r) emission.
(The following parameters were used in the computations: T' = 3000K, ¢ =4V, A; =80A /(cm? -
K?), eg=TeV.)

E,107V/em Ag, V jr, AJem® jp, Afem®  jrF, Afem®

0 0 13102 0 0

0.8 1.07 8.2-10° 2010720 12.10%
1.7 1.56 5210 22:107%  1.0-10°
23 1.81 14.10° 1.3-10° 2.1-10°
28 201 30-10° 1.3-10% 08-10¢
33 2.18 6.0-10° 4710 2.1-108

4.6.3 Field Electron Emission

The field that pulls the electrons away transforms the potential well into a poten-
tial barrier of finite width (Fig. 4.15); as a result, electrons can escape from the
metal by tunneling. The result is field electron emission and the emission current
is given by the Fowler-Nordheim formula. In numerical form,

1/2 g2 _ .107.,3/2
0_6(5p/<p) E exp( 6.85 - 107 /%€

F=62-1 2
JF s = )A/cm . (4.15)

Here ep[V] is the Fermi energy, ¢[Vlis the work function nonperturbed by the
field, £(Ap/p) is a correction factor for its reduction (Table 4.9), and E is
measured in V/cm. In reality, appreciable current is obtained at E ~ 10° V/cm,
which is less than implied by (4.15) and Table 4.8 by an order of magnitude. The
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Fig. 4.15. Electron potential energy when an external field is applied to the metal. F — feld emission,
T — thermionic emission, T+SCH - Schottky-affected thermionic emission, TF — thermionic field
emission, F+SCH - Schottky-affected field emission; (a) Mirror forces neglected; (b) mirror forces
taken into account. The diagrams illustrate the nature of field-electron and thermionic-field emis-
sion, T+SCH - Schottky-affected thermionic emission, TF — thermionic field emission, F+ SCH —
Schottky-affected field emission

Table 4.9. Correction factor for the reduced work function in the Fowler-Nordheim formula

Apfe 0 02 03 04 05 06 07 08 09 1
¢ 1 095 095 085 078 070 060 050 034 0

reason is a dramatic enhancement of the applied field at the microscopic protru-
sions that always exist on real metal surfaces (see Sect. 12.6.1). Field emission
results in the breakdown of vacuum gaps.

4.6.4 Thermionic Field Emission

When a strong extracting field is applied to a heated metal surface, both factors
(high temperature and field) affect the emission of electrons, in ways not restricted
to the mechanisms discussed above. In Fig.4.15, all allowed energy states of
electrons in a metal are classified into four groups. At T = 0, electrons occupy
states 1 with ¢ < ep. At T > 0, all four groups fill up, although the number
of electrons falls off rapidly as the excess ¢ — eg becomes greater. Electrons of
group 1 undergo field emission as at T' = 0. Electrons of group 4 would escape
by thermionic emission even if the field were zero. Electrons of group 3 jump
over the barrier, lowered thanks to the field, at the expense of thermal energy.
As for the electrons of group 2, which exist only if the metal is heated, they
face a narrower and lower barrier that they can cross by tunneling at a higher
probability than group-1 electrons.

These are the electrons that generate the current of the thermionic field emis-
sion [4.17, 18] which is not expressible by simple formulas. The values of jix
given in Table 4.8 are taken from the results of computer simulation [4.19] for
the cathode spot of an arc discharge. At T = 3000K and E > 0.8 - 10’ V/cm,
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thermionic field emission is predominant, the more so at higher fields. If
E < 0510 V/cm, mostly group-3 electrons are emitted; this is described
by (4.14,13).

4.6.5 Secondary Emission

This is caused by various particles: positive ions, excited atoms, electrons, and
also photons. Secondary emission from a cold cathode produces breakdown of
discharge gaps and also sustains small dc currents that are incapable of substantial
heating of the cathode or of creating such a strong field at the cathode that
thermionic field emission develops.

The most important among the various secondary mechanisms is the ion-
electron emission. Tt is characterized by a coefficient 4;: the number of electrons
emitted per incident positive ion. The relatively small kinetic energies that ions
acquire in discharges are ineffective for knocking out electrons, and the main
mechanism, as established by Penning in 1928 is that the field of an ion ap-
proaching a surface to within a distance of atomic dimensions transforms a po-
tential well on the surface into a potential barrier. The barrier is low and narrow
because the field is tremendously strong, on the order of that around nuclei. An
electron from the metal immediately tunnels into the ion and neutralizes it. If the
energy released thereby, I — ey, is greater than ey, it may be spent on ejecting
another (emission) electron. An empirical formula 4 = 0.016(I — 2ep)eV holds
for clean surfaces (with an accuracy of about 50%). Thus +; ~ 0.21 for tungsten
and He*, 0.30 for Ne*, 0.09 for Ar*, and 0.02 for Xe*; +; is almost independent
of ¢ up to ion energies & ~ 1keV [4.16). For platinum and the ions H*, H},
we have v; &~ 31073, for N*, N3 it is 5 - 10~3, and for O*, O} itis 5-10~*
(for g ~ 0 — 10eV)[4.20].

Metastable atoms of inert gases are very efficient: 4, ~ 0.24 for He(23S)
and Pt, 0.4 for He(2!S) and Pt, 0.4 for Ar* and Cs. The difference E* — ew goes
to the released electron. In the case of Hg and Ni, 4, ~ 1072, The photoeffect
from the surface at hw > ey is characterized by its quantum yield, that is,
the number of electrons per photon v, (Fig.4.16). The yield in the visible and
near-UV regions is ~ 1073, and in the far-UV region it is ~ 10~2 — 10~1. In
the first two regions, v, is very sensitive to the state and contamination of the
surface, and is considerably reduced by reflection. Photoemission often plays the
crucial role in breakdown. Secondary electron emission is essential in the case of
vacuum breakdown by high-frequency fields: the oscillating electron strikes the
gap walls alternatingly, one after the other. The secondary emission coefficients
7. for different metals with e, up to several keV vary from 0.4 to 1.6 [4.16].
Secondary electrons are also knocked out of dielectric surfaces. In glass and
quartz, 7e ~ 1 — 3 and the maxima are at e, = 300-400eV. If ¢, <40-60 eV,
then 4. < 1 [4.21]. The incident electrons attach to the dielectric, so that the
surface is charged negatively if 4. < 1 and positively if v, > 1.
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Fig. 4.16. Photoelectron emission coefficients (quantum yield) for various metals as functions of
photon energy. From [4.2]
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4.7 Multiplication of Charges in a Gas via Secondary Emission

4.7.1 Effect of Secondary Emission
on the Enhancement of Primary Electron Current

Let us turn to the experiment for measuring the ionization coefficient o (Sect.
4.1.4). If the photocurrent from the cathode is 79 = e, then the current recorded
at the anode in the absence of secondary emission is ¢ = ig exp(ad). An electron
leaving the cathode generates exp(ad) — 1 positive ions in the gap; all of them
arrive at the cathode. The current at the cathode in the stationary state can be
written ¢ = ig + #jon = %9 + tolexp(ad) — 1]. The dependence of In: on d at p,
E = const is linear. As E or d is increased, multiplication rapidly intensifies
and the secondary electron emission from the cathode begins to affect the total
current. Assume that this is the ion-electron emission. Each of the exp(ad) — 1
ions generated by a single electron leaving the cathode knocks out v electrons
from the cathode; this secondary electron current is added to the primary current
ip of the external source. The electronic part of the cathode current i is given
by the equation i = éo + mit1[lexp(ad) — 1]. The current at the anode and in the
external circuit is

i = i; exp(ad) = ipexp(ad)/{1 — 7lexp(ad) — 1]} (4.16)
(we have dropped the subscript of 7).
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Fig. 4.17. Effect of secondary emission on current enhancement in a discharge gap of length d in air at
p = 200 Torr. The curves are marked with the values of E/p, V/(cm-Torr), and cathode photocurrent
4o in 10~5 A, From [4.22}

A formula of this type was first derived by Townsend in 1902 to explain
the process of the ignition of a self-sustaining discharge. As a result of sec-
ondary emission, the region of linear growth of In: with d turns steeply upward
(Fig. 4.17). This process occurs when the denominator of (4.16), which is very
close to unity at small enhancement coefficients ad, tends to zero as ad in-
creases. When the denominator becomes zero, breakdown takes place and a
self-sustaining discharge is formed: formally, : = 0/0#0 at i = 0 (Sect. 7.2.2).
Experimentally, this is achieved by raising the voltage between the electrodes. In
order to follow a certain E = const curve in Fig. 4.17, one needs to increase V'
and d simultaneously and proportionally. By analyzing this plot using (4.16) and
a known value of o (found from the slope of the linear segment of the curve),
one can determine .2

4.7.2 Photoemission and Effective Coefficient ~

A cold cathode under discharge conditions may emit electrons in response to a
large number of agents; it is not always possible to identify a specific agent. For
this reason, one usually employs an effective secondary emission coefficient -y
per ion. This coefficient characterizes the entire complex process and replaces
the elementary-process characteristics +;, 7,, €tc., that are found by bombarding
a target with beams of particles or photons of a specific energy.

Let an electron excite along 1cm of the field such a number of atoms that they
later emit o, cm! photons capable of generating emission. The total number of

2 Townsend was of the opinion that the secondary process that makes it possible for a non-self-
sustaining discharge with exponential amplification of photocurrent iy to transform into self-
sustaining discharge was the ionization of gas atoms by impact of positive ions. In addition to «,
the theory had a second ionization coefficient 3 for ions. Numerous experiments later proved that
ionization of a gas by ions is impossible in a discharge (for the reason given at the beginning of
Sect.4.2.2). The ‘o, B’-theory was replaced with an ‘«, v’-theory.
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such photons, which are in fact the progeny of one electron leaving the cathode,
equals

d
f exp(azr)a, dr = (a,/a)lexplad) — 1] .
)

If emitted quanta are weakly absorbed by the gas (this happens if pressure is
low) and ( is the mean probability of their reaching the cathode, then the num-
ber of secondary electrons emitted from the cathode per primary electron is
(7 ¢a, [a)lexp(ad) — 1]. Adding this quantity to the v [exp(ad) — 1] caused by
positive ions, we arrive at the same formula, (4.16), with effective coefficient
v =% + Y€, /. The contribution of metastable atoms can likewise be added
to v.

4.7.3 Results of v Measurements. Positive Ions or Photons?

The results of determining the effective v by the method outlined in Sect.4.7.1
are summarized in [4.20, 23] and are illustrated in Fig. 4.18 and Table 4.10. They
are not easy to interpret. The coefficient oy depends on E/p in an irregular manner
and is very sensitive to the state of the cathode surface. In a number of cases, v
is found to be of the same order of magnitude as +; reported in experiments with

V4 T T a3 T T
Cu a Ar Na ©
ar
Q71+~ -
\\
b M
Ar-Ne 4.3
\_Ar/ =
a.07¢- . i
d a0
Kr
a.007 ! t Xe 4.003 1 1
7 70 700 7900 0 30 700 300
T T J T T 1}
N, ¢
4.08F Pt
Na
ao4- Hg ] Fig. 4.18. Effective secondary emission
coefficient determined in discharge ex-
| ~ periments: (a) copper cathode in inert
E/pViecm - Torr/ gases, (b) various metals in Ar, (¢) var-
L 1 ] 1 ious metals in N;. From [4.23]
g 400 800 7200

74



Table 4.10. Effective secondary emission coefficients at medium (~ 100 Torr) and high (~ 1atm)
pressures, see the references given in [4.21]

Gas Cathode State of Conditions in the ¥ Mechanism
surface gas

E/p pd

V/(em-Torr) cm-.Torr
Air  Ni cleaned  39-45 80-106-15.-10*
N, Ni cleaned  39-45 1.3.1074 -3.7.10~*
N, Cu cleaned 50 1.5-10-¢ ions
N, Cu oxidized 50 > 103 ions
0, Ni 354 45.10"2
0, Cu cleaned 50 ~ 1077
0, Cu oxidized 50 10— ions,

photons

H, Ni cleaned  20.3-25.1 d=2 1.0-10-3 —24.103
Hy Cu cleaned 50 10-¢ photons
H, Cu oxidized 50 50-10-3 photons
organics: alcohol, methane, methylal ~10~°

targets bombarded by ion beams. An indication of the emission mechanism may
be obtained by studying the nonsteady-state process of generation of secondary,
tertiary, etc., electrons (or avalanches, rather) after the primary ones have started,
because the arrival times of ions and photons at the cathode are very different
(Sect. 12.1.2).

The following preliminary conclusions can be drawn from the available data.
Ton-electron emission with v ~ 10~! — 10~ seems to be predominant at pd ~
1 — 10cm Torr, where E/p R 100-200 V/(cm Torr) are typical. This is the case
for the breakdown of rarefied gases and for the cathode layer of glow discharges.
In inert gases on a clean (annealed) cathode, v & +; at high pressures as well. On
a contaminated surface, the 4; are sharply reduced and photoemission is often
predominant. Photoemission is dominant in most gases, except inert ones, at about
atmospheric pressure and E/p = 30-40 V/(cm Torr), typical for the breakdown
of dense gases. Secondary electrons may appear owing to photoprocesses in the
gas itself (Sect. 12.1.3). The data on ~ are incomplete and often contradictory.
The uncertainty that usually mars the selection of « for designing or analyzing
an experiment is partly alleviated by the fact that v is normally found in the

formulas only within the logarithm (Sects. 7.2 and 8.3). As a rule, one assumes
that y ~ 10! — 10~2,
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5. Kinetic Equation
for Electrons in a Weakly Ionized Gas
Placed in an Electric Field

5.1 Description of Electron Processes
in Terms of the Velocity Distribution Function

The behavior of electrons in an ionized gas placed in a constant or oscillating
electric field was treated in Chaps. 2 and 3 in the framework of elementary theory.
This concentrates all attention on a single electron, assuming that all electrons be-
have identically in the transition to macroscopic quantities. This approach allows
an approximate calculation of a number of important characteristics of ionized
gases: electric conductivity and dielectric permittivity, absorption coefficient for
electromagnetic waves, and heating of electrons in the field. These results permit
an analysis of various concrete processes: different types of discharge, propaga-
tion of radio and light waves in plasma, etc.; we will frequently resort to simple
and illustrative notions of elementary theory. This approach is nevertheless quite
imperfect, especially if one needs to analyze subtler and more complex effects:
ionization and excitation of atoms by electron impact, excitation of molecular
oscillations in molecular lasers, etc. These problems cannot be solved without
knowing the electron distribution function which makes it possible to describe
various effects of electron interaction, not only with atoms and molecules but
also with the field, much more completely and in finer detail.

The velocity distribution function of electrons, f(t,r,v), is defined as fol-
lows. The quantity fdr dv is the number of electrons at a moment ¢ in an
element of volume dr = dz dy dz around a point r, with velocity components
from v, t0 v, + dvg, etc., so that dv = dv,dvydv,. The integral of f over all
velocity components equals the electron density n.(¢, 7). Recalling that we have
a preferred direction in space, defined by the electric vector E, it is expedient
to express velocity in terms of spherical, not Cartesian, coordinates. The vec-
tor v is characterized by its magnitude v, the angle 9 it makes with the polar
axis E, and the azimuthal angle ¢ (Fig.5.1). Besides, dv = v’ dv df2, where
df2 = sin9 dY d is an element of solid angle around the direction of v.

It is easy to pass from the function f(v) to distribution functions in absolute
values of v, p(v), and in energies, n(e):

n(e)de = p(v)dv = v¥dv / f(v)dR2 . G.1)

These are also normalized to the density n., and the relation between them
follows from the equality € = mv?/2:
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Fig. 5.1. Velocity vector in spherical coordinates

n(e) = p(v)/mv; ) =nlE)V2me . 5.2)

With the distribution function known, any quantity characterizing the electron
gas can in princfple be calculated. The frequency of ionization of atoms and
molecules is given by (4.1). Frequencies of all inelastic collisions, of any re-
actions, are given by similar formulas. The density of the total electric current
carried by electrons is

Ji=—e / v f(v)dv . (5.3)

The theory of kinetic equation gives expressions for the conductivity and the
dielectric permittivity. They are free of the uncertainty in choosing the electron
collision frequency inherent in formulas (3.23) and (3.24) of the elementary
theory.

5.2 Formulation of the Kinetic Equation

The kinetic equation for electrons is a particular case of the general kinetic
Boltzmann equation for the distribution function of particles in a gas. In fact, it

gives the balancing of the number of particles in an elementary volume in phase
space.

5.2.1 Balancing Equation

Let us take an elementary volume in the form of a cube around a fixed point
in phase space r, v. One cannot draw a six-dimensional cube, so we trace
an ordinary cube (Fig.5.2) and, appealing to our imagination, think of a six-
dimensional cube; one of its vertices has the coordinates Z, Y, z, Us, Uy, U,. Ata
moment ¢, the cubic volume dI" = dr dy d= dv,dvydv, contains f dI particles,
so that the distribution function f is interpreted as the density in phase space.

77



Z Fig. 5.2. Cube in three-dimensional space: Derivation of the balance equa-
tion for particle numbers in phase space

Z+dz

2ot
’ Y

z

Even with no collisions, the number of particles in the cube changes. A
particle moving at a velocity v = # changes its position r; if subjected to a force
F, it undergoes acceleration w = ¥ and changes its velocity v. The particle
moves in the phase space where the density f, in general, changes from point to
point; hence, the number of particles entering the cube through one face may be
greater or smaller than that leaving through the opposite face. Particles may thus
accumulate in the volume or be depleted in it. Collisions produce the same effect.
Some particles go out of dI" because their velocity vector sharply changes or
because they disappear, others enter dI after a collision or as a result of creation.

The number of particles entering the volume dI” per second through a specific
face of the cube, say the lower one in Fig.5.2 (there are 12 such faces), is
(fvs).dz dy dv.dvydv,. The subscript z with the z-component fv, of the flux
density signifies that the value of the flux is taken at a point 2 of the axis
perpendicular to the face. The product of the five differentials is the area of the
face (a face is five-dimensional). The number of particles per second leaving
through the opposite (upper) face is (fv,),+q4.dz dy dv dvydv,. The difference
between the inflow and outflow,

[(fvz)z - (fv,)z+dz]da: dy dv,dvydv, = —[a(fvz)/az]dl’ ,

contributes to the rate of particle accumulation in the cube, (3f/dt)dI". A similar
procedure is applied to the other five faces.

As for the collisions, their contribution to the rate of change of the number
of particles in the volume dI is proportional to the volume itself; we denote it
by (df /dt).dI. Collecting the terms and cancelling the common factor dI', we
arrive at the balancing equation for the number of particles:

of [a 5 df
§f+[a_z(fvz)+...+5;(fw,)+...}=(E)c. (5.4)

This is quite similar to the ordinary continuity equation in the presence of sources
(represented by the collision term). The sum in brackets is the six-dimensional
divergence of the “flux density”. Let us introduce into (5.4) the derivative df /dt
along the trajectory of a specific group of particles in the phase space. This can
be done by treating f as a composite function of time,
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(The operation d/dt corresponds to the total derivative in hydrodynamics.) We
obtain

df v, 6w1 df
E+f e +. Bv: + . ] (dt) (5.5)

The pairs of quantities v, and z, and so on, are independent coordinates in phase
space, v, not being a function of z. If the ordinary space contains a field of force
F(r), the accleration w = F'/m is a function of coordinates z, y, z. Even in the
presence of a magnetic field, the Lorentz force F' « v x H, and the component
w, depends on v, and v, but is independent of v,, etc. Hence, the divergence
of velocity vanishes: [Jv,/0z+ ... + Ow,/Ov, + ...] =0, so that (5.5) reduces
to the equality

df Jdt = (df /dt). . (5.6)

In the absence of collisions, the number density in a specific group of particles
does not change with time while the particles move along the trajectory in the
phase space: df /dt = 0. The medium in the phase space is “incompressible”.

df _0f Ofdz  Of dv,

5.2.2 Liouville’s Theorem

Let us follow an ensemble of particles that occupy a small volume AI at a
moment t. Without collisions, the number of particles in the group remains
constant: d(fAI')/dt = 0. However, df /dt = 0 and hence, dAI'/dt = 0. The
phase volume occupied by a given set of particles travels through the phase
space, undergoes deformation, but retains unchanged in volume. This statement
is known as Liouville’s theorem. It is clearly illustrated by Fig.5.3, drawn for
the one-dimensional case z, v, in which the phase space is represented by the
plane of the figure.

| O
5000@5} b, &

t, /t/L/

\
=

Fig. 5.3. lllustration of Liouville’s theorem. A region that is rectangular at a moment #¢ transforms
at subsequent moments ¢,, ¢, into parallelograms of the same area
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5.2.3 Application to Electrons in a Field

We shall not consider the cases with a strong magnetic field, even though this
would not be difficult: The Lorentz force is small in the field of electromagnetic
waves in comparison with the electric force (Sect. 3.1). Using F = —eE, we can
rewrite the balance equation (5.6) in the form

_88_{+v gradf—— ad, f = (df) , (CN))

where the symbol “grad,” denotes the gradient in velocity space. In spherical
coordinates we have
ad, =e 2+e -l-i+e 1 9,

e = €y T €% 59 T % using Oy’
here e,,, ey, and e, are the unit vectors along the three directions (Fig. 5.1). Let
us consider only spatially uniform fields, an approximation justified for electro-
magnetic waves because the amplitude of electronic oscillations is usually small
in comparison with the wavelength (Sect. 3.1). The dependence of f on space
coordinates in a uniform field can be caused only by the presence of walls and
diffusion flows due to gradients. To avoid distracting attention from our main
objective (to find the effect of field and collisions on the distribution function),
we assume the entire space to be uniform (the effects of diffusion fluxes being
taken into account later by simple techniques), which gives

of eE| of sin®d  9f } (df)

9t m % o Bcosd) dt

(5.8)

The function f(¢,v,¥) is independent of the angle ¢ because F defines an axis
of symmetry.

5.2.4 Classification of Collisions into Elastic and Inelastic

Let us look at the right-hand side of (5.8). Assume the gas to be weakly ionized
and neglect the collisions of electrons with other electrons and with ions, taking
into account only those with neutrals. This is a very important assumption, greatly
facilitating the problem of solving the kinetic equation by making it linear. The
general Boltzmann equation for a gas is nonlinear because the right-hand side
includes the collisions of particles of a given species with one another. These
terms contain, of course, the products of distribution functions of the colliding
particles. In our case, electrons collide with foreign particles, that is, heavy atoms
“at rest”, which are assumed here to have no distribution. The contributions of
collisions of each type to the change in distribution function are simply added
up. Let us divide all collisions into elastic and inelastic:

N (& L (F) _
(dt) (dt) +(dt)iml—l(f)+Q(f)- 59
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We subsume into the group of inelastic collisions, in addition to the pro-
cesses of excitation of atoms and molecules, the creation of new electrons as a
result of ionization and the possible annihilation processes. Inelastic collisions
are important for the formation of the energy spectrum of electrons but, being
much less frequent than elastic collisions, they have practically no influence on
the field-electron interaction and on the change in electron velocity and energy
caused by the field. Hence, inelastic processes do not affect the build-up of the
asymmetric part of the distribution function that reflects the oriented action of
the field and frequent elastic collisions. For these reasons, we do not yet specify
the expression Q(f) = (df /dt)ine; this will be done only after we pass from the
velocity vector distribution function to the distribution in electron energy.

5.2.5 Collision Integral

This name is applied to the term I(f) representing the effect of elastic collisions.
Assume that the atoms are at rest and, in addition, neglect the quantities of
order m /M, assuming M = oo. Under this approximation, the absolute value of
the electron velocity v and its energy ¢ are exactly conserved in scattering. We
will take elastic losses into account later, after having derived the final equation
for the electron velocity distribution. It will be possible to use a simple line of
reasoning to add to the equation an elastic loss term, and obtain an accurate
result. If, however, the change in v due to scattering is introduced from the very
beginning, this not too significant refinement makes the derivation of the collision
integral considerably more complex.

The collision integral I| f(v)] takes into account the change in the number
of electrons with a given velocity vector v, caused by the loss of electrons to
the points of the phase space with a different vector v’ as a result of scattering
by atoms, and also by the arrival to v from all other points »’. According to
our assumption, the magnitude of velocity is conserved in scattering, so that it
is sufficient to characterize v by a unit vector of direction, £2. Since f has for
argument the same absolute value of velocity v, we write simply f(£2) instead of
f(v) = f(v, £2). Owing to scattering, f(§2)df2v.(v) electrons move in one second
out of a given solid angle df? around the given direction §2 of velocity, v being
the collision frequency. The electrons are lost to all other allowed directions §2'.
Let q(v, £2, §2')dS2' be the probability for a colliding electron, moving in the
direction £2, to change its direction to §2’ in the interval df2'. The electron has
to move in some direction, so that

/ q(2,2)d2 =1.

The number of electrons leaving df2 can be written in the form of a detailed
expression:

F(DdR, = v, / F()dNRe( 02, 2)d
nl
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The number of electrons arriving per second in the same volume df? and the
given direction §2 from other directions §2' is

Ve / F(2)d2' ¢(82', 2)d? .
nl

The difference between the gain and loss gives us I[ f(§2)]df2. Before we write
out this expression, note that the probability of scattering from one direction to
another depends not on the directions as such, but only on the angle between
them: the scattering angle ¢ (Fig. 5.4). Hence, ¢(£2, 2') = ¢(§2', 2) = ¢(9), and
the probability can be integrated, with the same result, in final directions £2'
or in initial ones, §2. Then we can cancel the differential df2 not involved in
integration and finally obtain

I(f) = ve(v) /nl[f(ﬂ') — f(M1g(6)dn" . (5.10)

Integration is carried out here in all directions £2' at a fixed §2. Equation (5.8)
with the right-hand side (5.9), where the collision integral I is given by (5.10)
and the inelastic collisions term @ is to be specified later, is the required kinetic
equation.

Q

A
d Q
[

Fig. 5.4. Scattering angle ¢

5.3 Approximation for the Angular Dependence
of the Distribution Function

The kinetic equation is integro-differential in the angle ¥ and hence is mathemat-
ically very unwieldy. The factor that makes the distribution function depend on
the direction of velocity, that is, on ¢, is the field. In zero field, the distribution
is isotropic. The field accelerates negative charges in the opposite direction to
E, therefore producing an excess of electrons moving in this direction and a
shortage of those moving in the opposite direction.
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5.3.1 Symmetric and Asymmetric Parts of the Distribution Function

Assume the field to be moderately strong, and the anisotropy caused by it to
be small. (We take this into account approximately, as a correction to the main,
symmetric part of the function.) If this operation is to be mathematically rigorous,
the angular dependence f(¢,v, ) must be written as a series expansion, so as
to describe in an accurate manner the detailed departure from symmetry. Only a
system of orthogonal and normalized functions may be used for the expansion.
Such a system satisfying the angular dependence is that of Legendre polynomials:
Py =1, P, =cos 9, etc. Our approximation limits the series to the first two terms,

ft,v,9) = fot,v) + fi(t,v) cosd, (5.11)

where fo and f are the new sought-after functions; equations for finding these
are to be formulated.

The new functions have a definite physical meaning, the first of them, the
symmetric part, determines the electron energy spectrum. According to (5.1), we
have

n(e)de = @(v)dv = 4nv? fo(v)dv . (5.12)

The asymmetric part fi cos 9 determines the electric current. In view of the axial
symmetry f(v) the current points along the field. Formulas (5.3) and (5.11) imply
that its magnitude is

4
Ji= —e//v(0052 9) fi2nv? dvsind d = —%e/v3f1 dv . (5.13)

Approximation (5.11) is admissible only if the anisotropy of the distribution
function is sufficiently small, that is, if the field is not too strong. The quantitative
criterion of the notion “not too strong” will be clear after we find the correction f;
to the main part of f and demand that f; < fo (Sect. 5.5.1). Approximation (5.11)
is attributed to H. Lorentz, who formulated the kinetic equation for electrons in
a dc field, and elaborated formula (2.7) for conductivity using approximation
(5.11).

5.3.2 Equations for the Functions f; and f;

The simplest way to derive these functions is to make use of the method of
moments. The original equation for f is multiplied by a Legendre polynomial
and integrated over the angles taking into account the properties of polynomials.
In the case in question, it is sufficient to do it twice: first simply integrate (5.8)
over the solid angle df2 because the zeroth polynomial P is equal to 1, and then
multiply (5.8) by P; = cos9 and integrate for the second time. As a result of
the first integration (rather, of averaging, i.c., of the operation J d2/47), taking
into account that (cos J) =0, (cos?9) = 1/3, (sin’ 9) =2/3, we find

é) eE (10 2
F R C REORLIO
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The integral [ Idf? on the right-hand side vanishes automatically since it
gives the change in the number of electrons moving in all directions as a result
of elastic collisions and elastic collisions do not change the total number of
electrons. Of course, the inelastic-collisions term is linear in f; in general, the
effect of inelastic collisions is independent of the direction of velocity, being a
function only of energy spectrum. Hence, Q) becomes a function of the symmetric
part of f. The obtained equation can be rewritten in the form

Of _eE 1 A f1)
ot T mow o T (5.14)

The second averaging of the kinetic equation with the weight cos J yields

% % - % er—f- % = :—; /cosz?d.Q /[f(ﬂ') — f(Dlgd2' , (5.15)
where we have so far simply copied (5.10) without substituting (5.11) there,
and neglected the contribution of inelastic collisions in comparison with that of
elastic ones.

Let us take the right-hand side of (5.15). The inner integral in df2' is taken
over all directions §2' at a fixed §2. In fact, when integrating over the angle £2',
one need not choose the vector E as the polar axis, as we did in constructing
the original kinetic equation. Now it is more convenient to direct the polar axis
along £2 (Fig.5.5) and describe the direction of 2’ by the angles 6 and ', the
azimuth ¢’ being measured from a fixed plane passing through the vectors {2
and E. In these coordinates, an element of the solid angle is d2' = d’ sin 8 d6;
this is very convenient because the factor ¢ in the integrand is a function of 6.
Now we substitute (5.11) and rewrite the inner integral, with a fixed angle J:

J= /[f(nl) — f(D])g()d2' = f /(cos 9" — cos 9)q(9)
x dy'sin@dé .

Expressing cos ' via the familiar formula of spherical trigonometry,

cos 9’ = cosd cos § +sindsinfcos ¢’ ,

and taking into account that the term with cos ' vanishes in the integration in
', we find

J = ficosd /(cose — 1)g(6)dy' sin8d8 = fi cosd(cosf — 1) .

Here cos 4 is, by definition, the mean cosine of the scattering angle because
cos @ is averaged on the basis of the scattering probability ¢(6) normalized to unity
over all angles. The second of the sought equations is obtained by introducing the
effective collision frequency vm = (1 — cos 6) (note that we have just derived
this expression rigorously), substituting the inner integral J into (5.15), and again
integrating over d{2:
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Q Fig. 5.5. Directions of field and velocities before and after

7 scattering
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We have thus obtained, instead of the integro-differential equation (5.8), two
differential equations for the functions f, and f; that approximate the true distri-
bution function by (5.11). These equations hold for arbitrary dependence E(%),
that is, both for dc and for oscillating fields.

5.4 Equation of the Electron Energy Spectrum

5.4.1 Approximate Integration of the Equation for f;

In order to proceed further, we have to specify the dependence of the field on time.
Let us take a harmonic field E = Ey sinwt. It is obviously impossible to find the
exact solution of the system (5.14, 16), so we make the following approximation.
The correction f; to the symmetric part of the distribution function is caused by
the field, which changes its direction periodically. The correction oscillates with
the same frequency: first a greater number of electrons move along the field, and
after half a cycle more electrons move in the opposite direction. As follows from
(5.14), the dependence of the main (symmetric) function fo on time consists of
two parts. On one hand, this is a relatively slow dependence due to the buildup
of the electron energy spectrum as a result of various inelastic processes, creation
and loss of electrons, and energy gain from the field. Since f; is also a harmonic
function and is proportional to Ej, the first term in the right-hand side of (5.14)
has a component, averaged over a period, that is proportional to E2, and an
oscillating component. The accumulation of energy is provided by the averaged
component. On the other hand, fy contains an oscillating component due to the
oscillating part of the first term in the right-hand side of (5.14). It resembles
a ripple imposed on the slowly changing fy(t). Obviously, the variations of
the spectrum during one period, that is, the ripple, need not bother us if we are
interested in the electron energy spectrum at sufficiently high frequencies (see the
criterion in Sect.5.5.2). The object of physical interest is the smoothed function
(fo) averaged over one period of field oscillations.

When integrating equation (5.16), we substitute the function (0fo/dv) aver-
aged over a period. The high-frequency component would contribute to f1 aterm
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of higher order in E. Neglecting the slow dependence of (9fo/dv) on time in
comparison with sin wt, we integrate (5.16) as a linear equation, where (3 fy/0v)
is independent of time. We find that

——m(—w?'_;—’/%—) <-6—fg> (wcoswt — v sinwt) (5.17)

fi= v

and this expression can be rewritten in the form

eEy Afo\ .
= ————( = ) sin(wt — 5.18
where o = arctan(w/vy,).

We conclude that fi oc Ep; it oscillates at a frequency w but its phase is shifted
with respect to the field. In the limiting case of high frequencies (w? > 12), the
phase shift is a ~ /2, and

fi=x —@ <-a—f9> coswt = —u <2f—0> cos wt .
mw \ Ov Ov

To an order of magnitude, dfo/0v ~ fo/v, where v is some characteristic,
average velocity of random motion. According to (3.2), eFy/mw = u is the
amplitude of the varying velocity of an electron in the oscillating field, so that
to an order of magnitude,

fi ~(u/v)fo . (5.19)

In the opposite limiting case of low frequencies (w? < 1), the phase shift « is
small and

flze—E'l<%>sinwt—> & 0fo

mvy \ Ov w0 muym Ov

It is readily seen that the same result is implied directly by (5.16) if the field
is assumed to be constant ab initio. The asymptotic constant value of fi that is
reached after a time of about one collision period is

f=E O v, (5.19")

where, in view of (2.4), vq = e E/mum is the absolute value of the electron drift
velocity. The smallness criterion fi/ fo is implied by (5.19,19') (Sect.5.5.1).

5.4.2 Equation for fo

Now that we have expressed the correction f; in terms of the main function fy,
we may take the last step: to substitute it into (5.14)‘anq thus ob@n an equation
for the symmetric part of the distribution function which is unambiguously related
to the energy spectrum. If the field is harmonic, we substitute (5.17) into (5.14)
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and average the equation so obtained over one period of oscillation in order to
eliminate the ripples and reveal the slow time-dependence of the spectrum, it
being the only one of interest. Remarking that

(coswtsinwt) =0, (sin®wt) = 1,
and dropping the averaging brackets (
the function fy(¢, v):

Ofo 1 0 [2E? [vn(w)v?\ Of
_('3?0_ T v [§m2 (w2+1/§l> _0] +Q(f) - (5:20)

) with fy, we arrive at an equation for

v

Here we have substituted for Ey the root-mean-square field E = Ey/ V2. In the
case of a dc field, the substitution of (5.19') into (5.14) gives the same equation
(5.20) but with w = 0. In other words, the exact limiting transition is possible
from the case of the harmonic field to that of a dc field, provided we replace the
root-mean-square field with a constant one as w — 0; note that this appears to
be intuitively natural.

5.4.3 Equation for n(e)

If we recast (5.20) to a new independent variable ¢ = mv?/2, de = mvdv,
and replace the function fy(¢,v) with the energy distribution function n(t,¢) via
(5.12), the result is an equation for the energy spectrum:

o _0 (300 n
dt  Oe (A6 Je €l/? *Qm),

2152 22
A= 2e¢“F Vm _ € Ey vm . 5.21)

PR 24,2
3m Wi+l 3m Wi+l

The case of a dc field is also obtained if we set w = 0 and replace the root-mean-
square field by the constant field.

5.4.4 Diffusion Nature of the Equation

Carrying out the differentiation of ne~!/2 in (5.21) and introducing new notation
for combinations of variables, we rewrite this equation:

on aJ on
—=—-—5+Q, J=-D—+
o~ e T@ 2t (5.22)
D=Ae, U=A4/2.

The structure of (5.22) is quite similar to that of the equation of one-
dimensional diffusion of particles. Indeed, ¢ is the coordinate, 7 is the density of
particles, J is the flux, Q is the source, D is the diffusion coefficient that, in fact,
is position dependent (this is also imaginable: say, the density of the main gas
through which particles diffuse varies with the coordinate), and U is the velocity
of the “kinematic” flow, that is, of the systematic motion in one direction, for
instance, a drift that may be caused by the flow of the medium.
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The physical meaning of the diffusion nature of energy accumulation in the
field, that is, of the diffusive motion of electrons along the “energy axis,” is
very lucid. We have indicated in Sects.2.3.3 and 3.2.5 that collisions can either
increase or decrease the energy of electrons, in portions that equal, to an order
of magnitude, mvu, where v is the velocity of random motion and wu is the
velocity of oriented motion caused by the field. In the high-frequency case, u is
the amplitude of the oscillating electron velocity, and in the dc field, u equals
the drift velocity vq. Since on average, energy is gained or lost with almost equal
probability, the change in electron energy resembles a random walk along the
axis ¢. The coefficient of ordinary diffusion, which manifests itself in treating
the one-dimensional random walk of a particle, is approximately D ~ Az?/r,
where Az is a step along the r axis and 7 is the mean time interval between
steps. In our case,

D= (mvu)zum .

Substituting here u = eEy/mw in the high-frequency range w? > 1%, or u =
vq = eE [muy, (drift velocity) in the low-frequency range w? « v}, and recalling
that € = mwv?/2, we find for these limiting cases the diffusion coefficient defined
by (5.22) and (5.21) (to within an unimportant numerical factor).

The kinematic velocity U also has a physical meaning. The positive kinematic
flux directed towards increasing ¢ is mostly related to the predominant energy
gain in collisions, in contrast to energy losses. We have seen in Sects. 2.3.3 and
3.2.5 that on the average the energy gained is greater than the energy lost by a
quantity Aeg « mu?, which is less by a factor v/u than a mean increment in
any direction, mvu. The rate of systematic upward motion on the energy axis,
U ~ Aegvn, is indeed on the order of

U~ muvy ~ (mvu)zl/m/mv2 ~Dle,

as we have formally obtained in deriving (5.22).

5.4.5 Elastic Loss Term

Following the remarks on the diffusion along the energy axis, it is not difficult to
add to the energy spectrum equation a term describing elastic energy loss. Indeed,
elastic losses also produce a flux along the energy axis, always pointing toward
decreasing ¢. The mean energy that an electron loses in an elastic collision,
calculated in Sect.2.3.4, is

Aca = 2m/M)(1 — cos f)e .

This is the quantity by which an electron slides “downward” on the ¢ axis after
each collision. The time between collisions is 7c = v !, Hence, the corresponding
velocity of downward motion is

Ug = —Aca/7c = —Qm/M)vme ;
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the kinetic flux corresponding to this velocity is nlU,. We add it to the flux J in
(5.22). Returning now from (5.22) to the original equations (5.20,21), we write
them out, now taking into account the elastic loss term:

Ofo 1 8 [E* um® 8fo m 4
[m P2 a0 T 3 vm? fol +Q(fo) , (5.23)

ot P

(Y
on _ 2 3/2 Jd n 2m
—a—t-—& (AE a—em'fﬁé‘l/mn +Q(TI.),
_ 2¢2E2
T 3m W+

(5.249)

Note that our simple reasoning has led to the exact result covering elastic
losses. If the finite mass of atoms has been introduced from the very beginning
into the collision integral, we would have arrived at the same equations, (5.23)
and (5.24).

5.4.6 Inelastic Collision Term

Let us specify the quantity () that was to include all processes not related to the
field and elastic collisions. The loss of electrons per second in 1cm? from the en-
ergy interval de due to the excitation and ionization of atoms equals n(e)dev*(g)
and n(e)devi(e), respectively, where v*(g) and v4(¢) are, respectively, the frequen-
cies of excitation of corresponding levels and of ionization at a given electron
energy ¢. The energy E* lost by an electron in an act of excitation equals the
excitation potential plus a small energy needed to impart to the atom the velocity
necessary for the total momentum of the electron and the atom to remain unal-
tered. This additional energy loss is very small, as it is in elastic scattering; it is
negligible in comparison with E*. If the inelastic collision involved an electron
with energy ' = ¢ + E* in the interval de' = de, then the loss of energy shifts it
into the interval de at the point . Hence, the term in Q(n) due to the excitation
of a certain level can be expressed approximately in the form

Q*(n) = —n(e)v*(e) + n(e + E"w*(e + E¥) (5.25)

where v*(e) = 0 if ¢ < E*. The excitation of vibrational levels in molecules is
described by expressions of similar type. The total amount @ is the sum of this
type of term over all relevant levels of atoms and molecules.

The term representing ionizing collisions, Qi(n), is more complicated. Let
an electron have energy ¢' > I. The electron spends energy I on liberating an
electron from an atom; the remainder, ¢’ — I, is divided between the primary
and the secondary electrons (the energy transferred to the ion being negligible).
Let &(¢’, €)de be the probability for the energy of the electron knocked out of
the atom to be between ¢ and ¢ + de ( fo T &(c',€)de = 1). The ionizing electron
falls into the same interval if the new one acquires an energy from &' — I — ¢ — de
to ¢’ — I —¢, and the probability of such an event is P(e',e' — I — £)de. Forming
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Q:de from the terms due to electrons arriving at and leaving the interval ¢ to
¢ + de and then dividing by de, we obtain

Qi = —n(In(e) + /0: (e MENEE )+ e —T—lde’. o

Expression (5.26) transforms to (5.25) if we assume that all new electrons appear
with identical energy o and ¢’ > I +¢p = I;. Then &(¢',¢) = 6(c — €p), where
§ is the Dirac delta function. In this case

Qi = —n(e)nle) +nle + L)vi(e+ L)+6(e— €0) /00 n(e(e)de' .
h (5.26"

The additional term when compared with (5.25) describes the source of new
electrons.

The losses due to recombination or attachment of electrons are extremely
easy to introduce into @, for example, by a term —n(e)rale), where vy(e) is the
frequency of attachment to atoms or molecules.

5.4.7 Spatial Diffusion of Electrons

This can be rigorously calculated if the term v grad f found in (5.7) is left
in the left-hand side of the original equation (5.8). We have not done this in
the preceding paragraphs in order to avoid complicating the manipulations and
to focus the attention on the effects of interaction with the field. In the final
equation for the spectrum, the diffusional losses of electrons can be taken into
account approximately, adding to @ a term of type

Q4 = —n(e)wle) ,

where vg = D/A? is the “diffusion frequency”, that is, a quantity reciprocal to
the characteristic time of diffusional removal of an electron from the chosen
volume, D = v?/3vy is the diffusion coefficient (in ordinary space!), and A is
the characteristic diffusion length (Sect. 4.5).

5.5 Validity Criteria for the Spectrum Equation

5.5.1 With Respect to Field Magnitude

The Lorentz approximation (5.11), on which the derivation of the equation was
based, is valid if the asymmetry of the distribution function f(v) is small:
fi/fo < 1. According to (5.19, 19), this happens if the velocity of the elec-
tron directed along the field (amplitude u in the case of rapidly oscillating field
or the drift velocity va in the case of dc field) is much less than the random
velocity v. The terms with higher-order harmonics in the expansion of f in Leg-
endre polynomials are proportional to the appropriate powers of the ratios u/v
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and vg/v. These ratios serve as the small parameters for series expansion of the
distribution function f. The indicated conditions are satisfied in most practically
interesting cases. Indeed, in a uniform not very high dc field in which an electron
loses only a small fraction § of its energy, vq/v ~ Ve« 1 [see (2.16)]. A quite
similar relation, u /v & \/5, is implied by (3.2) and (3.12) in the case of a rapidly
oscillating field.

If a colliding electron loses a considerable fraction of its energy (formally,
§ ~ 1), the conditions are violated and the distribution function becomes essen-
tially asymmetric (electrons move mostly along the field). This happens when
an electron gains from the field in one free path length ! (or in oscillations) the
energy greater than that necesssary for the excitation of electron levels or for
ionization of atoms, say, eE! = I. Such situations occur mainly in exceptionally
strong fields: in the cathode layer of the glow discharge, in focusing superpow-
erful optical pulses etc. Equations (5.23) and (5.24) have limited applicability
on the side of small E, as well. The electron temperature in a very weak field
may be comparable to the gas temperature T, which we assumed to be zero. The
kinetic equation with T # 0 was discussed by B.I. Davydov in 1936.

5.5.2 With Respect to Field Frequency

The calculations of Sect.5.4.1 ignored the modulation of the spectrum at the
field frequency w, since the symmetric part of the distribution function, fo, was
averaged over the oscillation period. This is admissible if the field oscillates
rapidly in comparison with the time necessary for the buildup of the electron
energy spectrum. Then only the root-mean-square field affects the spectrum and
the gaining of energy from the field. In other words, the condition of applicability
of the approximation used:is the inequality w >> v, = vyy6, where 7, = v ! is the
spectrum relaxation time, equal to the characteristic time of energy transfer from
electrons to molecules (Sect.2.3.7). In atomic gases this inequality is satisfied
better than in molecular ones. It is satisfied practically always in the microwave
and, of course, in the optical range of frequencies; almost always in the radiofre-
quency range in atomic gases; and sometimes also in the radiofrequency range in
molecular gases. For example, in nitrogen vy, ~ 4.2-10°p[Torr] s !, § = 2.7-1073,
vy = 1.1-107p[Torr] s7%; at a frequency f = 13.7MHz, w = 0.86 - 108 s~ the
approximation holds only if p < 10 Torr.

In the opposite limiting case, w < vy é, the energy spectrum and the mean
electron energy oscillate together with the field, tracking its relatively slow vari-
ations. The range f ~ 10kHz is employed in diécharge devices, for instance, in
“ac” lasers (Sect. 14.4.6). The field is quasistatibnary in this case. The limiting
transition from oscillating to dc field produced by imposing a weaker condition
w < vy instead of w < vyd in Sect. 5.4.1 was a purely formal operation.
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5.5.3 With Respect to Spatial Nonuniformity

When a group of electrons drift in a dc field, the energy spectrum builds up
over one energy relaxation length A, =~ [/ /o (Sect.2.3.7). The dc field must
therefore be uniform over this length, otherwise the spectrum depends, not only
on the field magnitude, but also on the distribution of potential in space (this
nonlocal nature of the spectrum manifests itself in the cathode layer of the glow
discharge). A field that is quasistationary in the sense w < v, is definitely
uniform with respect to wavelength A, because X = /27 > Au(cV/8 /v) = Ay
The effect of field variation over one wavelength on the energy spectrum of
electrons in electromagnetic waves of high frequencies is often negligible, but
one must nevertheless be vigilant.

5.5.4 With Respect to the Degree of Ionization

One of the most important assumptions made in the analysis of the kinetic equa-
tion is that of neglecting collisions between electrons and thus making the equa-
tion linear. As in an ordinary gas, collisions between like particles lead to the
Maxwellian distribution (“Maxwellization” of electrons). This is the situation in a
sufficiently strongly ionized, dense low-temperature plasma. Colliding electrons
exchange portions of energy that are of the order of the electron energies them-
selves. Electrons colliding inelastically with atoms and molecules also lose large
amounts of energy, comparable with their energies. Hence, if inelastic collisions
are possible, electron-electron collisions can be neglected if their frequency vee
(Sect. 2.2.2) is rauch less then vie. At electron energies ¢ = 5-10¢V, sufficient
for the impact excitation of atoms and molecules (and for their ionization), the
condition vee < vinel in weakly ionized plasma is satisfied up to quite consider-
able degrees of ionization, n./N ~ 107*-10~3. The same estimate is valid at
smaller energies, € ~ 1-5¢V, in the case of molecular gases where electron im-
pact excites molecular vibrations. Generally speaking, inelastic collisions distort
the Maxwellian distribution by reducing the number of high-energy electrons.

The situation in atomic gases at energies below the excitation potential of
atoms E* (E* ~ 10¢V in inert gases) is different. Here only very weak elastic
energy losses are efficient, especially if atoms are heavy, so that energy ex-
change in electron-electron collisions is active in spectrum formation process at
much lower degrees of ionization. The condition of applicability of the linear
kinetic equation in the energy range ¢ < E* is something like vee < (m/M)vm,
ne/N < 107/A, where A is the atomic mass. The spectrum in the range ¢ < E*
may approach the Maxwellian form in steady-state conditions at not too weak
ionization; only if ¢ > E*, does it fall off much more steeply than the latter. If
we wish the kinetic equation to describe these effects, it needs refinement, that
is, the addition of electron-electron collisions.
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5.6 Comparison of Some Conclusions
Implied by the Kinetic Equation
with the Results of Elementary Theory

5.6.1 Conductivity and Dielectric Permittivity

If we substitute fi of (5.17) into (5.13), the part of the current in phase with the
field, that is, the part proportional to sinwt and E, gives the conduction current.
The component proportional to cos wt, that is, 0F /Jt, is the polarization current.
Let us compare the result with the phenomenological formula (3.20) and equate
separately the terms proportional to sinwt and coswt, as we did in Sect. 3.4.1.
The rigorous expressions for the high-frequency conductivity o, and dielectric
permittivity €., derived in this way, are

4re? [ vp(v)o? dfo
= A 2
%= I 0 Wi+ ( Ov ) dv, (5.27)
1672e2 [ 3 afe
Ew = 1- 3m A P 1/31 (——é;> dv . (528)

In the general case, these quantities depend on the electron energy spectrum.
If, however, the collision frequency vy (v) is independent of velocity, the factors
containing vy can be factored out from the integral. Integrating the resulting
expression by parts and taking into account that there are no electrons with
infinite energy, that is, fo — 0 as v — oo, and the normalization condition for
the function fy(v),

/ - 4rvldv fow) = ne , (5.29)
0

we arrive at the formulas (3.23,24) of the elementary theory. We conclude that
the latter formulas are valid for any spectrum provided vm(v) = const. The dc
conductivity is obtained automatically from (5.27) if we set w = 0:

_Ame? [ 1 dfo
o= 3m A () (_51}—) dv . (530)

In practice, however, one normally resorts to elementary formulas (3.23, 24,
27), selecting on the basis of pertinent arguments a value of the characteristic
collision frequency that is the most plausible for the real spectrum. But once
the spectrum is known, formulas (5.27, 28, 30) make it possible to choose this
quantity correctly: They are employed in exact theories and for determining the
correction coefficients to elementary formulas.
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5.6.2 Rate of Change of the Mean Energy of the Spectrum

By definition, the mean electron energy is

£= / " ente)de / / " n(e)de = ng! / " entedde (5.3D)
0 0 0

Let us construct an equation for the rate of change of Z, neglecting the effect of
inelastic losses and taking into account only the effects of the field and elastic
losses. Correspondingly, we multiply (5.24) [better still, (5.22) with an additional
term nlg in the expression for the flux J] by ¢ and integrate the product over
the entire spectrum. The inelastic collisions term @ is omitted. Now we integrate
twice by parts, recalling that n — 0, J — 0 as ¢ — oo, divide by n., and obtain

dé dD . . €*E? Um 2m—

+ = (mﬁ:) - -M(VmE) s (5.32)
where a bar means averaging over the spectrum. If vy, (¢) = const, this expression
coincides exactly with the formula (3.11) of the elementary theory for the rate of
change of the energy of the “mean” electron [in (3.11), § = 2m/M because we
include only elastic losses]. The condition of constancy of collision frequency
again ensures the rigorousness of the elementary theory.

5.6.3 Similarity Laws

Similarity relations for drift velocity (Sect.2.1.4), mean electron energy (Sects.
2.3.5 and 3.2.4), ionization coefficient (Sect.4.1.4), etc., find confirmation and
stringent justification in the kinetic equation. Consider the case of a dc field, w =
0. The frequencies of all inelastic, as well as elastic, collisions are proportional to
the gas density N. Assume that there are no spatial gradients. If ionization is low,
recombination is unimportant; then @ oc N. Dividing (5.23) and (5.24) by N,
we find that the distribution functions fy(v) and n(e) include E and N only as a
combination E/N. In the non-steady-state case, n(t, e, E, N) = n(Nt,e, E/N).
As the gas density increases, the time of evolution is correspondingly reduced;
this is natural because all processes are related to collisions.

In a high-frequency field w? > 12 n(t, ¢, E, N,w) = n(Nt,¢, E jw), that is,
the steady-state spectrum is completely independent of density and is determined
by the ratio E/w. If the collision frequency is assumed constant, vm(v) = const,
and w > vmb (Sect.5.5.2), the kinetic equation and the spectrum for an oscil-
lating field with root-mean-square magnitude E and amplitude Eo = V2E are
identical to the equation and the spectrum in a dc field of effective strength

Ex=E[A) (W + u,%,)]‘/2 <E. (5.33)

Thus it is sometimes possible to make use of the richer store of computational
and experimental dc data when studying discharge in rapidly varying fields. What
is needed is an appropriate recalculation via (5.33).
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5.7 Stationary Spectrum of Electrons
in a Field in the Case of only Elastic Losses

On the whole, the results of Sects. 5.6.1 and 5.6.2 pointed to a high accuracy of the
elementary theory. Now we will analyze an example revealing its imperfections
and limited capabilities in comparison with those offered by the kinetic equation.

Imagine an ionized gas in an oscillating or dc field, and ignore the effects
of inelastic collisions. Consider a stationary electron spectrum that is finally
established as a result of exact balancing of energy gain in the field and elastic
energy loss. This situation cannot be described as too abstract, since something
like this is implemented if a monatomic weakly ionized gas occupying a large
volume is placed in a weak field (the gas is monatomic in order to avoid the
excitation of molecular vibrations). If the volume is large, the diffusion loss of
electrons is small, especially because appreciable ionization leads to ambipolar
electron diffusion (Sect. 2.6), which is much slower than free diffusion. In order
to compensate for the small loss of electrons (so as to maintain the steady state),
low-rate ionization by the relatively weak field is sufficient. Hence, electron
energies are mostly low and very few electrons gain enough energy for the
excitation or ionization of an atom. The effect of inelastic collisions on the
spectrum is therefore not very significant.

5.7.1 What the Elementary Theory Has to Say

Let us look first at what the elementary theory predicts for this situation. This
theory considers the behavior of a single, mean electron and assumes the states
of all electrons to be identical. The electron energy ¢ varies in time as given by
(2.12), for § =2m/M:

d
E%: = (Aeg — Atel)Vm =

2 E? 2m

—_— — —¢| vm .
mw2+d) M|

‘ The energy Aeg gained from the field in one collision is independent of ¢
(if vm(e) = const), while Aee ox €. Hence, the electron energy reaches the value
¢max found from the equality Acy = Agq,

e M SE
T 2m m?r+2) (5.3
and then remains constant. Indeed, if the energy of an electron drops by chance
to less than enay, it immediately starts to gain energy, de/dt > 0; if it grows
above emax, the electron starts losing energy, de /dt < 0. A steady (and stable)
state (.:orre§ponds to de/dt = 0 and to a delta distribution function: all electrons
have identical energies € = emax. In view of the initial assumption, £max must
be less than the excitation potential or, even more so, the ionization potential of
atoms; otherwise inelastic losses will determine the behavior, instead of elastic
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ones. This leads to a question, however: how is ionization to occur if the gas
has not a single electron with sufficient energy? Indeed, at least very low-rate
ionization is necessary, otherwise unavoidable losses would gradually remove all
electrons and the steady state would be impossible. Here the elementary theory
is at a dead end.

5.7.2 Solution of Kinetic Equation (5.23)

In the stationary case, 0fo/0t = 0 and the expression in brackets (the flux) is
constant if inelastic processes are neglected (Q = 0). However, as v — oo, fo
and the flux vanish; hence, this constant equals zero. There is no flux at each
point of the energy axis; the energy gained from the field is exactly balanced out
by elastic losses at each energy €. The second integration yields

3m3 v

o= |57 |

v (wz + V,zn) dv] , (5.35)
where the integration constant C is determined by the normalization condition
(5.29). The distribution function (5.35) is especially simple (Maxwellian) in the
case vy (v) = const:

3Im2(w? + v2) mo? €
fo=Cexp— [ U2 > ] =Cexp (— kTe) , (5.36)
with temperature T, and mean energy & equal to
3 M &E?
g = _kn = e——— . .
€72 Im mt o) | e (537

The mean energy coincides with the single energy emax given by the ele-
mentary theory. The exact coincidence is more or less accidental. If different
assumptions about the function vy,(v) are chosen, & coincides with gpax only to
an order of magnitude.

The “true” spectrum is thus spread around emax; it contains high-energy elec-
trons (the tail of the Maxwell distribution) that produce ionization and sustain the
stationary state. Electrons with ¢ < emax are also present. Electrons with energies
not equal to ena appear in the stationary spectrum because the kinetic equation
takes into account rigorously the force exerted by the field on the electrons; we
have already seen in Sect. 3.2.5 that this field admits the possibility of gaining an
energy in excess of Aec g and of losing large portions of energy in collisions. En-
ergetic electrons with £ > emax “survive” at the expense of gaining Ae > Acg
in this individual fashion, while slow electrons with £ < €max make use of high
individual losses.

5.7.3 Margenau and Druyvesteyn’s Distributions

The particular case of distribution (5.35) that is more often considered in gas
discharge physics is the one where not the collision frequency but the free path
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Fig. 5.6. Maxwell (ns) and Druyvesteyn (np)
distribution functions in energy, n(e), for the
same mean energy €

length of electrons, | = v/vy (i.e., cross section for momentum transfer), is
assumed to be independent of energy. Under this approximation, vy < v < 1/
and the integration of (5.35) gives

(v* +20%78) | . (5.38)

3m
fo=Cexp [_W

This is the so-called Margenau distribution (1946); we shall not dwell on
it here. In the dc case, the Margenau distribution transforms into Druyvesteyn’s
distribution

3m €?

fo=Cexp [——A-Z %] ; e =eEl (5.39)
which was derived directly by Druyvesteyn in 1930. The parameter ¢g is the
energy gained by an electron from the field over a free path length. As follows
from (5.39), the mean energy ¢ is gained over approximately /M /m free paths
[cf. (2.13)]. It is easy to see that £ also coincides, to an order of magnitude,
with that unique energy ¢;,,, an electron is allowed to gain in the elementary
theory. However, the quantity ¢/, is now different from (5.34) because Acgp =
e2E? /mv} o 1/e, in contrast to the high-frequency case where Acg = const.
Druyvesteyn’s distribution is characterized by a considerably steeper decrease of
the number of electrons in the “tail” than that of the Maxwell distribution (2 in
the exponential instead of ¢); see Fig. 5.6.

5.7.4 Remark on Approximate Solution for Inert Gases
in the Case of Predominant Inelastic Losses

The solution will be obtained in Sect. 7.5 in the analysis of electrical breakdown:
it is unusual in that it employs the “infinite sink” approximation. In a certain
sense, this case is the opposite of that treated in Sect.5.7.
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5.8 Numerical Results for Nitrogen and Air

Analytic solutions of the kinetic equation (5.23) are always obtained at the cost of
considerable simplifications and assumptions, as in Sect. 5.7 (see also Sect. 5.8.1).
In the case of molecular gases, any analytic solution would be hopeless, because
of the need to take into account the vibrational and rotational excitations, in
addition to the electron excitation. Advances in computer technology make it
possible, however, to perform numerical integration, even though the computa-
tions require certain skill and are time-consuming. The most prominent physical
aspect is the analysis of the processes to be taken into account and the choice
of the most reliable data on cross sections. Considerable discrepancies exist be-
tween the results of various authors, which is connected with the complexity
of the corresponding experiments. It is the shortage of cross section data that
constitutes the main source of error in solving the kinetic equation.

The needs of modern molecular laser techniques provided a strong impetus
for the computations. Numerical modeling was carried out for many mixtures of
the type CO2 + N2 + He (see Sect. 8.8). In addition to laser mixtures, such gases
as nitrogen and air, widely used in discharge work, have also been studied. Here
we will give the results of computations for N, [5.1] and for air [5.2] both as
illustrations of the application of the kinetic equation and as material of interest
for discharge research.

Equation (5.23) (slightly transformed for reasons of convenience) was inte-
grated numerically for stationary conditions and a dc field. In Fig. 5.7, a function
P =e Yn(e) /ne for nitrogen is plotted on a semilogarithmic scale. The mean-
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Fig. 5.7. Electron distribution function (<) =
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077

98



- 2
o/10" " cm 7y J T T J Fig. 5.8. Excitation cross sections of

various energy levels, and ionization
cross section of nitrogen molecule

|
70 20 30 eleV/

ing of i) becomes clearer if we take into account that in the case of the Maxwell
distribution, ¥m(e) = 27~ 1/2(kT.)~3/2exp(—¢/kT.) is the Boltzmann exponen-
tial up to the normalizing factor. Its semilogarithmic plot would be a straight line.
The cross sections of excitation of a number of electron levels and ionization
cross sections, employed in the computation, are shown in Fig. 5.8.

Figure 5.9 plots drift velocity, electron temperature, and characteristic energy
given by (5.30) and (5.31) (see Sect.2.4.2). (The diffusion coefficient was found
by averaging Inv/3 = v? /vy over the spectrum; the mobility is found as vg/ E.) If
the spectrum is Maxwellian, the characteristic energy coincides with temperature.
The difference between 7T, (given in volts) and D./p. is caused by the non-
Maxwellian nature of the spectrum; this is seen in Fig. 5.7. Figure 5.10 plots the
ionization rate constant k; found from (4.1), and Fig.5.11 shows the fractions
of energy transferred from electrons to different degrees of freedom. The curves
demonstrate that a predominant part of the work done by the field transforms
into the energy of molecular vibrations in a wide range of E/N. This fact is
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Fig. 5.9. (a) Drift velocity of electrons in nitrogen, (b) clectron temperature as 2/3 of mean energy
of the spectrum, and the characteristic energy D, /u. in nitrogen
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of principal importance. This property of weakly ionized plasma in the field is
essential for the operation of electric discharge molecular lasers. The calculated
constants of the rate of ionization of nitrogen molecules from the ground and
metastable A3} states, ki, ki4, and the rates of excitation of levels A*X?F and
B o (Fig.5.8), k%, and k}; are approximated by the formulas [5.3]

logki = —8.3 —34.8(N/E), logkia=—6.1-27.5(N/E),

5.40
log k% = —8.35 — 149(N/E), logk} = —8.2—15.6(N/E), (540

where E/N is given in 1076 Vcm?, and k in cm®/s. The rate constants increase
in the case of strong vibrational excitation, which is typical of glow discharge in
nitrogen, owing to the lower rate of vibrational relaxation. This is connected both
with reduced reaction thresholds and with the enrichment of the spectrum with
higher-energy electrons. If T, is the vibrational temperature characterizing the
ratio of populations of the levels with v = 1 and v =0, and Z = exp(—hwi JkT),
then we approximately have

log[k(T,)/k(0)] = 43.5(N/EY'Z , Z =exp(—3360/T). (5.41)

The formula is the same for all k and is valid up to T, = 5000K. Figures
5.12-14 plot the results of computations for dry air (in practice the water vapor
content may vary from one experiment to another). The distribution functions
qualitatively resemble those for nitrogen.
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5.9 Spatially Nonuniform Fields of Arbitrary Strength

Strongly nonuniform fields are produced in weakly ionized gases in the cathode
layer of a glow discharge, in the electrode layers of a radio-frequency capaci-
tively coupled discharge, in high-voltage pulsed discharges, and possibly in other
situations. The Lorentz approximation fails in these cases (Sect. 5.5) and we have
to return to the original kinetic equation. At present, the Monte Carlo method
is regarded as the most efficient and accurate method of solving this equation.
This is a computational procedure in which a computer simulates the process
of random walk of a particle implied by the kinetic equation. These computa-
tions [5.4,5] are very complicated, require considerable computer time, and are
rarely worthwhile. As an alternative to Monte Carlo simulations, an approximate
approach can be used in which the problem is reduced to equations that are no
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more complicated than the equations of the Lorentz approximation. The sim-
plified method is a more manageable tool, in comparison with the Monte Carlo
techniques, for studying discharge phenomena when moderate accuracy is accept-
able. It is suitable for analyzing the behavior of electrons in any, strong or weak,
uniform or nonuniform, fields, with all the qualitative features and corollaries of
the exact equation retained.

5.9.1 “Forward-Backward” Approximation

‘We shall assume that electrons move only along the field. They are scattered in
elastic collisions either forward or, with probability £, backwards. In inelastic
collisions (with excitation or ionization) they lose energy but do not change the
direction of motion. Let ¢;(v, z,#)dv electrons move at velocities from v to
v+ dv in the positive direction of the z axis (E = E, < 0), and (v, z, t)dv
move in the negative direction. Functions ¢1, o2 obey equations which are easily
obtained from (5.7,9, 10):

% . O0p1 eE Jpp 1

o Uz T ow -zl e)+Qe) 5
02 Op2 eE 3oy 1 ’
9 Var T m e 2019 Qk).

The effective frequency of elastic collisions is vm = 2Nvoc(v){, where £ =
(1/2)(1 — cos §). Adding and subtracting equations (5.42), we now use the func-
tions g1 = ¢1 * 2. They characterize the spectral density and the flux of
electrons and correspond to fo 1 of the Lorentz approximation. In the weak field
limit, equations for ¢y ; become similar to (5.14, 16). If v;,(v) = const, the ex-
act value of the drift velocity is obtained, while that of the diffusion coefficient
is three times the true value, reflecting the “one-dimensionality” of the random
motion. For details and the application to the cathode layer of a glow discharge
see [5.6] and Sect. 8.4.10; see also [5.7].

5.9.2 Runaway Electrons

In very strong and sufficiently extended fields, electrons reach high energies.
Inelastic collisions are then more frequent than elastic ones, and electrons are
mostly scattered forward. Of the two equations in (5.42), only the first survives
with £, v, = 0. The resulting equation for the mean energy of the spectrum
corresponds to the equation for a “monoenergetic” beam,

% =e|B(@)| - Lle), L=Nail+NY oiFEi. (5.43)
As with all cross sections oi(¢), of(¢), the inelastic loss function L(c) goes
through a maximum, at ¢ ~ 20-50¢eV. Therefore, an electron moving in the field
|E| > Forx = Lmax/e€ Will be continuously accelerated (will “run away™), in spite
of inelastic losses. In N2, (E/p)ait = 365 V/(cm-Torr), and in He, 63 V/(cm-Torr).
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6. Electric Probes

6.1 Introduction. Electric Circuit

The main objectives in experimental determination of plasma parameters are to
measure the density n. of electrons, their temperature 7 (provided they have
temperature), and, in the general case, the distribution function fo(v). The dis-
tributions of potential and electric field in space are of considerable interest in
discharge research. The probe method developed by Langmuir in 1923 solves
these problems if conditions are favourable. The probe method is unique among
all diagnostic techniques in making it possible to determine directly the local
plasma characteristics, that is, the spatial distribution of parameters; this is the
reason for the special value of probe techniques.

To conduct a probe study, one introduces into a chosen place in the plasma
an electrode and connects it to various potentials. The probe is a metal conductor
coated with insulation almost to the tip. The naked surface of the probe, in contact
with the plasma, may be given a plane, cylindrical, or spherical shape. The probe
potential imposed by a power supply is determined with respect to a reference
electrode: the anode, the cathode, or the grounded metal wall of the discharge
chamber if one is present. The measurement circuit is shown in Fig.6.1. In this
circuit the current closes the probe circuit via the anode, so that the polarity of the
probe current supply is chosen so as to have the probe potential lie between those
of the anode and the cathode (as in the plasma). The probe potential is varied
by a potentiometer. The experiment consists in measuring the current through
the probe and the voltage applied to it, that is, in recording its current-voltage
(V' — ) characteristic. Figure 6.2 shows several probe geometries. Probes are

Fig. 6.1. Circuit for probe measure-
i IL ments
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a 7 b 7 c d Fig. 6.2. (a—c) probe design, (d) wrong
7 7 design; (1) probe, (2) insulator

usually made of refractory metals: tungsten, molybdenum, tantalum. Cylindrical
probes are made of wire 0.5-0.05mm in diameter. Special glass coatings of
wire, ceramics, quartz, alumina (99 % AL O3), etc. are used as probe insulators.
In contrast to the wrong geometry in d, the probe geometry in ¢ reduces edge
effects. Indeed, data processing operates with the current-collecting surface area.
The characteristic size of spherical and plane probes is about 1 mm.

The simplicity of equipment and experiment constitute the advantages of
the probe method. The disadvantages lie in the complexities of the theory used
to extract the plasma characteristics from probe measurement data. To put it
more correctly: there is only a limited range of conditions under which the
theory is only moderately complicated and thus does not lead to a considerable
probability of obtaining erroneous results and faulty interpretations. In measuring
the quantity, one must strive for a method based on a simple, reliable theory with
a minimal number of assumptions and fuzzy constraints. In this respect, the probe
method is sufficiently reliable only in rarefied gases where the free path length is
greater than the characteristic size of the probe and the perturbed region around
it.! In principle, though, probes can be used to study plasma in a very wide range
of conditions: p ~ 10~5 — 10? Torr ne ~ 10% — 10 cm~3.

If the plasma is placed in a magnetic field, the theory becomes very com-
plicated and measurements are only interpreted with considerable difficulty. The
same is true if negative ions are present. If there is no reference electrode (e.g.,
in electrodeless high-frequency discharge or in a decaying plasma after the field
has been switched off), a single probe is useless. In such cases, double-probe
circuits are used (Sect. 6.6).

6.2 Current-Voltage Characteristic of a Single Probe

Figure 6.3 shows a somewhat idealized probe characteristic, that is, the electric
current i through a plane probe is plotted as a function of its potential V. The
choice of the reference point is immaterial as long as it is strictly fixed. This is

1 This is the case for which Langmuir’s theory is valid. Probes were introduced into discharge
plasma much earlier, at the beginning of this century. The potential difference between the probe
and the cathode was measured electrostatically. But it soon become clear that the probe and plasma
potentials do not coincide, although the potential difference between neighbouring points can be
determined in this way. Only with Langmuir’s theory did probes tum into an efficient method of
quantitative diagnostics
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Fig. 6.3. Typical probe characteristic

/
£

why a reference electrode is introduced. Let us give a qualitative interpretation
to the curve (V). Assume that the plasma is electroneutral in the absence of
the probe: ne = n, = ng. We denote its potential at the point where the probe
is located by V5. The plasma (space) potential Vs is measured with respect to
the reference electrode. Let Vs change only slightly within the region perturbed
by the probe, that is, the potential of the nearby unperturbed plasma around the
probe is V5. The experimentally measured probe potential with respect to the
reference electrode is V =V, + V5, where V;, is the probe potential with respect
to the unperturbed plasma in the surrounding space (Fig. 6.1).

A probe does not emit charged particles, it only collects them from the plasma.
We will operate with the absolute values of the electron and ion currents to the
electrode, 7. and z,, and use the following convention of probe current sign:
i = 1, — 1,; it corresponds to the curve orientation in Fig.6.3. If the probe and
space potentials are identical, and the current-collecting surface is parallel to the
direction of the external field between the anode and cathode, the charges reach
the probe only owing to their thermal motion. In fact, electrons move much faster
than ions, all the more so because their temperature in the weakly ionized plasma
is much higher than the ionic (gas) temperature T. As a result, at V = V5 the
probe current is practically equal to the electronic one: ¢ ~ ¢.. Let us emphasize
the fact that the conductor collects the electric current of electrons in the absence
of potential difference between the conductor and the surrounding plasma.

When the potential applied to the probe is positive with respect to the plasma,
V > Vs, ions are repelled by the probe so that the ionic current vanishes, and
electrons are attracted. A layer of negative space charge (known as the sheath),
screening the potential V}, develops around the probe. The potential drop from
V 10 V5 and the probe field are concentrated within the space charge layer,
vanishing asymptotically in the transition to the unperturbed plasma. The effect
is quite similar to plasma polarization around a charge and to the screening of
the field of a charge by plasmas at distances greater than the Debye radius (2.38).

Let us introduce the exterior surface of the sheath, that is, the boundary be-
yond which the plasma can be considered approximately neutral and the field
absent. Electrons are brought to the boundary from the outside and then trans-
ferred to the probe mostly via thermal motion; this factor determines their flux,
which is only weakly dependent on probe potential. The probe current coincides
with the more or less constant saturation electronic current i g. It corresponds
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to the upper plateau AB of the current-voltage characteristic. In the ideal case of
an “infinite” plane, i, s = const, so that this part of V — ¢ curve would be hori-
zontal. If the probe is small, the current grows with increasing positive potential,
though more slowly than on the steep segment of the V — ¢ curve.

If the potential applied to the probe is negative with respect to the plasma, the
electronic current drops sharply as |V, | increases, because the fraction of electrons
with velocities sufficient for overcoming the decelerating field diminishes. Thus
is the steep part C of the characteristic formed. The upper knee of the current-
voltage characteristic, B, fixes the space potential Vs, corresponding to V; = 0.
It is in this way that it is determined experimentally. The probe is moved and
the electric field is found from the difference between the potentials Vs at the
neighbouring points.

The current vanishes at a certain negative potential V, = V¢ (D in Fig.6.3).
The flux of a small number of energetic electrons, capable of overcoming the
decelerating potential, to the probe is compensated in this state by the ion flux.
This potential Vi (known as the floating potential) develops on an insulated
body placed in the plasma. Returning to the foomote in Sect.6.1, we can say
that experiments with probes not connected to a current source yielded, not the
plasma potential, but the more negative floating potential.

At still more negative potentials, the probe repels practically all the electrons
but attracts ions. The probe is surrounded with an ionic sheath of positive space
charge that screens the high negative potential V;. The probe current is then
purely ionic, determined by the flux of ions reaching the sheath boundary from
the surrounding plasma. This flux is nearly independent of the probe potential,
which is screened off, that is, the probe current varies slowly and coincides with
the ionic saturation current. This current corresponds to the lower plateau of the
current-voltage characteristic.

6.3 Theoretical Foundations of Electronic Current
Diagnostics of Rarefied Plasmas

6.3.1 Electron Temperature

Consider the steep segment of the probe characteristic C, where the current is
electronic and the potential decelerates electrons. Let the electrons cross the pos-
itive space-charge layer without collisions. When the probe voltage corresponds
to the steep segment, the sheath thickness is of the order of the Debye radius.
If T, ~ 1eV, ne ~ 10°cm~3, formula (2.38) yields d ~ 10—2cm. If the free
path length of electrons I is such that lep ~ 0.03 — 0.01 cm-Torr, then I > d if
p< 10-! — 1 Torr. We now calculate the electronic current to the probe, assum-
ing for simplicity that the layer is thin in comparison with the curvature radius or
size of the current-collecting surface. The problem can then be considered plane.
In Sect. 6.3.4, it is shown that the result obtained below is true for any convex
surface, for example, for a small spherical probe. Let us assume that the metal
surface totally absorbs (does not reflect) the charges.
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An electron impinging on the outer boundary of the sheath at a thermal
velocity is decelerated by the field normal to the surface, E;, = —dp/dz. As
prescribed by the equation of motion, mv, = d(mv? /2)dz = e dp/dz, an electron
can reach the probe surface only if at the beginning its velocity component v, is
such that mv? /2 > e[V}| or v, > v, = (2¢|V;|/m)!/2. If the electron distribution

function at the outer boundary of the layer is f(v;, vy, v;), then the probe current
density is

Je = e/ dvy/ dv,/ fvz,vy,v)v.dv, . 6.1)

Integrating (6.1) for the Maxwell distribution (see Appendix) and multiplying
the result by the surface area S, we find the probe current

i = S(enoTe/4) exp(eVp/kT2) , @ = (8kTe/nm)!/%. 6.2)

This formula, describing the steep fragment of the current-voltage character-
istic, was derived by Langmuir and is widely employed in practical work. Having
found the probe characteristic and then plotted In ¢ as a function of V, one can
determine the electron temperature T from the slope of the obtained straight
line. At the same time, the linearity of the In ¢ vs. V curve is evidence of the
maxwellian distribution of electrons.

6.3.2 Saturation Current; the Potential and Charge Density in Plasmas

We have already mentioned that the space potential V5 is determined by the
point of the upper knee on the V — i curve. If V > V5 (the field accelerating
the electrons), formula (6.2) is invalidated because now one has to integrate v,
in (6.1) from zero, regardless of V},. The probe current then coincides with the
electronic saturation current corresponding to zero field, that is, V, = 0 in (6.2):

1= lesa = Sengle /4 . 6.3)

This quantitity correspends to the flux density of particles of the gas, crossing
the area element from one side: nz /4. One of the two factors of 1/2 in the 1/4
appears because only one half of the particles move in the necessary direction,
and the other results from averaging over the hemisphere the cosine of the angle
¥ between the direction of the velocity v and the normal to the area element.
Having found the thermal velocity @ of electrons by measuring 7. on the steep
segment of the current-voltage characteristic, and the current at the knee of the

V — i curve, one can find the electron density ng in the plasma from formula
(6.3).

6.3.3 Criteria of “Rarefaction” of a Plasma

In order to justify the interpretation of ng as the electron density in nonperturbed
plasmas, it is necessary that the presence of the probe not violate ng at the
point of the last collision before electrons reach the probe. These points are at a
distance of about one free path length from the probe. However, the density at a
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point is created by particles arriving from the sphere of a radius of the order of
1. The surface of the probe, S, “cclipses” the fraction S/4x[? of this sphere and
thus weakens the source of density formation. This fraction must be small, that
is, S /47rl2 & 1, for the free path length ! to exceed the characteristic linear size
of the probe, \/S. Another condition of rerefaction is the smallness of the size
of the space-charge layer in comparison with [.

6.3.4 How to Find the Electron Distribution Function

In the case of an arbitrary, nearly isotropic electron distribution in an unperturbed
plasma, f(v;,vy,v;) = fo(v), it is expedient to introduce into expression 6.1)
for the electronic current to the probe surface the magnitude of velocity v and
the angle between v and the inward normal to the surface, . Remarking that
vy = v cos o, we rewrite (6.1) in the form

n/2 =)
je=e€ / cos ¥ 27 sin 9 do / v fo(v)dv . (6.4)
0 vy [ cos 9

Changing the sequence of integration but retaining the domain covered by the
double integral, we integrate (6.4) over u = cos V:

1 =) oo 1
Je =2me / pdy / v? fo(v)dv = 2me / v fo(v)dv / pdu
0 w/n vy v

t/v
2re [® [mo?
e (% - e|vp|> v fo(v)dv . (6.5)

m

The Maxwell function, fy = (m/27kT.)*/? exp (—mv?/2kT,), transforms (6.5)
into (6.2). Both (6.2) and (6.5) are valid only if V, < 0. If ¥}, > 0, the integration
in v in (6.4) must begin from zero, regardless of V}. This gives the saturation
current (6.3) with non-maxwellian mean velocity .

Now we twice differentiate (6.5) with respect to V, and obtain

d? 2re’ 2e|V;

a2 ==S—7 fow), u= —lm—pl . (6.6)
In order to find the electron distribution function, one has to obtain the probe
characteristic, differentiate it twice at each point of the steep segment, and assign
to the point the potential V, measured from the point B of the upper knee. The
second derivative gives a number fo(v) for v = (2¢|V,|/m)!/%. This method,
first employed by Druyvesteyn in 1930, is still used nowadays, with certain
improvements (Sect. 6.4).

6.3.5 The Applicability of the Theory of the Steep Segment
of the V — i Characteristic to Small-Sized Probes

Let us show that the fundamental diagnostics formula (6.5), derived above for the
case of plane geometry, holds just as well for probes that are small in comparison
with the size of the space-charge region. The only necessary condition is for the
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probe surface to be convex. The possibility of using small probes is extremely
desirable, because such probes disturb the natural conditions in the plasma to be
studied only slightly. The need to intrude into the plasma is one of the essential
drawbacks of the probe technique.

Not every electron entering the space-charge layer around a finite-size probe
reaches its surface. Some of them fly by the probe (Fig. 6.4). This is not a plane
problem; therefore the derivation of formula (6.5) must be reconsidered. This
shall do, following [6.1]. Denoting by r, the coordinates of a point on the probe
surface, and by v, and f(rp,vp) the velocity and electron distribution function
at the surface, the probe current density at a point 7}, is

w/2 joo
je=e /0 /o vp €05 9 f(rp, vp)2 sin 9 didv2du, . 6.7)

The surface being conves, electrons arrive at it from the entire hemisphere 0 <
9 < 7/f2.2

For an electron to arrive at a surface point 7, without collisions and with a
velocity vy, it has to leave a point = of nonperturbed plasma at a velocity v.
The force of deceleration has a potential, so that the change in the kinetic energy
of electrons over this distance is independent of the spatial distribution of the
potential and the shape of the trajectories:

mvl /2 = mv?/2 — e|Vp] . (6.8)

According to (5.6), however, the distribution function cannot change along the
trajectory of a particle in phase space. In nonperturbed plasma, it is isotropic
and equal to fo(v). Hence, f(ry,vp) = f(r,v) = fo(v). After replacing f in
(6.7) with fy(v), v% with the expression derived from (6.8), v,dv, with v dv, and
integrating over 1, we arrive at the last expression in (6.5). The current density

Fig. 6.4. Trajectories of particles near a repulsing spher-
ical or cylindrical probe

2 Some comers of concave areas are in the “shadow” of nearby protrusions, and thus have to be
singled out of the integral.

109



is the same for all surface elements of a convex probe, that is, i, = Sj., where
S is the total probe surface area.

6.3.6 Why the Current to a Small Probe Does Not Saturate

For the electronic current to reach the potential-independent value (6.3) corre-
sponding to saturation, it is sufficient to apply to the probe a small positive
potential V;, both in the ideal plane case and in real situations, provided the
space-charge thickness is small in comparison with the radius of curvature and
the size of the current-collecting surface. If the probe size is small in comparison
with the size (radius) of the space-charge region, the electronic current continues
to increase with increasing positive potential, although it grows less steeply than
on the steep part of the V —i curve, which corresponds to decreasing deceleration
potential. The reason for this behaviour of the V' — ¢ curve is that not all elec-
trons entering the space-charge layer (where they are in the attracting field) reach
the probe. Some of them pass by the probe and escape from the layer without
touching the probe. But it is obvious that the higher the accelerating potential
V,, the stronger the attractive force pulling electrons to the probe, the greater
the fraction of electrons in the layer that are collected by the probe; hence, the
current grows.

This situation is illustrated in Fig. 6.5, which represents a spherical and a
long cylindrical probe. In the latter case, it shows projections of trajectories
on the plane perpendicular to the axis. If a particle approaches the layer with
an impact parameter o greater than the layer radius R (the effective boundary
beyond which the field vanishes), its straight path does not bend. If a particle
enters the layer (¢ < R), it can either pass or hit the probe. The outcome depends
on the initial velocity vo, the impact parameter g, and the magnitude and radial
distribution V(r) of potential. The more energetic the electron, the smaller its
impact parameter must be, or the higher the potential, for the electric force to be
able to attract it to the probe. Very slow electrons with any o < R are collected
by the probe.

This behavior is implied by the energy and angular momentum conservation
laws:

Fig. 6.5. Trajectories of particles near an attracting spheri-
cal or cylindrical probe
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= =5 " eV(r), mor sin § = myp 6.9)
where r is the distance from the center to a point moving along the trajectory, v
is the velocity of the point, and 6 is the angle between the direction of motion
(tangent to the trajectory) and the radius vector r connecting the center to the
moving piont. The minimum distance of approach ry, of the particle to the center
satisfies (6.9) for sin § = 1, because the tangent to the trajectory is perpendicular
10 Tmin. If Tmin is less than the probe radius a, the particle inevitably strikes its
surface, and if rp, is greater, it goes by the probe.

Note that these effects, characterizing charges of both signs, are of greater
importance for ions. In practical work, the electronic part of the probe character-
istic (Vp > 0), corresponding to attraction, is rarely used. In order to reduce the
effect of a probe on the plasma, small probes are preferable; electronic current
in the range V > Vs is very high, melting the probe. Consequently, the ionic
part of the V' — ¢ curve is typically employed for measuring the charge density
in plasma (Sect. 6.5).

6.4 Procedure for Measuring the Distribution Function

6.4.1 Application of a Low ac Voltage

Direct differentiation of an experimental :(V) curve, let alone double differenti-
ation, involves considerable errors. For this reason, d%; / dV? is found by indirect
means. Thus it is advisable to superpose on the constant probe voltage V; a small
ac component: V =V, + V,sin wt. If V, « V,, then

di 1 [ &%

i) ~ i(V,) + (_’)Vc V,sin wt + = (m

2 in2
v 2 )vc V.”sin® wt

for each value of V;. Averaging over time gives

1 [ &%

Ai= (i) —i(Ve) = 5 (W) V2.
Ve

To achieve greater accuracy, the main component i(V;) is cancelled out by a
balancing circuit. Then the time-averaged increment to current, with known am-
plitude V,, immediately yields the second derivative.

A small, constant increment in the current can be measured only if the dis-
charge parameters are highly stable. The method can be improved by modulating
the amplitude of a high-frequency (w) the ac voltage with a low frequency wy, i.e.
Va = Vao(1 +cos wit). The second derivative is then related to the low-frequency
oscillating component of current:

.1 d% )
Al = 5 (m)vc Vd) cos wyt .
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This component is easier to measure. High-frequency-oscillations of current are
automatically averaged by the instrument because it cannot resolve them. In the
experiments to be described below, the carrier frequency was w /27 = 8.4- 10* Hz,
and the modulation frequency was w; /27 = 500Hz.

6.4.2 A Typical Result

To illustrate the applications of probe techniques, we will give the results obtained
for the electron distribution function in the positive column of a glow discharge.
The discharge was produced in a glass tube 2.5cm in diameter and 50 cm long.
Cylindrical probes 0.03 and 0.06 mm in diameter and 6 mm long were sealed
into the central part of the tube, parallel to the axis. Figure 6.6 shows a typical
current-voltage characteristic (on a semilogarithmic scale) and gives the second
derivative of current. At the knee of the V —i curve, d?i/dv? reverses its sign (see
Fig. 6.3); this fact rather facilitates the determination of the bend point and of the
space potential. Figure 6.7 plots energy distribution functions n(e) recalculated
on the basis of fo(v). They are given in arbitrary units, the quantity 100 being
assigned to the maximum. The corresponding Maxwell distributions are also
shown. The distribution temperatures were found from straight segments in the
range of low electron energies € = eV}, present on the plots of In ¢ vs. V. The
contribution of energetic electrons to the spectrum is seen to drop in comparison
with the maxwellian curve, as a result of electron energy loss to excitation.

d%i|\gi A ,
dvits Lgi
70
12
30+,
1 Volts
i 1 I |
4 %0 20
=30 d%
dv?
_70_

Fig. 6.6. Example of probe measurements. Discharge in mercury vapor. Wire probe on the tube axis,
0.03 mm in diameter, 6 mm in length [6.2]
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Fig. 6.7. Examples of distribution functions in neon, obtained by probe measurements. (a) p = 1 Torr,
i = 100mA; (b) p = 1Torm, ¢ = 25mA; (¢) p = 1.6 Torr, ¢ = 25mA. (I} Measured distribution, (2)
Maxwell distribution of the same mean energy (6.2}

6.5 Ionic Current to a Probe in Rarefied Plasma

Let a probe be connected to a negative potential so much higher than the electron
temperature (say, by an order of magnitude) that all electrons are repelled from
the probe and make no contribution to the probe current. The probe is surrounded
by a layer of positive space charge. Assume that the layer is thin, so that the
surface area of its outer boundary differs only slightly from the probe area S. If
the mean-free-path length of ions is much greater than the probe size (and hence,
than the layer thickness), the surrounding plasma is only slightly perturbed and
the ionic current can seemingly be evaluated using (6.3) after o, is replaced
with the thermal velocity of ions, 7, = (8kT/xM)!/2. However, if the charge
density no of weakly ionized plasma is determined in this way from the measured
ionic current at the lower low-slope part of the V — ; curve, it is found to be
systematically greater than the value calculated by using (6.3) and the electronic
saturation current (at the upper break point B).

Much theoretical work, including that of Langmuir himself and his coworkers,
was devoted to clarifying this situation. The clear answer was given by Bohm,
Burhop, and Massey in 1949. Varous versions of the detailed theory, which
includes the analysis of ion trajectories in the space-charge layer (Sect. 6.3.6)
and of the potential distribution in it, are very complicated [6.1,6.3,6.4]. We
will describe the process in the simplest possible way, aiming only at clarifying

the physical essence of the phenomenon and finding an evaluation formula for
the ionic current.
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6.5.1 Saturation Current

The gas and ion temperature T in a weakly ionized plasma is less, by more
than an order of magnitude than the electron temperature T, ~ 1eV. The charge
neutrality of plasma far from the probe begins to be violated where electrons are
appreciably decelerated in the repulsive field, that is, where the negative potential
with repsect to the nonperturbed plasma equals roughly |V4| = kTe/e. This is the
external boundary of the space-charge layer (Fig. 6.8). The electron density at
the boundary is given by the Boltzmann law: n, = noexp (—e|Vo|/kTe) ~ no/E,
where & is the base of natural logarithms. On the outside of this boundary,
low-energy ions manage to “keep up” with more energetic electrons so as to
maintain quasineutrality, that is, the ion density at the boundary is quite close to
ny. However, since kT < kT, ~ e|Vp|, ions are relatively strongly influenced
by the field outside the layer as well, namely, in the outer pree-sheath, where
the potential V' lies in the interval kT < |eV| < kTe. Inside it the plasma
is quasineutral but the field imparts to ions a velocity much higher than their
thermal value. They enter the layer from the pre-layer with a velocity normal to
the boundary surface given by

vy & Qe|Vo|/M)/? = QKT /M)'/* = (T /T) %5, .

As a result, the ionic saturation current in the idealized plane case is approxi-
mately equal to

ivsa % Senyor & (V2/2) Seno/KT/M - (6.10)

More detailed calculations give the same result, and even a very close value
for the numerical coefficient that in (6.10) equals \/i/ € = 0.52. In the case of
a spherical or thin cylindrical probe, the ionic current grows with increasing
negative potential, for reasons described in Sect. 6.3.6.
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Fig. 6.8. Variation of potential, electron density, and pos-
;’_‘ itive ion density near a negative probe
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6.5.2 Measurement of Charge Density in Plasma

This quantity is conveniently determined from T, and the measured ionic cur-
rent at the lower low-slope part of current-voltage characteristic, using (6.10) or
corrected, more complex formulae provided by the small probe theory.3 This is
the method that is mostly used in practice for finding no, especially if the jonic
current is weakly dependent on potential, the V — ¢ curve has a low-slope, and
the simple formula (6.10) is valid. As a comparison of (6.3) and (6.10) shows,
the electronic saturation current exceeds the ionic current by a factor of about
VM/m ~ 10%. We have mentioned already that the former produces greater
plasma perturbations and melts small probes. Formula (6.10) is used for the
rapid evaluation of spatial electron density distributions in plasmas. Typically,
the electron temperature is uniform in space and need not be measured at each
point.

6.5.3 Floating Potential

In the case of the Maxwell distribution of electrons, the electronic current at a
negative probe potential is given by (6.2) and the ionic current by (6.10). The
negative probe potential with respect to plasma, corresponding to zero probe
current, is found by equating the two expressions:

e|Vil/kTy ~ In [(é/ﬁ;) \/1\7/75] ~In (0.77\/3475) : 6.11)

The floating potential Vi [V] is about —3.3T; [eV] in hydrogen and —6.3T in
argon. The simplest way to measure the spatial plasma potential distribution Vs
is to determine at each point the probe potential V' at which the probe current
vanishes. The space potential is found by adding |Vf| of (6.11) to the measured
potential. If the electron temperature (in a more general case, the mean energy)
is spatially uniform, that is, V; ~ const, a constant potential bias does not af-
fect the electric field distribution, determined by the differences of V' between
neighbouring points.

6.6 Vacuum Diode Current and Space-Charge Layer
Close to a Charged Body

Estimates of the possibility of working with the simplest formulae of the probe
theory obtained for the plane case are based on comparing the space-charge
layer thickness with the probe size. We will evaluate the layer thickness in the
simplest situations, but those of main interest to probe diagnostics, in the extreme
situations in which the sign of particles flowing to the probe coincides with that

3 In fact, difficulties are encountered in estimating the correspondence of the experimental conditions

to the limits of applicability of a specific approximate formula; these limits are not always clearly
defined.
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of the space charge. These are the cases of positive or sufficiently high negative
potentials, that is, of saturation currents. In the range of the steep part of the V —:
curve, where the space charge at the probe repelling electrons is positive and the
current is electronic, this current is independent of layer geometry (Sect. 6.3.5).
The classical problem of current in the vacuum diode can be used as a suitable
model fo considering a layer at the probe and a number of other situations, such
as the cathode layer of arc discharges (Sect. 10.5.3).

6.6.1 Space-Charge-Limited Current in the Vacuum Gap

Let a voltage V be applied to plane electrodes separated by a distance h. External
factors cause the emission of charges from one electrode, so that dc current flows
through the circuit. This model represents an actual device, namely, the vacuum
diode with a heated cathode emitting thermionic current. If the heater current is
low and so is the emission current, the number of electrons in the surrounding
space is also small. They do not produce an apprciable field, so that the potential
« is distributed in the gap exactly as in the absence of charges: ¢ = —FExz, where
E = ~V/h is the field; ¢ and z are measured from the cathode (curve 1 in
Fig. 6.9). If the voltage is not too low, the field transports all the electrons to the
anode. The current coincides with the emission current (of density jem) and is
independent of V.

If the emission current is considerable, the gap fills up with a large number of
charges that produce their own field. The potential distribution (z) is affected
by the space charge. The electron density distribution, in its turn, depends on
@(x). This self-consistent picture is described by Poisson’s equation, current
continuity equations, and the equation for electron energy, mvz/2 = mvg + e,
that determines their velocity v(z). An electron leaves the cathode at a velocity
vp. If one assumes for simplicity that all electrons have identical velocities, the
absolute value of current density is j = en.v = const. Therefore

& 4rj 4rj

N4
—_ =4 = — = ;
dgz T T T vo(1 + 2ep/mud)!/2

(6.12)

note that ©(0) = 0, which has already been used in writing the equality for v(z),
and p(h) = V.

P

Fig. 6.9. Potential distribution in plane vacuum gap
when electrons are emitted by the cathode. (1) very
low emission current, the field is not distorted by
space charge; (2) potential barrier is formed for elec-
trons when they leave the cathode at a finite velocity;
(3) electrons are ejected at zero velocity
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Let us look at the behaviour of ¢(z). Electrons accumulate in the vicinity of
the cathode, while the field has not yet accelerated them. This negative charge
repels the electrons of the metal away from the surface, forming a double layer:
plus on the metal and minus in its vicinity. A reverse field £ > O appears at the
cathode, decelerating the emerging electrons, so that the potential ¢ falls below
the potential ¢ = 0O of the cathode itself. However, ¢ > 0 at the anode, and
hence, () passes through a minimum ¢, < 0 (curve 2 in Fig. 6.9). Electrons
face a potential barrier, —ewm, that they have to overcome at the expense of the
initial energy muva /2.

How high can this barrier be? Assume that |ewm| > mv3/2. Then none of
the electrons could cross it and the current is zero. This is possible only at very
low V; this case holds no interest for us. Let |epm| < mov?/2. Then all (assumed
to be monoenergetic) emerging electrons cross the barrier; the current is that of
saturation, jem. The case of interest is intermediate: the space charge limits, but
does not cut off, the current, 0 < j < jem: a case that is realized if the barrier
height (assuming electron energies to be identical) is exactly equal to the initial
energy of the electrons. Formally, electrons pass across the barrier peak at zero
velocity, their density at this point being infinite although j =“0-00” is finite, The
solution of (6.12) that satisfies the condition dip/dz = 0 for ¢ = oy, = —muv3 [2e
selects the value of current that the gap can let through at the voltage V' when
the space charge does not let all the emitted electrons reach the anode.*

Let us introduce a dimensionless potential 1 = 2ep/mo? into (6.12):

Py _4 L (md )
dz? "~ 923 T+9 ' 97 \187ej )

The physical meaning of the length scale zo will be clear immediately. Note
that d2¢ /dz? = (1/2)d(dy/dz)?/dy and integrate (6.13). To find the arbitrary
constant, we make use of the condition di/dz =0 for o) = —1. We obtain

dy

4
& =T, @ fora S zmin -

6.13)

Let us integrate these two equations. The constant in the equation with the sign
(-) is found from the condition ¢ = 0 at £ = 0. The result shows that the
minimum vy = ~1 is attained at a distance zmin) = zo from the cathode. The
constant in the solution of the equation with (+) is found by stipulating that

the solution pass through the same point z9, 4» = —1. This gives the potential
distribution plotted by curve 2 in Fig. 6.9:

%e 4/3
‘§=[:L- (1-1)} —1, (Hforz 2. (6.14)

mug To

* Real emitted electrons possess various velocities and a quite definite barrier is formed: |eqm|.
The electrons with higher initial energy overcome the barrier while the slower ones are tumed
back. The correct solution is obtainable only by numerical integration; actually, the same result is
obtained in the limit V 3% |om| [6.5].
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Assigning (6.14), with the sign (+), to the anode coordinate = = h, where
¢ =V, we find the relation defining the current j(V, h, vg). Nearly always eV >
muvd/2 ~ kT, where T is the cathode temperature (several tenths of a volt).
Hence, h > zo and the “1”s in (6.14) can be neglected everwhere except in
the immediate vicinity of the cathode. Hence, ¢ « z*/3, E « z'/3, v o 2%/3,

Ne X T =2/3 and the current is
) 26 V3 /2 {V[V]}3/2
. =234.10761 2 __ A
a 97r m T G o ©13)

This relation, giving the space-charge-limited current in a planar vacuum
diode, is known as the Child-Langmuir equation derived in 1913 or the law of
three-halves power: the current is proportional to V*/2. In this approximation, the
vanishingly small minimum of ¢ sits on the cathode. Law (6.15) can be derived in
an elementary manner, by integrating (6.12) under an additional condition E =0
for z = 0, which is equivalent to assuming that electrons leave the cathode at zero
velocity. The independence of ; from jen, must be interpreted as the unlimited
emission capability of the cathode. On the side of high voltages and currents,
the validity of (6.15) is limited by the condition j < jem, and on the side of
low values, by the condition V' > kT'/e and the stipulation that space charge
strongly affects the current.

We will illustrate this with a numerical example. If T ~ 1000K ~ 0.1eV,
an oxide cathode emits jem ~ 1 A/cm?, If a voltage V = 100V is applied to a
gap h = 1cm, the current will be only j ~ 2.3 - 103 A/cm?; only two electrons
out of 1000 will break through the barrier raised by the electrons themselves.

The i  V3/2 equation (6.15) holds for spherical and cylindrical diodes, but
h? is replaced with the product of one radius squared by a function of the ratio
of the radii; these functions are tabulated in [6.5]. Formula (6.15) also holds for
ion emitters after m is replaced with M, and V' with |V].

6.6.2 Evaluation of Plane Layer Thickness

This can be evaluated using the result above (and the relations for the appropriate
diodes in the cases of the spherical and cylindrical probes). The probe acts as
a charge-collecting electrode. The boundary of the quasineutral plasma, from
which particles are injected into the space-charge region, acts as the emitting
electrode. Note that the dependent variable changes. In a diode, the gap width is
fixed and the current “tunes up” to the applied voltage. The layer at the probe
receives a certain saturation current, imposed by the thermal gas-kinetic electron
flux in the case of positive probe potential, and by the Vj-independent ion flux
from the pre-layer to the layer in the case of high negative potentials. As for the
layer, its thickness # adjusts itself to the probe potential.

For V;, > 0 and the Maxwell electron distribution, formulas (6.3) and (6.15)
yield

b~ @/NVXeV, [kT.Y/*d, d=(kT./4neng)'/? .
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The thickness scale for the negative space-charge layer is the Debye radius d,
but the thickness increases with increasing potential. If the negative potential is
high, so that the current is due only to ions, (6.10) and (6.15) (with m replaced
by M) give the same thickness of the positive charge layer:

h = (42/9' 2 (e| Vol / kT /*d .

But in this case the potential |V;| is much higher. It exceeds the electron temper-
ature by about an order of magnitude, so as to have the electron current smaller
than the ion current. The ionic layer thickness is therefore an order of magni-
tude greater than the Debye radius. Qualitatively similar results are obtained for
the sphere and cylinder, but the theory gets very complicated when these cases
deviate very much from the plane case, that is, when h is much greater than the
probe radius [6.3, 4].

6.7 Double Probe

A double probe designed for plasma diagnostics in the absence of a reference
electrode was first used in [6.6, 7]. Two Langmuir probes are introduced into the
plasma and connected via a potentiometer to a dc supply unit so as to vary not
only the voltage V' between the probes but its polarity as well (Fig. 6.10).

6.7.1 Probe Characteristic

The current-voltage characteristic of a double probe in an electrodeless high-
frequency discharge is shown in Fig.6.11. Let us discuss its physical meaning
under the assumption of identical probes and identical plasma parameters at the
points where the probes are located. The characteristic in the figure is symmetric,
which demonstrates that in this particular experiment the above conditions were

Fig. 6.10. Double probe circuit with circular potentiometer [6.4)
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satisfied with high accuracy. If the plasma potentials Vs at the two probes are
equal, then no current flows through the probe circuit at zero voltage, V =0 :
1 = 0. This condition has also been met in this experiment: apparently, the probes
were placed very close, and the potential gradient in the plasma was small. The
two probes are at the same floating potential V; < 0 (Fig. 6.12a).

Let us denote the potential of the left-hand probe with respect to the plasma
by V;1, and that of the right-hand probe by Vj;,. For the direction of the voltage
axis, we set: V' = V}; — V. The electric current 7 is assumed positive if it flows
from the plasma into the left-hand probe; as before, i, and i, are the magnitudes
of the electronic and ionic probe currents (the signs of ¢ and V are in accord
with the orientation of the curve in Fig.6.11). The amount of positive charge
flowing from the plasma into one of the probes equals the amount flowing into
the plasma from the other probe; hence,

E =041 —tel = —(842 — 2e2) , 41 F 142 =tel Hle2 . (6.16)

The potential of neither of the probes can be positive. Indeed, if V;, were positive
the probe would receive the electronic saturation current. According to (6.16),
the electric circuit must be closed at the other probe where a substantially smaller
ionic current flows. Therefore, not only is the entire probe system floating, that
is, negatively charged with respect to the plasma, but each of the probes is
necessarily negative. Let the negative side of the power supply be connected
to the left-hand probe and the positive terminal to the right-hand one (V' < 0).
The current in the plasma flows from (+) to (—). Therefore, the ionic curent
dominates at the left-hand probe and the electronic current at the right-hand
one. If the voltage |V| is high (in comparison with kT;/e), the left-hand probe
is strongly negative, while the right-hand one is less negative than the floating
potential (Fig. 6.12b). The left-hand probe receives the purely ionic saturation
current. The dependence i(V) is then weak, corresponding to the left-hand low-
slope part of V — i curve. If V is small and negative, the_ ionic current to the
left-hand probe is partly compensated for by the electronic current. However,
the latter strongly depends on the probe potential, [namely, by Boltzmann’s law
(6.2)]. This is the steep segment of the V' — ¢ curve; the current drops sharply to
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Fig. 6.12. Double probe potential: (a) Floating potential,
no current through the probes; (b) Left-hand probe is
strongly negative, and receives ionic saturation current;
(c) Polarity reversal; the right-hand probe is strongly
negative

zero as V — 0. The right-hand part of the V — i curve exactly retraces the left-
hand one, corresponding to polarity reversal: “plus” connected to the left-hand
probe and “minus” to the right-hand probe (Fig. 6.12¢).

Langmuir’s formula (6.2) is applicable to electronic currents ie; and ico,
because the potentials of both probes are negative with respect to the plasma. In
view of (6.16),

¢ =01(Vp1) — Zesa €Xp (eVp1 /kTe) = —i12(Vp2)
+ e s €XP (Vi /FTL) | 6.17)

where ionic currents weakly depend on the negative probe potential that accel-
erates ions.

6.7.2 Measurement of Plasma Parameters

Differentiating the first equation of (6.17) with respect to V, and then considering
t'hc symmetry point of the V — ; characteristic, where ; = 0 by setting i.1(V}) =
t.1(Vp) = (24)p results in

(2,22, o] (2
av )y \\dV Jy kT ) \7av ), ©.18)
If the probe current vanishes at zero potential difference V, polarity reversal

simply changes the roles of the two probes. As a result, in addition to the relation
V' = Vp1 — Vj2, the probe potentials are related by the equation Vi (V) = Vo2 (—V).
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Differentiating these equations with respect to V, we obtain
1= (dVp/dV)y — (@Ve/dV)v , (dVi/dV)y = —(dVpa/dV)—v) -
Hence, at the symmetry point, (dVp1/dV) = 1/2. Now (6.18) implies
e/kTe = (in)y " [(din/dVpr)o — 2(di/dV o] . (6.19)

This formula is used to measure electron temperature. The derivative (di/dV)o
is found from the slope of the measured V' — ¢ curve, at a point where 7 = Q.
The ionic current and its derivative (note that the latter is much lower than the
derivative of the total current) can be found by extrapolating the low-slope part
of the V — { curve linearly to the symmetry point (Fig. 6.11). We assume here
that V = V; in the range of high negative voltages, that is, the function ¢,1(V)
measured in this range can be treated as ¢,1(V}1), which justifies the extrapolation.

Another method of measuring T; resembles the technique employed in the
single-probe method. Let us divide the second equation of (6.16) by e, use
Langmuir’s formula (6.2) for electronic currents, and take the logarithm of the
result:

141 — 142 eV
n{—-1]= . 6.2
"(i—m ) KT ©20)
Now T, can be found from the slope of the straight line in the neighbourhood of
the symmetry point after ionic currents have been determined by extrapolation
and the semilogarithmic curve (6.20) has been plotted as a function of V.
The electron density in the plasma is found as in the single-probe technique,

using (6.10) for the ionic saturation current, after 7, has been found and the
current 7 & 1,54 at the low-slope part of the V' — ¢ curve measured.

6.7.3 Measurement of Electric Field

In the case of a potential gradient in a plasma, the space potentials at the pints
where the probes are placed, Vs and Vs,, are different. For both probes to float
and probe currents to vanish, they must be placed at a potential difference AV =
Vp1 — Vp2 = Va1 — Vsz. By varying the voltage to bring the probe current to zero,
and knowing the distance Az between probes, we find the field E, = AV/Ax.
However, the plasma potential cannot be found by the double-probe technique
in prinicple.

If AV #0, the methods of determining T; and no remain valid, but the
symmetry point on the V — i curve at which i = O shifts along the V axis by
AV. Formulas (6.19) and (6.20) must operate with this new point. The current
in a double probe being much lower than the electronic current of a single
probe (which can be used for positive ion currents only), the former produces a
much smaller disturbance in the plasma. This is why it is used also for studying
nonstationary processes that are especially sensitive to perturbation, since the
entire picture of plasma evolution may be disrupted otherwise.
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6.8 Probe in a High-Pressure Plasma

When we speak of high pressure, we mean the situation in which the free path
lengths of electrons and ions, /. and [, are very small compared with the probe
size. The probe is assumed to be spherical, of radius a. For instance, for p =
30 Torr we find I, ~ 10~3¢cm, I, ~ 10~*cm, while @ ~ 10~! — 1cm. Under
typical discharge conditions (T, ~ 10*K, np ~ 10° — 10'°cm~3), the Debye
radius is d = (kT./4ne?ng)!/? ~ 10~2cm, so that | < d < a. In a dense gas,
fluxes of charged particles to a probe are formed as a result of diffusion and
drift. In this case the theory seems to be even more complicated than for rarefied
plasma, and has not been fully developed. Furthermore, quantitative results can
be obtained only using the data on free-path lengths or mobilities; this introduces
additional errors into the final results. Without going into the details of the theory,
let us dwell on several general features that will facilitate our understanding of
the physical processes.

6.8.1 Approximate Equilibrium in Electron Gas

Fluxes of charged particles can be treated as sums of the diffusion and drift
components [see (2.20)]. The electric field E is produced by the voltage applied
to the probe and by plasma polarization. Let a negative potential, decelerating the
electrons, be applied to the probe. If the potential equals the floating value, the
electron and the ion fluxes to the probe are exactly equal. If the potential is more
negative, the electron flux is less than the ionic flux. If it is more positive, but only
slightly, than the floating value, the electron flux exceeds the ionic flux but has a
comparable magnitude. In such cases (when the probe potential is neither positive
nor weakly negative), the ionic layer of positive space charge around the probe
transforms into a layer of perturbed but now quasineutral palsma that gradually
changes into nonperturbed plasma of charge density ng. The perturbation due to
the probe manifests itself in the quasineutral layer as a gradient of the densities
ne & n, =~ n. The densities decrease towards the probe, which ensures the
diffusion flux of charges from a remote region to the probe surface absorbing
them. The quasineutrality as such follows from the smallness of the Debye radius
in comparison with the characteristic length of density variation, which is of the
order of the probe size.

As we have mentioned, if the probe potential is sufficiently negative, the
electronic current is comparable to the ionic one or is smaller. But the diffusion
coefficient D, and mobility u. of electrons are much higher than D, and pu.
of ions. Therefore, oppositely directed high diffusion and drift electronic fluxes
balance each other out to yield a relatively small resultant electron flux I, com-
parable with (or less than) the ionic flux I',. In view of the Einstein relation
(2.24) between D, and ., and assuming in (2.20) that I'; ~ 0, we find that

Vne ~ He €

VvV
vV ~ i
e D, kT y Ne = 1ngp €Xp T, (6.21)
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where V() < 0 is the potential measured with respect to the unperturbed plasma.
The electron density distribution in a remote neighbourhood of a negative probe
is thus approximately described by the Boltzmann law.

6.8.2 Spatial Distributions of Charge Density and Potential
in the Quasineutral Region Around a Negative Probe

The electric field in the quasineutral region (quasi-equilibrium for electrons) is
related to the gradient of n. by the first formula of (6.21). Since n, ~ n. =~ n,
we introduce this value of F into equation (2.20) for the ionic flux. The total
ionic current across any spherical surface is

kT, éﬁ
dr ’

is X 4nrle [D+ + (6.22)

€

The expression in brackets is the familiar coefficient of ambipolar diffusion
(2.25) in which g > p,. If the probe is at floating potential and the electronic
and ionic fluxes to the probe are equal, the flux of ions to the absorbing body
is in fact the result of ambipolar diffusion (Sect.2.6). At a different potential,
the electron and ion fluxes differ by a quantity comparable with the ambipolar
flux. In any case, the ionic flux in the quasineutral zone coincides in magnitude
and direction with the ambipolar diffusion flux. In a nonequilibrium flux with
T. > T, the drift component of the ionic flux, which is proportional to the
second term of (6.22), is greater than the diffusion component by a factor of
T./T > 1; one is justified then to speak of the pure drift of ions in the total field
E of the probe and polarization fields. We neglect the small term depending on
D, in (6.22).

Under stationary conditions and neglecting relatively slow processes of cre-
ation and removal of charges in the plasma region perturbed by the probe (as-
sumed to be small), we have 7,(r) = const. Integration of (6.22) yields the
charge distribution in th quasineutral zone which transforms asymptotically into
the nonperturbed plasma as r — oo :

R 14
= 1—— R=——o—o . (6.23)
nEm ( r ) ’ 4menop+(kTe/€)

The physical meaning of R will now be clarified. According to (6.21) and (6.23),
and since n & n, the potential and field distributions in the quasineutral region
are

kT | 1 ET. R? 1
— n e —

e 1—-R/r’
As we move from infinity to the probe, V and E grow from zero, with scales
kT./e and kT./eR, and tend formally to —co as r — R, when formally n — 0.

The radius R corresponds to the boundary of the space charge that separates
the probe from the quasineutral region: as r — R, (6.23) and (6.24) cease to be
valid. Indeed, quasineutrality is violated where the potential |V (r)|, decelerating

(6.24)

V=- ST eR 2 1_R/r
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electrons, reaches several times the electron temperature k7T, /e. At this distance,
however, 1 — R/r < 1, so that r & R. Therefore, R can be interpreted as the
effective layer radius; the second relation of (6.23) gives the ionic probe current
as a function of R.

6.8.3 Tonic Saturation Current and Evaluation
of Charge Density in Plasma

The higher the negative probe potential |V} |, the greater the positive space-charge
layer thickness h = R—a and the greater R. According to (6.23), the ionic current
grows with increasing R. However, if the layer is thin, R is approximately equal
to the probe radius a and the ionic current is independent of potential. The
corresponding quantity ¢, is the ionic saturation current. This occurs either when
the probe is large and the layer thickness k (in general, it is characterized by the
Debye radius d) is small in comparison with a, or if the Debye radius is small,
that is, the electron density in the plasma is sufficiently high.

Expressing the ion mobility in (6.23) in terms of free path length, u, =
el,/M%,, where ©, = (8kT/xM)'/?, and introducing the probe surface area
S =4ma?, we can rewrite the ionic saturation current in the form

: /2 KT\ (TN 1,
lysa =S (g) eng (ﬁ) (_f 2 (6.25)

This differs from (6.10) for rarefied plasmas in the last two factors. The first
one, (T./T)'/?, does not exceed 10; the second one is, according to the initial
assumption, a very small quantity, much less than 10~!. The ionic saturation
current is, therefore, much lower in dense ionized gas than in rarefied gas, and
the higher the pressure the lower it is.

The probe characteristic at high pressures is qualitatively similar to the V —2
curve in a rarefied plasma; its lower low-slope part corresponds to the ionic
current. The charge density ng can be estimated on the basis of the measured
ionic current via (6.25). Even if the electron temperature in (6.25) cannot be
reliably measured, we know that it lies in a much narrower range of values
(T =~ 1eV) than the electron density, which may vary by orders of magnitude
in different discharge conditions.

6.8.4 On the Use of Electronic Probe Current
for Evaluating Electron Temperature

If the negative probe potential is higher than the floating value, the electronic
Current is greater than the ionic and increases rapidly as the decelerating potential
[Vp| decreases. As in the case of rarefied plasmas, i = i — i, = 7. This situation
corresponds to the steep part of the V — i curve, present at high pressure as well.
Electrons reach the probe immediately after the last collision, that is, from the
sphere of radius r; ~ a + [ that lies at a small distance of order le <€ a from
the probe surface. Let us denote the density and potential at the radius r1 by neg
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and V), repsectively. The electron probe current can be expressed by a formula
similar to (6.2),

ie % S(ne17e/4) exp [e(Vp ~W)/FT) (6.26)

because electrons from the sphere r; reach the probe without colisions. The
electron temperature and %(T.) are much less perturbed than the density.

If (6.21) for equilibrium electron density ne(V) is extrapolated up to the
sphere of radius ry, where V = V], we define n¢; and obtain from (6.26) exactly
the expression (6.2) for the probe current, i  exp (eVp/kTe). There is some
hope, therefore, that the steep part of the V — i characteristic can be used to
evaluate the electron temperature (using the semilogarithmic plot In : vs. ) A
more detailed analysis [6.8] taking into account that the electron flux in (2.20)
is nonzero demonstrated that the electronic current is reduced in comparison
with (6.2) by a factor of vy ~ 1+ a(h/L)kT./eV;), where « is a numerical
coefficient ~ 1/2. The reduction may be substantial, of the order of 10, but it
depends on V;, much less than the Boltzmann exponential in (6.2). That is why
T, can be estimated on the basis of the slope of the electronic part of the probe
characteristic.

6.8.5 Layer of Positive Space Charge

In order to evaluate the thickness or radius of the layer separating the probe from
the quasineutral plasma, we have to integrate Poisson’s equation. Neglecting the
small electron density in the ionic layer, we can write

1 d, dav

-ﬁzr E =4ren, , E=—; <0. 6.27)
As in Sect. 6.6, we give the ion density in terms of the ionic flux (drift flux in this
case): n, = I /p,| E|.5 Introducing the total ionic current (which is independent
of r), according to (6.23), we obtain

e _ R
7 4rrlep(—E) VeE 12

For boundary conditions to (6.27) and (6.28), we can set that the field and
potential are zero at the boundary between the layer and the quasineutral region
at r = R. This approximation reflects the fact that the field is small compared
with the average field in the layer.

Even after these simplifications, a compact formula for layer thickness, h =
R — a, is obtained only if the layer is thin, that is, “plane”; correspondingly,
r2 = const & a?. In this case,

n

(6.28)

5 At very high negative potentials V;, the field in the layer may be so high that the drift of ions is
of the anomalous type: via o< /| E| (Sect.2.5.4).
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2/3
hfa= [(3 J2V2)(d/a)elVy| /ch)] . (6.29)

For a collisionless layer, formula (6.15) gives h o |V,|*/4. The plane layer
approximation is valid as long as h < a. For exmaple: if d ~ 10~2cm, a ~
10~ cm, and a/d = 10, the layer thickness increasing with potential becomes
comparable with probe radius, i/a ~ 1 for e|V}| =~ 10kT;. With sphericity taken
into account the formulae are very unwieldy, even though the integration does
not involve any fundamental problems. If the layer is thick, its radius R and the
probe potential obey the crude approximate relation:

eVp/kTe ~ —(2/3)'(a/d)(R/a)(R[a~ 1) . (6.30)

For example, if a/d = 12.3, R/a = 1.5 for e|V,|/kT. = 7.5 and R/a = 2 for
20. In the limit of large |V;|, R/a ~ 1/|V;|, and hence (6.23) implies the probe
current = 1, ~ /| Vp|.

6.8.6 Floating Potential and Determination
of Potential Distribution

Equating the expressions for the ionic (6.25), and the electronic current (6.2), and
taking into account the decreasing factor v mentioned in Sect. 6.8.4, we arrive
at a relation similar to (6.11),

Ml 1o |2 (MY (ZY e 6:31)
kT, 7 \m T. I ’ '

that defines the floating potential. It is of the order of 10(kT;/e). Measuring the
absolute value of potential in a dense plasma is not a simple problem, but the
spatial potential distribution is readily obtainable. This can be accomplished, for
example, by connecting the probe without any dc supply to the reference electrode
in series with a very high resistor £2. The almost insulated probe is then at the
floating potential. The potential difference between the probe and the reference
electrode is found by measuring on the weak probe current: if2 = Vs + V;. If
the floating potential is the same everywhere, we move the probe and find the
plasma potential distribution with respect to the reference electrode potential Vs

up to the constant V;. The field distribution is found from potential differences
between nearby points.
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7. Breakdown of Gases in Fields
of Various Frequency Ranges

7.1 Essential Characteristics of the Phenomenon

In the most general sense, electric breakdown is the process of transformation
of a nonconducting material into a conductor as a result of applying to it a
sufficiently strong field. The ionized state produced in the gas by breakdown
builds up in a time which varies from 10° to several seconds, although usually
it is between 10~% to 10~*s. Ionization reaches appreciable values, so much so
that, as a rule, breakdown is accompanied with a light flash visible to the naked
eye. Some modes of flash are commonly known as “sparks”. If the external field
is applied for a sufficiently long time, the breakdown may start a discharge,
sustained as long as the field is there. This occurs in any electric field: constant,
pulsed, periodic, or produced by electromagnetic waves, including light waves.
Concrete conditions dictate to what limit the degree of ionization will grow. It
may reach 1078, as in the glow discharge where the current is limited by a high
resistance in the external circuit, or it may be the total single ionization of all
atoms, as occurs in the breakdown by high-intensity laser pulse.

The primary element of the often very complicated breakdown process is the
electron avalanche, which develops in the gas when a strong enough electric field
is applied to it. An avalanche begins with a small number of “seed” electrons
that appear accidentally, say, due to cosmic rays. It can even be triggered by a
single electron. An artificial source of primary electrons is employed to facilitate
breakdown build up in experimental studies, in order to start up the avalanche
reliably. For example, the cathode or the gas may be irradiated with UV light to
produce photoelectrons. An electron picks up energy in the electric field. Having
reached energy somewhat greater than the ionization potential, the electron ion-
izes a molecule, therebgy losing its energy. The result is the production of two
slow electrons. They are again accelerated in the field, ionize molecules, thereby
producing four electrons, and so forth. In principle, it is unimportant whether
this occurs in an avalanche that drifts systematically in a constant field, or by
electrons which are “marking time” executing oscillatory motion in a rapidly os-
cillating field, although the details and the outward manifestations of the process

may be very different.

Gas breakdown is essentially a threshold process. This means that breakdown
sets in only if the field exceeds a value characterizing a specific set of conditions.
Thus no changes in the state of the medium are noticeable for some time while
the voltage across a discharge gap or the intensity of electromagnetic radiation
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is gradually increased. Suddenly, ionization rises dramatically at a certain value
of voltage or intensity, instruments detect a current, and a flash is observed.
The threshold is a consequence of the steep dependence of the rate of atomic
ionization by electron impact on field strength and by the fact that ionization,
producing electron multiplication, is accompanied by mechanisms that create
obstacles to the development of the avalanche.

The avalanche is slowed down by electron energy losses and by the loss of
electrons themselves. The former losses slow down the accumulation of energy
sufficient for ionization. The latter terminate chains in the multiplication chain
reaction. Electrons lose energy to excite electron states of atoms and molecules,
molecular vibration, and rotation; energy is also lost in elastic collisions. Elec-
tron impact chains are also terminated as a result of diffusion leading to the
removal of electrons from the field (e.g., precipitation on the walls), and of the
attachment in electronegative gases. When gas breakdown occurs between elec-
trodes, the field applied to them removes electrons to the anode. Recombination
is not amongst the mechanisms of electron removal that appreciably influence
the breakdown threshold. The fate of an avalanche (whether it will grow or die
out) is decided at its early stage, when the numbers of electrons and ions are so
small that their encounters have a very low probability. The recombination rate
is proportional to the electron density squared. At low densities, recombination
is much less effective than removal mechanisms that are linear in the electron
density: transport to the anode, diffusion to the walls, and attachment. How-
ever, recombination intensifies after a large number of generations of secondary
electrons and may set the limit to further ionization, thereby finalizing the level
reached by ionization in the breakdown.

Electron energy losses must rather be treated as a factor reducing the ioniza-
tion frequency. Formally, they do not eliminate the possibility of ionization, only
slow it down; practically, though, these losses in insufficiently strong fields sup-
press the ionization rate. The disappearance of an electron breaks a chain, setting
a limit to the possibility of sustaining the chain reaction of mulitplication. The
creation and removal of electrons are competing processes. The rate of creation
of new electrons is determined by the ionization frequency and is extremely sen-
sitive to field strength. The rate of removal is much less dependent on the field.
Even if the field is slightly lower than the threshold value, the ionization rate is
considerably smaller than the rate of removal, and no multiplication occurs. If the
field exceeds the threshold, the ionization process is speeded up catastrophically.
The higher the field is above the threshold, the easier and swifter the breakdown
develops.

The breakdown threshold is determined by the relation between creation and
removal of electrons only if the field is maintained for a sufficiently long time,
adequate for producing numerous generations of electrons. If a pulse is very short,
the field must be so high that a sufficient, “macroscopic” number of electrons
be born during the pulse, even if losses are absent. This is known to happen,
for example, in gas breakdown by focussed “giant” laser pulses that last only
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(2 —4) - 1078 s. A visible flash appears when about 10" electrons are produced
in the focal region.

This chapter treats the effects of gas discharges in all frequency ranges, from
dc fields to optical frequencies. However, the principal phenomena in discharge-
gap breakdown by voltage applied to electrodes are discussed here only with
regard to the breakdown of the entire gap volume and the triggering of a self-
sustained discharge in moderate-pressure gases. The breakdown in relatively long
gaps filled with high (atmospheric) pressure gas, known as the streamer, leader
or spark, discharge in which a thin jonized channel grows from one electrode to
the other, will be treated in Chap. 12.

7.2 Breakdown and Triggering of Self-Sustained Discharge
in a Constant Homogeneous Field at Moderately
Large Product of Pressure and Discharge Gap Width

7.2.1 Non-Self-Sustaining Current in a Discharge Gap

Consider what happens in a plane gap connected to a circuit with a dc power
supply if the voltage V on the electrodes is gradually raised. The applied electric
ficld is assumed to be homogeneous, F = V/d, where d is the electrode separa-
tion. Electrons appear at the cathode occasionally, and the field transports them
towards the anode. An electron may not reach the anode: it may stop on the side
wall of the discharge chamber, or attach itself to an electronegative molecule.
Then ions may recombine. The fraction of electrons lost on the way is smaller,
the faster they cross the gap, that is, the stronger the field. As a result, the electric
current i in the circuit, determined by the number of charged particles that reach
the electrodes in 1s, increases (at first) with increasing V. Beginning at a certain
voltage, practically all the charged particles (electrons and ions) randomly cre-
ated in the gas reach the electrodes. The current reaches saturation and ceases
to depend on V. It is determined by the rate of charge generation due to outside
sources, COSmic rays, or an artificial ionizer. This discharge is not self-sustaining.
Its static current-voltage characteristic is shown in Fig.7.1. It is static since it
corresponds to a steady state. The voltage is assumed to be raised so slowly that
a stationary state is attained at each value of V.

At still higher voltages, the electron impact ionization of gas molecules starts,
amplifying the current due to outside sources. Assume, for example, that the
cathode is irradiated with the light of a UV lamp producing a photocurrent 20
attachment is absent (for its effects, see Sect.7.2.5). The electronic current at
the anode and the circuit current : are enhanced in comparison with the current
of electrons leaving the cathode by a factor exp (ad), where « is Townsend’s
coefficient for ionization (Sect.4.1.2): i = ip exp (ad). The total cathode current
in the steady state also equals :. It consists of the electron current 7o and the
current of ions generated in the course of ionization and pulled by the field to
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\4 Fig.7.1. V — { characteristic of non-self-sustaining discharge between
__________ plane electrodes

the cathode, 7o[exp (ad) — 1] (Sect. 4.7.1). The vertically rising curve in Fig. 7.1
becomes less steep. As voltage grows further, secondary processes come into
play: creation of electrons by particles that appear as a result of the primary
process of electron impact ionization. Secondary processes affect amplification
more strongly if they produce electron emission from the cathode. An emitted
electron covers the entire path from cathode to anode and therefore produces
more ionization than an electron “born” halfway. With secondary emission taken
into account, the steady discharge current is given by (4.16):

i =19 exp (ad)/ {1 — ~lexp(ad) - 11} ,

where « is the effective secondary emission coefficient for the cathode; the emis-
sion is caused by positive ions, photons, and metastable atoms produced in the
gas as a result of ionization and excitation of atoms by electrons. As long as the
denominator is positive, the current remains non-self-sustained. As V increases,
the current grows even steeper than in the range of simple amplification, ow-
ing to a decrease in the denominator which equals unity at small values of the
amplification coefficient ad.

7.2.2 Condition for Initiating a Self-Sustaining Discharge

If the voltage between the electrodes V > V/ is such that u = y[exp (ad)—-1] > 1,
the denominator in the last formula is negative and the expression becomes
meaningless. This signifies that the current cannot be steady at this voltage. On
the other hand, the current at V < V;, with u < 1, is steady and non-self-
sustained. The transition condition is x =1, or

vlexplad) —1] =1, ad=In(i/y+1); (7.1)

this represents a steady self-sustained current in a homogeneous field E, = V, /d,
where the threshold voltage V; is found from equality (7.1).

. Indeed, formally at V =V, : = 0/0+0 for iy = 0, that is, current flows even
In the absence of an outside source of electrons. Processes in the discharge gap
ensure the reproduction of electrons removed by the field, without outside help.
One electron emitted by the cathode produces exp (ad) — 1 ions which, hitting
the cathode, knock out « electrons each (if this is the ion-electron emission). One
primary electron is replaced with one secondary electron (u = v(e®? — 1) = 1),
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etc. The transition of non-self-sustaining to self-sustaining discharge can also
be interpreted as the onset of breakdown. The breakdown voltage V; is defined
by condition (7.1) as a function of gap width d, in terms of - and the known
function a(E). If v ~ 107! — 1073 (Sect.4.7.3), an electron triggers a self-
sustained discharge if it takes part in ad/In 2 ~1In 4~1/1n 2 (3 to 10) ionizing
collisions along the path d.

7.2.3 Formative Time of Breakdown

Strictly speaking, breakdown cannot be sustained if the voltage applied to elec-
trodes is exactly Vi, as it ensures only the primitive reproduction of electrons,
p = 1. A negligible seed current at the cathode must grow to a macroscopic
value, otherwise we cannot speak of a self-sustained discharge. It will happen
if there is at least a small overvoltage AV =V — V; > 0 ensuring expanded
reproduction of electrons, p > 1. In this case, if, say, a single electron has left
the cathode at the initial moment, g > 1 electrons will be emitted in the next
cycle, then 2, etc. The current and ionization in the gas will increase until the
growth is stopped by recombination or the ohmic resistance §2 of the circuit. As
the current increases, this resistance accepts a progressively greater part of the
power supply voltage, 742, and the voltage across the electrodes decreases. When
V drops to W, 7 ceases to grow and the self-sustaining current becomes station-
ary. Thus starts the so-called dark (Townsend) discharge (Sects. 8.2.2 and 8.3.1).
For this to happen, the circuit resistance must be very high, limiting the discharge
current to a very small value at which the positive space charge accumulating in
the gap does not distort the external field. Otherwise the field becomes spatially
inhomogeneous and a glow discharge develops (Sects. 8.3, 8.4). The outlined
breakdown is also known as Townsend process (to distinguish it from the spark
breakdown mechanism).

Let us find the law of current growth at the stage when the overvoltage can be
regarded as constant. Assume that emission is caused by positive ions. Ions are
created mostly close to the anode, where multiplication results in the maximal
number of electrons. By T we denote the time required to pull an ion from the
anode to the cathode. Electron emission from the cathode at a moment ¢ is caused
by ions produced by electrons emitted at the time t — 7. The electronic current
1y from the cathode obeys an approximate equation:

M mig+pnt—T)R w0+ p {i](t) — T-(fiitl- s
where i is the seed current due to the external ionizer. Integrating this equation
with the initial condition i;(0) = 7o at the moment of switching on the field, we
obtain the following expression for the discharge current (Schade, 1937)

e 1
i(8) = i1 (t)e** = ioe™? [F’j T €Xp (" p ;) ~ ;—_—ﬂ : 12)
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The current grows with time exponentially, and the faster, the higher the
overvoltage and p — 1. The time scale of current increase is u7/(p — 1). If the
emission is caused by photons, 7 is of the order of the drift time of electrons (not
ions) that is, breakdown develops two orders of magnitude faster. The ionization
coefficient « is a steep function of field, while the amplification exp (ad) and
reproduction coefficient u depend on a exponentially. Therefore, several percent
overvoltage is already sufficient for u to be appreciably greater than unity and
for the breakdown to develop rapidly. For this reason, the critical value V;, found
from the condition p = 1, is a sufficiently definite characteristic of the breakdown
threshold. The real time of breakdown buildup after the voltage has been applied
consists of two parts: that discussed above, with a scale pu7/(n — 1), and the
time until the first seed electron appears (unless an artificial source of sufficient
intensity is used). The latter time has a statistical spread. The retardation time
of the Townsend breakdown is of the order of 1075103 s.

The evolution of the Townsend breakdown is best thought of as the multipli-
cation of avalanches. Each cycle, from the moment an individual electron leaves
the cathode until all exp (ad) electrons that are its descendents reach the anode,
can be treated as a single avalanche. If the breakdown has started with a single
spurious electron, then the second cycle following the first avalanche involves,
on the average, u > 1 avalanches, the third cycle involves x? avalanches, and so
on. Each avalanche spreads transversally somewhat owing to electron diffusion,
so that a new avalanche starts at a different spot on the cathode (which may be
quite far in the case of photoemission). Furthermore, a process is not necessarily
started by a single electron: several may be emitted simultaneously from different
points. As a result, the Townsend breakdown most often involves in a diffuse
manner the entire volume of the gap. This is a clear external difference to the
spark discharge.

7.2.4 Ignition Potential

This is an equivalent term for the break-down voltage V;. This quantity, and the
corresponding breakdown field F;, depend on the gas, the material of the cathode,
the pressure, and the discharge gap width. To arrive at explicit expressions, we
make use of (4.5) for . Substituting it into (7.1), we obtain

,:613_({"”_, B__ B  om_ A (7.3)
npd’ p C+lnpd In(1/y+1)

The ignition potential V; and E, /p depend only on the product pd. This is a
manifestation of a similarity law. The calculation of W by (7.3), with experimen-
tally determined constants A and B (Table 4.1), gives a satisfactory agreement
with experiment. The experimental curves V;(pd), the so-called Paschen curves,
are plotted in Figs.7.2,7.3. There exists the minimal breakdown voltage for a

discharge gap, and according to (7.3), the parameters of this minimum point are
(€=2.72):
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Fig. 7.2. Breakdown potentials in various gases over a wide range of pd values (Paschen curves) on
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Fig. 7.3. Paschen curves on an enlarged scale [7.3]
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The value of E/p at the minimum corresponds to Stoletov’s point (Sect. 4.1.6),
where the ionization capability of electrons, n = a/E = A/BE, is at a maxi-
mum. The conditions for breakdown are the easiest because the conditions for
multiplication are optimal. In contrast to Vmin and (pd)min» the product (E/p)min
is independent of the cathode material (of #), as demonstrated by (7.4) and
experimental data [7.1,2). Let us compare the estimate given by (7.4) with
measurements. In air, A = 15, B = 365. For v = 1072, formulas (7.4) give
C = 1.18, (pd)min = 0.83 Torrcm, (E/pP)min = 365 V/(cm-Torr), Vpin = 300V,
Experiments with an iron cathode give: (pd)mn = 0.57 Torr-cm, Vi = 330V,
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(E/P)min = 580 V/(cm-Torr). In inert gases, (pd)mn is greater but Vi, is smaller.
Thus in argon with an iron cathode, (pd)min = 1.5, Vinin = 265, (E/p)min = 176.

In the range of relatively large pd on the right-hand branch of the Paschen
curve, the threshold value E;/p decreases rather slowly (logarithmically) as pd
increases. Correspondingly, the breakdown voltage increases almost proportion-
ally to pd (slightly slower). This behaviour of threshold values arises because in
the case of elevated pressures and large gaps an electron can produce numerous
ionizing collisions even at not very high E/p. In this case, however, a depends
sharply on E/p, and the condition of the necessary amplification (7.1) fixes the
value of E/p rather rigidly.

On the other hand, the possibilities for collisions are very limited on the
left-hand branch at low pd. A very high value of «/p, that is, a very strong
field is required to achieve the necessary amplification. The breakdown voltage
grows rapidly as pd decreases. Hence, the voltage has a minimum. The effective
ionization cross section being limited, the ionization coefficient is also limited (by
Ap). As a result, the necessary amplification cannot be obtained at sufficiently
low pd, regardless of the field. In the framework of this approximation, as pd is
reduced to its limiting value

(pDtim = A7 In(1 /v +1) = (pd)min /€ , (1.5)

Wi — oo. In fact, the growth of E;/p and V; on the left-hand branches of the
Paschen curves is not as steep, nor does it tend to infinity. Very different mech-
anisms come into play “to the left” of the left-hand branches (Sect.7.2.6).

7.2.5 Breakdown Fields in Moderately Large Gaps
in Air and Other Electronegative Gases at Atmospheric Pressure.
Limiting Values of pd for the Townsend Breakdown Mechanism

This mechanism is characterized by low pressure and not too large pd(<S
1000 Torrcm). If the gap is not too large (and the field is homogeneous), the
mechanism of avalanche multiplication is predominant at atmospheric pressure.
In room-temperature air in plane gaps, it is realized roughly for d < 5cm
(pd < 4000 Torr-cm). At such high pd, the breakdown voltage is more or less
proportional to pd, that is, it is only slightly dependent on pd; more or less def-
inite values of breakdown voltage or (E/p), are characteristic for atmospheric-
pressure gases. Figure 7.4 plots the results of measurements in room-temperature
air in the range of d where the Townsend mechanism still acts. The typical figure
for centimetres-wide gaps is (E /ph = 32kV/(cm-atm)= 42 V/(cm-Torr). In large
gaps (tens of centimetres wide), the breakdown field in room-temperature air
reduces to a limit, E;, ~ 26kV/cm. In general, the spark mechanism sets in if
d > 6 cm (Chap. 12).

The limiting values of threshold fields, E ~ 32 — 26 kV/cm, observed at
sufficiently high pd, are not accidental. They are clearly related to the possibility
of electron multiplication in a gas with attachment of electrons. The attachment
coefficient a, defined by analogy to the ionization coefficient o (Sect. 4.4.2), is
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also known to grow appreciably with E/p but much slower than a. The curves
of a/p and a/p as functions of E/p intersect at a certain value (E/p). Figure
7.5 shows the results of calculation of the coefficients using the kinetic equation;
these calculations are similar to that described in Sect.5.8 (cf. similar plots in
Figs. 8.18 and 8.19 in Chap. 8 for laser mixtures with an electronegative compo-
nent, CO,). The intersection point lies at (E/ph =~ 41 V/cm-Torr). This figure
is close to the limit for the breakdown potential of air; in fact, it is somewhat
exagerated, perhaps because of the imperfect data, used in the evaluation, on
cross sections of a number of processes. The avalanche equation (4.4) with the
effective ionization coefficient aeg = a — a is

dN./dz =(a — a)N., N, xexp(a—a)z;

the measurements of aeg show that aegr — 0 at (E/ph ~ 35 V/(cm-Torr), in good
agreement with (E/p)im = 26kV/(cm-atm). If E/p < (E/ph, the multiplication
of electrons is obviously impossible; this fact affects the limits of breakdown.
Measurements show that breakdown thresholds in strongly electronegative
halogen-containing gases at atmospheric pressure are very high. This is shown in
Table 7.1, which also gives the data for gases manifesting no attachment. At low
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Table 7.1. Approximate values of breakdown threshold at high pressure

Gas Constant field, gap width less Microwaves,
than several cm, p ~ 1atm p ~ 100-300 Torr

E/p E/p E/p
kV/(cm-atm) V/(cm-Torr) V/(cm-Torr)
He 10 13 3
Ne 14 1.9 3-5
Ar 27 3.6 5-10
H, 20 26 10-15
N, 35 46 ~ 25
0, 30 40 35
Air 32 42 ~ 30
Cly 76 100
CCLF; 76 100
CSFg 150 200
CCly 180 230
SFs 89 117

* Freon

pressure (small pd), the values of (E/p), are much greater than (E/p), (Fig.7.4),
and « is appreciably greater than a, so that the electronegative properties of
gases are not manifested as clearly as at high pd. The high electric strength of
electronegative gases has important practical applications.

7.2.6 Breakdown of Vacuum Gaps

If pd < 1073 Torr-cm, an electron crosses the gap practically without collisions,
so that there is no multiplication in the volume. This does not mean, however,
that a vacuum gap can be an ideal insulator (Figs. 7.6). If high voltage is applied
to a narrow gap, a high field is generated, capable of causing field emission from
the cathode (Sect.4.6.3). The field is additionally enhanced in the vicinity of
microscopic protrusions. Breakdown occurs in wider gaps at fields insufficient
for ejecting an electron from the metal. A spurious electron is accelerated in
the field, knocks an ion from the anode, or emits a bremsstrahlung photon. The
ion or the photon knock out, in turn, an electron from the cathode, etc. This
multiplication proceeds without the residual gas. A process is also possible in
which electrodes are sputtered by the particles accelerated in the field, so that
the gap gets filled with metal vapor in which gas enhancement then occurs.
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Fig. 7.6. Breakdown voltage and field in the vacuum gap between a steel sphere 2.5 cm in diameter
and a steel disk 5cm in diameter as functions of gap width [7.4]

7.3 Breakdown in Microwave Fields and Interpretation
of Experimental Data Using the Elementary Theory

For the time being, let us postpone the case of radio frequency fields, since they
are more complex and diversified. The microwave range is characterized by a
small amplitude of electron vibration compared with the size of the discharge
volume (which is comparable with the wavelength A ~ 1-10cm, see a numerical
example at the end of Sect.3.1.2). As a result, the evolution of an electron
avalanche is localized and almost independent everywhere, the field does not
push particles towards the walls, and the emission of the walls is insignificant.
The process is of bulk nature and relatively simple. It has been studied quite
thoroughly both experimentally and theoretically in [7.2,5].

7.3.1 Measurements

When the breakdown threshold is measured experimentally, the controlled power
of a cw or pulsed magnetron is fed to a resonator cavity throu gh a waveguide. The
threshold field of a given frequency f depends on the size of discharge volume.
This effect is caused by the diffusion leakage of electrons to the walls. On the
other hand, the resonator size is related to A, that is, f = ¢/). As a result, not just
any geometry allows changes of cavity size at unaltered frequency. Actually, such
changes are necessary to establish the dependence of the threshold field on size,
other conditions being equal. This difficulty can be avoided by using a cylindrical
resonator excited at such a mode that the resonance frequency is a function of
cylinder radius but is independent of its height (Fig.7.7). The diffusion length
A (Sect.4.5) can be varied by changing the cylinder height at unaltered radius
and field frequency. Increasing the field by bringing up the power fed into the
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Fig. 7.7, Electric field distribution in the resonator of an experimental
device for measuring microwave breakdown thresholds

cavity, one fixes the parameters at which the transmitted power drops abruptly.
This is a sign of breakdown followed by the dissipation of electromagnetic energy
in the plasma. The breakdown occurs first of all at the central part of the cavity,
where the field amplitude is maximal; this field is assumed to be the threshold.

The threshold field (root-mean-square value E; in Fig.7.8) as a function of
pressure always has a minimum. On the left-hand branch, the threshold decreases
with increasing pressure. This threshold is the lower, the greater the discharge
volume and the lower the field frequency. The same is true for the minimum
value. The minimum at lower frequencies lies at lower pressures. On the right-
hand branch, where the threshold increases with increasing pressure, the depen-
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Fig. 7.8. Measured thresholds of microwave breakdown [7.6] (a) air, f = 9.4 GHzg, diffusion length
A is indicated for each curve; (b) Heg gas (He with an admixture of Hg vapor), A = 0.6cm
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dence of E, on size and frequency becomes less and less pronounced, and almost
vanishes in the limit of high pressures: all curves asymptotically merge.

The point of interest is the unusual facility of breakdown in mixtures of
helium and neon with a small admixture of argon. The reason is the Penning
effect (Sect. 4.2.2); owing to it, electron energy loss to the excitation of He
and Ne impedes only slightly, or not at all, the progress of an avalanche. The
excited He* and Ne* atoms ionize Ar atoms. The rate of this two-stage process
is proportional to the densities of the main and admixture gases, so that the
effect is better pronounced at higher pressures. Ionization in the so-called Heg
gas (a mixture of He with some mercury) occurs similarly. The cross section of
ionization of Hg by metastable He* atoms is anomalously high (Sect.4.2.2). It
can be said that each event of He excitation immediately produces a new electron.
The frequency of ionization of a gas mixture by electrons, 14, then coincides with
the excitation frequency of the main gas atoms (He). Inelastic losses are as if
absent. One can thus resort to the elementary theory and understand quite a few
of the essential features of breakdown without addressing the kinetic equation.
Qualitatively, they still hold with inelastic losses present.

7.3.2 Ionization Kinetics Equation

When oscillation displacements are small, electron densities obey an equation of
type (2.44):

One/dt = Dne + (v — va)ne , D = D, (7.6)

(electrons diffuse freely in breakdown). If the condition w > vné (Sect.5.5.2)
holds (it is satisfied for microwave frequencies), the electron energy distribution
is quasisteady and the ionization and attachment frequencies, 1; and v,, are de-
termined by the root-mean-square field E. The dependencies 1;(E), va(F) are
much stronger than D.(E), so that D.(E) = const. For simplification, assume
that the field is spatially homogeneous, and hence, 1 and v, are independent
of coordinates. Averaging (7.6) over the volume, we obtain, in accord with the
results of Sect. 4.5, an equation for the mean density, or (which is equivalent)
for the total number of electrons, N, in the discharge volume:

dN./dt = (15 ~ va — vg)Ne , va=D/A*, 1.7

where vy is the frequency of diffusion losses of electrons. This equation describes
the ionization kinetics of the gas.

7.3.3 Steady-State Background Criterion

Assume that the external field is switched on in a time small in comparison
with the characteristic time of multiplication and remains constant during the
avalanche buildup. This constraint covers not only stationary, but also pulsed
fields with not too short pulses and sufficiently small rise time. Under this as-
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sumption, 1;(t), v4(t) = const after the moment ¢ = 0 at which the field is switched
on, and (7.7) has an exponential solution typical of an avalanche process:

Ne = Neoexp [(1i — va — 1a)] = Negexp (¢/0) (7.8)

where O is the avalanche time constant, and N is the number of seed electrons
that start the avalanche.! Breakdown is impeded in experiments with short pulses,
since the probability of an electron appearing in the region of the field at the
necessary moment is quite low and the avalanche has to be initiated by injecting
a small number of electrons. For this purpose, a weak radioactive source is used.

According to (7.8), an avalanche develops if 1; —va — 14 > 0; this condition is
met if the field exceeds a threshold E; determined by the steady-state breakdown
criterion:

u(Er) =va + va(E) . (7.9)

As an example, consider breakdown in helium, for p = 1 Torr, A = 3 cm, diffusion
length A = 1cm, D = 2-10° cm?/s, time of diffusion to the walls yd‘1 ~5-1077s,
diffusion frequency v4 = 2-10%s~1, and no attachment. The avalanche develops
if 4 > va ~2-10°s~1. We will show a little later that the ionization frequency
vi o« E? under the most favorable conditions for multiplication (zero electron
energy losses). If losses, especially inelastic, are nonzero, the 1 vs. E curve
is much steeper. Hence, if the field increases by 10% in comparison with E,,
then O~ = 13 — 1y > 0214 ~ 4 - 10°s~!. The number of electrons is doubled
every O/1In 2 < 1.7 us, which is a very high rate. In many cases, it is sufficient
for a reliable realization of breakdown. As a result, stationary criterion (7.9)
determines with good accuracy [like criterion (7.1)] the breakdown threshold of
gases for “not too short” pulses.

7.3.4 Low Pressure

Let us evaluate threshold fields for the Heg gas. At low pressure the diffusion co-
efficient D oc 1/p is high and electron diffusion losses are substantial. The losses
can be compensated for if the ionization rate is large, that is, if the field is strong.
Recall that the role of elastic energy losses in high fields is negligible. Indeed,
electron energies € are not greater than a quantity of the order of the helium ex-
citation energy E;, = 19.8¢eV, because at ¢ > E};, an electron enters an inelastic
collision with high probability and dissipates energy. The elastic-collision energy
transfer to an atom is limited by the quantity (Ace)max = (2m /M) Ej;,. Formula
(3.10) shows that the energy Acy gained in a collision is proportional to E2. In
sufficiently strong fields necessary to balance out high diffusion losses, an elec-
tron gains energy from the field at a rate de/dt = Ae Evm, Where vy, is defined

! The rate of generation of electrons in the atmosphere by cosmic rays at sea level is on the order of
10cm—3s-1, Usually about 10-10? electrons per cm?® are present in non-electronegative gases. In
air, gsley im;nediately attach to oxygen, so that charges exist as ions; their density is on the order
of 10°cm—3,
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as in Chap.2. The energy Ej; is reached over a time 75 = (Ef;./Acg)vy . The
ionization frequency is determined simply by 75 because excitation and Penning
ionization follow immediately:

v =15 = (Acp/Efio)vm = € Brun [muw By, . (7.10)

We have taken into account here that at low pressure, 12 < w?. As implied by
(7.9), the root-mean-square breakdown field is

« \1/2 . \1/2
Bo (2meltBie " (mB)" e w (7.11)
e2yy A2 3 eomNA — pA’ '

This calculation operates with the expressions for the diffusion coefficient, D =
/3 = Py /3,and the mean-free-path length, [ = 1/Nog, of electrons. The
threshold field is proportional to frequency and inversely proportional to gas
density (pressure) and to discharge volume size; this is in complete agreement
with experiments. Moreover, if the collision cross section o = 4 - 10716 cm—2,
corresponding to the midpoint of the electron spectrum, ¢ ~ Ef /2 ~ 10eV, is
substituted into the formula, a satisfactory fit with Fig.7.8 is obtained. Formula
(7.11) gives a correct description of the asymptotic lines on the logarithmic plot
which the left-hand branches of the function Ei(p) tends to for different values
of w and A.

7.3.5 High Pressure

In this case the diffusion losses of electrons are negligible, and breakdown occurs
even at not very high ionization rate. The most important factor now is the energy
dissipation, and specifically, purely elastic losses in the Heg gas. These losses
limit the ionization frequency. In terms of elementary theory, an electron cannot
gain more energy than the limit (3.12) imposed by electronic losses. In the case
of high pressures, when u,%, > w?, we have

Emax = (M/2m)e2 E? /mv2, « (E/p)* . (7.12)

If this energy is less than Ej,, electrons cannot excite helium atoms and no
avalanche can develop. Hence, the possibility of breakdown is determined by the
condition emax(E) > Ejfj,; the breakdown field E; calculated by this equality is

Ey = (mum[e)QEf /M) ? x p . (7.13)

The breakdown field is proportional to p and is independent of both the vol-
ume size A (in the framework of the approximation chosen here; see Sect. 7.3.8)
and the frequency; this is also found to be in qualitative agreement with experi-
ments. The quantitative fit for the Heg gas is also satisfactory. The threshold is
frequency-independent because if w? < v, the effect of an oscillating field on
electrons is indistinguishable from that of a constant field.
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7.3.6 The Position of the Minimum

Under a crude approximation, the position of the minimum on the threshold
curve Ey(p) can be found using the condition that separates to some extent the
limiting cases of low and high pressure, that is, of 12 < w? and 12 > w?.
This condition states that the collision and field frequencies are of the same
order of magnitude: vy ~ w. At this value of v, de/dt as a function of p has
a maximum [see (3.11)]. The frequency at the minimum of threshold field is
proportional to pressure. This result is qualitatively supported by experimental
data. The breakdown of gases by microwave fields is easiest at p ~ 1-10 Torr.

7.3.7 Inelastic Losses; Molecular and Electronegative Gases

Inelastic losses are important in most gases; they affect threshold fields in almost
the same qualitative manner that elastic losses do. This is demonstrated even
by the perfect apparent similarity of E(p) curves in Heg and other gases. At
low pressure, the threshold field is determined mostly by diffusion. Threshold
fields are high, so that electrons gaining energy rush rapidly thruogh the “danger
zone” of energies between the excitation and ionization potentials. As a result the
probability of energy loss due to atomic excitations is not too high. The threshold
field is then given by a formula of type (7.10) in which E}j, must be replaced
with the ionization potential.

Diffusion at high pressure being slow, the threshold is mostly determined by
energy losses. The rate of both inelastic and elastic energy losses is proportional
to pressure. The condition of balancing of energy losses by energy gained from
the field implies that if w? < 12, the mean electron energy as a function of E /p
[see (3.12)]. For ionization to proceed, the mean energy cannot be too small
compared with the ionization potential; this fact somewhat fixes the ratio E/p.
Hence, the threshold field E; « p; if w? < 12, it is independent of w. In the
framework of the approximation chosen here, it is also independent of A, as it
is in the case of purely elastic loss.

Molecular gases undergo breakdown at higher fields than atomic gases be-
cause an electron spends much of its energy on the excitation of vibrational and
lower electronic levels of molecules; the rate of energy buildup is thereby slowed
down. Thresholds in electronegative gases are also high because of additionial
electron losses to attachment.

7.3.8 Similarity of Threshold Values of E/p
in Constant and Oscillating Fields at High Pressure
and Their Independence of Size

If the effect of oscillating fields on electrons at high pressure is nearly the same
as that of constant fields, and if the threshold values of E:i/p in the microwave
range are almost independent of p and A, there is every reason to expect that
the values of E,/p are close to those for constant field and high pd (where they
are also almost independent of pd). On the whole, experiments bear out this
conclusion. The right-hand branches of microwave breakdown correspond to the
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right-hand branches of Paschen curves far from the minima. The E,/p values
differ by a factor of 1.5-2 (Table 7.1).

It must be emphasized (this is important for understanding the process) that
the independence of E,/p of the diffusion length A in (7.13) is a result solely of
the elementary theory. The absence of A in the formula is equivalent to neglecting
electron losses: A = oo, y4 = 0. In fact, ionization, even if very weak, takes
place in any (no matter how weak) field because the spectrum always contains
some energetic electrons. Therefore, the breakdown would have zero threshold
if electrons suffered absolutely no losses. The number of electrons with energies
¢ ~ I sufficient for ionization is exponentially small: it is mainly proportional to
exp (—¢/eo) in the case of the Maxwell distribution, and to exp(—&2/ e%) in the
case of Druyvesteyn’s distribution. The scales ¢ approximately coincide with the
mean energies of the spectra or with emay Of the elementary theory, and increase
with increasing field. As a result, the real ionization frequency is a characteristic
exponential function of E, of type exp [--const/ f(E/p)].

As an example, take Townsend’s law 1; ~ p exp (—const - p/ E). The results
of Sect.7.4.7, where the kinetic equation was solved approximately, imply that
this law is not far from the thruth. The breakdown condition ; = vy yields

const

B/p= const' +1n(pA)

(7.14)
This logarithmic dependence (weak for large pA) is quite similar to the depen-
dence on pd in (7.3); formally, it ensures that the threshold vanishes as A, d — oo.

The lengths A and d play essentially identical qualitative roles, characterizing
the rate of removal of electrons from the discharge volume. The field pulls an
electron out over a time from 0 to d/vq4, depending on where the motion started.
The inverse, va/d, is the scale of the “removal” frequency (loss frequency).
The Townsend criterion (7.1), ad = k, where k lies between one and ten, and
a = v;/vg, can be interpreted, by analogy to (7.9) for v, = 0, as the condition
of equality of the ionization and loss frequencies: 1 = kvg/d = v}. The mean
removal frequency v is greater than the minimum value vg/d by a factor of &,
because the majority of electrons in an avalanche are created close to the anode.

7.4 Calculation of Ionization Frequencies and
Breakdown Thresholds Using the Kinetic Equation

7.4.1 Derivation of the Equation of Ionization Kinetics
from the Kinetic Equation

Using (5.24-26), one can recast the kinetic equation for the electron energy
distribution function n(g, t) in the following convenient form for analysis:

8n aJ * . o —
=5 " Q* + Qi — ma(edn — va(edn,
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A
J= —Aeg—: + En+nVe1 , (7.15)
—2__62E2V"‘ Vi = 2m
BT R VAL

The flux J along the energy axis reflects energy gains from the field and elastic
losses. The term Q* describes the excitation of atoms, (; represents ionization,
attachment is given by v,(¢)n, and diffusion losses by v4(e)n.

As a result of inevitable excitation and ionization events at energies above the
corresponding potentials, electrons cannot reach very high energies. As ¢ — oo,
the distribution function falls off very rapidly. The flux also vanishes: J(oco) = 0.
Particle sources in equation (7.15) are distributed along the ¢ axis. There are
no electron sources with zero energy, and negative kinetic energy is impossible.
Hence, J(0) = 0. If we turn to an analogy with one-dimensional diffusion of
particles in ordinary space, r = ¢, the situation is found to correspond to an
impenetrable and nonemitting wall at z = 0.

In view of this, we integrate (7.15) over the entire spectrum from 0 to co.
The integral of Q* vanishes automatically, since excitation events do not change
the number of electrons. Integration in ¢ of the first term in formula (5.26) for Q;
yields —uine, where 4 is the ionization frequency averaged over the spectrum.
The second term gives 2uin.; this is readily verified if the order of integration
in the double integral is reversed. It is as if one electron disappears in each
ionization event, while two new ones appear. This gives the equation of kinetics
for electron density,

dne/dt = (4 — va — va)ne , (7.16)
equivalent to (7.7); v, and vy are also frequencies averaged over the spectrum.

7.4.2 Separation of Variables

Strictly speaking, the initial electron distribution function n(e,0) must be spec-
ified as the initial condition to (7.15). It is physically clear, however, that the
initial spectrum is forgotten after one or two new generations of electrons are
generated, and a new spectrum forms, corresponding to the effects of the field and
collisions. Indeed, the build-up (relaxation) time of the spectrum is characterized
by the mean time during which an electron covers the entire path along the ¢ axis
from & =~ 0 to the highest realizable energies. In fact, this is the time necessary
for ionization and multiplication. If the point of interest is any well-developed
stage of the avalanche, there is no sense in going into details of the relaxation
process; rather, one should directly search for the stationary spectrum, that is,
seek the solution of the nonstationary equation in the form n(e, t) = n(e)d(t).
The substitution into (7.15) gives

n(e,t) = n(e) exp(t/O) , (7.1D
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where the separation constant @ has the meaning of the time constant of the
avalanche, and the spectral function n(c) is normalized to the initial density n.
A solution of type (7.17) would always be exact if the spectrum of initial electrons
coincided with the one that is established by the end. According to (7.16, 17), the
constant @ is related to spectrum-averaged frequencies by an obvious equality

O l=u—va—vq. (7.18)

7.4.3 Equation for the Spectral Function

We now substitute (7.17) into (7.15) and replace @ via (7.18). The diffusive re-
moval of electrons to the walls was taken into account in (7.15) in an approximate
manner, in order not to add complications to the already complex dependence
of the distribution function on spatial coordinates. It would hardly be advisable,
therefore, to retain the rather weak and largely unimportant dependence of the
spatial diffusion coefficient and »4 on energy. Let us replace v4(¢) in (7.15) with
the mean value of vy. Then, if (7.17, 18) are substituted into (7.15), the diffusive
loss term vanishes completely from the equation for the spectral function n(e),
so that the equation takes the form

(i~ van = ~dJ[de + Q" + Qi — va(e)n . (7.19)

In this approximation, the spectrum and frequency of ionization are independent
of geometry and volume size, and do not differ from those that would be obtained
for infinite space and homogeneous field. This is the standard procedure in solving
the kinetic equation.

The solution of (7.19) gives the spectrum n(c) and ionization frequency v as
functions of field and gas characteristics. The rate of multiplication (or removal)
of electrons as a function of field and diffusive loss is defined by (7.18). The
condition @~ = 0 corresponds to the steady state and the steady-state breakdown
criterion (7.9). If this condition is imposed on the solution, one can find the
threshold field E. In fact, the dependence »;(F) obtained in this way has a more
general significance. It can be employed for studying some other processes, such
as the positive column of a glow discharge (however, one should bear in mind
that if ionization is strong, diffusion is ambipolar and vq is considerably smaller).

7.4.4 Similarity Laws

As we have mentioned in Sect. 5.6.3 and as (7.15) and (7.19) directly demonstrate,
the stationary spectrum in the low-frequency limit w? < 12 (and in constant field)
is described by a function n(e, E/p), and in the high-frequency limit w? > 2,
by n(e, E/w). Correspondingly, the jonization frequency is a function of the
type v = pfi(E/p) in the former case, and 1; = pf2(E/w) in the latter case. If
the collision frequency is assumed to be constant, vy,(€) = const, the ionization
frequency in an oscillating field, v, is expressed in terms of the ionization
frequency at constant vy by introducing an effective field E.q¢ using (5.33):

tho(w, p, E) = ti0o(p, Eerr) = pfi(Eert/p) - (7.20)
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In a gas without attachment, we make use of the stationary breakdown criterion
(7.9) and of the dependence v4 o 1/pA?, and find that the threshold field in the
low-pressure (high frequency) limit is E; = wFi(pA), and in the high-pressure
(low frequency) limit is E; = pFy(pA). The asymptotic form of the functions F}
and F; is given by (7.11), (7.14), or (7.3). Similarity laws for the attachment
frequency are the same as for the ionization frequency. Therefore, the breakdown
value of E/p in electronegative gases, with attachment dominating diffusion at
high pressures, is constant,

7.4.5 Formulation of a Simplified Problem of the Effect
of Inelastic Losses on Ionization Frequency

If the complexity of (7.19) is not ignored, only numerical solutions are possible.
Cumbersome and time-consuming computations of this type became feasible
only with the advent of computers. Numerical solutions do supply information
valuable for practical work, but an analytic solution, even if crude, is frequently
a greater help in understanding the nature and identifying the mechanisms which
are important. In view of this, we will construct a simplified solution that clearly
demonstrates the effect of inelastic losses on the ionization rate, which is beyond
the reach of the elementary theory.

Let us consider heavy inert gases (argon, xenon) which manifest no attach-
ment, have no low energy levels, and where the role of elastic losses is negligible.
Assume that the frequency vy, of elastic collisionss is constant. Assume also that
the atomic excitation frequency v* is equally energy-independent if the energy
exceeds the level EY that is slightly higher than the excitation potential. Next,
assume that electrons gaining energy I; a little higher than the ionization poten-
tial enter in inelastic colision instantaneously, ionizing an atom with a probability
B or exciting it with a probability 1 — 3. The quantities E}, I;, v*, § can be
adjusted in a reasonable way after an analysis of cross section curves o*(¢) and
oi(e). In inert gases, Ef and 1 are 1 to 2eV higher than the corresponding
potentials E and I; 8 ~ 0.2.

The assumption of instantaneous inelastic collisions at ¢ > I; (which is by
no means too crude, because the corresponding frequencies are high) makes it
possible to exclude the region ¢ > I) from consideration, after replacing the effect
of negative sources Q* + Q; in this region by an adequate boundary condition.
Electrons moving along the energy axis then have an infinite capacity sink at the
point ¢ = I, so that n(l;) = 0 at this point. In a simple model we “collect” the
real positive sources Q* + @; located in the low-energy region and assign them
to the point ¢ = 0. Now the flux J(0) is nonzero. It is connected with the flux
J(I) or ionization frequency, which equals, by definition

I
Yy = ﬁJ(I])//o n(e)de . (7.21)

Indeed, J(I;)cm™3s~" electrons reach the sink at € = I;. They immediately
enter into ionizing and exciting inelastic collisions, so that 28J(L)+(1=B)J(N)
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electrons with “zero” energy are created. In addition, electrons that produce
excitations in the E} < ¢ < I zone also emerge with “zero” energy. Therefore,

I
JO) =1+ B)J(I) +v* / n(e)de cm™3s7! . (122
EY

This is the second boundary condition. The terms for elastic collisions, attach-
ment, ionization, and distributed sources in the region 0 < ¢ < E{ are dropped
from (7.19), which takes the form

un=—dJ/de O<e< EY,
yn=—dJ/de —v*n Ef<e<l, (71.23)
J=Aedn/de+ Anj2, A=2e?Elvy/3m?+13).

It is not difficult to verify by integrating (7.23) in ¢ from 0 to I; that only one
of relations (7.21), (7.22) is independent. The other is implied by the result of
integration.

7.4.6 Results Obtained from the Model

Equations (7.23) may be integrated for functions of type exp (+const /). When
the general solution is subject to the boundary conditions n(l;) = 0 and (7.22)
and to the continuity of n and J at the boundary between the regions, ¢ = E, the
outcome is a rather unwieldy transcendental equation for the ionization frequency
1(E) [7.7]. 1t is successfully solved, however, in two limiting cases; the resulting
expressions have a very lucid physical meaning that greatly clarifies the nature
of the process.
Let us refer to the quantity
4 1 (de) e2E%upy 34
E

=rgl=a—(Z) = S22 7.24
YETTE TT\dt), m@+) 2T 724

as the energy gaining frequency. A slow electron would need a time 75 = 1/;
for gaining, in the absence of energy losses, the energy I; required for ionizing
an atom. The inequality v* < vg corresponds to a low probability of inelastic
losses in the course of accumulating the ionization energy. In this limiting case,
we find 1 &~ Bvg «x E?. An electron crosses the “dangerous” stretch Eyf < e <
I, where its motion along the ¢ axis toward the energy I; may be impeded,
and then produces ionization with a probability 4. Multiplication takes a time
n= l/i_l ~ B~ lrg, as expected.
In the opposite case of high inelastic loss, v* > vE,

—1 [6v*\/?
VizazﬂﬁyE, 6:%%2@6)(1) [,_aa (VVE) ] , (7.25)

where a = (I / E})'/? is a number, equal to approximately 1.2 for all inert gases.
The factor £ < 1 is the ratio of fluxes at the end and beginning of the dangerous
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zone; it is the probability for an electron to cross this zone without dissipating
energy on the excitation of an atom. On the average, an electron goes through
the almost complete cycle of accumulating energy ¢! times, dissipating it each
time “uselessly” on excitation before the barrier of inelastic loss is broken and
the electron accomplishes ionization with the specified probability 3. The time
necessary for multiplication, up to an unimportant factor a® of order unity, is
no= Vi_l ~ Tg/B€. Of course, the result (7.25) is significant not because it
states this equally obvious fact, but because it leads to the calculation of the
probability £. Note that the expression for ¢ can be transformed to a form typical
for a stochastic process [(7.15) implies that the motion of electrons along the
energy axis is indeed stochastic [7.7]].

In the general case, the transcendental equation for 1; has to be solved numer-
ically. However, this need be done only once, by using similarity laws, because
most gases have nearly equal values of a and 3 (Fig.7.9). In the figure, a = 1.2,
B =0.2. The situation when § = 1, useful for some cases of optical breakdown,
is also represented (Sect. 7.5).
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7.4.7 Comparison of Calculated Tonization Frequencies
and Breakdown Thresholds with Experimental Data

Let us compare the theoretical formula (7.25) with the available experimental
data on « in view of the relation of Townsend’s ionization coefficient o for
constant field to ionization frequency and drift velocity, & = 15 /vg = yymuy /eE.
Assuming w = 0 and factoring out pressure via formulae v} = v, p, v* = v p,
using (7.25), we find the ionization coefficient:
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o E

— = Aj—exp(~DBip/E),

p - e 1p/ E)
e 24°P 0.68

A ==2a08= " nn —— V-1 26

1= 28 Levl = Levli (7.26)
1 «\1/2

Bl=aa <611":;m1y') ~1-1078 LleV]vmyf

V.cm Torr™! .

Formulas (7.25, 26), describing the case of strong inelastic losses, correspond to
E/p being only 5-20 V-cm~Torr~!. Although the exponential factor in (7.26)
has the form identical to that in Townsend’s formula (4.5), the constant B, differs
essentially from the data of Table 4.1, which are valid for high values of E/p(>
100). Moreover, the meaning of Bj, connected first of all with the excitation
cross section, has nothing in common with the semi-quantitative interpretation
given to Townsend’s constant B (Sect.4.1.5).

If the experimental curve of o for argon in the range of E/p =~ 5-20 is
approximated by (7.26) (Sects. 4.2.6), we obtain By = 31, 4; =0.01. For argon,
L =1+1=168¢eV, vy =7-10°. p[Torr]s™!, v* ~ 2.6 - 10®p[Torr]s~!,
which gives B; = 53 and 4; = 0.04. This agreement between a very simplified
theory and experimental data should be regarded as satisfactory, especially in
view of the fact that no “adjustment” parameters were used in the calculation.
The agreement for xenon is even better. Choosing from the cross section data
the values I; = 13.1eV, vy = 1.5-100ps~!, v* =4.10%ps~!, we find By = 85
and A; = 0.05. The approximation of the experimental « curve gives B; = 85,
A1 =0.1.

Figure 7.10 compares the calculated and measured microwave breakdown
thresholds of argon and xenon. The calculations were based on the theory pre-
sented above of ionization frequency and the stationary criterion 1y = 14. In
the high-pressure range, at the ends of the right-hand branches, v2 > w?,
E/p ~ 10V-cm~!Torr~!. Here, the asymptotic formula (7.25) is valid. The
calculation fits the experimental data quite well. The description of the minimum
region, where Fig.7.9 has to be employed, is also good. Discrepancies are greater
at low pressures, where inelastic losses are small and another asymptotic formula
holds: 1; = Bvg. However, at p < 107! Torr the free path length of electrons
reaches the diffusion length (the cavity size), so that the theory of diffusion losses
becomes invalid and collisions of electrons with walls become significant when
they move in a transverse direction to the applied field; hence, good agreement
cannot be expected here.
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Fig.7.10. Thresholds of microwave breakdown: (a) Ar, (1) f = 2.8GHz, A = 0.15cm; (2) f =

0.99GHz, A = 0.63cm; (b) Xe, f = 2.8GHz, A = 0.10cm. Solid curves, results of calculations
[7.7); dashed curves and crosses give experimental data [7.5]

7.5 Optical Breakdown

The discovery of the optical breakdown effect, in 1963 [7.8], became possible
only after the development of @)-switched lasers that produce light pulses of
tremendous power, called “giant pulses”. When the light of such a (ruby) laser
was passed through a focusing lens, a spark flashed in the air, in the focal region,
as in the electrical breakdown of a discharge gap. The discovery was a complete
surprise for physicists and produced a sensation at the time, though the element
of surprise has worn off by now. Gas breakdown at optical frequencies requires
a tremendous field strength, 10°-107 V/cm, in the light wave; this was unthink-
able before the advent of the laser. Furthermore, the necessary light intensity,
about 10° MW/cm?, could only be reached by focusing the light of not just an
ordinary laser, but one operating in th giant pulse regime. The new effect caused
unparalleled interest among physicists. In a short time, it was experimentally and
theoretically investigated to such a degree [7.7], that by now we know at least
as much about it as about its closest analogue, the microwave field breakdown.

7.5.1 Experimental Arrangement

The arrangement of the pioneer experiments on measuring optical breakdown
thresholds [7.9] is typical for much later work. Giant pulses of a ruby laser
with the following parameters were employed: power output 1J, pulse length
30ns= 3 - 10~%s, the maximum (peak) power 30MW= 3 . 10" erg/s. These

151



parameters are typical for modern moderate-power systems.? The pulse energy
was measured by a calorimeter. The pulse shape was roughly triangular, the rise
time being shorter than the decay time.

In order to increase the radiation flux density, the light beam is focused.
The diameter of the focal spot d is determined by the divergence angle of the
original light beam, 6, and the focal length f of the lens, d = f6. (Normally, § ~
103 —10"%rad, f ~ 3-10cm.) Meyerand and Haught [7.9] had d ~ 2-10~2cm.
The spot diameter was measured by the size of the hole burnt in very thin gold
foil (0.05 u thick). At the peak power of 30 MW, the radiant power density at
the focal spot was S = 105 MW/cm? = 1018 erg/(cmzs), the rms electric field in
the light wave was

E = \/4x8]c = 194/ S[W Jem*] V /cm ~ 6 - 105V /cm |
and the photon flux density of the ruby laser, fiw = 1.78 ¢V, was
F=34-10%SW/cm*lem=2s! ~3.4.10¥ cm~2s~!

The light beam was focused into a chamber filled with a gas to be investigated,
at various pressures. The breakdown was deduced from the appearance of a
visible light flash (lasting about 50 us). Moreover, the focal spot was placed
between a pair of electrodes to which a voltage of ~ 100V was applied. About
101 electron charges were extracted by this field from the focal region when
breakdown occurred.? The radiant powe was varied by an attenuator in order to
determine the breakdown threshold, which was found to be very abrupt.

7.5.2 Results of Experiments

The threshold field decreases monotonically as the pressure increases (Fig.7.11).
However, this is observed only in a limited range of pressure. When a wider
range from several atm. to two thousand atm. was scanned [7.10] it was found
that the threshold has a minimum, as in the case of microwave breakdown. In this
case the minima are not at 1--10 Torr, but at hundreds of atmospheres (Fig. 7.12).
An interesting fact is that the position of the minimum approximately satisfies
the same relation v, =~ w (Sect.7.3.6). For example, for an Ar and ruby laser,
w = 2.7 -10%s~!, this formula gives p =~ 225atm., while experiments give
190 atm.; for He, p ~ 1450 atm., while experiments give 700 atm. The rason for
a minimum is the same as in the microwave field: the rate of energy accumulation
by an electron in the field of a given frequency is maximal at vy =~ w (v as a
function of p).

2 Solid state lasers have been developed recently that produce thousands of megawalts for several

nanoseconds.
3 Breakdown also reduces the power of the radiation that passes through the focal spot because the

resulting plasma absorbs some radiation.
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Fig. 7.11. Measured threshold fields for the
breakdown of Ar and He by ruby laser ra-
diation; pulse length 30ns, diameter of focal
spot 2 - 10~ 2¢m [7.9]
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Fig. 7.12. Breakdown thresholds in Ar, He, N, for ruby laser radiation over a wide pressure range
[7.10]. Pulse length 50ns, focal spot diameter 10~2 cm

When the radiation from a pulsed CO, gas laser is focused into a gas,
breakdown is also observed. This radiation (A = 1064 ~ 1073 cm) occupies
an intermediate position between that emitted by ruby and neodymium lasers
(A ~ 10~*cm) and that of microwave radiation (A ~ lcm), although it is closer
to the visible part of the spectrum. As a rule, CO, lasers give longer pulses, of
about 1 us. The relation vy, = w for the position of the maximum holds quite well
(Fig. 7.13). For example, in Xe vy & 9-10'%p[am.] s~'; weo, = 1.78 - 10451,
We find p = 20 atm., while experiments give about 15 amm.

The breakdown threshold decreases when the focal spot, that is, the size of
the region subjected to the field, is increased. Measurements were conducted in
the range of diameters from 10~2 to 10! cm, by using lenses with different focal
lengths (d = f - 6). This result is qualitatively fairly clear: the greater the region
where the field is high, the lower the importance of the loss of electrons due to
their diffusive escape from this region. In fact, the situation is more complicated.
Estimates show that in some cases the pulse length is too short for an electron
to diffuse across the distance d. The effect may be caused by the diffusion, not
from the entire focal spot, but from the “hot” points with high local fields that
appear in the focal spot as a result of cross-sectional inhomogeneity of the laser
beam. The electron avalanche mostly develops at these points.
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7.5.3 Breakdown Thresholds of Atmospheric Air

These data are very important. Quite a few physical experiments employ high-
intensity laser beams. Electrical breakdown of air on the beam path to the target
is an obstacle for light propagation because of absorption in the plasma. For
example, in such experiments with high-power beams as target irradiation for
fusion experiments one has to send the beam to the target through vacuum. The
threshold intensity for the giant pulse of a ruby laser and an ordinary focal spot
diameter of 10~2cm is S; ~ 10" W/cm?, and the field is E; = 6 - 10° V/cm.

The breakdown threshold of nonfiltered air by focused CO; laser radiation is
roughtly 2 - 10° W/cm?, and that of dust-free air is not lower than 10'° W/cm®.
The tiniest dust particles floating in the air greatly facilitate the breakdown by
CO, laser radiation, while their effect is negligible for the neodymium and, in
particular, ruby lasers. This difference appears because the short-wave radiation
of solidstate lasers “supplies itself” with the seed electrons required for starting
an avalanche. The long-wave radiation of CO; lasers cannot do this in a pure
gas.

7.5.4 Multiphoton Photoelectric Effect

Two quite different mechanisms of gas ionization by high-intensity light can be
proposed. The first one, the development of an electron avalanche, is essentially
the same as in fields of other frequencies. The differences are in the detailes the
process of energy-gain in the field, which is essentially quantum in nature.

The second mechanism of ionization is characteristic of photons: it has a
purely quantum nature. Electrons may be detached from atoms as a result of the
multiphoton photoelectric effect, that is, in response to the simulitaneous absorp-
tion of several photons. In the visible light range, the single-photon photoelec-
tric effect is impossible, because atomic ionization potentials are several times
greater than the quantum energy. For instance, the ruby laser photon energy is
5w = 1.78 ¢V, while the argon ionization potential is Ia, = 15.8 eV, that is, nine
photons are required to detach an electron. Multiphoton processes usually have
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a low probability, but the process rate increases sharply when the photon den-
sity (the light intensity) increases; at the extremely high intensities that result in
optical breakdown, the probability may become substantial.

Both calculations (see below) and experiments show that nanosecond (and
longer) laser pulses at pressures above several tenths of one atmosphere always
produce avalanche ionization. The rate of avalanche ionization is sufficient for
breakdown at fields that are insufficient for intensive multi-photon ionization.
However, the latter plays an important role as a source of the initial, seed electrons
required to ignite the avalanche. The arrival of a spurious electron at a small focal
region during a very short pulse is a highly improbable event.

We have mentioned several times that the excitation of atoms by electron
impact slows down the avalanche because an electron dissipates its energy and
has to accumulate it again and again before it manages to overcome the excita-
tion zone and reach the ionization potential. This process characterizes all fields
except that of light. If the photon energy is high, a small number of quanta may
be sufficient to eject an electron from an excited atom by the multi-quantum
photoelectric effect. In this case excitation even accelerates the growth of the
avalanche because it is enough for electrons to reach the excitation, not ioniza-
tion, potential.

For example, in argon I, = 15.8eV and the potential of the first excitation
level E;, = 11.5eV. The energy necessary to detach an electron from an excited
atom is 4.3 eV, that is, what is required is the simultaneous absorption of three
photons of a ruby laser or four photons of a neodymium laser (hw = 1.17¢V).
A four-photon process has very low probability, but a three-photon process may
occur under certain conditions at the ruby laser frequency. There exists both
experimental and theoretical evidence supporting the reality of this mechanism.

7.5.5 Nonstationary Breakdown Criterion

If light pulses are very short (as in our case), the field prescribed by the station-
ary criterion (7.9) may prove insufficient for appreciable ionization of the gas.
Indeed, the situation cannot be classified as a breakdown if only two to three
generations of electrons are produced during one pulse. Ionization must reach
a substantial level. In fact, one typically associates breakdown with a visible
light flash. Thus the experments described above recorded that a flash and the
breakdown correspond to about 10'? avalanche electrons. Assuming an avalanche
t0 be started by a single electron, we find that log,10'3 ~ 43 generations are
created by breakdown during one pulse. The field must be so strong that the
avalanche time constant © be In 10! ~ 30 times shorter than the pulse duration
t1~3-10%s:0 ~ 1ns.

The threshold field F, is found from the condition that an avalanche initated
by Ny electrons multiplies during the time ¢; to N; electrons:

t/O(E) = (1 — va — va)ty = In(N1/Np) . 127
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E, is insensitive to the rather uncertain quantity N;/Np (due to the logarithmic
relationship). For calculations, one can use t;/@ = 30. The nonstationary crite-
rion (7.27) generalizes the stationary criterion (7.9) and tends to it as {; — oo.
If the pulses are very short, the threshold is found to be very high and electron
losses become unimportant: v,, 4 < 14. The nonstationary criterion makes the
threshold nature of the breakdown even more pronounced. If the ionization fre-
quency y; is reduced by half (this requires only a slight field reduction), only 21
generations are produced instead of 43, that is, the number of electrons decreases
by 6 to 7 orders of magnitude.

7.5.6 Classical or Quantum Picture?

We all remember from school lessons that light is emitted and absorbed as discrete
quanta. Radiation and matter cannot exchange energy if Ac < hw : this is
forbidden. The classical description of the interaction between electromagnetic
waves and electrons is valid if Aec > hw in each elementary event. Otherwise
quantum theory must be used. It is easy to verify via (3.10) that in microwave
fields the mean energy gained by an electron from the field in a collision with an
atom Acg > hw. The true amounts of energy, Acy, exchanged by an electron
and the field in individual collisions (Sect. 3.2.5) exceed kw by even more. There
are no doubts as to the applicability of the classical theory that we have worked
with so far. However, for optical frequencies, even at tremendous breakdown
fields (E ~ 107 V/cm), (3.10) gives Acg ~ 1072eV< hw ~ 1eV. The true
increments Acy are also smaller than kw, or at least comparable to fiw. This
means that the interaction of light radiation with the electrons of an ionized gas
is of a quantum nature.

The interaction proceeds as follows. An electron colliding with an atom may
absorb a quantum (photon), kw, or produce stimulated emission of a photon
hw, provided its energy is sufficiently high.* All these events are random, so
that the changes in the energy of the electron are of the random walk type
(one-dimensional diffusion), by Aw jumps along the energy axis . However, on
average the energy of the electron increases with time, just as a particle diffusing
away from an impenetrable wall is on the average receding (cf. Sect. 3.2.5). This
goes on until the energy reaches the ionization potential and the electron produces
a new electron, as in any other field. This is how an avalanche evolves.

It can be shown, in the calculation of de/dt as a difference between the
mean rates of quantum absorption and stimulated emission of radiation, that the
quantum-mechanical expression reduces to the classical formula (3.11) under the
condition hiw < &, which is much less severe than the classical-physics condition
hw < Ae [7.7,11]. The resulting light absorption coefficient, determined by the
difference between the rates of absorption and stimulated emission of photons
under the same condition kw < ¢, is reduced to the classical coefficient g

4 In the field of high-intensity laser radiation, spontaneous emission takes place much less frequently
than stimulated emission, so that the former can be ignored.
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(3.28). Under the same condition, the quantum kinetic equation scrutinized in
[7.7] transforms into the classical (5.24).

These arguments do not mean that our understanding of the relationship
between the classical and quantum approaches to the interaction has changed.
Actually, when (3.11) is applied to the quantum case, it must be given a statistical
meaning. For instance, if this formula gives Acg = 0.01hw but hw < e, this
means that an electron did not interact with radiation at all in, say, 99 collisions
but in the 100th collision it suddenly gained Aw in one portion, 100 times that
of the symbolic averaged value Acp.

7.5.7 Calculation of Threshold Fields

When evaluating whether the condition fiw < ¢ is satisfied, one obviously has
to compare kw with the mean energy of the electron spectrum; under breakdown
conditions, the latter equals about one half of the ionization potential, that is,
& ~ 8-13eV in Ar and He. Hence, the condition is very well satisfied in the case
of the CO, laser (hw = 0.117eV), is only passably met for the radiation of the
neodymium laser (hw = 1.17eV), and can be considered to be satisfied for the
ruby laser radiation, with a number of qualifications. Consequently, one can use
the theory presented in Sect.7.4 and the non-stationary criterion (7.27). In the
case of ruby laser radiation, a plausible assumption is that of the fast three-photon
lonization of excited atoms. The breakdown process is then regardes as similar to
that in the Heg gas: inelastic losses are absent and 8 = 1. With neodymium and,
of course, CO; lasers, inelastic losses are important. The CO; laser breakdown
obeys the stationary criterion (7.9). Experimental data fit the calculated curves
quite satisfactorily (Figs.7.14, 15). We conclude that breakdown processes in the
optical and microwave ranges are very similar.
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/L o Fig.7.14. Threshold fields in Ar calculated on the assumption
] that excited atoms are ionized instantaneously by the incident
A, Tum ruby laser radiation {7.7]. The circles are the experimental
0 ! 1 | 1 results obtained using a single-mode laser
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Fig. 7.15. Calculation of breakdown thresholds {7.7]: (a) Ar with neodymium laser, experimental
data are shown by error bars, A = 1.64 - 10—3cm; (b) Ar, Xe with CO; laser; circles and squares
show experimental data; focal spot radius 4 - 10=3 cm, pulse length 1 us

7.5.8 A Bridge Between Microwave and Light Ranges

The experimental observation that the classical similarity law E? ~ S, o w?

holds for threshold values in a wide range of optical frequencies right down to the
microwave range is an especially conclusive confirmation of the last statement
in the preceding subsection. In the microwave range, the law S, « w? holds
only at low pressure (p < 10 Torr), corresponding to the left-hand branch of the
threshold curves. To generalize, we have to assume that S; o (w? + 12). As for
the optical frequency range, here even tens of atmospheres is a low pressure; for
example, the entire plot in Fig.7.11 represents the left-hand curve.

Figure 7.16 shows the curve 5 (W + u,fl), which on a logarithmic scale
degenerates into a straight line if 12 <« w?; experimental pints for air are also
shown, In addition to numerous data on the breakdown of atmospheric air by
the radiation of ruby, neodymium, and CO; lasers [7.7, 11], data for D,O [7.12]
(A =385, 1 = 0.38 mm, the last “mastered” range), HF, and DF [7.13] (A = 2.7y,
3.8) lasers were reported recently. Note that the points group well around the
theoretical straight line, although the law cannot be expected to hold strictly since
different experiments were conducted in nonidentical conditions. Note also that
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the D,O point lies at the limit of the range where the condition w? > 12 is
satisfied: w =4.9-102s~1, »,, ~ 3.8-10125"1.

The law S;  w? is obviously violated in the middle of the visible and UV
ranges of the spectrum, for secondharmonics of the neodymium (hw = 2.34eV)
and especially ruby (fiw = 3.56eV) lasers, where quantum effects become im-
portant [7.7].

7.5.9 Long Spark

When the suprathreshold power is moderate, optical breakdown is obtained by
focusing the laser beam with a short-focus lens. If a laser is very powerful,
however, the intensity is sufficient for the breakdown on a long path along the
caustic of a long-focus lens. The result is a very impressive optical breakdown:
“long spark™. A record length of spark — more than 60 meters — was produced in
1976 [7.14] using a neodymium laser pulse of 160 Joules power output, 5 GW
mean power and a lens of f = 40m. The beam was directed out of the laboratory
window into the courtyard outside. Long sparks are not continuous: ionized
stretches alternate with nonionized gaps (Fig. 7.17). This may be connected with
the statistical behavior of seed electrons and also with the space-time and angular
inhomogeneity of the beam. A long spark is also obtainable with CO; lasers, at
intensities of 1-2 - 10® W/cm?; the threshold increases to 3 - 10° W/cm? in dust-
free air. Long laser sparks are effective in initiating the breakdown in wide
gaps between electrodes. The threshold field of breakdown by dc voltage is then
reduced to 250 V/cm. In fact, the breakdown is considerably facilitated by the
joint action of the laser radiation and microwave or constant field. In this way
one can produce a directed or even zigzag breakdown channel between electrodes
(some relevant details and references can be found in the review [7.11]).

Fig.7.17. Photograph of a long spark obtained by neodymium laser. Spark length 8m, focal length
of the lens 10m [7.14]
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7.6 Methods of Exciting an RF Field in a Discharge Volume

These methods are classified into two main groups depending on whether the
lines of force of the electric field in the discharge plasma reconnect or not, in
other words, whether this is a vortex (rotational) or a potential field. The first
group comprises induction methods based on using electromagnetic induction.

A typical — and most frequent — approach to implementing this principle is
as follows (Fig.7.18). A high-frequency current is passed through a solenoid
“coil” (in fact, the coil may consist of only one or several turns). The oscillating
magnetic field of this current within the coil is directed along its axis and induces
a vortex electric field, whose lines of force are closed circles concentric with
the turns of the coil. This electric field can ignite and sustain a discharge, its
currents also being closed and flowing along the closed circular lines of force of
the electric field. In actual experiments, a dielectric tube filled with a gas to be
studied is inserted into the coil so that breakdown occurs under certain conditions
and the discharge can be sustained after breakdown. Pulsed discharges can be
produced if a sufficiently strong current pulse is fed into the coil. This type of
discharge is known as the inductively coupled, or H-type, rf discharge, with the
latter H pointing to the decisive role of the magnetic field. Inductively coupled
discharges are apparently electrodeless.

In the methods belonging to the second group, the high-frequency (or any
other waveform) voltage is applied to the electrodes. In the simplest (and the
most widespread) geometry, two parallel plane electrodes are employed. The
electrodes may be bare and be in direct contact with the discharge plasma, or
they may be insulated by a dielectric (Fig.7.18b,c). A system of two electrodes
behaves with respect to a variable voltage as a capacitor, so that in contrast to
iniduction discharges, those in this category are known as capacitively coupled,
or E-type, rf discharges (ccrf). The letter E symbolizes the decisive role of the
electric field. A capacitively coupled discharge can be ignited in a tube via a pair
of ring electrodes fixed on the outside surface at the ends of the tube, creating
the longitudinal field. As a result, the discharge can be observed through the end
faces.’

a b ¢ c T
Lo s s s,
H
2Ll Lk
TL' o !r’

~~
Fig. 7.18. Excitation of rf discharges: (a) inductively coupled through a solenoid coil; (b) voltage
applied to electrodes in contact with plasma; (c) electrodes insulated from plasma (elecirodeless,
capacitively coupled rf discharge)

5 The ccrf discharge may also arise in the case of inductive coupling, as a result of gas breakdown
by voltage between turns.
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The induction electric field increases with increasing frequency; it is propor-
tional to frequency in the absence of plasma. Such fields are difficult to create
at low frequencies since dangerously high currents have to flow through the
inductor. As a result, the induction technique is typically used in the range of
f ~ 107! ~10> MHz. Electrodeless capacitively coupled discharges also present
a problem at low frequencies because an insulating dielectric layer has a high
impedance, consuming most of the applied voltage. Electrodes used at frequen-
cies f < 10kHz are mostly bare. Actually, electrodes can be insulated with a
thin layer of high dielectric constant (e.g., barium titanate) but this is not al-
ways practicable. As a rule, difficulties arise only if a voltage of many kV is
to be applied to a discharge gap, that is, under conditions of wide gaps and
high pressures. As for hundreds of volts or a kilovolt, serious problems are not
encountered. Practical work in radio-frequency discharge is such that induction
techniques are mostly used to sustain plasmas at high pressures about one atmo-
sphere (Sect. 11.3), while capacitor techniques are preferable at medium and low
pressures (Chap. 13).

As in the case of discharge analysis in a constant field, the electrode configu-
ration may be arbitrary: two spheres, a sphere and a plane, a wire and a concentric
cylinder, etc. In all these geometries, the field non-uniform and additional dif-
ficulties appear in the interpretation of results. Plane, parallel electrodes with a
relatively narrow gap, that is, planar geometry, are easier and more convenient
for experimental data processing, estimates, and theoretical evaluations.

1.7 Breakdown in RF and Low-Frequency Ranges

Many factors may drastically affect the characteristics of the process; these in-
clude frequency, pressure, method of introducing the field into the discharge
volume, geometry and size of this volume, orientation of the electric vector.

The phenomena can be classified to some extent by comparing their char-
acteristic lengths. Three such lengths are: volume size d, electron free path
length I, and the oscillation amplitude of free electrons a, or of drift electrons A
(Sect. 3.1.3). The choice between a and A is determined by which of the frequen-
cies is higher: field frequency w or electron collision frequency v,.® If pressures
are so low that ! >> d, an electron suffers no collisions with the atoms of the
gas. In typical cases, d ~ 1cm and the upper boundary of such low pressure
(I ~ d) in most gases is p ~ 1072 Torr. Let us very briefly consider several sets
of conditions that produce more or less clearly pronounced effects.

6 . .
The ﬁe'ld oscillation wavelength can be used to characterize frequency but few factors are indeed
determined by it. At 1f and lower frequencies, A > 1m, A > d ~ 1cm, that is, oscillations do
not introduce additional spatial inhomogeneity in the field distribution.
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7.7.1 Electron Oscillation Amplitude Is Small;
Collisions Are Numerous

This is the case of a, A <« d,! « d. It is realized at sufficiently high frequen-
cies but not too low pressure, and differs but little from the microwave-field
breakdown discussed earlier (Fig.7.19).

The dependence of V; on p at a fixed distance, that is, E; = V;/d as a function
of p, is very similar to Fig.7.8 for microwaves. The interpretation is straight
forward. The amplitude of drift oscillations at the ends of right-hand branches
is A =eE/mypw ~ 2.6-103cm « d (w = 10°s™!; E/p ~ 3 V/cm-Torr,
vm ~ 2 - 10°p[Torr]s~! for such E/p). In the region of the minima (E/p ~
50-100, vm =~ 4 - 10°p), the amplitude is greater by an order of magnitude,
2.5-1072, but is nevertheless small in comparison with d ~ 1cm. The positions
of the minima fit rather well the earlier-mentioned relation v, &~ w that yields
(P)min = 2.5 Torr. At elevated pressures p ~ 50 Torr at the ends of right-hand
branches, the threshold values are Ei/p = 22 V/cm for d = 2cm and E/p =
4.5 V/cm-Torr for d = 0.5 cm, being quite close to those in the microwave range
and in constant field (Table 7.1). We are apparently trying to interpret a typical
picture of bulk breakdown in which electrons are removed by diffusion.

Figure 7.19 shows plots of the sustaining voltages, measured in the same
experiments, of the already ignited discharge. Ionization in the stationary dis-
charge process, determined by the same frequency 1;(E), also compensates for
the diffusion loss of electrons but charge densities are now considerable and the
diffusion, being ambipolar, proceeds much more slowly.’

7.7.2 Oscillation Amplitude Is Comparable with Volume Size;
Collisions Are Frequent

This situation arises at lower frequencies. It has been known for quite some time
that V(p) curves similar to those of Fig.7.19 sometimes display an additional
minimum. Measurements plotted in Fig. 7.20 were carried out in a long (30cm)
cylindrical tube with outer electrodes (capacitively coupled rf discharge). With
electrodes placed at the end faces (the field along the axis), the pattern was the
same as in Fig.7.19. The second minimum (right) observed on Vi(p) curves at
not too high frequencies was found only if the field was applied transversely to
the tube. In this case the electron oscillation amplitude is comparable with the
distance to the walls in the direction of charge motion, that is, with the tube
diameter d = 2cm.

7 On the weaker field required to sustain a discharge (than to initiate the breakdown), see also
Sect.8.6.3.An example of this is a simple but extremely demonstrative experiment. If ever you
have undergone uhf therapy (the field frequency is 40MHz), you know how the nurse tests the
normal functioning of the equipment. A tiny lamp probe (a low-pressure neon-filled bulb) is
introduced into the field. If everything is in order, the lamp lights up in bright red. On bringing
the probe slowly to an electrode or a lead wire, the lamp flares up. By moving, it slowly out of
the field along the same route, the discharge shrinks and then dies out; this occurs quite far from
the point of lighting up, in a considerably weaker field.
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Fig. 7.19. Ignition potential of capacitively coupled rf discharge in neon (W), f = 158 MHz; d is
the distance between the planar electrodes (which are covered by glass). Dashed curves show the
burning voltage of a steady discharge, Vin {7.15]
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Fig.7.20. Ignition potentials of ccrf discharge for various oscillation wavelengths [7.15]

Moving along the pressure scale from right to left, we first trace the ordinary
right-hand branch, of the type shown in Fig.7.19, corresponding to diffusion
losses. As the pressure is reduced, the amplitude of the electron drift oscilla-
tions increases to d/2 so that electrons strike the walls on each swing. The
loss is sharply increased because diffusion transports electrons to the wall at a
slow rate. Discharge initiation requires a higher field; the breakdown potential
increases. The positions of the jump and of the minimum are given by the ob-
vious relation A = eEy/mumw ~ d/2, whence Ey/w =~ const. According to
the data of Fig.7.20, this relation is indeed valid. The numerical agreement is
also satisfactory. For instance, at a frequency f = 3MHz () = 100m) we have
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w=19-10"s"", E/p = 100, v ~ 4.10°p, A =~ 1 cm. To the left of the jump, we
see the right-hand branch corresponding to enhanced losses. The main minimum
(left) corresponds to the ordinary condition vy, & wj it is of the same nature as at
higher frequencies (Sects.7.3.6, 7.5.2). At sufficiently high frequencies, A < d
for any p, and the second minimum vanishes.

If the field frequency is reduced, with other conditions remaining unchanged,
the field required for breakdown abruptly increases at a certain boundary fre-
quency. This is observed when drift oscillations bring electrons to the walls. The
threshold frequency satisfies the same approximate formula

2¢E0 o 14E0/PIV/cm -Tom] |
mvmwd  f(MHz]-dlcm]  ’

(7.28)

where d is the distance between the opposite walls normal to the direction of the
field, and Eo/p refers to the lower part of the jump. The frequency used in the
numerical formula is vm ~ 4 x 10°p.

7.7.3 Wide Frequency Range, Including Low Frequencies;
Collisions are Frequent

In hydrogen, the threshold field jumps at the boundary frequency are clearly
pronounced (Fig. 7.21). This frequency agrees rather well with estimate (7.28). At
frequencies below the boundary value, the threshold field is almost constant in a
very wide frequency range, from 1 MHz to 50 Hz. This result is puzzling. Indeed,
if a frequency is much lower than the boundary value, electrons are “herded”
rather rapidly to one wall and kept there for a relatively long time, after which
the field rushes them just as rapidly to the opposite wall, and so forth. Most of the
time, there are no electrons in the discharge volume. If ionization stopped during
these periods, breakdown would be appreciably impeded. It seems, therefore, that
some other ionizing agent has not been identified in the volume. In neon, the
threshold somewhat increases with ) over a wide range of frequencies (Fig. 7.22).
It changes by a factor of 1.5-2 in response to a change in frequency by 3-5 orders
of magnitude after a gentle “jump” at the boundary frequency (first rise on the
left). Effects due to photons, excited atoms, photoemission from the walls, etc.
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Fig. 7.21. Ignition field of ccrf discharge in hydrogen in a 2cm long glass cylinder at different
pressures over a wide range of frequencies {7.15]
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[7.15] are tentatively employed to explain these and a number of other, complex
and tangled circumstances characterizing low-frequency discharges, but much
remains to be done before clarity is achieved.

At low frequencies, of the order of 1kHz and less, especially if electrodes
are bare, breakdown develops anew in each half-period and evolves almost as
in a constant field. In this respect, it is important that the rms threshold field in
hydrogen at elevated pressure p = 76 Torr, E, /p ~ 20 V/(cm-Torr), is quite close,
according to the data of Fig.7.21, to the corresponding value for the constant
field (Table 7.1). In general, ignition potentials at elevated pressure depend on

pd, by analogy to the right-hand branches of the Paschen curves, and assume
similar values.

7.7.4 Breakdown of “Vacuum”

In the case of a highly rarefied gas, with electrons undergoing very few collisions
(I > d), multiplication proceeds through secondary electron emission from the
walls. Dielectric materials (glasses) produce quite strong emission capable of trig-
gering breakdown in volumes insulated from electrodes. As a result, a discharge
takes place in the residual gas in response to breakdown, a light flash appears,
and a change in current is measured in the rf voltage generator. Nevertheless,

breakdown occurs only at frequencies above the boundary value frequency f,
(Fig.7.23).
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This can be explained [7.16]. For multiplication to occur, the energy of the
incoming electron, e, must suffice to detach more than one electron per projec-
tile electron which penetrates the body and stays there (reflection of incident
electrons does not lead to multiplication and can be ignored). Efficient emission
requires em ~ 100eV (Sect. 4.5.6). Furthermore, electrons need to cross the gap
in synchrony with the field. When an electron leaving one wall is accelerated
and reaches the opposite wall, the field must be reversed for the emitted electron
to be accelerated to the former.

Let an electron be emitted from the wall at x = 0 with velocity & = 0 at
a moment to = 7/w at which the field E, = Ep sin wt reverses its direction
and begins accelerating the emitted electron. According to (3.1), it reaches the
opposite wall z = d with a velocity vm = (2em/m)'/? at the moment of the
next field reversal, ¢; = 27 /w, if 2eEy/mw = vm, wd = w(eEp/mw) [the second
equality corresponds to (7.28), only for free motion]. For em = 100eV, vy =
5.8 - 108 cmy/s, this gives the cut-off frequency f, ~ 140/d[cm]MHz and the
threshold field Ep, ~ 120/d[cm] V/cm, in reasonable agreement with Fig.7.23
and the empirical relation f; ~ 80/d MHz.

If f < fo, the electron reaches the opposite wall at a moment when the
accelerating force still points along its line of motion. The emitted electron is
hopelessly “trapped” and multiplication possibilities are severely limited. If, how-
ever, f > fp, the electron begins decelerating before reaching the wall. Now,
something can be done: by transferring more energy to the emitted electron via
the increasing field. Therefore, breakdown is possible for f > f, but the thresh-
old increases as the difference f— fi grows (see Fig. 7.23). For details concerning
radio- and low-frequency fields, see [7.15].
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8. Stable Glow Discharge

8.1 General Structure and Observable Features

8.1.1 Distinctive Features

The glow discharge is a self-stustaining discharge with a cold cathode emitting
electrons due to secondary emission mostly due to positive ion bombardment. A
distinctive feature of this discharge is a layer of large positive space charge at
the cathode, with a strong field at the surface and considerable potential drop of
100400V (or more). This drop is known as cathode fall, and the thickness of
the cathode fall layer is inversely proportional to the density (pressure) of the
gas. If the interelectrode separation is sufficiently large, an electrically neutral
plasma region with fairly weak field is formed between the cathode layer and
the anode. Its relatively homogeneous middle part is called the positive column.
It is separated from the anode by the anode layer. The positive column of a dc
glow discharge is the best pronounced and most widespread example of a weakly
ionized nonequilibrium plasma sustained by an electric field. In contrast to the
cathode layer, whose existence is vital for the glow discharge, the positive column
is not an essential part. No such column is formed if the cathode layer fills the
interelectrode gap. If, however, the distance is insufficient for the formation of
the required cathode layer, the glow discharge cannot be ignited.

8.1.2 Discharge Devices

The glow discharge is one of the most studied and widely applied types of gas
discharge. The discharge tube is a device that has been employed for decades
for discharge generation and analysis (Fig. 1.1). The glow discharge in tubes of
radius R ~ lcm and length L ~ 10-100cm, at typical pressure p~ 1072-
10 Torr, is characterized by an electrode voltage V ~ 102—10° V and a current
i ~107*-10~" A. In a number of modern laser systems, the discharge volume
is a plane channel through which a gas is pumped (the flow is not essential
for the discharge process as such). Electrodes may be placed along the larger
surfaces of the channel or at its narrow ends (Fig. 8.1). The configuration of
electrodes is quite different from the parallel disks typical for discharge tubes.
An electrode may consist of several segments of various shapes, distributed over
a plane, or it may be a long tube. A large discharge channel may allow reaching
very high currents and voltages as does elevated pressure, resulting in kilovolts
of voltage and amperes of current. Nevertheless, the main attributes of glow
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Fig.8.1. Typical geometry of glow discharge in modern electric discharge CO, lasers; u is the
direction of gas flow. (a) Transverse discharge (current is perpendicular to the gas flow). The upper
plate is covered with cathode elements C, the lower piate is the anode A. (b) Longitudinal discharge.
Cathode elements C are upstream of the gap, the anode A is a tube

discharge are retained, that is, a cathode layer with its inherent structure, and the
region of electrically neutral, weakly ionized nonequilibrium plasma filling the
space between anode and cathode layers. The familiar term, “positive column”,
is still applied to the homogeneous electroneutral region. This column forms the
lasing medium of lasers (see Chap. 14). The main properties of glow discharges
being insensitive to specific conditions, our discussion of this discharge will
mainly refer to the classical discharge in a tube.

8.1.3 Pattern of Light Emission

The glow discharge normally manifests a stratification into dark and bright lu-
minous layers; a name being ascribed to each (Fig.8.2). The pattern is easily
discernible at low pressure, when laysers are extended along the tube. Indeed,
all discharge processes are connected with electrons. The distances from the
cathode to characteristic points are dictated by the number of electron free paths,
I  p~!, within these distances. Hence, the coordinate at the boundary of a layer,
1, corresponds to a specific value pz;. A layered pattern extends to centimetres
if p ~ 10~! Torr. Sometimes a positive column has a periodic layered structure
composed of striations. The formation of striations is not inevitable, or they may
be not resolvable; in such cases the positive column emits light homogeneously
up to the anode region.

If the pressure is low, p ~ 1072 Torr, and the separation between electrodes
is moderate, the positive column has no space in which to form and what is
seen is mostly the region of negative (glow) emission that gave the name to the
discharge mode as a whole.

The quiet, sometimes slightly trembling light of a glow discharge has an
enchanting beauty. As a rule, the positive column is less bright than the negative
glow and is differently coloured. Helium manifests a red cathode layer, a gree
negative glow, and a reddish-purple positive column; the respective combination
in neon is yellow, orange and red, and in nitrogen, pink, blue and red. Each gas
has a characteristic set of colours reflecting its spectrum; this is employed in
coloured advertisement tubes. If the pressure in a long tube is not too low, we
mostly observe the positive column. In very wide tubes and spherical vessels,
the glow of the positive column is weak and often invisible.
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Fig.8.2. Glow discharge in a tube and the distribution of: (a) glow intensity, (b) potential ¢, (c)
longitudinal field E, (d) electronic and ionic current densities Jje and j,, (e) charge densities ne and
ny, and (f) space charge g = e(ny — ne)

8.1.4 Variation of Conditions

As the pressure increases, all the layers become thinner and shift closer to the
cathode. At p ~ 100 Torr, it looks as if the cathode is burning, although we
are merely observing the luminous gas. A more extended Faraday dark space
(as in Fig. 8.2) can be distinguished; the rest of the tube or channel is occupied
by the positive column. An elevated pressure causes the column to contract
to the axis, while at low pressures the cross section of the tube is filled with
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the column in a diffuse manner. If the electrodes are moved closer at constant
pressure, the positive column is shortened. Intermediate regions between the
column and cathode (known as negative regions) remain unaltered for some time.
If the cathode is shifted, these regions move together with it. Furthermore, if the
cathode disk is rotated in a wide vessel with a fixed anode, all negative layers
rotate together as if glued to the cathode surface, while the positive column bends
so as to reach the anode. This situation is also realized in vessles of complex
shape. Negative layers are “glued” to the cathode surface and the positive column
finds a path connecting the end of the Faraday space with the anode. As the
electrodes get closer, the column disappears, then the Faraday space is “eaten
up”, and finally the negative glow vanishes. When there is no space even for the
cathode edge of this glow, the discharge goes out unless the voltage is increased.
This discharge is sometimes said to be obstructed.

8.1.5 Distribution of Parameters over Length

The sequence of layers and the distribution of brightness along the discharge tube
are compared in Fig. 8.2 with the distributions of the main discharge parameters.
This is a qualitative picture but a fairly reliable one. It is supported by probe
measurements and theoretical arguments. Among the principal features of this
picture are a large space charge and high field at the cathode, which decreases
almost linearly to a very low level at the cathode boundary of the negative glow.
This region is known as the cathode layer; it is defined not by a visually apparent
attribute (light emission), but by an “objective” characteristic, namely, electric
field distribution.

This region is followed by a zone of very weak field which sometimes may
even be slightly negative, that is, directed to the anode. The longitudinal field in
the Faraday space increases and then stays constant over the entire length of the
positive column. This column can be arbitrarily long provided the power supply
circuit is adequate for maintaining the necessary potential difference across the
column. The constancy of the axial potential gradient in the column has been
confirmed by probe measurements; it proves the electric neutrality of plasma.
There is a small region of slight anode fall of potential by the anode.

8.1.6 Qualitative Interpretation of the Light Emission Pattern

Electrons are ejected from the cathode at energies less than 1eV. This is not
enough for exciting an atom. The result is the formation of the Aston dark
space. The field accelerates these electrons to an energy sufficient for excitation,
and the cathode glow appears. Two, even three layers of cathode glow may be
formed. They correspond to the excitation of different atomic levels, lower ones
closer to the cathode and higher ones further out. These layers have different
colours. The energy of accelerated eelectrons then grows above the excitation
function maxima, where cross sections fall off (Fig. 5.8). Electrons cease to excite
atoms and the cathode dark space is formed. This is the region where ionization
of atoms predominantly takes place, where most electrons are multiplied. The
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newborn ions move much slowly and a large positive space charge builds up.
The current is transferred mostly by ions.

By the end of the cathode layer, the electron flux gets fairly large; as a result
of the avalanche process of multiplication, most electrons are generated at the
very end of the layer, where the field is not strong any more and continues to
fall off. These electrons have moderately high energies, in the region of the
maxima of the excitation function. The negative glow appears. Close to the
cathode, the electron energy increases with the distance from the cathode and
more easily excited spectral lines appear (first and second cathode glows), but
after the cathode layer, the electron energies decrease with increasing distance
from the cathode. Correspondingly, the negative glow first reveals the lines that
are emitted from higher atomic levels and then the lines from lower levels, in an
order reversed with respect to the cathode glow (Seeliger’s rule). As electrons
dissipate their energy, acts of excitation become less and less frequent because
electrons do not gain new energy in the weak field. The negative glow gives way
to the Faraday dark space.

Most but not all of the electrons in the negative glow region have moder-
ate energies. Some electrons here are energetic ones liberated deep inside the
cathode layer or at the cathode, having traversed the cathode layer with only
a few inelastic collisions. They ionize atoms; as a result, the electron density
immediately after the cathode layer is higher than in the positive column.

In the Faraday space, the longitudinal field gradually increases to the value
characterizing the positive column. The column has a random velocity distri-
bution typical of nonequilibrium weakly ionized plasma, with slight asymmetry
introduced by the drift towards the anode. The electron energy averaged over the
spectrum in the positive column is 1-2eV. However, the spectrum contains some
energetic electrons as well. They excite atoms and generate the luminescence of
the column. The anode repels ions but pulls out electrons from the column. Thus
aregion of negative space charge is formed,; its higher field accelerates electrons.
The result is the anode glow.

8.1.7 Guiding Effect of Charges Precipitated on the Walls

Observations show that a discharge can be maintained in tubes of very com-
plicated shapes. Electrons (and ions) that transfer electric current are bound to
move along the gas channel but have to follow the lines of force of the electric
field. In fact, the lines of force of the applied external field trace their own paths
from the anode to the cathode, intersecting quite often the walls of the discharge
tube (Fig. 8.3a). How then can current flow?

Actually, charges (mostly electrons) are first transported along a line of force
of the external field to a dielectric wall; there they stick and accumulate until they
start repelling subsequently arriving charges of like sign away from the wall. The
electrostatic field of the precipitated charges adds up vectorially with the external
field and redirects a part of the lines of force of the resultant field along a path
through the tube that is accessible for charges (Fig. 8.3b,c). Owing to this effect,

171



—
+++y
PAAEY
Ay
+++y
T

NS ==
a S’

Fig. 8.3. Glow discharge in tubes of complicated shape: (a) Lines of force of the applied field, (b)
lines of force of the resulting field (applied field plus that of charged deposited on the walls), (c)
equipotential surfaces in a straight tube curved by the field of negative charge deposited on the walls

the longitudinal field in a straight tube or plane channel becomes more uniform
in cross section. Nevertheless, a transverse (radial) field component is present in
the discharge. Thus in a long positive column, it is uniform along the length and
is directed from the axis to the negatively charged wall. Equipotential surfaces
in the tube are convex, the convexity pointing to the cathode. Sometimes it is
possible to see that the boundary between the positive column and the Faraday
dark space, and the striations, are indeed convex. At a flat cathode, the boundaries
of negative layers are usually plane; presumably, this indicates the absence of a
transverse field component.

8.2 Current-Voltage Characteristic of Discharge
Between Electrodes

Let us continue an analysis of the dc current-voltage characteristic (V —: curve)
begun in Sect.7.2, and move to higher currents. As the breakdown voltage is
reached across the electrodes, V' = V;, a self-sustaining discharge begins to burn
in the gas. In the framework of the idealized scheme we used in Sect.7.2.2, the
current at V' = V| tends to infinity. Any real circuit with a discharge gap always
has an ohmic resistance 2 (a specially introduced resistance or the resistance
of the lead wires, and power supply) which sets an absolute limit to the current
achievable for a given electromotive force £ of the power supply unit. As the
discharge current scale largely determines the discharge type (the value of current
dictates the degree of gas ionization), the resistance {2 imposes the type of
discharge that is produced after breakdown.

8.2.1 Load Line

The equation for the voltage of a closed circuit with a discharge gap is
E=V+i2. 8.1

This equation is plotted as a straight line in V' vs. ¢ coordinates (Fig. 8.4); it is

known as the load line. The line is the steeper, the larger the external resistance;
the intercept on the abscissa axis is the limiting current £/42. The circuit realizes
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the loading line: (A) region of non-self-stustaining discharge, (BC) Townsend dark discharge, (DE)
normal glow discharge, (EF) abnormal glow discharge, (FG) transition to arcing, (GH) arc

those values of : and V that correspond to the intersection of load line and the
V — 1t curve, V(7).

8.2.2 Townsend Dark Discharge

Assume the resistance {2 to be so high that the circuit can supply only an ex-
tremely weak current. The densities n, and n, are then negligible and the space
charge is so small that the external field is not distorted. Thus if the distance L
between plane electrodes is small in comparison with the transverse size of elec-
trodes, the field is the same as in the absence of ionization: F(z) ~ const = V/L.
This discharge is made self-sustained by applying to the electrodes the voltage
equal to the ignition potential V;. This voltage ensures the stationary reproduc-
tion of electrons ejected from the cathode and pulled to the anode (Sect.7.2.2).
As long as the field E(z) is independent of charge (and current) densities, the
V — i curve of discharge is V(;) = const = V;. This situation corresponds to the
segment BC in Fig. 8.4.1

This self-sustaining discharge mode is indeed observed experimentally in
ordinary tubes at currents of ; ~ 1071°-10% A. This mode is called the Townsend
dark discharge. Ionization is so small that the gas emits no appreciable light. The
current is measured by high-sensitivity instruments.

8.2.3 Glow Discharge

Let us gradually increase the current. This can be realized by reducing the load
resistance {2 or by increasing the e.mf. £ The voltage across the electrodes
begins to decrease after a certain current is reached. The fall then stops and the
current remains almost constant over a fairly wide range of values (sometimes of

! Note that we are now discussing the V — i curve of a steady-state, stationary process. There must
be no overvoltage (see Sect.7.2.3) in comparison with the ignition potential. Overvoltage is needed
for the development of the breakdown, that is, for the implementation of the nonstationary process
of current buildup. The current increases in the course of breakdown (when V' > W) to a value
necessary to eliminate overvoltage.
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several orders of magnitude). This segment of the V — ¢ curve, DE, corresponds
to the so-called normal glow discharge. The lower part of the transition region
C D corresponds to a below normal glow discharge.

The normal discharge has one remarkable property. As the discharge current
is varied, its density at the cathode remains unchanged. What changes is the area
through which the current flows. When 2 or £ is varied, the luminous current
spot on the cathode surface expands or contracts.

When no more free surface is left on the cathode, the current is increased
by increasing the voltage, hence extracting more electrons from unit surface
arca. Indeed, the cathode current density must grow. This discharge is said to be
abnormal. Tt corresponds to the climbing section EF of the V — 1 curve. The
transition to the abnormal mode is interesting to observe. The glow first covers
the entire cathode surface facing the anode, then reaches every spot unprotected
by dielectric on the lateral and inner surfaces and on the support pin, and only
having exhausted these possibilities does it become more extended and intense
to a degree typical of the abnormal discharge. When ¢ ~ 1 A, the glow discharge
cascades down to an arc. The segment F'G describes the transition, and GH
represents the arc discharge.

We have followed the V' — ¢ curve as if “turning the handle” that varies {2 or
£. In experiments, a certain resistance is in the circuit at the moment of switching
on an e.m.f,; if £ is greater than the ignition potential, the discharge mode that
sets in immediately after the breakdown corresponds to the point of intersection
of the V — ¢ curve and the loading curve. In contrast to the schematic Fig. 8.4,
Fig. 8.5 gives the actual V — 7 curves [8.1]. The curves cover the dark, normal,
and partially abnormal modes. The higher the pressure, the wider the current
range in which the normal mode is realized (the reason for this will be clear in
Sect. 8.4.4). The picture observed in H,, Nj, and Ar is almost the same as in Ne.

V.kv —
ZZE 0=0.428 Torr
N

T

a8

04 Fig. 8.5. Measured V — i characteristics of

discharge in neon bewteen copper disks 9.3 cm
in diameter, gap width 1.6cm. Plateau on the
left: dark discharge; lower plateau or region
of minimum: normal glow discharge; rising
curve on the right: abnormal discharge [8.1]

0
0wl ity vl
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8.3 Dark Discharge and the Role Played by Space Charge
in the Formation of the Cathode Layer

The main distinction of the glow discharge from the dark discharge (with its
extremely weak current) lies in a sharply nonuniform distribution of the potential
difference applied across the gap to the electrodes. In order to find out why and
by what mechanism the field is redistributed in the interelectrode gap, let us
begin with the dark discharge that does not disturb the external field.

8.3.1 Charge Distribution in Weak-Current Dark Discharges

Assume the gap width to be small in comparison with the transverse electrode
size. We choose the z axis to point from the cathode to the anode. The analysis is
based on continuity equations (2.22), (2.20) for charge densities. Diffusion fluxes
are small in comparison with drift fluxes, the diffusion in the lateral directions
also being insignificant; even more so is the recombination. Bulk charge sources
are related only to gas ionization: g = 11ne = avedne; fluxes are due to drift only.

Let us work in terms of current densities jo = —eneUed, J+ = €N - Viq . In the
steady-state case,
dj . dj ; .. .
—3=a]e , ——+=—a]e , Je+j+=j =const. 8.2)
dz dz

The third equality stating the constancy of the total current is implied by the
first two. The boundary condition at the cathode (z = 0) describes the secondary
emission, and that at the anode (z = L) describes the absence of ionic emission:

O

jec=qjrc =773, 3 =0, jer=j. (8.3)
+

If equation (8.2) for j. is integrated, starting at the cathode, for the first
condition of (8.3) and o[ E(z)] = const, we obtain

Y car i1 Y e
Je 1+7]e , Je ](1 1+‘ye ) 8.4

Condition (8.3) can be satisfied at the anode only if the criterion of ignition
(self-sustainment) is met (see Sect.7.2.2):

et —1=1/y, aL=In(1+1/). 8.5
We recast (8.4) using (8.5):

Je/j=expl—a(L — )} , ji/j=1-expl-a(L —z)] ;

Jelje=expla(L ~ 2)] - 1.

The ioni(.: current much exceeds the electronic current over a large part of
the gap, beginning with the cathode (Fig. 8.6). For example, for v = 1072 and
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aL = 4.6, j. reaches j, only at z = 0.85L. The difference in charge densities is
even greater. Thus if pe/p. = 100, we find that ny /ne = (ge/ p+)(j+/7¢) = 1 only
if z = 0.998 L. In most of the gap, ny > n. (Fig. 8.6). Practically the entire space
is positively charged in dark discharges, but the space charge is small because j
and n, are low. These quantities are arbitrary, being determined by the current
allowed by the circuit and the area of electrodes (see Sect. 8.2).

8.3.2 Distortion of an External Field

This is produced by space charge. Let us evaluate the effect, taking for the
zeroth approximation the charge density distributions obtained in the assumption
E(z) = const. The spatial field distribution is determined by the equation

dE/dz =4we(ny —ne), E=E; . (8.6)

Assuming approximate equalities ny 3> ne, |j+| > |jel, n+ = j/evsa = j/ep E
and denoting by Ec the field at the cathode, we find

E=Ec\1-z/d, d=u,E%/87j . 8.7

The field decreases in the vicinity of the anode and increases in the vicinity of
the cathode, the more the higher the current density (Fig.8.7). The plane z = d
where the extrapolated quantity E(d) vanishes lies far beyond the discharge gap
(if the current is low). As j increases, it moves closer to the anode and coincides
with the anode surface for j; = u+E(2; /8wL (d = L). As j further increases,
at d < L, the field implied by (8.7) tends formally to zero inside the gap, and
the closer to the cathode the higher the current (Fig. 8.7). However, in this case
distribution (8.7) becomes meaningless in the interval d < z < L because the
original assumptions become invalidated. Actually, the distributions ng., n., and
E take the form given in Fig. 8.2.

£
7
Z L‘\ Fig.8.7. Field evolution due to space
3 | TS~o charge: (1) undisturbed fields as j — 0;
N Sy g (@) weak cument, < ii (3) 5 = g
L\ S (4) j > jv, ransition to glow discharge
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8.3.3 Limiting Current for the Existence of Dark Discharge

When the currents are so small that the field is very little distorted, the field at the
cathode, Ec, is quite close to the nonperturbed breakdown field E; of this gap. As
the current increases, the field E¢ deviates from E; more and more; but as long
as d > L, Ec retains the same order of magnitude (see footnote in Sect. 8.3.5).
Hence, Ec in the expression for j;, at d = L can be replaced with E;. The current
density at which the field and discharge structure are considerably modified and
which manifests the beginning of dark-to-glow transition of discharge, is given
within an order of magnitude, by the formula

jn e D(E/P? _ (- DV?
[ 87(pL) 8n(pL)?

It is given a form corresponding to similarity laws. For instance, (8.3) gives
the values Ey/p = 62(V/(cm-Torr), V; = 6200V for nitrogen, with « defined
by (4.5); A = 12cm~1Torr~! and B = 342 V/(cm-Torr) taken from Table 4.1;
and v = 10~2 at pL = 100cmTorr. For (u.p) = 1.5 - 10° cm*Torr/(V s), we
find j;/p* = 2.5 - 107° A/(cm-Torr)?. If, say, p = 10 Torr and L = 10cm, then
i1, =2.5-1077 A/em?. If the electrode surface area is 100cm?, the limiting dark
discharge current is i = 2.5 - 1075 A.

(8.8)

8.3.4 The Condition of Self-Sustainment of Discharge
in a Plane Gap in the Case of Inhomogeneous Fields

It is immediately implied by (8.2, 3) that

L
/ a[E(@)dz=In(1+1/%). 8.9)
0

Equality (8.9) generalizes (8.5) and expresses the same fact. A specific number of
generations have to be produced in the electron avalanche propagating from the
cathode to the anode. This number is determined only by the secondary emission
coefficient and is independent of whether the field is homogeneous or not. The
integral in (8.9) is exactly equal to the value of a(FE;)L corresponding to the
breakdown of a given gap in a homogeneous field. Note that |Ec| > E; at the
cathode and |Ea| < E,; at the anode, because a(E) is an increasing function of

E, but that |E(z)| is a decreasing function of z if E is distorted by the space
charge.

8.3.5 What Happens to Voltage When Space Charge Builds Up

A qualitative tendency is clear from an analysis of the integral in (8.9), of the
voltage integral V = | foL E dz|, and of the dependence of « on E according to
§4.5). If the field is not too strong, the function & o exp (— Bp/ E) increases with
increasing E at an increasing slope d’a/dE? > 0; if the field is very high, the
slope decreases: a — const. The point of inflection of a(E) lies at E = Bp/2.
For a nonperturbed breakdown field E; < Bp/2, the conditions for multiplication
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are facilitated by a redistribution of potential: the enhanced field contributes to
integral (8.9) more than the weakened field takes out. Conversely, integral (8.9)
is conserved if Ey — |Ea| of the decreasing field is greater than the increment
| Ec| — Ex. However, if at one place the field is enhanced less than it is weakened
at another place, the potential difference | [ E dz| decreases. If £z > Bp/2,
the situation is reversed: redistribution either impedes multiplication or increases
voltage.

The correctness of these qualitative arguments can be verified by considering
a weak inhomogeneity, using formulas (8.9,7) and (4.5) and expanding in a
small parameter j/j, = L/d <« 1 (the integral cannot be calculated in the
general case).? A small increment to the gap voltage in comparison with the
breakdown potential V; = FyL for a homogeneous field is found to be

V —Vi=—(1/48)Y(Bp/2E — 1)(§/jL)* . (8.10)

According to (7.3), the condition E; < Bp/2 at which the voltage of sus-
tained discharge falls below the ignition potential is satisfied for gaps with
(pL) > e(pd)min, Where (pd)min corresponds to the minimum breakdown volt-
age. If (pL) < e(pd)min, then V' > V. In actual experiments, one usually has
to deal with gaps that are long in the sense defined here; therefore the voltage
decreases in the transition from the dark to the glow discharge (Figs. 8.4, 5).

8.4 Cathode Layer

8.4.1 What Is Its Purpose

In a plane gap undergoing breakdown, and in weak-current dark discharges, the
loss of charged particles due to field-pulling onto electrodes is made up for by
avalanche ionization over the entire length up to the anode. However, if a gap is
wide in the sense pL > (pd)m, this situation (implied by the homogeneity of
the field) is obviously not optimal. Unjustifiably high voltage is required to meet
the self-sustainment condition (8.9). A lower voltage would be sufficient if the
potential drop were concentrated. Indeed, the multiplication efficiency is higher
in strong fields.

The potential distribution would be ideal if the potential difference equal to
the minimal breakdown voltage, Viia, were concentrated over the correspond-
ing length (pd)min at the cathode. This would ensure reproduction at minimum
applied voltage. To sustain further flow of electronic current generated in this
cathode layer through the remaining (even if long) part of the gap, the additional
voltage need only compensate, via weak ionization, for the losses of electrons
caused by ambipolar diffusion to the walls, recombination, and attachment. Na-

2 The field at the cathode is found by setting integral (8.9) equal to a(FA)L; |Ec| = Eall + L/4d +
O(L /d)]. Second-order terms must be retained. The problem was originally analyzed in [8.2,3].
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ture reveals unparalleled wisdom in its organization. The normal glow discharge
comes quite close to the optimum. One of the main mechanisms of optimiz-
ing the potential distribution across the gap is the effect of space charge that is
generated automatically at the cathode, creating there an enhanced field and a
potential drop; this was described in Sect. 8.3.

8.4.2 Current-Voltage Characteristic

The theory of the cathode potential drop (or cathode fall) was developed by
vonEngel and Steenbeck in 1934 [8.2]; it has considerable significance for the
physics of the glow discharge. Subsequent elaboration and more profound un-
derstanding of the process do not nullify the essential aspects of the theory. We
will present it here in the simplest and most lucid form that brings forth the
fundamental features of the phenomena. Let us take a stationary cathode-fall
layer. Assume that pressures and currents are not too low, so that the current
spot in the cathode is large and the layer is thin. It can then be assumed plane
and one-dimensional. The field at the anode end of the layer, at = = d, is sub-
stantially less than that at the cathode: E(d) < E(0) = Ec. Assume E(d) =~ 0.
Assume also that even if some ionic current enters the cathode layer on the
side of the anode, it is very weak (in the electrically neutral part of the gap,
Jilje = via/Ved = ps/pe ~ 1072). The layer is then an autonomous system
satisfying the condition of self-sustainment of current, (8.9). We only have to re-
place the distance between electrodes L in (8.9) with the layer thickness d. The
electronic current generated in this system reaches the anode. It coincides with
the total discharge current up to a small quantity of order y./u..> The cathode
fall is

d
Vc=/ Eds, E=|E|. 8.11)
0

Von Engel and Steenbeck solved the system of equations (8.9, 11, 6) assuming
(4.5) for a(E) and prescribing, in view of the results of probe measurements, a
linear field distribution:

E@)=Ec(l1-z/d), 0<z<d. 8.12)

The integral (8.9) with the field (8.12) is not expressible in terms of elementary
functions. Essentially the same results that differ only by numerical factors of
order unity but manifest a clear analytic form can be obtained assuming E(z) =
const = Fc in (8.9) for z < d. Then (8.9) transforms into (8.5), with d for L.
However, since we assumed the field in the layer to be homogeneous, (4.5) and

a trivial relation V¢ = Ecd implied by (8.11) yield (7.3) for the breakdown of
the gap d in the homogeneous field:

3 According to (2.39), a stationary process has div 7 = 0, whence i = const. In the one-dimensinal
case, j(x) = const as well.
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Ec B Bpd A

p C+lnpd’ VC:C+lnpd’ C=lnln(1+1/7)' ®.13)

These formulas relate the cathode fall V¢ to the cathode layer thickness pd.

Let us now find the relation of these quantities to the current density at
the cathode, j. As shown in Sect.8.3.1, the region of self-sustainment through
multiplication is characterized by ny > ne, j+ > je. By virtue of (8.6), the ion
density in the layer is approximately equal to

n. & (4ne) " |dE/dz| ~ Ec/Ared ,

where we have already taken into account that the actual field is not constant but
decreases from Ec to zero. Hence,

J=A+Veny B~ (1 + . EE fand ~ (1 + V), VE [4nd® . (8.13")

Together with (8.13), this formula defines a parametric dependence of the
cathode fall V¢ and the field at the cathode, Ec, on the current density j. The
parameter is the layer thickness d. The function Vc(pd) has a minimum [see
(8.13)]. In this approximation, it describes a Paschen curve (Sect.7.2.3) with
Vmin €qual to the minimum gap breakdown voltage.

By virtue of (8.13,13'), V¢ as a function of ; has a minimum, reaching the
same value Vi, It will be convenient to rewrite these formulas in dimensionless
form, using the quantities corresponding to the minimum potential difference as
dimensional scales. We mark them with subscript “n” for “normal” instead of
“min” (they are indeed realized in normal discharge) and denote dimensionless
quantities by a tilde:

Yo p E/p G o pd - i

a En/ p (pdn Jn
The scales Vi, En/p, (pd) are defined by formulae (7.4); the current density
scale, taking into account similarity laws, is

Jo _ 1+ N@pVE (1 +9) @)V

P dn(pdy 910" 4n(pd)}
The parametric relations of dimensionless quantities via d are

1
dl+Ind?’

Qu

A/(cm - Torr)? . (8.14)

8.15)

- - 1 -
V= =, E= 7=

1+Ind 1+lnd’

Figure 8.8 plots V, E, and d as functions of ; according to (8.15). The curve
V(3) gives the “current-voltage” characteristic of the cathode layer, the inverted
commas signifying that the argument is current density, not current.
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Fig. 8.8. Cathode potential fall (V), field at the cathode
(E) and cathode layer thickness (V') as functions of cur-
rent density (in dimensionless coordinates)

~7

e i r 1 1 1
w207 0° v 0?00 ;]

8.4.3 Normal Cathode Fall and Current Density

Formally, (8.15) and Fig. 8.8 imply that as j decreases from j,, Vc and d increase
and Ec decreases. When d grows to the gap width L, solution (8.15) becomes
equal to that of Sect. 8.3, and j given by (8.13') is nearly equal to j, of (8.8). It
may seem that the evolution of dark to glow discharge has been traced.

Experiments definitely show that nothing of the sort takes place. The falling
branch of the curve V(j) to the left of 7 = 1, j = j, is not realized. The mode
that sets in at currents ¢ less than Scjn, where Sc is the cathode surface area,
corresponds to the minimum point of the “V — ¢ curve” of the cathode layer.
The same mode is realized when current is varied and when £ and {2 are such
that, after ignition, the state falls into the region DE of Fig.8.4. A current spot
lights up automatically on the cathode, with area S such that the current density
is jn ~ /S and the cathode fall is V;. A V — ¢ curve of a real discharge has
nothing in common with the left-hand branch of Fig.8.8 (this would be the
case if the current ; passed through the entire cathode, i = Scj). The discharge
voltage when the cathode is not totally covered is current-independent, exceeding
Va by the potential drop on the positive column. If this fall is negligible (low
pressure, short tube), the voltage on the electrodes is almost equal to V4. This
glow discharge is known as normal, and the corresponding values of cathode fall
and current density are also said to be normal.

The theoretical values 1}, jn, and (pd), somewhat depend on the assumptions
about the E(z) profile that were used in the calculation. In the simplest approxi-
mation, introduced in Sect. 8.4.2, V, and (pd), coincide exactly with the param-
eters of the minimum on the Paschen curve, Vi, and (pd)min, and j, is given by
(8.14). If approximation (8.12) is used, we find V, = 1.1Vjin, (pd)n = 1.4(pd)min,*
and jy, is 1.8 times the value given by (8.14). Any reasonable theory, as well as

4 Formula (137) for (pd)a given in the monograph [8.2], and later in [8.4], contains a wrong numerical
coefficient: 0.82 instead of 3.78. The correct coefficient in the above formula is 1.4.
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experiment, give for the normal cathode fall and layer thickness values that are
close to Viin and (pd)pin for the breakdown of a plane discharge gap in the same
gas and for the same cathode material. Calculations with the mentioned numerical
coefficients derived by von Engel and Steenbeck on the basis of approximation
(8.12), give satisfactory agreement with the experimental parameters of normal
discharges (see Tables 8.1, 2, 3) if the coefficients 4 and B are taken from Table
4.1 and v ~ 1072-10~! (the dependence on ~ is logarithmic).

Table 8.1. Normal cathode fall V,, [V] [8.2,4]

gas air Ar He Hy Hg Ne N2 O, cCO CO,
cathode

Al 229 100 140 170 245 120 180 311 - -~
Ag 280 130 162 216 318 150 233 - - -
Au 285 130 165 247 - 158 233 - - -~
Bi 272 136 137 140 - - 210 - - -
C - ~ - 240 475 - - - 526 ~
Cu 370 130 177 214 447 220 208 - 484

Fe 269 165 150 250 298 150 215 290 - ~
Hg - - 142 - 340 - 226 - - -~
K 180 64 59 94 - 68 170 - 484

Mg 224 119 125 153 - 94 188 310 - ~
Na 200 - 80 185 - 75 178 - - ~
Ni 226 131 158 211 275 140 197 - - -
Pb 207 124 177 223 - 172 210 - - -
Pt 277 131 165 276 340 152 216 364 490 475
w - - - - 305 125 - - - ~
Zn 277 119 143 184 - - 216 354 480 410
glass?® 310 ~ - 260 - - - - - ~

* Thin soft glass disk heated to 300° C. The same holds for Tables 8.2 and 8.3

Table 8.2. Normal cathode layer thickness (pd)n [cm-Torr] at room temperature (8.2, 4]

gas air Ar H, He Hg N, Ne O,

cathode

Al 025 029 072 132 033 031 064 024
C - - 0.90 - 0.69 - - -
Cu 023 - 0.80 - 0.60 - - -
Fe 052 033 09 130 034 042 072 031
Mg - - 061 145 - 0.35 - 0.25
Hg - - 0.90 - - - - -
Ni - - 0.90 - - - - -
Pb - - 084 - - - - -
Pt - - 1.00 - - - - -
Zn - - 080 - - - - -
glass*® 0.30 - 0.80 - - - - -

*see Table 8.1
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Table 8.3. Normal current density ja/p? [A/(cm?Torr?)] at room temperatre (8.2, 4]

gas air Ar H> He Hg N O2 Ne

cathode

Al 330 - 90 - 4 - - -
Au 570 - 110 - - - - -
Cu 240 - 64 - 15 - - -
Fe, Ni - 160 72 22 8 400 - 6
Mg - 20 - 3 - - - 5
Pt - 150 90 5 - 380 550 18
glass® 40 - 80 - - - - -

agee Table 8.1

8.4.4 Abnormal Discharge

After the entire cathode has been covered with discharge, any further increase
of current inevitably increases the density at the cathode in comparison with the
normal value. This abnormal discharge corresponds to the right-hand branch of
the V() curve of Fig. 8.8; now it actually describes the V —; characteristic of the
cathode layer and a discharge without a positive column, sine ¢ = const- j = S¢j.
The theoretical curve fits the experimental data (region EF in Fig.8.4). As
j — oo , equation (8.15) implies that the cathode layer thickness decreases
asymptotically to a finite value d =e~! = 0.37; V and E grow as ;'/2. In actual
situations, a cathode fall of more than several kV and current densities of order
10-10? A/cm? result in intense heating of the cathode and transition to an arc
discharge. Experimental V' — ¢ curves of abnormal discharges can be seen in
Fig. 8.5.

8.4.5 The Current Range in Which Normal Discharge Is Possible

A dark discharge occupies the entire cathode. The same is true for the normal dis-
charge at the upper limit of its existence. Correspondingly, the current increases
from the transition of dark current to normal to the transition of normal current to
abnormal by a factor of about j,/jy. By virtue of (8.8,14), ju/j;, ~ L(1+In L)?,
where L = (pL)/(pd),. Therefore, the current range in the normal mode (in the
region DE of Fig. 8.4) is the greater, the higher the pressure and the longer the
tube (Fig. 8.5). For example, one of the experimental versions shown in Fig. 8.5
Is characterized by p = 15Torr, L = 1.6cm, (pd)a = 0.7cm-Torr, L = 34, and
the ratio of currents equals 700, in agreement with experimental data.

8.4.6 Subnormal Discharge

This is a transition region between the glow and dark discharge regions (rather
nearer to the normal region) that corresponds to currents so weak that the size of
the “quasinormal” cathode spot is found to be comparable to the cathode layer
thickness. The loss of charges in the lateral direction is harmful for multiplication,
so that the voltage across the layer required for self-sustainment of the discharge
1s found to be higher than for the normal regime.
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8.4.7 Obstructed Discharge

This mode arises at very low pressure in narrow gaps of widths L, such that the
product pL is less than the normal layer thickness (pd)n. Roughly speaking, these
conditions correspond to the left-hand branch of the Paschen curve, where V' >
Vinin. The interelectrode separation is insufficient for “normal” multiplication, so
that voltage has to be raised in comparison with the normal value. If this is not
possible the discharge is extinguished.

8.4.8 Normal Discharge and Minimum Power Principle

Why is it that the discharge current to a partially covered cathode occupies
precisely the area preserving the current density? The problem is equivalent to
the task of justifying the postulate of the vonEngel-Steenbeck theory on the
realization of the minimum possible cathode fall by the normal discharge. It
is this assumption that provides a good explanation of the experimental facts.
The creators of the theory were already able to explain why states with cathode
current density below the normal are not observed [8.2]. These states are unstable
because they refer to the falling branch of the Vc(j) curve of Fig. 8.8 (in general,
discharges with falling V — ¢ characteristics typically produce unstable states; see
Sect. 8.7.5). Indeed, if a fluctuation §; > O appears at some point on the cathode
layer surface, a lower voltage is required to sustain the current ; + 67 than is
actually there, so that j increases. If §; < 0, the actual voltage is lower than the
necessary level and j has to drop still lower. In this sense, the states with j > jn
on the rising branch of the V — i curve, Vc(j), are quite stable. Nevertheless,
“abnormal” cathode spots never appear on a partially covered cathode. Obviously,
the neighbouring zero-current region proves to be unstable. How does it happen
and what does stabilize the boundary of a normal cathode spot?

Twenty years later vonEngel [8.3] discussed the incomprehensibility of the
phenomenon, without resorting to the stability arguments, and appealed to the
“minimum power principle”. This principle left an important trace in discharge
physics; sometimes it is resorted to even now and thus deserves being mentioned.
The power released in the cathode layer volume is

d
Pe=S$ / JiE dz = SiVe() = iVe () -
0

If the area S is varied at constant total current i, the power is found to be
minimal precisely at the normal current density, such that Ve(7) = min. Gaseous
discharges also manifest some other phenomena that realize just those states
that require minimal voltages and (or) power, for example, striations (Sect.9.7).
Steenbeck proposed in 1932 the above minimum principle on the basis of such
facts, demonstrating the spectacular expediency in the organization of nature. It
may have been due to the great prestige of Steenbeck, however, that this principle
was later employed not only for a better illustration of the observations, but also
as a missing condition for completing a theoretical model. This proved to be
fraught with errors (masked by an apparent agreement with experimental data),
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because the principle is not implied by the fundamental laws of physics. In fact,
it is not necessary if the mechanism of the phenomenon has been understood
and its theory has been constructed in the usual manner. Such was the case with
striations, and with the channels of the arc (Sect. 10.10), induction (Sect. 11.3),
and microwave (Sect. 11.4) discharges. The approach to normal current density
must also follow these lines.

8.4.9 Mechanism by Which Normal Current Density Is Reached

This has only been clarified rather recently [8.5-8].5 The effect of interest, & /S =
const, is also revealed by numerical modeling of glow discharge using equations
(2.22,20, 33) for n., n,, E = —V with boundary conditions of type (8.3) and
with « given by (4.5) [8.6,8]. When the current and cathode layer surface area
are sufficiently great, as in Fig. 8.9, the middle part of the layer behaves as a
quasi-one-dimensional system whose parameters are described rather well by the
formulae of the one-dimensional theory [8.2].6

Let us turn to the map of equipotentials in Fig. 8.9 and to the schematic de-
pendence of the voltage V¢ across the cathode layer on its thickness d (Fig. 8.10).
This dependence follows from an equality of type (8.9) that we write in the form

d(r)
L= {cxp (/ a[E)] dl) — 1} =1, (8.16)
0

where u is the charge reproduction coefficient (Sect.7.2.2). We integrate here
along a line of current that sinks into some point r of the cathode surface. If we
choose to ignore the diffusion of charges, the lines of current coincide with the
lines of force of the field. If E(I) = const, the dependence V(d) coincides with the
Paschen function (8.13). Note that the linear law (8.12) is fairly well supported
by both one-dimensional [8.10] and two-dimensional [8.6, 8] calculations; this
law gives the curve [8.2], which is not very different from (8.13). The stationary
current mode corresponds to the curve of Fig. 8.10 for x = 1. Above this curve
# > 1, and below it p < 1. This is a corollary of the boundedness of the
ionization coefficient o(E) as E — oo, so that the function p(d) at V = const
has a maximum. This is the root of the effect.

For a qualitative analysis, the curve Vc(d) can be treated as the current-voltage
characteristic Vc(5), provided the axis J is directed counter to d. If j < jy, that is,
d > dp, the stationary states on the curve are unstable (Sect. 8.4.8). Fluctuations
may destroy the cathode layer in its middle part as well, but at the edges the
layer decays even without fluctuations. At these edges, where the space charge
decreases, the equipotentials shift away from the cathode (Fig. 8.9). When moving
away from the midpoint of the spot, we shift to the right of point 1 in Fig. 8.10,
where p < 1. Hence, the current at the edge vanishes with time. According to

5 The problem was discussed in [8.9], but clarity had not yet been achieved at that time; see [8.8].
Taking into account the correction mentioned in footnote 4 to Sect.8.4.3.
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Fig. 8.9. Calculated two-dimensional structure of steady-state axisymmetric glow-discharge column
between plane electrodes (nitrogen, p = 15 Torr, interelectrode spacing 0.75 cm, e.m.f. 2500V, ex-
ternal resistance 300 kOhm). The cathode is placed below, the anode on top and on the electrodes
V =250V, i = 7.5mA. (a) Lines of equal densities of electrons and ions are plotted (n. and n; in
10° cm—3, (b} equipotentials for each V/10 = 25V, (c) radial current density distributions jc on the
cathode and ja on the anode, (d) radial distributions n; on the cathode and ne on the anode, and (e)
the distributions ne, ni, ¢ along the discharge axis [8.8]
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(8.1), the discharge voltage then increases due to the external resistance {2, so
that j in the homogeneous part of the layer increases until it reaches j,.

Assume that a strongly supernormal layer has developed (point 2 in Fig. 8.10).
The state in its central, quasihomogeneous part is stable. However, when we move
to the right of point 2 (edgeward), where equipotential surfaces deviate from
the cathode, we enter a region of increasing reproduction of charges, p > 1.
Breakdown occurs at the edge of the cathode spot. A growth in the spot size
increases the total current. The voltage across the electrodes decreases and j in
the homogeneouss part of the layer drops. Point 2 slides downward until the state
stabilizes at the edge, as well as in the middie of the layer.

The normal, that is, completely stable, state corresponds to point n, slightly
above the minimum of the supernormal branch [8.5]. This is connected with
the diffusion transport of charges to the edge zone, where u < 1; this trans-
port sustains there a nondecaying non-self-sustaining current. This sustainment
requires, however, that charge generation be enhanced (p > 1) in the region
that lies closer to the midpoint. In the absence of diffusion, point 2 would move
downward to the bottom, the normal state would coincide with the minimum V¢,
and the edge of the cathode spot would become sharply defined. However, this
state is incompatible with electrostatics. Equipotentials cannot be parallel up to
the edge of the space charge zone and start deviating only beyond this zone.

8.4.10 Nonlocal Nature of Electron Spectrum and
of the Ionization Coefficient in the Cathode Layer

So far, when establishing the conditions of self-sustainment of the discharge
and the integral characteristics of the layer (V¢, d, j), we regarded the ionization
coefficient « as a function of the local field E(z). The (Townsend) dependence
a(E) was taken from experimental data on jonization in homogeneous fields.
This approximation is sufficient for obtaining integral characteristics, but it gives
a severe distortion to the pattern of ionization produced by electrons at the end of
the cathode layer and in the adjacent region; the understanding of the processes in
this region is therefore seriously thwarted (Sect. 8.5). The point is that within the
cathode layer, the field varies by a factor of 10°—10°; the thickness of this layer
§oes not exceed 10 free path lengths for inelastic collisions, or In(1+1/7) =~ 3
ionization length (a~'). This inhomogeneity of E is too sharp for the equilibrium
energy spectrum [corresponding to the local field E(z)] to set up, as it would in
the case of a weak inhomogeneity. The actual ionization coefficient a(z) is also
different from the Townsend one, al E(z)].

Electrons move in the direction of weaker field; their spectrum is harder (i.e.
of higher energy) than the equilibrium spectrum, and the ionization coefficient is
greater because before arriving at a given point, electrons had gained energy in a
stronger field and did not “forget” this fact. In the limiting case of a very small
number of inelastic collisions, the energy of electrons is determined not by the
field as such, but by the potential difference traversed. As a result of nonlocal
effects, electrons with substantial energies are present among those emerging
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from the cathode layer; some of them have been created at the cathode and
crossed the entire layer without a single inclastic collision. Their energies are
eVe, that is, hundreds of electron volts. These electrons, discovered a long time
ago, are known as the “beam”.

Current efforts in the cathode-layer theory are aimed at taking into account
the nonlocal effects.” The rigorous approach is possible only on the basis of the
solution of the kinetic equation for electrons in an inhomogeneous field. One of
the approximations is to replace the local field E(z) in the Townsend coefficient
« with the mean field over the preceding path Az on which the electron gains the
energy f;_ A, ¢E dz equal to th jonization potential [8.11]. The most complete
and reliable information is obtained by Monte Carlo simulation of the stochastic
process in the cathode layer; this has so much advanced in recent years [8.12]
that it has become essentially a method of numerical solution of the kinetic
equation. The solution is obtained by extensive, time-consuming computations
that are only feasible if powerful computers are employed.

The results of computations, even though involvinig a number of simplifi-
cations, are impressive (Figs.8.11, 8.12) and enable us to look at a sequence
of stages of the process. Electrons with energies from small values up to 10-

g 50 100 150

Fig. 8.11. Electron energy spectra at various distances z from the cathode in the cathode layer
of normal glow discharge in He at p = 1Torr. Calculations assume V, = 150V, the field £ =
230(1 —z/1.3)+1 V/cm in the cathode layerif 0 < z < 1.3cm,and E = 1V/emifl3 <z <15cm
[8.12}

7 This aspect is unrelated to the problem of normal current density.
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Fig. 8.12. The distributions of (a) mean electric energy £ and (b) the ionization coefficient o as a

function of the coordinate z of the cathode (p = 1Torr); calculations used the spectrum of Fig.8.11
[8.12]:

A - isotropic elastic scattering
03 ~ anisotropic elastic scattering, with forward scattering dominating

20eV are detected on emergence from the layer, and a low-intensity beam is also
found. Away from the cathode, the peak of the “beam” rapidly diminishes and
disappears on the scale of Fig.8.11. On the emergence from the cathode layer,
it constitutes 10~ of the distribution function for ¢ = 0; the mean energy on
the emergence from the layer at = 1.3cm is £ ~ 10eV. If nonlocal effects are
neglected, one gets £ =~ 2.9¢V (E/p = 1 V/(cm-Torr); Sect.2.3.5) and o =~ 0.
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The real ionization coefficient at the farther layer boundary is half the maximum
value at the middle; on the other hand, the equilibrium coefficient a[E(z)] has
its maximum at the cathode (1.7 cm™!), and is many orders of magnitude smaller
(practically zero) at the boundary. However, the details of the output spectrum
do not agree with experimental data. Three groups of electrons were detected at
the emergence from the cathode layer in helium: electrons with the mean energy
of 2eV (they are predominant), those with 22.5eV (their number is two orders
of magnitude less), and a weak beam with ¢ = 150eV = €V, [8.13].

Section 5.9 outlined the “forward-backward” approximation for solving the
kinetic equation in strong nonuniform fields. The approximation was tested un-
der conditions assumed in the calculations of [8.12]. Satisfactory agreement with
Figs.8.11 and 8.12 was obtained. The method was used to take into account
nonlocal effects in the vonEngel-Steenbeck self-consistent calculation of the
current-voltage characteristics of the cathode layer in helium (Sect. 8.4.2). The
normal-discharge parameters found in [8.14], V; = 142V, j, = 3 - 107 A/cm?,
dy = 22cm for p = 1Torr, and also the abnormal branch, are in much bet-
ter agreement with the experiments than those using the Townsend coeffi-
cient o[E(z)] and A and B of Table 4.1. The rate of electron production in-
creases away from the cathode, reaches a maximum (in normal discharge) of
g ~ 8-102cm~3s~! at the end of the cathode layer, for z ~ 2cm, and van-
ishes only at a distance of z ~ 4 to Scm. Roughly a half of the electrons are
produced byond the cathode layer, in the weak field assumed to be 0.1 V/cm. A
self-consistent (in contrast to [8.12]) cathode layer calculation using Monte Carlo
techniques has recently appeared in [8.15]. Like the calculation of [8.10] with
a(E), it mostly confirmed the linear law (8.12) of field decrease with distance
from the cathode.

8.5 Transition Region Between the Cathode Layer
and the Homogeneous Positive Column

The section heading refers to the regions of negative glow and Faraday dark
space, terms that reflect the visual attributes. We are interested in the processes
responsible for the longitudinal structure of glow discharges: the field and charge
density distributions along the z axis and the current transport. In this respect,
the two regions are a coherent whole (Fig. 8.2).

8.5.1 The Decisive Role of Energetic Electrons Supplied
by the Cathode Layer

These electrons dissipate energy in the excitation and ionization of the gas,
thereby causing intensive light emission (and sharply increased ionization in the
region where the field is insufficient for such processes). On the other hand,
intense ionization is a factor causing a drop in field strength, because the cur-
rent density along the direction of current remains constant in one-dimensional
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stationary discharges (this is also valid for discharge in a tube). Therefore, in
the framework of the frequently justified assumption of constant mobility ., we
have n.E = const; hence, the field E at the point ne max is weaker than in the
positive column, where n. is lower; this is indeed supported by Fig. 8.2, which
schematically represents the results of experiments.

The role of nonlocal effects that produce a powerful electron source not
attributable to the effect of the local field is especially well pronounced if we
ask what would happen if the ionization decreased everywhere monotonously
as the field decreased (as in the case of ionization with equilibrium Townsend
coefficient). The distributions of ne, n,, and E along the z axis within the gap
are then described by (8.2,6,3). Actually, (8.2) must be complemented with
terms for charge loss in order to allow for the formation of a homogeneous
Ipositive column, with ionization compensating for losses (Sect.8.6). Both a
qualitative analysis and a numerical integration of the system show that the ficld
monotonically decreases from the cathode value to that corresponding to the
positive column, and n. also increases in a monotonic manner. We thus come
to a natural transition from the cathode layer to the positive column, without a
region of field drop [8.9]. We can say that the Faraday space would not form
without a flux of energetic electrons outside the layer in which current is self-
sustained, that is, without nonlocal effects.

8.5.2 Probe Measurements

The relevant data are plotted in Fig. 8.13. The measured electron temperature
T. ~ 0.12eV is practically constant across the region and does not depend on
the current. The potential is almost unchanged within the investigated length, and
E/p does not exceed 0.01 V/(cm-Torr). The latter result is likely to be beyond
the accuracy of the measurements. It is easy to evaluate that this E/p is too small
for supporting the drift transport of the current at ne max, When both the gradient
of n. and diffusion current vanish. Slow electrons are maxwellian because the
frequency of electron-electron collisions at such low temperatures substantially
exceeds the energy loss frequency (2.17) in collisions with atoms. These are the
electrons that were created at the very end of the cathode layer, where the field
that could accelerate them is almost zero, and also electrons, created by high-
energy electrons, that have dissipated their energy. They are known as “final”
electrons. Probe measurements of the distribution function pointed to the exis-

.. -3
Ne. 10" em ™ T

Fig.8.13. Measured density distributions of slow
electrons in the negative glow and Faraday space
<]  on the tube axis. Discharge in helium, p = 1.5 Torr.
Coordinate z is measured from the beginning of the
negative glow, towards the anode [8.1, 16]

g 5 70 xcm
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tence of a second group of electrons with T, ~ 3—4¢eV. Their density is smaller
by a factor of 100-200. These electrons are sometimes called “secondary”. They
are produced somewhat deeper in the cathode layer and are slightly accelerated
in the field. Not too energetic electrons having undergone an inelastic collision
and retaining this energy are likely to belong to this group too. The third group
comprises a small number of electrons; this is the beam (the three groups were
also mentined in Sect. 8.4.10).

Recent measurements in helium under similar conditions [8.17] (p = 1 Torr,
R = 1.5cm) but at a higher current (: = 15mA) yielded greater values of
E/pand T ~ 1eV and a shorter Faraday space (about 3cm). It is of interest
that the diffusional current is almost balanced out by the oppositely directed
thermodiffusional current, so that only the drift component is present.

8.5.3 Role Played by Electron Diffusion

As a result of a sharp maximum of electron density that falls off steeply towards
the anode, the current in the region of density drop may be sustained by electron
diffusion, as described in Sect.2.7.2.% The field is thereby cancelled. Owing to
the drop in electron density, the diffusion flux gradually decreases, the field
gets restored [see (2.42)], the diffusion is gradually replaced with drift, and the
Faraday space is transformed into the positive column (provided the anode is
still far removed; see Fig. 8.2). This situation also arises in a low-voltage arc. It
has been approximately modelled in [8.18,19,1].

The drop in n. from the maximum towards the anode is caused by electron
losses not replenished by ionization (which is absent). Under the conditions
of Fig.8.13, electrons are removed by ambipolar diffusion to the walls, where
subsequent neutralization takes place. Bulk recombination (and attachment in
electronegative gases) becomes predominant at high pressures when diffusion is
impeded.

8.5.4 Main Factors Determining the Longitudinal Structure
of Discharge in a Gap

Three factors are thus important for the formation of the transition from the
cathode layer to the homogeneous positive column via the negative glow and
Faraday space. (1) The presence of a powerful jonization source at the end of
the cathode layer; the source is not dependent on the local field strength. (2) Local
charge loss (bulk recombination, ambipolar diffusion to the wall) not related to
its current to the electrodes. (3) Diffusion of electrons along the current direction.
No adequate theory of the transition region is possible if anyone of these factors

8 |t is sometimes mentioned (see, e.g. [8.1]) that the beam participates in charge transfer. In fact, only
a small fraction of the electrons emitted from the cathode is transformed into the beam; besides,
the electronic current from the cathode is a small fraction, v/(1 + +), of the total. The current is
not increased by accelerating the beam to a high velocity, but the electron density is reduced.
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is ignored (advances in this theory are very moderate). Early work in this field
is described in [8.1], and the problem is discussed in [8.9].°

8.5.5 Hollow Cathode Discharge

If the cathode is arranged as two parallel plates (the anode being shifted to the
side) and the cathode plates are brought closer and closer, the current increases
hundreds and thousands of times after a certain distance is reached. This takes
place when two formerly nonoverlapping regions of negative glow merge: the
glow becomes considerably more intensive, and the voltage changes slightly. A
similar effect can be obtained if the cathode is a hollow cylinder and the anode
lies far along the axis. The pressure must be such that the cathode layer thickness
is comparable with the cylinder diameter. In a hollow cathode, electron streams
converge to the axis and produce intensive ionization and excitation of the gas.
Photoemission excited on the cathode by UV radiation produced in this region
also plays a role here.

8.6 Positive Column

8.6.1 The Function It Serves; Causal Relationships

The positive column closes the electric circuit in the space between the cathode
layer and the anode; this is its only function. The state of the plasma in a
sufficiently long column is completely independent of the situation in the regions
adjacent to the electrodes. It is determined by local processes and by the electric
current. The inevitable loss of charge carriers (electrons) in the column must be

® Note added in proof. The author and M.N. Shneider have recently computed the glow discharge
longitudinal structure. Distributions of n., ns, E, £ (or T.) are obtained along the z-axis from the
cathode to the uniform positive column (PC) inclusively. The patterns look like those in Fig.8.2.
Non-local effects in the cathode layer (CL) and the negative glow region (NG) are described by the
method discussed at the end of Sects.8.4.10 and 5.9. Besides the three necessary factors mentioned
in Sect. 8.5.4, electron heat conductivity and thermodiffusion are also taken into account. In helium
for p = 1Torr and j = 2.7 10~5 A/cm? (this is an order of magnitude higher than normal j,)
the CL stops at £ = 1.3cm, and NG at z = 2cm. The Faraday space (FS) stops at z ~ 4-6cm
for a tube radius of R = 1.35cm and = = 8-10cm for R = 5cm (the length of the FS for low
pressure is about a few R). At the beginning of the FS the field falls to a very small magnitude
and changes direction, remaining very weak. The temperature T, falls to a few tenths of an eV
in the middle of the FS. The maximum of n. at the end of the NG is nema = 3 - 10°cm—3
while in the PC n, = 108 cm=3 (for R = 1.35cm). From a physical point of view the magnitude
of n.mx is determined by the condition that the current in the region of falling n., after the
maximum is carried by diffusion j & eD.dn./dz = eD.n. max /X, where the scale X of n.
decrease is determined by ambipolar diffusion of electrons to the wall, with the longitudinal drift as
a background X a2 vg(R/24)?/Ds. Such an estimation of n.max agrees well with calculations,
The transition from the FS to the PC is found to be non-monotonic (n. passes through a minimum,
E and & through a maximum). This is connected with the time lag of & and ionization growth,
while the restoring E (as in the case of striations; Sect.9.7). These results are published in {8.14].
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compensated for by ionization. The field strength E necessary for sustaining a
stationary plasma is fixed because the ionization rate depends, and quite sharply,
on the field, through the dependence of the electron energy distribution. This
determines the longitudinal potential gradient and the voltage difference across
a column of a given length. If the spectrum is maxwellian, the relationship
can be separated into two causally linked parts: (1) The requirement of loss
compensation by ionization shows what the electron temperature T, must be; (2)
The field must supply the necessary energy to electrons. The relation between
E and T, follows from the balancing of the electron energy (Sect.2.3). The gas
temperature T is determined by the balance of the gas energy as a whole. In the
positive column of glow discharge, we have T, > T.

The creation and removal of electrons in the column proceed against a steady
background of unceasing electron replacement due to the drift motion from the
cathode to the anode. It cannot be said that a considerable fraction of charge
carriers are generated in the glow discharge column. Rather, the majority of
electrons reaching the anode enter the column from the outside (from the cathode
region). The probability for them to be lost on the way is not high, except for
cases of exceptionally long interelectrode separations.

8.6.2 Balance of Charge Numbers in Cases Without Attachment

Consider a long positive column in a tube (or plane chanel) so long that it can
be treated as homogeneous along the current direction z. According to (3.14),
curl E = 0 in stationary conditions; hence, a longitudinal field homogeneous in
z is independent of transversal coordinates (the transverse polarization field is
neglectigible in comparison with the longitudinal one). The charge density in
the quasineutral plasma of the column is described by (2.44), where ¢ includes
ionization and bulk recombination. Denoting the transverse part of the Laplacian
by the subscript 1, we arrive at the equation

DaVin+u(Eyn — pn?=0. (8.17)

Assume that the precipitation of charges on the walls is more intensive than
bulk losses. It is said in such cases that the discharge is controlled by diffusion or
by recombination at the walls. Without the term $n? and with the boundary con-
dition n =0 at r = R, (8.17) results in the Bessel radial profile n o< Jo(2.4r/R),
(see Sect.4.8) and in the condition of equality of ionization frequency and the
effective frequency of diffusional loss:

u(E)=Dy/A* =vaa, A=R/24 (8.18)

[Schottky, (1924)].1° The case fn < vg is realized at low pressure and small
transverse dimensions (vga o 1/pA?), at not too high currents, so that n is
moderate; it is facilitated in monatomic gases where the bulk recombination
proceeds slower than in molecular gases.

101y plane geometry, the profile is cosine-shaped and A is given by (4.12).
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Let us look at an example. In nitrogen, p.p = 1.5 - 10° cm?-Torr/(V-s),
T. = 1eV, Dap = (uyp)Te ~ 1.5 - 10° cm?Torr/s. If p = 10Torr, R = 1cm, and
D, ~ 150cm?/s, we find v4, ~ 900s~!. If the recombination coefficient (disso-
ciative: see Sect.4.3.2) § = 1.6 - 10~7 cm3/s, the condition 8n < vg, holds up
to n & 6 - 10°cm~3, which corresponds to current density j = e(uep)ne(E/p) ~
1.2mA/cm? [by Table 2.1, pep ~ 4.2 - 10° cm?Tort/(V-s); E/p ~ 3 V/(cm-Torr)].
The total current : ~ j7rR2 = 3.5mA. if the current is smaller than this value,
the discharge is controlled by diffusion, otherwise it is controlled by bulk recom-
bination.

The probability for an electron drifting along the column of length L to
attach to the wall is vy,t, where ¢t = L/vq is the drift time. The probability can
be expressed in terms of gas characteristics and size using (2.36, 24,21, 16):

vial _ DeL pv 1 IL % py  0AIL py

va  APvape 3 A va pe ARG pe

In our case the probability is 7 - 10~ per 1cm of length. Even a metre-long
column transmits 93 % of electrons (provided the bulk recombination is low).
The estimate assumes Ip = 0.03cm-Torr, § = 1.2 - 1073,

If Bn > v4,, the recombination of charges in the bulk dominates over their
diffusion to the walls. If the diffusion term in (8.17) is dropped, we find 14(E) =
Bn, that is, the density is constant over the cross section. In fact, a large gradient
of n appears at the absorbing walls, and diffusion there cannot be neglected.
Density changes only slightly in the main part of the section but drops sharply
near the walls. Using (8.17), one can write an interpolated balance equation
covering both limiting cases and ensuring a smooth transition between the two:

(8.19)

K(E) —vga — Bn=0. (8.20)

8.6.3 Field Strength and Current-Voltage Characteristic

If the column is diffusion controlled, E is found from (8.18) and is independent of
electron density, and hence, of current. This occurs because the rates of creation
and removal of electrons are proportional to n. In this approximation, the V — i
curve is represented by a horizontal line both for the column and for the discharge
as a whole, provided it is normal: V(i) = V, + EL = const. The field in the
column (Fig. 8.14) obeys the similarity law E/p = f(pA), which follows from
the dependences v = pfi(E/p), va «x 1/pA%. As we see from Fig. 8.14, some
decrease in E/p as the current increases by an order of magnitude is caused
py arise in gas temperature (Sect.8.7.4). It is worthy of note that the discharge
1s sustained in air, in which ionization dominates attachment only if E/p 2
35 (Sect. 7.2.5), at substantially lower values of E/p. The reason is that many
molecules that are active with respect to detachment accumulated under stationary
conditions to high concentration. Attachment is then partially balanced out by
detachment, with electron losses being lower than in breakdown or in short
transient discharges (Sect. 8.8). The effect of two-stage ionization (ionization of
excited molecules) may also be involved.
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Fig. 8.14. Measured values of E/p for the positive column in tubes: (a) inert gases, (b) molecular
gases [8.3]

It must be emphasized that the field required for plasma sustainment in the
column is always lower than that required for gaseous breakdown under the same
conditions. In breakdown, electrons are freely diffusing towards the walls. The
diffusion in a well-developed discharge is ambipolar and substantially slower.

If discharge currents are considerable, the degree of ionization increases and
bulk recombination becomes important. The current-voltage characteristic of the
column is then given by the expression

_W(E)—vaa . _elpep) E

Ne = y J = -

B B p

that follows from (8.20). If the discharge is controlled by bulk recombination
(i > vaa), E increases with j, albeit slowly. This mode is more likely to
manifest itself in molecular gases, where recombination is strong. In inert gases

the contraction of the positive column into the current filament occurs earlier
(Sect. 9.8).

[4(E) — val (8.21)

8.6.4 Electron Temperature and Its Relation to Field Strength

Consider a diffusion-controlled discharge. Substituting (4.2) for 1 in (8.18) if
the spectrum is maxwellian, and (2.36) for D,, gives an equation for Tc:

1/2 ] 1/2
ﬂ) exp I _G (—85) iv—(pA)2=const(pR)2. (8.22)
I kTe pep \TmM P

In this way von Engel and Steenbeck [8.2] determined the dependence, universal
for all gases, of k7./I on cpR (Fig. 8.15); here c is a constant, specific for each
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Fig. 8.15. Universal curve for calculating Te in a positive column as a function of ¢cpR. The constants

¢ for several gases are given in the text [8.3]

gas, and is calculated using the data on y,, Cj, and I. The constant ¢ in different
gases is:!!

He—4-10"3, Ne—6-10"3, Ar—4.107%,
H;—1-1072, N, —4.1072.

For instance, for nitrogen and R = 1cm, p = 10Torr, we find T ~ 0.9eV =
10,400K. The electron temperature decreases with increasing tube radius and
pressure: diffusion losses are reduced and a lower ionization rate is sufficient. It
is clear why the positive column is dark in wide vessels: the electron temperature
is too low.

The relation between the mean electron energy & = 3kT./2 and the field was
discussed in Sect.2.3.5. Assuming the electron path length to be independent
of energy, we have T, o< E/N; if the collision frequency is assumed constant,
T. o (E/N)2. The former assumption is preferable. It was shown in Sect.2.3.6
that except at very low pressures, the electron drift velocity under the conditions
exactly corresponding to the glow discharge positive column is much lower than
the random one. Roughly speaking, the electron spectrum is said to be maxwellian
if the frequency of electron-electron collisions 1 is appreciably higher than the
energy loss frequency v, = éuy, (Sect.2.3.7).

8.6.5 Why Is the Degree of Ionization in Weakly Ionized
Gas Discharge Plasma Strongly Nonequilibrium?

The electron density in a diffuse positive column of a glow discharge (a noncon-
tracted column filling the entire cross section of a tube is said to be diffuse) is
of order n, ~ 108-10'!, or 10'? at the most. If p ~ 1-10Torr, N ~ 3 - 10'—
3-10" cm™3, the degree of ionization of the gas is 10~8-10~7. At the same

1 The proportionality factor in (8.22) is equal to 1.2 - 1072,
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time, the actual electron temperatures T, = 1-3eV correspond to thermody-
namical equilibrium ionizations of 10~2 to 1. This discrepancy results from the
violation of the foremost requirement that ensures the attainment of thermody-
namic equilibrium: the direct and reversed processes in the main reactions must
be balanced.

In a glow discharge, atoms are ionized by electron impact, often from the
ground state. Charge losses in cold rarefied gases occur at the walls and via
dissociative recombination. The charge loss frequency in the example considered
in Sect. 8.6.2 was vg ~ 10°s~! for ne < 10'°cm~3. The field and the electron
temperature accomodated to these losses and produced the required ionization
rate. However, three-body recombination with an electron trapped in the ground
state of the atom [this process is reversed with respect to ionization described by
(4.2)] gives a loss frequency of 10~19 s~1, This is less by 13 orders of mangitude!
There are no reverse processes of ionization that oppose the fast diffusional and
dissociative losses.

The situation with strongly ionized equilibrium plasma is different. Diffusion
and dissociative recombination are not important there because the gas is hot and
dense, and molecular ions are rare. The charge density is high, and collision-
radiative recombination is predominant, with electrons captured to upper levels
(Sect. 4.3.4). Atoms are ionized as a result of a reverse process to this recombina-
tion: stepwise ionization from excited states. This is how the thermodynamically
equilibrium ionization is achieved.

8.6.6 Inhomogeneous Plasma Column

When the geometry of the discharge volume and the electrode configuration are
complicated, and there is a rapid transverse gas flow that offsets and bends the
current channel, the plasma column between electrodes may be quite inhomoge-
neous and at the same time approximately electrically neutral; such conditions
are encountered in high-power lasers (Sect. 14.4.2). In such cases, it is not ex-
pedient to employ the general system of equations (2.22,20,43) for finding the
spatial distributions of plasma density and field E = —V, because Poisson’s
equation (2.43) then involves a small difference n, — n. of relatively large quan-
tities. Two slightly different quantities n. and n, must be replaced with a single
one, n &~ n. = n,; this operation reduces the system of three quations to a
system of two, (2.46) and (2.40).1? If we assume y. = const, (2.40) reduces to
div(nE) = 0. If the discharge is burning in a gas flux moving at a velocity u,
the convective term nu must be added to the plasma flux under the div sign in
(2.46).

The elimination of n, —n. from the system is in accord with the actual causal
relationship of the phenomena. When the space charge is small, the field in a
nonhomogeneous conducting medium is determined by current distribution and

12 The current distribution is quasistationary even in nonstationary plasma processes, owing to high
relaxation rate of the bulk charge (Sect.9.2.2). Consequently, the replacement of (2.39) with (2.40)
is justified.
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T Fig. 8.16. Variation of gas temperature in a tube heated
to a moderately high temperature

To Tp

R 0 R
8.7.2 Convective Heat Transport

Another mechanism is possible for transporting heat out of a discharge: pumping
of gas through the discharge volume, used in modern high-power laser systems
(Sect. 8.1.2). This mechanism is convective cooling. Actually, a given mass of
gas undergoes no cooling at all. Quite the opposite, a macroscopic portion of the
gas is heated when it moves through the discharge; its temperature is gradually
increasing in time and along the path. What is meant is the removal of heat from
the discharge volume. If we again talk in terms of temperature T' averaged over
the flow length L, the rate of heat removal from the discharge volume can be
written in the familiar form: Ne¢pi(T — To)vr. Now Tp is the temperature of
the gas entering the discharge, and vp = 2u/L;, where u is the flow veloc-
ity. The factor “2” takes into account that, on average, the heat is transported
“half the distance”. In a longitudinal discharge (Fig.8.18), L1 coincides with the
interelectrode spacing L.

8.7.3 Energy Balance in the Gas

For greater clarity, let us start with the nonstationary balance equation. We take
into account that the energy transfer from electrons to molecules is much faster
than the outward transport from the gas. Hence, we consider the balance of
electron energy to be stationary even if the gas temperature varies with time.
The simplified equation for gas temperature is

dT

NCﬂE't- = ]E - NC,,](T — T())VT’F . (8.23)
Under stationary conditions, the mean temperature is found from the equality
Nep(T —Tovrr=jE=w . (8.29

8.7.4 Dropping V — ¢ Characteristic

Experiments show that the V —i curve of a diffusion-controlled discharge is not
a horizontal but a slightly declining curve: as the current increases, the voltage
slowly decreases. This effect results from gas heating. The current density is
greater at the axis than at the walls, because the electron density there is greater
(the field being constant over the cross section). The energy release and gas
temperature at the axis are also higher than at the walls. However, pressure
levels off in space (velocities are usually strongly subsonic even in discharges
with flowing gas). Hence, the density of the gas is lower in regions of higher



temperature. The ionization frequency being actually a function of E/N, not of
E/p, a lower field is required to sustain ionization in the main part of current
cross section; the voltage is also reduced. The law of fall-off can be evaluated
using (8.24), p = NkT = const, and an approximate condition E/N ~ ET =~
const that follows from (8.18). We find

iljo = (Eo/EV/*(Eo/E —1). (8.25)

Here Ej is the field required to maintain a very weak current 5 — O when the
gas heats up negligibly and its temperature does not deviate from the room value
To;

Jjo = Nocpn Tovr,r/Eo , wo = joEo . (8.26)

These are characteristic scales of the current density and the rate of Joule heat
release. With this energy release, the gas becomes heated to a temperature T
twice as high as that of the walls.

8.7.5 Stable and Unstable States

When the V' — 1 characteristic is a dropping one, the load line often intersects it
not at one but at two points (Fig. 8.17). One of the states, namely, the upper one,
is unstable; hence, it cannot be realized. Indeed, if current fluctuates upward, a
lower voltage is required to sustain it than the one that is prescribed by the load
line for the new current value. The result is a disbalance between ionization and
removal of electrons; ionization begins to rise, the discharge resistance decreases,
so that the current starts to grow until the state reaches the lower intersection
point. If the current fluctuation is negative, 82 < 0, electrons begin to disappear
until the discharge burns out. The lower state is stable. If §i > 0, éne > 0,
voltage drops below the necessary value, and enhanced decay brings ionization
back to the original state.

4

Fig.8.17. V — { characteristic, including gas heating ef-
fects. The loading curve is also shown
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8.7.6 Gas Temperature and the Scales of Electric Parameters
in Diffuse Glow Discharge

One of the most typical properties of this discharge is a sharp difference be-
tween the electron and gas temperatures. We have already discussed why the
electron temperature is necessarily high: electrons are to ionize atoms. The same
factors determine the order of magnitude of E/p in the column: E/p = 0.2—
20 V/(cm-Torr). The gas temperature T is determined by the balance of energy
release and heat removal, (8.24). The relative increase over the wall temperature
(room temperature) is

(T — To)/To = w/wo = jE/joEo .

The scales of energy release wo and current density jo are given by (8.26).
They correspond to doubling the temperature. The thermal conductivity of most
gases at T =~ 300-600K is \ = (2-5) - 10~* W/(cm-K). In monatomic gases,
cpt = (5/2)k, and in two-atom gases, (7/2)k. With intermediate values A =
3.107%, ¢, = 3k, the thermometric conductivity is x = 220/pcm?/s [p in
Torr]. In tubes (or channels) of R = 1cm, the heat transport to the walls is
characterized by a frequency vr ~ 1.3 . 10*/ps~!. For a typical value E/p =
3 V/(cm-Torr), the energy release and current density scales are wg = 0.5 W/cm?
and jo = 170/pmA/cm?. According to (2.6,7), the electron density scale for
Um=3-10ps~!is nd ~ 6- 10! /pcm 3.

Experience shows that discharge rarely preserves a diffuse form if the gas
in it is heated appreciably, say, to twice the original temperature. Contraction
transforms the column into a filament with sharply increased current density and
gas temperature; this stage is intermediate to the transition of a glow discharge
into an arc at still greater current. The scales given above characterize the upper
bounds on the realization of the weakly ionized cold plasma of the diffuse glow
discharge. The higher the pressure, the lower this upper bound in current and
electron density, the more intensive the heating of the gas at a given current.
Therefore, low pressure is favourable for sustaining nonequilibrium weakly ion-
ized plasma, and high pressure (of the order of atmospheric) is favourable for
equilibrium plasma; this is indeed supported by discharge experience.

In convective heat transport, the scales depend on pressure differently: vr, jo,
and n? are independent of pressure, and wp o« p. For example, for L1 = 10cm,
u = 50mfs, vp ~ 10°s~!, we find wo ~ 0.4p W/cm®. Taking a more realistic
value, E/p ~ 10, we have jo ~ 40mA/cm? and nd ~ 1.5 - 10" cm™>.

8.7.7 Positive Column in Nitrogen

For a number of reasons, among which we find applications to gas lasers and
plasma chemistry, nitrogen attracts the attention of researchers in electronic,
vibrational, and ion-molecular processes in weakly ionized non-equilibrium dis-
charge plasmas. Experiments and efforts toward their theortical interpretation
[8.21-26] indicate both the diversity and the complexity of ionization mecha-
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nisms in the positive column plasma. These mechanisms not always satisfy the
simplest scheme of electron impact ionization of atoms and molecules in the
ground state, as the general description of discharge columns often assumes.
Any attempt to interpret the observed values of E/N in the column immediately
reveal the inadequacy of this mechanism.

Table 8.4 gives an idea of the state of discharge on the axis of the column in
extra-pure nitrogen within a long tube of 1.6 cm radius [8.21]. The last column
of the table gives the effective ionization rate constant, ki found from the
relation quoss = kjerNne which is equivalent to (8.20). Even if we take into
account high vibrational temperature T, = 5000K, formulas (5.40,41) give k;
several orders of magnitude lower. Stepwise ionization does not give anything
significantly greater. In order to explain the observed ionization rates by electron
impacts, we need E/N = (7-8) x 10~1¢ Vem? (E/po ~ 25 V/cm Torr). In fact,
even lower values of E/N were observed at pressures of tens of Torr, down to
(1.5-2)x 10716 Vem? [8.22,23].

According to current understanding, associative ionization of the type Nz +
N, — N} + e takes place in such weak fields, involving all molecules in the
upper vibrational (v > 32) and/or upper electronic states. The latter are produced
not ordinarily, through electron impact, but in collisions of two vibrationally
excited molecules with v > 16. The population at the upper vibrational levels
rapidly increases owing to the intense exchange of vibrational quanta in molecular
collisions.

8.8 Electronegative Gas Plasma

8.8.1 Attachment-Controlled Discharge

In some cases the main mechanism of removing electrons is via attachment that
is not accompanied by detachment, so that attachment acts in a straightforward
manner. This situation takes place in short-pulse discharges, and at an early stage
(t < 1073-10"35) of longer discharges while a sufficient number of molecules
active with respect to detachment has not yet built up. Pressure must not be too
low (p 2 10Torr), in order to avoid diffusional losses. For recombination to be
dominated by attachment, the current and density of electrons must not be too
high, ne < 1012-10"3 cm—3.

Most often, attachment proceeds via the dissociative mechanism, with energy
f:onsumption (Sect. 4.4). The reaction e+CO, — CO+0O~, which is the main one
In laser mixtures of CO; + N, + Ne, requires 3.85eV.13 For this reason, the fre-
qqency v, and the coefficient of attachment a = v, /vq increase quite considerably
V&flth E/p, but not as sharply as the ionization frequency and ionization coeffi-
cient 1; and « : the ionization potential is several times greater (Figs. 8.18,19)
[8.27-29]. The molecules ionized in the laser mixture are CO,, having the lowest

130~ ions then join CO, molecules and form stable CO;” complexes.
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Fig. 8.18. Coefficients of ionization and attachment for several ratios of laser mixtures (CO, :N, :He);
calculated on the basis of the kinetic equation [8.27, 28]
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ionization potential, Ico, = 13.8¢V. The steady state corresponds to the equality
of production and removal rates for electrons:

U(E/p) = v(E/p), a(E[p)=a(E/p). (8.27)

The point of intersection of the ionization and attachment curves determines the
value of E/p necessary for sustaining the artachment-controlled discharge. Sim-
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ilar results for another important electronegative gas, namely air, were given in
Sect.7.2.5. The values of E/p and the corresponding ionization and attachment
frequencies are summarized in Table 8.5. These data are of special interest: they
indicate upper bounds, since detachment reduces losses and facilitates plasma
sustainment. Thus for the 1 : 7 : 12 mixture the curves k; and k, in Fig. 8.19
intersect at E/N = 2.8 -107%V.cm?, T, = 1.6eV, which corresponds to an
attachment-controlled discharge. If detachment is intensive, that is, if the dis-
charge is recombination-controlled, then ki = (ne/N)fe. If ne/N = 1077, we
obtain E/N =1.65- 107, T, = 0.9 (for this point, fe = 6 - 1078 cm?/s).

For Table 8.5 also gives experimental data [8.27] that agree quite satisfacto-
rily with calculations. Measurements were conducted in pulsed discharge between
plane copper electrodes 29 cm? in area, separated by gaps from 1.2 to 4.2cm,
at pressures from 100 to 1200 Torr. The discharge voltage at such high pressure
is high, up to 10kV. The cathode fall is 200V, so that almost the entire po-
tential drop is across the positive column. The quasistationary voltage was built
up at the electrodes in less than 0.1 gs from the moment of ignition, and was
sustained for 10 us. In a given mixture, the voltage and E/p were independent
of current when the latter varied over several orders of magnitude: j/p ~ 107!
102 mA/(cm?Torr). (The V —i curve was strictly horizontal.) Water vapour added
at a concentration of a fraction of 1% resulted in an increase of the voltage due
to enhanced attachment.

8.8.2 Charge Kinetics Affected by Detachment

If the pressure is not too low (p > 10 Torr), which is typical of laser discharge,
diffusional charge loss is of secondary importance. The bulk processes involving
negative ions, which on the whole determine the density of electrons and the

Table 8.5, Field and frequencies of ionization in attachment-controlled discharges

CO, : N, : He® E/p, vi/p, E/p,
V/cm-Torr) 10*s~!'Tor—!,  V/(cm-Torr),
calculated calculated experimental
1:7:30 79 0.052 9.1
1:1:8 86 0.35 95
1:7:12 92 82
1:2:3 16.5 1.1 17
1:2:1 235
1:7:0 25 28
1:0:9 6
nitrogen® 223
nitrogen + 1% H,0 27
air 41 30

Calculation results were taken from {8.28], with two exceptions: the 1 : 7 : 12 mixture [8.29), and
air (Sect. 7.2.5). Experimental data were taken from {8.27].

% _ the ratio of the numbers of molecules
b_ technical-grade nitrogen (not too pure: contaminated with Oy, etc.)
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conductivity of the mixture, are described by a system of kinetics equations for
charge densities ne, n,, n_:

dne/dt = kiNne — kaNne + kaNn_ — Benen, ,

dn_/dt = kaNne — kaNn_ — B_n_n, , (8.28)
dn./dt = kiNne — (Bene + B_n_)n, .

Here kN = 14, ka N = 14, kq is the detachment rate constant for any molecule (we
assume that the concentration of active molecules has stabilized), and 3. and 4_
are the electron-ion and ion-ion recombination coefficients, respectively. Only
two of the differential equations are independent; the third one is equivalent to
the electroneutrality condition ne+n_ = n,. Nonstationary processes, say plasma
decay, can also be analyzed using these equations.

8.8.3 Effective Recombination Coefficient

If detachment processes are fast, thus greatly compensating for attachment, sys-
tem (8.28) can be approximately reduced to a single equation of kinetics for
electron density [8.30]. Assume that negative ions decay much faster than they
recombine: kgN > f_n,. The result is an approximate dynamic equilibrium of
attachment and detachment: k,ne & kgn_. The ratio of the numbers of electrons
and negative ions stays constant, n_ /n. = k,/kq = 1, even though the numbers
ne and n_ may slowly change. Under such conditions, n, = n¢(1 + ), and the
third equation of (8.28) gives

dne kiNne

dt 1+7

~ (B + B_mn? . (8.29)

The first term on the right can be interpreted to indicate that less than one
electron is produced in an ionization act. The rate of recombination of electrons
appears to increase because an electron merging with a molecule disappears in
the course of ion-ion recombination. If we consider plasma decay without the
first production term, the quantity

Bet=Pe+PB_n, n=kilkq (8.30)
plays the role of the effective recombination coefficient. But if the steady state is

considered, the equation for the balance of electron numbers can be written in
the form

kiNne = (1+n)(B. + B_n)n? = Blun? . (8.31)
This equation looks as if ionization proceeds in a normal way at the true frequency
Y = kN : negative ions are completely absent, but electrons recombine with a
still higher effective coefficient

Beg=Q+n)Be+B_n), n=kafkq. (8.32)
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8.8.4 V — ¢ Characteristic, Charge Composition of Plasma,
and Detachment Rate

We can only hypothesize on which particles in the discharge actively destroy
negative ions (Sect.4.4.3). At present the data on detachment rate is obtained
indirectly, by comparing the experimentally obtained V — i curve of a stationary
discharge in an electronegative gas with calculations made under specific as-
sumptions on k4. An example of such analysis [8.31] which gave also the charge
composition of the plasma is shown in Fig. 8.20. Triangles and circles illustrate
experimentally measured current-voltage characteristics [8.32].

The discharge (longitudinal) was maintained in a plane channel of 5 x 15 cm?
cross section, 46cm long in the field direction (Fig. 8.18). In order to remove
heat from the discharge volume, the gas was pumped in the same direction at
a velocity 100m/s. The flow does not greatly affect the discharge but prevents
overheating of the gas. According to experimental V —¢ curve, the value of E/p
depends on current and pressure only slightly, being equal on the average to
E/p=7V/(cm-Torr) (E/N ~2.1-1071¢V.cm?).

The same figure shows the results of V — i curve calculations on the ba-
sis of stationary equalities (8.28). The rate constants k; and k, are taken from
Fig. 8.19, assuming 3. = A8 = 10~7 cm3/s and taking into account such details
as the potential drop at the electrode and gas heating, and choosing a sequence
of values of k4 from 0 to co. Obviously, experimental data are in contradiction
with both extreme assumptions: no detachment (k4 = 0), and detachment com-
pletely compensating for attachment (k4 = oo). The best fit is found for the value
kg = 0.9 . 10~ cm?/s. If the detachment cross section is assumed to be of the
order of the collision cross section of molecules, the resulting number of active
molecules is about 10~ of the total number, which seems to be reasonable. The
experimental value E/p ~ 7 corresponds to rate constants k; = 1.5 10~ cm?/s,
ka = 6-10""cm3/s. If p = 20Torr, N = 6.7 - 10'7 cm—3, the frequencies are
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Fig. 8.20. Experimental [8.32] and calculated [8.31]
V — i curves of discharges in a 1 : 7 : 12 mix-
ture. Numbers to the right of the curves mark the
values of kq in units of 10~% cm3/s (kq = O denotes
pure attachment, kq = oo indicates no attachment or
no negative ions). Experimental data (dots and tri-
angles) are best fitied by the curves calculated with
ka =9 x 10—15 cm3/s. Numbers along these curves
are the values of £/N in units of 10~ Vcm?




v = 10*s™, v, = 4.10%s~1. The plasma contains a considerable number of
negative ions: 1 = n_ /ne = ka/ka = 5.3. The effective coefficient of electron re-
combination f;y ~ 408. =~ 4-10~% cm®/s is very high, 40 times the actual value
(owing to attachment). Detachment compensates for about 80 % of attachment.

The V — i characteristic of a stationary discharge in an air-filled tube is a
clear illustration of the effect of detachment (Fig. 8.14); this was discussed in
Sect. 8.6.3.

8.9 Discharge in Fast Gas Flow

Gas is pumped through a discharge volume in order to remove the Joule heat and
prevent overheating of the gas itself and of the walls of the discharge chamber.
Experiments reveal different degrees of the response of stationary discharges to
gas flow but invariably confirm that as the flow velocity increases, the discharge
voltage can only increase to a greater or lesser extent. We conclude that charge
losses must increase and be compensated for by enhanced ionization. Several
mechanisms for the effect of flow can be proposed.

8.9.1 Turbulence Transport of Charges to the Walls

The gas in a sufficiently fast flow becomes turbulent. Small-scale turbulence
is often deliberately introduced, especially in high-power lasers, because this
improves discharge stability and increases the upper limit of energy input. The
effect of turbulent stirring of plasma volumes is similar to ambipolar diffusion.
It transports more strongly ionized volumes from central regions to the walls
while carrying less ionized volumes from the periphery toward the axis. This
mechanism may prove to be efficient in a discharge that is diffusion controlled
when flow is absent (that is, discharge at reduced pressure, in narrow tubes,
and in narrow channels). The effect can be described by adding the turbulence
diffusion coefficient to the ambipolar diffusion coefficient D,.

Gas dynamics offers several empirical formulas for the former coefficient
(the effect of weak ionization on turbulence is unlikely to be appreciable). Thus,

if u [cm/s] is the mean flow velocity and a [cm] is the tube radius or half the
height of a plane channel, then

Dr 7 0.009au cm? /s . (8.33)

For instance, in the experiment described in Sect. 8.8.4, ¢ < 1.5 cm, u = 104 cm/s,
Dr = 225cm?/s. This coefficient is several times greater than D, ~ 75cm?/s
at p = 40 Torr; nevertheless, the frequency of total “diffusional” losses, vgr =
(Da + Dr)/(2a/m)? = 12057, is less than that of bulk losses, 10*s~!, so that
turbulence diffusion plays a minor role under these specific conditions.

209



8.9.2 Convective Charge Transport

The loss of charge from the current channel due to the entrainment by the gas
flow may be significant if the discharge length L; along the gas flow is small.
This situation occurs in transverse discharges when the length of at least one
electrode is much shorter than the interelectrode gap. The “convective transport
frequency” is ¢ ~ 2u/L. Presumably, this mechanism was dominant in the
experiments [8.33] with air whose results plotted in Fig. 8.21. The cathode was a
narrow strip 0.4 x40 mm?, transverse to the flow, the anode was a large plate, and
the gap width was 3 cm. If the positive column is characterized by L ~ 1cm, then
u ~ 100m/s entails g ~ 10%, which is comparable to the bulk loss frequency.
The values of E/p, evaluated using the data of Fig. 8.21, increase from 15 to 25
in the range of u from 50 to 180 m/s. If a transverse discharge is extended along
the flow, with geometry close to that in Fig. 8.1a, the discharge voltage is almost
independent of the flow velocity. Indeed, the arrival of charges from the left in
some middle section of the channel and their removal to the right do not disturb
the overall charge balance.

VKV T T T T
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Fig. 8.21. “Burning” voltage of transverse discharge in

23 : .
_._____._——-—f‘"u m/s| airas a function of flow velocity. (1 ) p=23Tom, (2)
i i 1

0 ] p = 110 Torr [8.33}
60 120 180 240

8.9.3 The Effect of Flow on the Accumulation of Molecules
Active with Respect to Detachment

This is similar to the time effect discussed in Sect. 8.8.1. If a macroscopic gas
element moving through the discharge zone spends little time there, it cannot
accumulate the number of active molecules that corresponds to the established
conditions. Hence, the faster the motion of the gas through the discharge zone,
the weaker the compensation by detachment of the electron attachment, which
is equivalent to enhanced attachment losses. If the characteristic time of buildup
of a stationary concentration of active molecules is of order 1075-1073s, the
flow velocity must affect the discharge in electronegative gases if the time of
flight of a gas particle through the discharge zone, L/u, is also of this order of
magnitude. Presumably, this effect could accompany the convective transport in
the experiment of Fig. 8.21.

No appreciable effect of flow velocity on discharge sustainment voltage has
been observed in long, longitudinal self-sustaining discharge systems (Fig. 8.22).

210



VY

25 Tort

o= orr

ol u=120mss _ 220
;A

8 1 I ] ! ]

/NN ] a.30 a.50

Fig.8.22. V — i characteristic of longitudinal discharge with gas flow. Laser mixture CO; :N; :He=
1:2.5:15, p=25Torr; (1) u = 120m/s (2) 220m/s {8.34]

In these experiments [8.34], the discharge was burning in a plane channel
(Fig.8.1b) 5.5cm in height, 76 cm wide and with its length oriented along the
flow (i.e. with an electrode gap spacing) of L = 65cm. Even for « = 220m/s,
the time of flight is very large: 7+ = L/u = 3.10~3s. The concentration of active
molecules has evidently stabilized. Under these conditions, the diffusion and tur-
bulence loss frequency is not high: Dy = D, + Dy = 650 cm?/s, vt ~ 220s~!.
If the discharge length is smaller, the voltage is observed to increase as the
flow velocity increases (in a self-sustained discharge). The dependence of V on
u is always stronger in non-self-sustaining discharges (Sect. 14.4.5, Fig. 14.9). It
should be mentioned that the effects of flow velocity on the characteristics of lon-
gitudinal discharges are not yet known sufficiently well. Discharges in transverse
flow are analyzed in the review [8.35].

8.10 Anode Layer

8.10.1 Production of Ions

There are no positive ions at the metal anode surface because they are not emitted
by the anode and are repelled by it. The anode is separated from the electroneutral
plasma of the positive column by a layer of negative space charge in which the
magnitude of the field decreases towards the column.!* The electron current
density je changes in the layer by a negligible amount (12+/ 11e)4, while the ionic
current density in the plasma increases from zero t0 jic = (us/pc)j. The ionic
current j,. flowing into the positive column is formed as a result of charge
production in the anode layer, in response to a very small number of ionization
acts of one electron, i /pe. Indeed,
1 S Yemaj; ]Wm]/ad:l:; /ad:c=u+/,uc.

This number is three orders of magnitude smaller than the number of generations
of electrons produced in the cathode layer. Consequently, the anode fall V, is
much lower than the cathode fall.

" The sign of anode drop may be reversed at very low pressure.
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8.10.2 Potential Drop and Current Density

According to early measurements in tubes [8.3,36] at p < 1-10Torr, Va = 10—
20V and the anode fall is in each gas comparable with the ionization potential.
The anode current density is of order 10~4-10~3 A/cm?; fields E/p ~ 200~
600 V/(cm-Torr) were measured in nitrogen near the anode, which corresponds to
the layer thickness da ~ 0.05/pcm (of the order of the electron free path length
). Recent studies demonstrated that at medium pressures, the anode fall increases
as the pressure is increased, the increase being greater in electronegative gases
(Fig. 8.23). According to [8.37], the current density at the anode is independent of
the value of current: j/p? ~ 4.3- 10~* A/(cm-Torr)? in nitrogen at p =~ 5-30 Torr,
and j/p* ~ 2.7-107* in air at p ~ 8-60Torr. (The figures refer to discharges
between plane steel electrode disks 1.6 cm in diameter.)

The measured values of j/p* are quite close to the normal values at the
cathode (Table 8.3). It appears that if the current column diameter is not less
than the interelectrode distance, the normal cathode layer imposes the value of j
on the entire column, including the anode. As follows from the calculations {8.8],
even the radial distribution j(r) originating at the cathode is repeated in such
cases at the anode (Fig.8.6). The anode fall calculated for nitrogen (Fig.8.6)
gives a good fit to the measured values (Fig.8.23). The anode spot is small
at low current. Numerical experiment [8.8] indicates that the spot radius ra is
determined by the spreading due to the transverse (radial) diffusion of electrons,
and is related to the anode layer thickness (pdy = 0.25 Torr-cm) by a formula
typical of diffusion: ra & (Deda /va)'/? & da(Te/Va)'/21

v, Volt — T

N2
p. Torr Fig. 8.23. Anode fall for discharges in nitrogen
1

77 1 ! and in air as a function of pressure [8.37]
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8.10.3 Do the Ions Produced in the Anode Layer Pierce
the Positive Column?

Quite frequently, they do not. The probability that an ion perishes is pie/p, times
greater than that for an electron, since an ion drifts through the column longer by
just this factor. In the example given in Sect. 8.6.2 [see (8.19)], the probability
is 0.2 per 1cm of column length, that is, a 5cm long column does not let ions
through. Here we ignore all possible processes of resonance charge transfer in
which one ion is instantaneously replaced with another, indistinguishable from

15 The results of [8.8] do not support the theoretical model suggested in [8.37].
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it — the ion cannot really be said then to have perished in the usual sense of the
word.

If a longitudinal discharge is maintained in a flow of gas, the flow is usually
directed from the cathode to the anode, in order to immediately blow out of the
discharge the perturbations generated in the anode region. The velocities that
are employed in actual systems, u ~ 100-200m/s, are comparable with the ion
drift velocities v.q. For example, in a self-sustained discharge in the mixture
COz2:Nz:He=1:7:12at E/p = 7 V/(cm-Torr), the velocity of the main ions
CO3 is via = 200 m/s. Fast flow decelerates ions, and blows them out completely
if u > v4q. In contrast to their natural behavior, ions are entrained then against
the field, towards the anode. This effect cannot, however, stop the current in the
discharge, because it is carried mainly by electrons [8.9].
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