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PREFACE

TO THE SECOND
EDITION

In the nine years since this book was first written, rapid progress has
been made scientifically in nuclear fusion, space physics, and nonlinear
plasma theory. At the same time, the energy shortage on the one hand
and the exploration of Jupiter and Saturn on the other have increased
the national awareness of the important applications of plasma physics
to energy production and to the understanding of our space
environment.

In magnetic confinement fusion, this period has seen the attainment
of a Lawson number n7z of 2 X 10" cm 2 sec in the Alcator tokamaks at
MIT; neutral-beam heating of the PLT tokamak at Princeton to KT; =
6.5 keV; increase of average 8 to 3%-5% in tokamaks at Oak Ridge and
General Atomic; and the stabilization of mirror-confined plasmas at
Livermore, together with injection of ion current to near field-reversal
conditions in the 2XIIB device. Invention of the tandem mirror has
given magnetic confinement a new and exciting dimension. New ideas
have emerged, such as the compact torus, surface-field devices, and the
EBT mirror-torus hybrid, and some old ideas, such as the stellarator
and the reversed-field pinch, have been revived. Radiofrequency heat-
ing has become a new star with its promise of dc current drive. Perhaps
most importantly, great progress has been made in the understanding
of the MHD behavior of toroidal plasmas: tearing modes, magnetic
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islands, and disruptions. Concurrently, the problems of reactor design,
fusion technology, and fission—fusion hybrids havereceivedseriousatten-
tion for the first time.

Inertial confinement fusion has grown from infancy to a research
effort one-fourth as large as magnetic fusion. With the 25-TW Shiva
laser at Livermore, 3 x 10'° thermonuclear neutrons have been produced
in a single pellet implosion, and fuel compressions to one hundred times
liquid hydrogen density have been achieved. The nonlinear plasma
processes involved in the coupling of laser radiation to matter have
received meticulous attention, and the important phenomena of
resonance absorption, stimulated Brillouin and Raman scattering, and
spontaneous magnetic field generation are well on the way to being
understood. Particle drivers-—electron beams, light-ion beams, and
heavy-ion beams—have emerged as potential alternates to lasers, and
these have brought their own set of plasma problems.

In space plasma physics, the concept of a magnetosphere has
become well developed, as evidenced by the prediction and observation
of whistler waves in the Jovian magnetosphere. The structure of the
solar corona and its relation to sunspot magnetic fields and solar wind
generation have become well understood, and the theoretical description
of how the aurora borealis arises appears to be in good shape.

Because of the broadening interest in fusion, Chapter 9 of the first
edition has been expanded into a comprehensive text on the physics of
fusion and will be published as Volume 2. The material originated from
my lecture notes for a graduate course on magnetic fusion but has been
simplified by replacing long mathematical calculations with short ones
based on a physical picture of what the plasma is doing. It is this task
which delayed the completion of the second edition by about three years.

Volume 1, which incorporates the first eight chapters of the first
edition, retains its original simplicity but has been corrected and
expanded. A number of subtle errors pointed out by students and
professors have been rectified. In response to their requests, the system
of units has been changed, reluctantly, to mks (SI). To physicists of my
own generation, my apologies; but take comfort in the thought that the
first edition has become a collector’s item.

The dielectric tensor for cold plasmas has now been included; it
was placed in Appendix B to avoid complicating an already long and
difficult chapter for the beginner, but it is there for ready reference.
The chapter on kinetic theory hasbeen expanded to includeion Landau
damping of acoustic waves, the plasma dispersion function, and Bern-
stein waves. The chapter on nonlinear effects now incorporates a treat-



ment of solitons via the Korteweg-deVries and nonlinear Schrodinger
equations. This section contains more detail than the rest of Volume 1,
but purposely so, to whet the appetite of the advanced student. Helpful
hints from G. Morales and K. Nishikawa are hereby acknowledged.

For the benefit of teachers, new problems from a decade of exams
have been added, and the solutions to the old problems are given. A
sample three-hour final exam for undergraduates will be found in
Appendix C. The problem answers have been checked by David Brower;
any errors are his, not mine.

Finally, in regard to my cryptic dedication, I have good news and
bad news. The bad news is that the poet (my father) has moved on to
the land of eternal song. The good news is that the eternal scholar (my
mother) has finally achieved her goal, a Ph.D. at 72. The educational
process is unending.

Francis F. Chen
Los Angeles, 1983
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PREFACE
TO THE FIRST
EDITION

This book grew out of lecture notes for an undergraduate course in
plasma physics that has been offered for a number of years at UCLA.
With the current increase in interest in controlled fusion and the wide-
spread use of plasma physics in space research and relativistic astro-
physics, it makes sense for the study of plasmas to become a part of an
undergraduate student’s basic experience, along with subjects like
thermodynamics or quantum mechanics. Although the primary purpose
of this book was to fulfill a need for a text that seniors or juniors can
really understand, I hope it can also serve as a painless way for scientists
in other fields—solid state or laser physics, for instance—to become
acquainted with plasmas.

Two guiding principles were followed: Do not leave algebraic steps
as an exercise for the reader, and do not let the algebra obscure the
physics. The extent to which these opposing aims could be met is largely
due to the treatment of plasma as two interpenetrating fluids. The
two-fluid picture is both easier to understand and more accurate than
the single-fluid approach, at least for low-density plasma phenomena.

The initial chapters assume very little preparation on the part of
the student, but the later chapters are meant to keep pace with his
increasing degree of sophistication. In a nine- or ten-week quarter, it is
possible to cover the first six and one-half chapters. The material for

xi
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these chapters was carefully selected to contain only what is essential.
The last two and one-half chapters may be used in a semester course or
as additional reading. Considerable effort was made to give a clear
explanation of Landau damping—one that does notdepend on a knowl-
edge of contour integration. I am indebted to Tom O’Neil and George
Schmidt for help in simplifying the physical picture originally given by
John Dawson.

Some readers will be distressed by the use of cgs electrostatic units.
It is, of course, senseless to argue about units; any experienced physicist
can defend his favorite system eloquently and with faultless logic. The
system here is explained in Appendix I and was chosen to avoid
unnecessary writing of ¢, (g, and €y, as well as to be consistent with the
majority of research papers in plasma physics.

I would like to thank Miss Lisa Tatar and Mrs. Betty Rae Brown
for a highly intuitive job of deciphering my handwriting, Mr. Tim
Lambert for a similar degree of understanding in the preparation of
the drawings, and most of all Ande Chen for putting up with a large
number of deserted evenings.

Francis F. Chen
Los Angeles, 1974
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Chapter One

INTRODUCTION

OCCURRENCE OF PLASMAS IN NATURE

It has often been said that 99% of the matter in the universe is in the
plasma state; that is, in the form of an electrified gas with the atoms
dissociated into positive ions and negative electrons. This estimate may
not be very accurate, but it is certainly a reasonable one in view of the
fact that stellar interiors and atmospheres, gaseous nebulae, and much
of the interstellar hydrogen are plasmas. In our own neighborhood, as
soon as one leaves the earth’s atmosphere, one encounters the plasma
comprising the Van Allen radiation belts and the solar wind. On the
other hand, in our everyday lives encounters with plasmas are limited
to a few examples: the flash of a lightning bolt, the soft glow of the
Aurora Borealis, the conducting gas inside a fluorescent tube or neon
sign, and the slight amount of ionization in a rocket exhaust. It would
seem that we live in the 1% of the universe in which plasmas do not
occur naturally.

The reason for this can be seen from the Saha equation, which tells
us the amount of ionization tobe expected in a gas in thermal equilibrium:

3/2
n; ¢ “U.JR
— =924 x 10% —— ¢ U/KT [1-1)
(% n;
Here n; and n, are, respectively, the density (number per m®) of ionized
atoms and of neutral atoms, T is the gas temperature in °K, K is
Boltzmann's constant, and U; is the ionization energy of the gas—that

1.1
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FIGURE 1-1

is, the number of ergs required to remove the outermost electron from
an atom. (The mks or International System of units will be used in this
book.) For ordinary air at room temperature, we may take n, =
3% 10°m™? (see Problem 1-1), T =300°K, and U; = 14.5eV (for
nitrogen), where 1 eV = 1.6 x 10 "¢ J. The fractional ionization n;/(n, +
n;) = n;/n, predicted by Eq. [1-1] is ridiculously low:

L 107122

N,

As the temperature is raised, the degree of ionization remains low
until U; is only a few times KT. Then n;/n, rises abruptly, and the gas
1s in a plasma state. Further increase in temperature makes n, less than
n;, and the plasma eventually becomes fully ionized. This is the reason
plasmas exist in astronomical bodies with temperatures of millions of
degrees, but not on the earth. Life could not easily coexist with a
plasma—at least, plasma of the type we are talking about. The natural
occurrence of plasmas at high temperatures is the reason for the designa-
tion “the fourth state of matter.”

Although we do not intend to emphasize the Saha equation, we
should point out its physical meaning. Atoms in a gas have a spread of
thermal energies, and an atom is ionized when, by chance, it suffers a

Illustrating the long range of electrostatic forces in a plasma.



collision of high enough energy to knock out an electron. In a cold gas,
such energetic collisions occur infrequently, since an atom must be
accelerated to much higher than the average energy by a series of
“favorable” collisions. The exponential factor in Eq. [1-1] expresses the
fact that the number of fast atoms falls exponentially with U;/KT. Once
an atom is ionized, it remains charged until it meets an electron; it then
very likely recombines with the electron to become neutral again. The
recombination rate clearly depends on the density of electrons, which
we can take as equal to n;. The equilibrium ion density, therefore, should
decrease with n;; and this is the reason for the factor n;' on the
right-hand side of Eq. [1-1]. The plasma in the interstellar medium owes
its existence to the low value of n; (about 1 per cm?), and hence the low
recombination rate.

DEFINITION OF PLASMA

Any lonized gas cannot be called a plasma, of course; there is always
some small degree of ionization in any gas. A useful definition is as
follows:

A plasma is a quasineuiral gas of charged and neutral particles which
exhibits collective behavior.

We must now define “quasineutral” and “collective behavior.” The
meaning of quasineutrality will be made clear in Section 1.4. What is
meant by “collective behavior” is as follows.

Consider the forces acting on a molecule of, say, ordinary air. Since
the molecule is neutral, there is no net electromagnetic force on it, and
the force of gravity is negligible. The molecule moves undisturbed until
it makes a collision with another molecule, and these collisions control
the particle’s motion. A macroscopic force applied to a neutral gas, such
as from a loudspeaker generating sound waves, is transmitted to the
individual atoms by collisions. The situation is totally different in a
plasma, which has charged particles. As these charges move around, they
can generate local concentrations of positive or negative charge, which
give rise to electric fields. Motion of charges also generates currents, and
hence magnetic fields. These fields affect the motion of other charged
particles far away.

Let us consider the effect on each other of two slightly charged
regions of plasma separated by a distance r (Fig. 1-1). The Coulomb
force between A and B diminishes as 1/r2. However, for a given solid
angle (that is, Ar/r = constant), the volume of plasma in B that can affect

1.2
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1.3

A increases as r°. Therefore, elements of plasma exert a force on one
another even at large distances. It is this long-ranged Coulomb force
that gives the plasma a large repertoire of possible motions and enriches
the field of study known as plasma physics. In fact, the most interesting
results concern so-called “collisionless” plasmas, in which the long-range
electromagnetic forces are so much larger than the forces due to ordinary
local collisions that the latter can be neglected altogether. By “collective
behavior” we mean motions that depend not only on local conditions
but on the state of the plasma in remote regions as well.

The word “plasma” seems to be a misnomer. It comes from the
Greek mAaopa, —arog, 70, which means something molded or fabricated.
Because of collective behavior, a plasma does not tend to conform to
external influences; rather, it often behaves as if it had a mind of its own.

CONCEPT OF TEMPERATURE

Before proceeding further, it is well to review and extend our physical
notions of “temperature.” A gas in thermal equilibrium has particles of
all velocities, and the most probable distribution of these velocities is
known as the Maxwellian distribution. For simplicity, consider a gas in
which the particles can move only in one dimension. (This is not entirely
frivolous; a strong magnetic field, for instance, can constrain electrons
to move only along the field lines.) The one-dimensional Maxwellian
distribution is given by

fu) = A exp (—smu’/KT) [1-2]

where fdu is the number of particles per m® with velocity between u
and u + du, 3mu® is the kinetic energy, and K is Boltzmann's constant,

K =138x10"2]/°K

The density n, or number of particles per m®, is given by (see Fig. 1-2)

n = J‘ f(u)du [1-8]
The constant A isrelated to the density n by (see Problem 1-2)
) ( - )1/2
= 1-4
"\enKT [

The width of the distribution is characterized by the constant T,
which we call the temperature. To see the exact meaning of T, we can
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A Maxwellian velocity distribution. FIGURE 1.2

compute the average kinetic energy of particles in this distribution:
[ o]
1 2
I amu” f(u) du
BAL = =

Bava= = [1-5]
.[ f(u)du

Defining

Tl (QKT/m)I/2 and Yy =uf/vm

[1-6]
we can write Eq. [1-2] as
fw) = A exp (—u®/vi,)
and Eq. [1-3] as
smAvY, I [exp (=y*))y* dy
Ea = —
Avy, J exp (=y°) dy
-0
The integral in the numerator is integrable by parts :
_[ y - [exp (=3)ydy = [~3lexp (—y))y] % - J —s exp (—y°) dy
o 2
=§J exp (—y°) dy
Cancelling the integrals, we have
1 1
B, =TPAme 102 AT [1-7]
A4v‘h

Thus the average kinetic energy is 3K T-
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Itis easy to extend thisresult tothree dimensions. Maxwell's distribu-
tion is then

fu, v, w) = Asexp [—sm@®+v? +w?)/KT] (1-8]
where
3/2
m
Ag = 1-9
: n(?ﬂKT) i

The average kinetic energy is

oo

JJJ Asmu® +v° +w?) exp[—sm(u>+ v?+w?)/KT) dudvdw

av

JJJ Asexp[-smu’+ v+ w?)/KT)dudvdw

We note that this expression issymmetricin u, v, and w, since a Maxwellian
distribution is isotropic. Consequently, each of the three terms in the
numerator is the same as the others. We need only to evaluate the first
term and multiply by three:

£ = 34, smu’ exp (—smu?/KT) du [ exp [~ém @+ w?)/KT] dvdw
T Agfexp (—smu’/KT)du [[exp [—im(® +w”)/KT]dv dw

Using our previous result, we have

E.. =3KT (1-10]

The general result is that E,, equals §KT per degree of freedom.

Since T and E,. are so closely related, it is customary in plasma
physics to give temperatures in units of energy. To avoid confusion on
the number of dimensions involved, it is not E,. but the energy corres-
ponding to KT that is used to denote the temperature. For KT = 1 eV =
1.6 x 1077 ], we have

1.6x107"°

= ’6
r 138x 1073 o

Thus the conversion factor is
1eV =11,600°K {1-11]

By a 2-eV plasma we mean that KT = 2eV, or E,. =3 eV in three
dimensions.

It is interesting that a plasma can have several temperatures at the
same time. [t often happens that the ions and the electrons have separate



Maxwellian distributions with different temperatures 7; and T,. This
can come about because the collision rate among ions or among electrons
themselves is larger than the rate of collisions between an ion and an
electron. Then each species can be in its own thermal equilibrium, but
the plasma may notlastlongenoughfor the twotemperaturesto equalize.
When there is a magnetic field B, even a single species, say ions, can
have two temperatures. This is because the forces acting on an ion along
B are different from those acting perpendicular to B (due to the Lorentz
force). The componeuts of velocity perpendicular to B and parallel to
B may then belong to different Maxwellian distributions with tem-
peratures T, and Tj.

Before leaving our review of the notion of temperature, we should
dispel the popular misconception that high temperature necessarily
means a lot of heat. People are usually amazed to learn that the electron
temperature inside a fluorescent light bulb is about 20,000°K. “My, it
doesn’t feel that hot!” Of course, the heat capacity must also be taken
into account. The density of electrons inside a fluorescent tube is much
less than that of a gas at atmospheric pressure, and the total amount of
heat transferred to the wall by electrons striking it at their thermal
velocities is not that great. Everyone has had the experience of a cigarette
ash dropped innocuously on his hand. Although the temperature is high
enough to cause a burn, the total amount of heat involved is not. Many
laboratory plasmas have temperatures of the order of 1,000,000°K
(100 eV), but at densities of 10'*~10"° per m?, the heating of the walls is
not a serious consideration.

1-1. Compute the density (in units of m™) of an ideal gas under the following
conditions:

(a) At 8°C and 760Torr pressure (1 Torr=1mm Hg). This is called the
Loschmidt number.

(b) In a vacuum of 107® Torr at room temperature (20°C). This number is a
useful one for the experimentalist to know by heart (107 Torr = 1 micron).

1-2. Derive the constant A for a normalized one-dimensional Maxwellian distri-
bution

fu) = A exp (~mu?/2KT)

such that

J: fluydu =1

7
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FIGURE 1-3

1.4
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Debye shielding.

DEBYE SHIELDING

A fundamental characteristic of the behavior of a plasma is its ability to
shield out electric potentials that are applied to it. Suppose we tried to
put an electric field inside a plasma by inserting two charged balls
connected to a battery (Fig. 1-3). The balls would attract particles of the
opposite charge, and almost immediately a cloud of ions would surround
the negative ball and a cloud of electrons would surround the positive
ball. (We assume that a layer of dielectric keeps the plasma from actually
recombining on the surface, or that the battery is large enough to
maintain the potential in spite of this.) If the plasma were cold and there
were no thermal motions, there would be just as many charges in the
cloud as in the ball; the shielding would be perfect, and no electric field
would be present in the body of the plasma outside of the clouds. On
the other hand, if the temperature is finite, those particles that are at
the edge of the cloud, where the electric field is weak, have enough
thermal energy toescape from the electrostatic potential well. The “edge”
of the cloud then occurs at the radius where the potential energy is
approximately equal to the thermal energy KT of the particles, and the
shielding is not complete. Potentials of the order of KT/e can leak into
the plasma and cause finite electric fields to exist there.

Let us compute the approximate thickness of such a charge cloud.
Imagine that the potential ¢ on the plane x = 0 is held at a value ¢o by
a perfectly transparent grid (Fig. 1-4). We wish to compute ¢ (x). For
simplicity, we assume that the ion—electron mass ratio M/m is infinite,
so that the ions do not move but form a uniform background of positive
charge. To be more precise, we can say that M/m is large enough that
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Potential distribution near a grid in a plasma. FIGURE 1-4

the inertia of the ions prevents them from moving significantly on the
time scale of the experiment. Poisson’s equation in one dimension is

d’¢

de__

eVd = €0 e(n; —n,) (Z=1) [1-12]

If the density far away is n., we have
n; = ne
In the presence of a potential energy q¢, the electron distribution func-
tion is
f(u) = A exp[-@Gmu® + q¢)/KT.)

It would not be worthwhile to prove this here. What this equation says
is intuitively obvious: There are fewer particles at places where the
potential energy is large, since not all particles have enough energy to
get there. Integrating f(u) over u, setting ¢ = —e, and noting that n,(¢ -
0) = ne. we find

n, = neoexp (ed/KT,)

This equation will be derived with more physical insight in Section 3.5.
Substituting for n; and n, in Eq. [1-12], we have

gt =aelow ()] -]

In the region where |e¢/KT,| <« 1, we can expand the exponential in a

Taylor series:
d*¢ [ ed 1 [ ed )2 ]
—_— b _+_ _ + % e .
C0 %I = POl RT. B (KTe il
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No simplification is possible for the region near the grid, where | e¢/KT.|
may be large. Fortunately, this region does not contribute much to the
thickness of the cloud (called a sheath), because the potential falls very
rapidly there. Keeping only the linear terms in Eq. [1-13], we have

d2¢ nmL’?
= = 1-14
T e =
Defining
/2
,\DE(i}) (1-15)
ne

where n stands for n, we can write the solution of Eq. [1-14] as
¢ = doexp (—|x|/Ap) (1-16]

The quantity Ap, called the Debye length, is a measure of the shielding
distance or thickness of the sheath.

Note that as the density is increased, Ap decreases, as one would
expect, since each layer of plasma contains more electrons. Furthermore,
Ap increases with increasing KT,. Without thermal agitation, the charge
cloud would collapse to an infinitely thin layer. Finally, it is the electron
temperature which is used in the definition of Ap because the electrons,
being more mobile than the ions, generally do the shielding by moving
so as to create a surplus or deficit of negative charge. Only in special
situations is this not true (see Problem 1-5).

The following are useful forms of Eq. [1-15]:

Ap = 69(T/n)"? m, T in °K
; [1-17]
Ap=7430(KT/n)"*m, KT ineV

We are now in a position to define “quasineutrality.” If the
dimensions L of a system are much larger than Ap, then whenever local
concentrations of charge arise or external potentials are introduced into
the system, these are shielded out in a distance short compared with L,
leaving the bulk of the plasma free of large electric potentials or fields.
Outside of the sheath on the wall or on an obstacle, V¢ is very small,
and n; is equal to n,, typically, to better than one part in 10°. It takes
only a small charge imbalance to give rise to potentials of the order of
KT/e. The plasma is “quasineutral”; that is, neutral enough so that one
can take n; =n, =n, where n is a common density called the plasma



density, but not so neutral that all the interesting electromagnetic forces
vanish.

A criterion for an ionized gas to be a plasma is that it be dense
enough that Ap is much smaller than L.

The phenomenon of Debye shielding also occurs—in modified
form—in single-species systems, such as the electron streams in klystrons
and magnetrons or the proton beam in a cyclotron. In such cases, any
local bunching of particles causes a large unshielded electric field unless
the density is extremely low (which it often is). An externally imposed
potential—from a wire probe, for instance—would be shielded out by
an adjustment of the density near the electrode. Single-species systems,
or unneutralized plasmas, are not strictly plasmas; but the mathematical
tools of plasma physics can be used to study such systems.

THE PLASMA PARAMETER

The picture of Debye shielding that we have given above is valid only
if there are enough particles in the charge cloud. Clearly, if there are
only one or two particles in the sheath region, Debye shielding would
not be a statistically valid concept. Using Eq. [1-17], we can compute the
number Ny of particles in a “Debye sphere™:

Np = nimAp = 1.38x 10°T*%/n'? (T in°K) [1-18]
In addition to Ap « L, “collective behavior” requires

Np> 1 1-19]

CRITERIA FOR PLASMAS

We have given two conditions that an ionized gas must satisfy to be called
a plasma. A third condition has to do with collisions. The weakly ionized
gas in a jet exhaust, for example, does not qualify as a plasma because
the charged particles collide so frequently with neutral atoms that their
motion is controlled by ordinary hydrodynamic forces rather than by
electromagnetic forces. If w is the frequency of typical plasma oscillations
and 7 is the mean time between collisions with neutral atoms, we require
wTt > 1 for the gas to behave like a plasma rather than a neutral gas.

1.5

1.6

11

Introduction



12 The three conditions a plasma must satisfy are therefore:
Chapter

One 1. Ap&< L.
2. Np>» 1.
3. wr > 1.

PROBLEMS 1-3. On alog-log plot of n, vs. KT, with n, from 10° to 10® m™*, and KT, from
0.01 to 10°>eV, draw lines of constant A, and Np. On this graph, place the
following points (n in m™>, KT ineV):

1. Typical fusion reactor: n = 10*!, KT = 10,000.

. Typical fusion experiments: n = 10'°, KT = 100 (torus); n = 10, KT =
1000 (pinch).

. Typicalionosphere: n = 10'", KT = 0.05.

. Typical glow discharge: n = 10'*, KT = 2.

. Typical flame: n = 10", KT = 0.1.

. Typical Cs plasma; n = 10'", KT = 0.2.

. Interplanetary space: n = 10°, KT = 0.01.

[

N O O B 0o

Convince yourself that these are plasmas.

1-4. Compute the pressure, in atmospheres and in tons/ft? exerted by a ther-
monuclear plasma on its container. Assume KT, = KT; = 20keV, n = 10’ m™?,
and p =nKT,where T=T, +T..

1-5. In a strictly steady state situation, both the ions and the electrons will follow
the Boltzmann relation
n; = noexp (—q;d/KT;)

For the case of an infinite, transparent grid charged to a potential ¢, show that
the shielding distance is then given approximately by

2
_9=K e

" (1 1)
P " e \KT, ' KT

Show that A, is determined by the temperature of the colder species.

1-6. An alternative derivation of Ap will give further insight to its meaning.
Consider two infinite, parallel plates at x = +d, set at potential ¢ = 0. The space
between them is uniformly filled by a gas of density n of particles of charge q.

(a) Using Poisson’s equation, show that the potential distribution between the
plates is

-
¢ 250

(d* = x%)

(b) Show that for d > Ap, the energy needed to transport a particle from a
plate to the midplane is greater than the average kinetic energy of the particles.



1-7. Compute Ap and Ny, for the following cases: 13

(a) A glow discharge, with n = 10" m™®, KT, = 2 V. Fugyodsction

(b) The earth’sionosphere, withn = 10> m™, KT, = 0.1 eV.
(c) A 6-pinch, withn =10 m™, KT, = 800eV.

APPLICATIONS OF PLASMA PHYSICS 1.7

Plasmas can be characterized by the two parameters n and KT,. Plasma
applications cover an extremely wide range of n and K7T,: n varies over
28 orders of magnitude from 10° to 10**m™>, and KT can vary over
seven orders from 0.1 to 10% e V. Some of these applications are discussed
very briefly below. The tremendous range of density can be appreciated
when one realizes that air and water differ in density by only 10%, while
water and white dwarf stars are separated by only a factor of 10°. Even
neutron stars are only 10' times denser than water. Yet gaseous plasmas
in the entire density range of 10°® can be described by the same set of
equations, since only the classical (non-quantum mechanical) laws of
physics are needed.

Gas Discharges (Gaseous Electronics) 1.7.1

The earliest work with plasmas was that of Langmuir, Tonks, and their
collaborators in the 1920’s. This research was inspired by the need to
develop vacuum tubes that could carry large currents, and therefore
had to be filled with ionized gases. The research was done with weakly
ionized glow discharges and positive columns typically with KT, = 2 eV
and 10" <n <10®*m™. It was here that the shielding phenomenon
was discovered; the sheath surrounding an electrode could be seen
visually as a dark layer. Gas discharges are encountered nowadays in
mercury rectifiers, hydrogen thyratrons, ignitrons, spark gaps, welding
arcs, neon and fluorescent lights, and lightning discharges.

Controlled Thermonuclear Fusion 1.7.2

Modern plasma physics had it beginnings around 1952, when it was
proposed that the hydrogen bomb fusion reaction be controlled to make
a reactor. The principal reactions, which involve deuterium (D) and
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1.7.4

tritium (T) atoms, are as follows:
D+D-’He+n+32MeV
D+D->T+p+4.0MeV
D+T-'He+n+176MeV

The cross sections for these fusion reactions are appreciable only for
incident energies above 5 keV. Accelerated beams of deuterons bom-
barding a target will not work, because most of the deuterons will lose
their energy by scattering before undergoing a fusion reaction. It is
necessary to create a plasma in which the thermal energies are in the
10-keV range. The problem of heating and containing such a plasma is
responsible for the rapid growth of the science of plasma physics since
1952. The problem is still unsolved, and most of the active research in
plasma physics is directed toward the solution of this problem.

Space Physics

Another important application of plasma physics is in the study of the
earth’s environment in space. A continuous stream of charged particles,
called the solar wind, impinges on the earth’s magnetosphere, which
shields us from this radiation and is distorted by it in the process. Typical
parameters in the solar wind are n = 5 X 10° mfs, KT; =10eV, KT, =
50eV, B =5x10°T, and drift velocity 300 km/sec. The ionosphere,
extending from an altitude of 50 km to 10 earth radii, is populated by
a weakly ionized plasma with density varying with altitude up to n =
10> m™. The temperature is only 10™'eV. The Van Allen belts are
composed of charged particles trapped by the earth’s magnetic field.
Here we have n=10°m™3, KT,<1keV, KT;=1eV, and B =
500 x 1072 T. In addition, there is a hot component with n = 10>m™3
and KT, = 40 keV.

Modern Astrophysics

Stellar interiors and atmospheres are hot enough to be in the plasma
state. The temperature at the core of the sun, for instance, is estimated
to be 2 keV; thermonuclear reactions occurring at this temperature are
responsible for thesun’s radiation. The solar corona is a tenuous plasma
with temperatures up to 200 eV. The interstellar medium contains ion-
ized hydrogenwithn = 10° m™2. Various plasmatheories have been used
to explain the acceleration of cosmic rays. Although the starsin a galaxy



are not charged, they behave like particles in a plasma; and plasma
kinetic theory has been used to predict the development of galaxies.
Radio astronomy has uncovered numerous sources of radiation that
most likely originate from plasmas. The Crab nebula is a rich source of
plasma phenomena because it is known to contain a magnetic field. It
also contains a visual pulsar. Current theories of pulsars picture them
as rapidly rotating neutron stars with plasmas emitting synchrotron
radiation from the surface.

MHD Energy Conversion and Ion Propulsion

Getting back down to earth, we come to two practical applications of
plasma physics. Magnetohydrodynamic (MHD) energy conversion util-
izes a dense plasma jet propelled across a magnetic field to generate
electricity (Fig. 1-3). The Lorentz force gv X B, where vis the jet velocity,
causes the ions to drift upward and the electrons downward, charging
the two electrodes to different potentials. Electrical current can then be
drawn from the electrodes without the inefficiency of a heat cycle.

The same principle in reverse has been used to develop engines for
interplanetary missions. In Fig. 1-6, a current is driven through a plasma
by applying a voltage to the two electrodes. The j X B force shoots the
plasma out of the rocket, and the ensuing reaction force accelerates the
rocket. The plasma ejected must always be neutral; otherwise, the space
ship will charge to a high potential.

Solid State Plasmas

The free electrons and holes in semiconductors constitute a plasma
exhibiting the same sort of oscillations and instabilities as a gaseous
plasma. Plasmas injected into InSb have been particularly useful in

1 + evxB

J — evxB

Principle of the MHD generator.

1.7.5

1.7.6

FIGURE 1-5
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FIGURE 1-6

1.7.7

A
v

Principle of plasma-jet engine for spacecraft propulsion.

studies of these phenomena. Because of the lattice effects, the effective
collision frequency is much less than one would expect in a solid with
n =10**m™>. Furthermore, the holes in a semiconductor can have a
very low effective mass—as little as 0.01m.—and therefore have high
cyclotron frequencies even in moderate magnetic fields. If one were to
calculate Np for a solid state plasma, it would be less than unity because
of the low temperature and high density. Quantum mechanical effects
(uncertainty principle), however, give the plasma an effective tem-
perature high enough to make Ny respectably large. Certain liquids,
such as solutions of sodium in ammonia, have been found to behave like
plasmas also.

Gas Lasers

The most common method to “pump” a gas laser—that is, to invert the
population in the states that give rise to light amplification—is to use a
gas discharge. This can be a low-pressure glow discharge for a dc laser
or a high-pressure avalanche discharge in a pulsed laser. The He-Ne
lasers commonly used for alignment and surveying and the Ar and Kr
lasers used in light shows are examples of dc gas lasers. The powerful
COg laser is finding commercial application as a cutting tool. Molecular
lasers make possible studies of the hitherto inaccessible far infrared
region of the electromagnetic spectrum. These can be directly excited
by an electrical discharge, as in the hydrogen cyanide (HCN) laser, or
can be optically pumped by a COq laser, as with the methyl fluoride
(CHsF) or methyl alcohol (CH3;OH) lasers. Even solid state lasers, such
as Nd-glass, depend on a plasma for their operation, since the flash
tubes used for pumping contain gas discharges.
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1-8. In laser fusion, the core of a small pellet of DT is compressed to a density
of 10** m™ at a temperature of 50,000,000°K. Estimate the number of particles
in a Debye sphere in this plasma.

1-9. A distant galaxy contains a cloud of protons and antiprotons, each with
density n = 10° m™ and temperature 100°K. What is the Debye length?

1-10. A spherical conductor of radius @ is immersed in a plasma and charged
to a potential ¢y. The electrons remain Maxwellian and move to form a Debye
shield, but the ions are stationary during the time frame of the experiment.
Assuming ¢, < KT,/e, derive an expression for the potential as a function of r
in terms of a, ¢, and Ap. (Hint: Assume a solution of the form ¢ */r.)

1-11. A field-effect transistor (FET) is basically an electron valve that operates
on a finite-Debye-length effect. Conduction electrons flow from the source S to
the drain D through a semiconducting material when a potential is applied
between them. When a negative potential is applied to the insulated gate G, no
currentcan flow through G, buttheapplied potential leaks intothesemiconductor
and repels electrons. The channel width is narrowed and the electron flow
impeded in proportion to the gate potential. If the thickness of the device is too
large, Debye shielding prevents the gate voltage from penetrating far enough.
Estimate the maximum thickness of the conduction layer of an n-channel FET
if it has doping level (plasma density) of 10> m™®, is at room temperature, and
1s to be no more than 10 Debye lengths thick. (See Fig. P1-11.)
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Chapter Two

SINGLE-PARTICLE
MOTIONS

INTRODUCTION

What makes plasmas particularly difficult to analyze is the fact that the
densities fall in an intermediate range. Fluids like water are so dense
that the motions of individual molecules do not have to be considered.
Collisions dominate, and the simple equations o f ordinary fluid dynamics
suffice. At the other extreme in very low-density devices like the
alternating-gradient synchrotron, only single-particle trajectories need
be considered; collective effects are often unimportant. Plasmas behave
sometimes like fluids, and sometimes like a collection of individual
particles. The first step in learning how to deal with this schizophrenic
personality is to understand how single particles behave in electric and
magnetic fields. This chapter differs from succeeding ones in that the E
and B fields are assumed to be prescribed and not affected by the charged
particles.

UNIFORM E AND B FIELDS
E=0

In this case, a charged particle has a simple cyclotron gyration. The
equation of motion is

dv :
m 7 qv [2-1]

211

292
2.2.1
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Taking z to be the direction of B (B = B2), we have

mv, = qBv, mi, = —qBu, mov, =0
. _qB . B\’
#= e (q—) v [2-2]
m m
. qB . (qB)2
L’)’ s _vx = — — L’y
m m

This describes a simple harmonic oscillator at the cyclotron frequency,
which we define to he

B
w0, = |q| [2-3]
m

By the convention we have chosen, w, is always nonnegative. B is
measured in tesla, or webers/m?, a unit equal to 10* gauss. The solution
of Eq. [2-2] is then

Uyy = Uy €Xp (Tiwt + 16s,)
the £ denoting the sign of . We may choose the phase § so that
v, =v, e =% [2-4a]
where v, is a positive constant denoting the speed in the plane perpen-
dicular to B. Then

1 . . ; .
Uy = = Uy a=eE U =t LLNe ) [2-4b]

Integrating once again, we have

UL Vi
x —xp=—i—¢'¢ y—yo=t—e'" [2-5]
w, W

We define the Larmor radius to be

U, muv
=—= [2-6
=% lelB :

Taking the real part of Eq. [2-5], we have

X —Xo = rLsin wd y — Yo = %7y cos wt [2-7}
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Larmor orbits in a magnetic field.

This describes a circular orbit a guiding center (x¢, yo) which is fixed (Fig.
2-1). The direction of the gyration is always such that the magnetic field
generated by the charged particle is opposite to the externally imposed
field. Plasma particles, therefore, tend to reduce the magnetic field, and
plasmas are diamagnetic. In addition to this motion, there is an arbitrary
velocity v. along B which is not affected by B. The trajectory of a charged
" particle in space is, in general, a helix.

Finite E

If now we allow an electric field to be present, the motion will be found
to be the sum of two motions: the usual circular Larmor gyration plus
a drift of the guiding center. We may choose E to lie in the x—z plane
so that £, = 0. As before, the z component of velocity is unrelated to the
transverse components and can be treated separately. The equation of
motion is now

d
m—v=q(E+v>< B) [2-8]
dt
whose z component is
dv, ¢q
=—F,
dt m
or
E,
v, =t + U [2-9]

21
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This is a straightforward acceleration along B. The transverse com-
ponents of Eq. [2-8] are

au_ 4 E. .+
==l k@Y,
dt m -2
[2-10]
o, 0F
—== WUy
dt ¢
Differentiating, we have (for constant E)
& 2
Uy = —WcUx
[2-11]

- q o (Lx
U, = :ch(;Ex = wcv,) =—w?> (— + v_,.)

We can write this as

2

Lo+ 5) =i 5)
- - | = —w, —
>\’ B “"B

so that Eq. [2-11] is reduced to the previous case if we replace v, by
v, + (E./B). Equation [2-4] is therefore replaced by

iw !
Uy = V€ °
[2-12]
t X

+iv, e

Uy

The Larmor motion is the same as before, but there is superimposed a
drift v, of the guiding center in the —y direction (for E, > 0) (Fig. 2-2).

ION ELECTRON

FIGURE 2-2 Particle drifts in crossed electric and magnetic fields.



To obtain a general formula for v,, we can solve Eq. [2-8] in vector
form. We may omit the m dv/dt term in Eq. [2-8], since this term gives
only the circular motion at w,, which we already know about. Then
Eq. [2-8] becomes

E+vxB=0 [2-13]
Taking the cross product with B, we have
EXB=Bx(vxB)=vB?—B(v-B) [2-14]
The transverse components of this equation are
v, =EXB/B°=v; [2-15]

We define this to be vg, the electric field drift of the guiding center. In
magnitude, this drift is

E(V/m) m

gl s=———iremar: 2-16
B (tesla) sec o351

VE

It is important to note that vg is independent of g, m, and v,. The
reason is obvious from the following physical picture. In the first half-
cycle of the ion’s orbit in Fig. 2-2, it gains energy from the electric field
and increases in v, and, hence, in 7. In the second half-cycle, it loses
energy and decreases in rp. This difference in r on the left and right
sides of the orbit causes the drift vg. A negative electron gyrates in the
opposite direction but also gains energy in the opposite direction; it ends
up drifting in the same direction as an ion.*For particles of the same
velocity but different mass, the lighter one will have smaller r; and hence
drift less per cycle. However, its gyration frequency is also larger, and
the two effects exactly cancel. Two particles of the same mass but different
energy would have the same w;\f"The slower one will have smaller r; and
hence gain less energy from E in a half -cycle. However, for less energetic
particles the fractional change in r. for a given change in energy is
larger, and these two effects cancel (Problem 2-4).

The three-dimensional orbit in space is therefore a slanted helix
with changing pitch (Fig. 2-3).

Gravitational Field

The foregoing result can be applied to other forces by replacing gE in
the equation of motion [2-8] by a general force F. The guiding center

2.2.3
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FIGURE 2-3 The actual orbit of a gyrating particle in space.
drift caused by F is then
1FxB 2471
v = — s -
] q Bz
In particular, if F is the force of gravity mg, there is a drift
mgXxB
= — [2-18
Ve q B2 ]

This is similar to the drift vg in that it is perpendicular to both the force
and B, but it differs in one important respect. The drift v, changes sign
with the particle’s charge. Under a gravitational force, ions and electrons
drift in opposite directions, so there is a net current density in the plasma
given by

i = n(M +m)E

X
B2 [2-19)]
The physical reason for this drift (Fig. 2-4) is again the change in Larmor
radius as the particle gains and loses energy in the gravitational field.
Now the electrons gyrate in the opposite sense to the ions, but the force
on them is in the same direction, so the drift is in the opposite direction.
The magnitude of v, is usually negligible (Problem 2-6), but when the
lines of force are curved, there is an effective gravitational force due to
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The drift of a gyrating particle in a gravitational field. FIGURE 2-4

centrifugal force. This force, which is not negligible, is independent of
mass; this is why we did not stress the m dependence of Eq. [2-18].
Centrifugal force is the basis of a plasma instability called the “gravita-
tional” instability, which has nothing to do with real gravity.

2-1. Compute r, for the following cases if v;is negligible: PROBLEMS
(a) A 10-keV electron in the earth’s magnetic field of 5 x 107> T.
(b) A solar wind proton with streaming velocity 300 km/sec, B =5 X 107° T.

(¢) A l-keV He" ion in the solar atmosphere near a sunspot, where B =
5x 1072 T.

(d) A 3.5-MeV He"" ash particle in an 8-T DT fusion reactor.

2-2. In the TFTR (Tokamak Fusion Test Reactor) at Princeton, the plasma will
be heated by injection of 200-keV neutraldeuterium atoms, which, after entering
the magnetic field, are converted to 200-keV D ions (A = 2) by charge exchange.
These ions are confined only if r; « a, where a = 0.6 m is the minor radius of
the toroidal plasma. Compute the maximum Larmor radius in a 5-T field to see
if this is satisfied.

2-3. An ion engine (see Fig. 1-6) has a 1-T magnetic field, and a hydrogen
plasma is to be shot out at an E x B velocity of 1000 km/sec. How much internal
electric field must be present in the plasma?

2-4. Show that vg is the same for two ions of equal mass and charge but different
energies, by using the following physical picture (see Fig. 2-2). Approximate the
right half of the orbit by a semicircle corresponding to the ion energy after
acceleration by the E field, and the left half by a semicircle corresponding to
the energy after deceleration. You may assume that E is weak, so that the
fractional change in v, is small.
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2.3

2-5. Suppose electrons obey the Boltzmann relation of Problem 1-5in a cylindri-
cally symmetric plasma column in which n(r) varies with a scale length A; that
is, dn/ar = —n/A.

(a) Using E = —V¢, find the radial electric field for given A.

(b) For electrons, show that finite Larmor radius effects are large if vg is as large
as v,,. Specifically, show that r, = 2A if v = vy,

(c) Is (b)also true for ions?
Hint: Do not use Poisson's equation.
2.6. Suppose that a so-called Q-machine has a uniform field of 0.2 T and a

cylindrical plasma with KT, = KT; = 0.2 eV. The density profile is found experi-
mentally to be of the form

n = nyexp [exp (-r*/a”) — 1]
Assume the density obeys the electron Boltzmann relation n = nyexp (e¢/KT.).
(a) Calculate the maximum vg ifa = 1 cm.
(b) Compare this with v, due to the earth’s gravitational field.
(c) Towhat valuecan B be lowered before the ions of potassium (4 = 39,7 = 1)

have a Larmorradiusequal toa?

2-7. An unneutralized electron beam has density n, = 10'* m™® and radius a =
1 cm and flows along a 2-T magnetic field. If B is in the +z direction and E is
the electrostatic field due to the beam'’s charge, calculate the magnitude and
direction of the E x B drift at r = a. (See Fig. P2-7.)

B2 <—O) Pe R T
W

2a

NONUNIFORM B FIELD

Now that the concept of a guiding center drift is firmly established, we
can discuss the motion of particles in inhomogeneous fields—E and B
fields which vary in space or time. For uniform fields we were able to
obtain exact expressions for the guiding center drifts. As soon as we
introduce inhomogeneity, the problem becomes too complicated to solve
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The drift of a gyrating particle in a nonuniform magnetic field. FIGURE 2-5

exactly. To get an approximate answer, it is customary to expand in the
small ratio r /L, where L is the scale length of the inhomogeneity. This
type of theory, called orbit theory, can become extremely involved. We
shall examine only the simplest cases, where only one inhomogeneity
occurs at a time.

VB L B: Grad-B Drift 2.3.1

Here the lines of force® are straight, but their density increases, say, in
the y direction (Fig. 2-5). We can anticipate the result by usingoursimple
physical picture. The gradient in |B| causes the Larmor radius to be
larger at the bottom of the orbit than at the top, and this should lead
to a drift, in opposite directions for ions and electrons, perpendicular
to both B and VB. The drift velocity should obviously be proportional
tor,/L and tov,.

Consider the Lorentz force F = qv X B, averaged over a gyration.
Clearly, F, = 0, since the particle spends as much time moving up as down.
We wish tocalculate Fy, in an approximate fashion, by usingthe undisturbed
orbit of the particle to find the average. The undisturbed orbit is given
by Egs. [2-4] and [2-7] for a uniform B field. Taking the real part of
Eq. [2-4], we have

dB
F; = —qu.B.(y) = —qu(cos w.t) [Bo + 7y (cos wct)a—] [2-20]
y

where we have made a Taylor expansion of B field about the point
x0 =0, yo = 0 and have used Eq. [2-7]:

B=Bo+(r V)B+---
[2-21]
Bz :Bo+y(aBz/ay)+ i

* The magnetic field lines are often called “lines of force.” They are not lines of force.
‘I'he misnomer is perpetuated here to prepare the student for the treacheries of his
profession.
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This expansion of course requires r; /L « 1, where L is the scale length
of dB,/dy. The first term of Eq. [2-20] averages to zero in a gyration,
and the average of cos® @t is 3, so that

F, = Fqu,r 5(3B/dy) [2-22]

The guiding center drift velocity is then

FxB

l UL 1 aB,\
q B®

|By| x=F ] gx [2-23]

Vgc

-

where we have used Eq. [2-17]. Since the choice of the y axis was arbitrary,
this can be generalized to

1 B X VB
Vg = —-v,7L

——— 2-24
5 B® [2-24]

This has all the dependences we expected from the physical picture;
only the factor 3 (arising from the averaging) was not predicted. Note
that the + stands for the sign of the charge, and lightface B stands for
| B]. The quantity vy is called the grad-B drift; it is in opposite directions
for ions and electrons and causes a current transverse to B. An exact
calculation of vyg would require using the exact orbit, including the
drift, in the averaging process.

Curved B: Curvature Drift

Here we assume the lines of force to be curved with a constant radius
of curvature R,, and we take | B| to be constant (Fig. 2-6). Such a field
does not obey Maxwell’s equations in a vacuum, so in practice the grad-B
drift will always be added to the effect derived here. A guiding center
drift arises from the centrifugal force felt by the particles as they move
along the field lines in their thermal motion. If | denotes the average
square of the component of random velocity along B, the average
centrifugal force is

[2-25]
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A curved magnetic field.

According to Eq. [2-17], this gives rise to a drift

_1F4xB_mufR. XB
q B? gB®> R:

VR [2-26]

The drift vg is called the curvature drift.

We must now compute the grad-B drift which accompanies this
when the decrease of | B| with radius is taken into account. In a vacuum,
we have V x B = 0. In the cylindrical coordinates of Fig. 2-6, V X B has
only a z component, since B has only a § component and VB only an r
component. We then have

1 o 1
(VXB), =——(Bg)=0 By o — [2-27)
r or 7
Thus
1 V| B| R
Be= =y 2.28
Bl<z a1 TR -
Using Eq. [2-24], we have
1 vyry R, 1v2R. xB 1lm ,R.xB
Vgp = F — BX|Bl—g=t—-— ——5—=——v" - -29
= F o e BXIBl et o e =g Vi RTpT 229
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Adding this to vg, we have the total drift in a curved vacuum field:

= - m Rc x B 2 +l 2)
VR + vgg = = R?BQ (v” QUL [2-30]

It is unfortunate that these drifts add. This means that if one bends a
magnetic field into a torus for the purpose of confining a thermonuclear
plasma, the particles will drift out of the torus no matter how one juggles
the temperatures and magnetic fields.

__ For a Maxwellian distribution, Egs. [1-7] and [1-10] indicate that
v,]" and 3v2 are each equal to KT/m, since v, involves two degrees of
freedom. Equations [2-3] and [1-6] then allow us to write the average
curved-field drift as

$ =+ —uud [2-30a]

where y here is the direction of R. X B. This shows that vg+vs depends
on the charge of the species but not on its mass.

VB|B: Magnetic Mirrors

Now we consider a magnetic field which is pointed primarily in the z
direction and whose magnitude varies in the z direction. Let the field
be axisymmetric, with By =0 and 9/96 = 0. Since the lines of force
converge and diverge, there is necessarily a component B, (Fig. 2-7). We
wish to show that this gives rise to a force which can trap a particle in
a magnetic field.

N>

FIGURE 2-7 Drift of a particle in a magnetic mirror field.



We can obtain B, fromV - B = 0:

13

B L 0 3
‘B,) + — = 31
rar(' ) 0z [2-31)

If 0B./3z is given at r = 0 and does not vary much with r, we have
approximately

" . 1
rB, = —J‘ raB*dr = ——rQI:G—BZ]
0 dz 2 0z J,=0

1 [dB.
-
2r 62 r=0

The variation of |B| with r causes a grad-B drift of guiding centers
about the axis of symmetry, but there is no radial grad-B drift, because
dB/36 = 0. The components of the Lorentz force are

[2-32]

Fr = Q(UaB: i U:EO)
©)

Fo = q(—v,B. +v.B,) [2-33]
(@) ®

F;zq(vrg —vu Br)
e

Two terms vanish if By = 0, and terms | and 2 give rise to the usual
Larmor gyration. Term 3 vanishes on the axis; when it does not vanish,
this azimuthal force causes a drift in the radial direction. This drift
merely makes the guiding centers follow the lines of force. Term 4 is
the one we are interested in. Using Eq. [2-32], we obtain

F, = 5quer(9B./dz) [2-34]

We must now average over one gyration. For simplicity, consider a
particle whose guiding center lies on the axis. Then vy is a constant
during a gyration; depending on the sign of q, vy i1s Fv,. Since r = r,
the average force is

F,=F—qu,rp,—= —
Qq Ytz 2qwc dz 2 B oz

We define the magnetic moment of the gyrating particle to be

_ 1 9B, 1 v24B. 1 mv? 9B,
Feq—= === [2-35]

p =smvi/B (2-36]
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so that
F. = —p(3B./dz) [2-37]

This is a specific example of the force on a diamagnetic particle, which
in general can be written

Fy=—u 0B/ds=—un VB [2-38}

where ds is a line element along B. Note that the definition [2-36] is the
same as the usual definition for the magnetic moment of a current loop
witharea 4 and current I: u = I'4. In the case of a singly charged ion,
I is generated by a charge ¢ coming around w./27 times a second:
I = ew,/27. The area A is mri = wv2/w>. Thus

2 2 2
vl ew., 1l uvie 1 mvl

w: 27 2w 2 B

7

As the particle moves into regions of stronger or weaker B, its
Larmor radius changes, but p remains invariant. To prove this, consider
the component of the equation of motion along B:

dvy 9B

=—pu— 2-39
m T " Y [ ]

Multiplying by vjon the left and its equivalent ds/dt on the right, we have

T W s =
T T a\e") T M - Har

Here dB/dt is the variation of B as seen by the particle; B itself is
constant. The particle’s energy must be conserved, so we have

i(lmvﬁ + lmu‘i) = i(lmvﬁ + (,LB) =0 [2-41]
de\2 2 de\2
With Eq. [2-40] this becomes
“M(Z_}f i (%(ILB) =0
so that
du/dt =0 [2-42)

The invariance of u is the basis for one of the primary schemes for
plasma confinement: the magnetic mirror. As a particle moves from a
weak-field region to a strong-field region in the course of its thermal



A plasma trapped between magnetic mirrors.

motion, it sees an increasing B, and therefore its v, must increase in
order to keep p constant. Since its total energy must remain constant,
vy must necessarily decrease. If B is high enough in the “throat” of the
mirror, vy eventually becomes zero; and the particle is “reflected” back
to the weak-field region. It is, of course, the force F) which causes the
reflection. The nonuniform field of a simple pair of coils forms two
magnetic mirrors between which a plasma can be trapped (Fig. 2-8).
This effect works on both ions and electrons.

The trapping is not perfect, however. For instance, a particle with
v, = 0 will have no magnetic moment and will not feel any force along
B. A particle with small v, /v, at the midplane (B = By) will also escape
if the maximum field B,, is not large enough. For given By and B,
which particles will escape? A particle with v, = v,y and vy = vy at the
midplane will have v, = v/ and v = 0 at its turning point. Let the field
be B' there. Then the invariance of u yields

smuio/Bo =3mv’/B’ [2-43)

Conservation of energy requires

12

v} = vl +vjo = v [2-44]
Combining Egs. [2-43] and [2-44], we find

Bo_vio_vio_ . 2

— =—5 =—% =sIn" 0 [2-45]

B T Vo
where 6 is the pitch angle of the orbit in the weak-field region. Particles
with smaller @ will mirror in regions of higher B. If 8 is too small, B’
exceeds B..; and the particle does not mirror at all. Replacing B’ by B,
in Eq. [2-45], we see that the smallest  of a confined particle is given by

sin® @ = Bo/Bm = 1/R.. [2-46]
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FIGURE 2-9

PROBLEMS

The loss cone.

where R, is the mirror ratio. Equation [2-46] defines the boundary of a
region in velocity space in the shape of a cone, called a loss cone (Fig.
2-9). Particles lying within the loss cone are not confined. Consequently,
a mirror-confined plasma is never isotropic. Note that the loss cone is
independent of ¢ or m. Without collisions, both ions and electrons are
equally well confined. When collisions occur, particles are lost when they
change their pitch angle in a collision and are scattered into the loss
cone. Generally, electrons arelost more easily because they have a higher
collision frequency.

The magnetic mirror was first proposed by Enrico Fermi as a
mechanism for the acceleration of cosmic rays. Protons bouncing between
magnetic mirrors approaching each other at high velocity could gain
energy at each bounce. How such mirrors could arise is another story.
A further example of the mirror effect is the confinement of particles
in the Van Allen belts. The magnetic field of the earth, being strong at
the poles and weak at the equator, forms a natural mirror with rather
large R...

2-8. Suppose the earth’s magnetic field is 3 x 107> T at the equator and falls off
as 1/7*, as for a perfect dipole. Let there be an isotropic population of 1-eV
protons and 30-keV electrons, each with density n = 10’ m™® at r = 5 earth radii
in the equatorial plane.



(a) Compute the ion and electron VB drift velocities.

(b) Does an electron drift eastward or westward?

(c) How long does it take an electron to encircle the earth?
(d) Compute the ring current density in A/m’.

Note: The curvature drift is not negligible and will affect the numerical answer,
but neglect it anyway.

2-9. An electron lies at rest in the magnetic field of an infinite straight wire
carrying a current I. At ¢ = 0, the wire is suddenly charged to a positive potential
¢ without affecting I. The electron gains energy from the electric field and
begins to drift.

(a) Draw a diagram showing the orbit of the electron and the relative directions
of I, B, vg, veg, and vg.

(b) Calculate the magnitudes of these drifts at a radius of 1 cm if I =3500A,
¢ = 460V, and the radius of the wire is | mm. Assume that ¢ is held at 0 V on
the vacuum chamber walls 10 cm away.

Hint: A good intuitive picture of the motion is needed in addition to the formulas
given in the text.

2.10. A 20-keV deuteron in a large mirror fusion device has a pitch angle 6 of
45° at the midplane, where B = 0.7 T. Compute its Larmor radius.

2-11. A plasma with an isotropic velocity distribution is placed in a magnetic
mirror trap with mirror ratio R,, = 4. There are no collisions, so the particles in
the loss cone simply escape, and the rest remain trapped. What fraction is
trapped?

2-12. A cosmic ray proton is trapped between two moving magnetic mirrors
with R, = 5 and initially has W = 1 keV and v, = yjat the midplane. Each mirror
moves toward the midplane with a velocity v,, = 10 km/sec (Fig. 2-10).
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2.4

(a) Using the loss cone formula and the invariance of i, find the energy to
which the proton will be accelerated before it escapes.

(b) How long will it take to reach that energy?

1. Treat the mirrors as flat pistons and show that the velocity gained at each
bounce is 2v,,.
2. Compute the number of bounces necessary.
. Compute the time T it takes to traverse L that many times. Factor-of-two
accuracy will sufhice.

w

NONUNIFORM E FIELD

Now we let the magnetic field be uniform and the electric field be
nonuniform. For simplicity, we assume E to be in the x direction and to
vary sinusoidally in the x direction (Fig. 2-11):

E = E(cos kx)x [2-47]
This field distribution has a wavelength A = 27/k and is the result of a
sinusoidal distribution of charges, which we need not specify. In practice,

such a charge distribution can arise in a plasma during a wave motion.
The equation of motion is

m(dv/dt) = q[E(x) + v X B] [2-48]

FIGURE 2-11

Drift of a gyrating particle in a nonuniform electric field.



whose transverse components are

B B
Uy = q——v, + iE,;(x) Uy = — q—v_‘ [2-49]
m m m
i 2. E, [2-50]
x = TWcUx W, — o
U w B
E,.(x)
. 2 2Lx
Uy = —W Uy — W _B [2-51]

Here E.(x) is the electric field at the position of the particle. To evaluate
this, we need to know the particle’s orbit, which we are trying to solve
for in the first place. If the electric field is weak, we may, as an approxima-
tion, use the undisturbed orbit to evaluate E.(x). The orbit in the absence
of the E field was given in Eq. [2-7]:

x =xo+rLsinwd [2-52]

From Eqgs. [2-51] and [2-47], we now have
o 2 ‘_)EU .
Uy, = —w vy —chcos k(xo + rysin w.t) [2-53]

Anticipating the result, we look for a solution which is the sum of a
gyration at o, and a steady drift vg. Since we are interested in finding
an expression for vg, we take out the gyratory motion by averaging over
a cycle. Equation [2-50] then gives 7, = 0. In Eq. [2-53], the oscillating
term @, clearly averages to zero, and we have

= - E -
i, =0= —wfvy — w‘fEO cos k(xo + 7 sin w.t) [2-54]

Expanding the cosine, we have

cos k(xo + 7L sin w.t) = cos (kxo) cos (kr sin w.t)
— sin (kxo) sin (kry sin w.t) [2-55]

It will suffice to treat the small Larmor radius case, kr;. €« 1. The Taylor
expansions

cose =1—gze’+---
[2-56]
sine =€+
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allow us to write
. 1,2 2 . 2
cos k(xo + 7L sin w.t) = (cos kxo)(1 — 2k 7L sin” w.t)
— (sin kxo)kry sin w ¢

The last term vanishes upon averaging over time, and Eq. [2-54] gives
- E 1 2 9 Ex(x ) l 2 2
Uy == Eo(cos kxo)(l — gk“ri) =— To(l = Zk rL> [2-57]
Thus the usual E x B drift is modified by the inhomogeneity to read

EXB 1
Vi = 7(1 - Zkgri) [2-58]

The physical reason for this is easy to see. An ion with its guiding
center at a maximum of E actually spends a good deal of its time in
regions of weaker E. Its average drift, therefore, is less than E/B evalu-
ated at the guiding center. In a linearly varying E field, the ion would
be in a stronger field on one side of the orbit and in a field weaker by
the same amount on the other side; the correction to vz then cancels
out. From this it is clear that the correction term depends on the second
derivative of E. For the sinusoidal distribution we assumed, the second
derivative is always negative with respect to E. For an arbitrary variation
of E, we need onlyreplace ¢4 by V and write Eq. [2-58] as

1 o_.\ExXB
vE=<l+;7‘LV'> =5 [2-59)

The second term is called the finite-Larmor-radius effect. What is the
significance of this correction? Since r; is much larger for ions than for
electrons, vg is no longer independent of species. If a density clump
occurs in a plasma, an electric field can cause the ions and electrons to
separate, generating another electric ficld. If there is a feedback mechan-
ism that causes the second electric field to enhance the first one, E grows
indefinitely, and the plasma is unstable. Such an instability, called a drift
instability, will be discussed in a later chapter. The grad-B drift, of course,
is also a finite-Larmor-radius effect and also causes charges to separate.
According to Eq. [2-24], however, vgp is proportional to &r;, whereas
the correction term in Eq. [2-58] is proportional to £°r;. The nonuni-
form-E-field effect, therefore, is important at relatively large &, or small



scale lengths of the inhomogeneity. For this reason, drift instabilities
belong to a more general class called microinstabilities.

TIME-VARYING E FIELD

Let us now take E and B to be uniform in space but varying in time.
First, consider the case in which E alone varies sinusoidally in time, and
let it lie along the x axis:

BB % [2-60]
Since Ex =Efi,‘we can write Eq. [2-50] as
i ‘-’( F o E‘) [2-61]
! 2 ',‘ — -
Uk w, |7, S B
Let us define
k.
U, =+ — —
2 w, B
. [2-62]
i e
g B

where the tilde has been added merely to emphasize that the drift is
oscillating. The upper (lower) sign, as usual, denotes positive (negative)
q. Now Egs. [2-50] and [2-51] become

iy = —w; (Ve = U)

o [2-63]

Uy = —w; (vy — UE)
By analogy with Eq. [2-12], we try a solution which is the sum of a drift
and a gyratory motion:

) [2-64]
v, = *tw, e + Ug
If we now differentiate twice with respect to time, we find
i = —wlv, + (02 — w2)17,,
[2-65]
- o 2 2 ~
Uy = ~w. vy + (w; — w )Ug

This is not the same as Eq. [2-63] unless w? « w?. If we now make the
assumption that E varies slowly, so that w? < w2, then Eq. [2-64] is the
approximate solution to Eq. [2-63].

2.5
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FIGURE 2-12

Equation [2-64] tells us that the guiding center motion has two
components. The y component, perpendicular to B and E, is the usual
E x B drift, except that vg now oscillates slowly at the frequency w. The
x component, a new drift along the direction of E, is called the polarization
drift. By replacing iw by 9/dt, we can generalize Eq. [2-62] and define
the polarization drift as

1 dE
w B dt

Vv, St [2-66]

Since v, is in opposite directions for ions and electrons, there is a
polarization current; for Z = 1, this is

p dE
P3|

= [2-67)

. ne ) ne M )dE
= Uip — U, = —=(] n)— =
fo =Wkt — Hep) = R0 "a T B? dt

where p is the mass density.

The physical reason for the polarization current is simple (Fig. 2-12).
Consider an ion at rest in a magnetic field. If a field E is suddenly
applied, the first thing the 1on does is to move in the direction of E.
Only after picking up a velocity v does the ion feel a Lorentz force ev X B
and begin to move downward in Fig. (2-12). If E is now kept constant,
there is no further v, drift but only a vg drift. However, if Eis reversed,
there is again a momentary drift, this time to the left. Thus v, is a startup
drift due toinertia and occursonlyin the first half-cycle of each gyration
during which E changes. Consequently, v, goes to zero with w/w..

The polarization effect in a plasma is similar to that in a solid
dielectric, where D = €oE + P. The dipoles in a plasma are ions and

The polarization drift.



electrons separated by a distance r.. But since ions and electrons can
move around to preserve quasineutrality, the application of a steady E
field does not result in a polarization field P. However, if E oscillates,
an oscillating current j, results from the lag due to the ion inertia.

TIME-VARYING B FIELD

Finally, we allow the magnetic field to vary in time. Since the Lorentz
force is always perpendicular to v, a magnetic field itself cannot impart
energy to a charged particle. However, associated with B is an electric
field given by

VXE=-B [2-68]

and this can accelerate the particles. We can no longer assume the fields
to be completely uniform. Let v, =dl/dt be the transverse velocity 1
being the element of path along a particle trajectory (with vy neglected).
Taking the scalar product of the equation of motion [2-8] with v, , we have

d(l dl
E(é‘"ll‘l) =qE-v, =qE- (E [2-69]

The change in one gyration is obtained by integrating over one period:

1 5 27/ w, dl
6<;mvk) = J:) qE - Edt

If the field changes slowly, we can replace the time integral by a line
integral over the unperturbed orbit:

1
S(Emvi)=§qE-dl=qJ‘ (VX E)-dS
S

=— J B-dS [2-70)
S

Here S is the surface enclosed by the Larmor orbit and has a direction
given by the right-hand rule when the fingers point in the direction of
v. Since the plasma is diamagnetic, we have B - dS < 0 for ions and >0
for electrons. Then Eq. [2-70] becomes

6(lm 2)—:‘:3 s B.v_i m _émvi-QwB' ;
QUJ'_qﬂ-L_ e wciqB_B W, o

2.6
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FIGURE 2-13 Two-stage adiabatic compression of a plasma.

The quantity 2mB/w. = B/f. is just the change §B during one period of
gyration. Thus

SGmv?) = usB [2-72]
Since the left-hand side is 6 (wB), we have the desired result
ou =0 [2-73]

The magnetic moment is invariant in slowly varying magnetic fields.

As the B field varies in strength, the Larmor orbits expand and
contract, and the particles lose and gain transverse energy. This exchange
of energy between the particles and the field is described very simply by
Eq. [2-73). The invariance of g allows us to prove easily the following
well-known theorem:

The magnetic flux through a Larmor orbit is constant.

The flux @ is given by BS, with S = mr;. Thus

vl vIm?  2mmiImv?  2mm
®=Br—5=Br—5—==—5 ="5u [2-74]
W, q°B q- B q

Therefore, @ is constant if ¢ is constant.

This property is used in a method of plasma heating known as
adiabatic compression. Figure 2-13 shows a schematic of how this is done.
A plasma is injected into the region between the mirrors A and B. Coils
A and B are then pulsed to increase B and hence v2. The heated plasma
can then be transferred to the region C-D by a further pulse in A,
increasing the mirror ratio there. The coils C and D are then pulsed to
further compress and heat the plasma. Early magnetic mirror fusion
devices employed this type of heating. Adiabatic compression has also
been used successfully on toroidal plasmas and is an essential element



of laser-driven fusion schemes using either magnetic or inertial
confinement.

SUMMARY OF GUIDING CENTER DRIFTS

1FxB
General force F: v =— 5 [2-17]
q B
EXB
Electric freld: Vg = B2 [2-15]
X B
Gravitational field: v, = ne = [2-18]
q B~
5 X B
Nonuniform E: vg = (1 + ir‘,_V?)E 5 [2-59]
4 B
Nonuniform B field
. 1 BXxXVB
Grad-B drift: vgg =t —v, 1 ——5— [2-24]
2 B
°
R.XB
Curvature drift: VR = Eqﬂ ‘—RCQT [2-26)
1 X
Curved vacuum field:  vg + vep = ﬁ(v"? + —vi) ch ? [2-30]
q 2 R.B
ol . 1 dE
Polarization drift: v, =+ — [2-66]
wB dt

ADIABATIC INVARIANTS

It is well known in classical mechanics that whenever a system has a
periodic motion, the action integral § ¢ dq taken over a period is a constant
of the motion. Here p and q are the generalized momentum and coordin-
ate which repeat themselves in the motion. If a slow change is made in
the system, so that the motion is not quite periodic, the constant of the
motion does not change and is then called an adiabatic invariant. By slow
here we mean slow compared with the period of motion, so that the
integral §pdq is well defined even though it is strictly no longer an

2.7
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2.8.1

integral over a closed path. Adiabatic invariants play an important role
in plasma physics; they allow us to obtain simple answers in many
instances involving complicated motions. There are three adiabatic
invariants, each corresponding to a different type of periodic motion.

The First Adiabatic Invariant, u
We have already met the quantity
w =mv>/2B

and have proved its invariance in spatially and temporally varying B
fields. The periodic motion involved, of course, is the Larmor gyration.
If we take p to be angular momentum muv,r and dq to be the coordinate
d@, the action integral becomes

2

muv

= 47ri,u, [2-75]

§pdq = § mu,ry df = 2wrymu, = 2
w, lql

Thus p is a constant of the motion as long as q/m is not changed. We
have proved the invariance of g only with the implicit assumption
w/w. € 1, where w is a frequency characterizing the rate of change of B
as seen by the particle. A proof exists, however, that u is invariant even
when w < w,. In theorists’ language, @ is invariant “to all orders in an
expansion in w/w..” What this means in practice is that & remains much
more nearly constant than B does during one period of gyration.

It is just as important to know when an adiabatic invariant does not
exist as to know when it does. Adiabatic invariance of w is violated when
w is not small compared with w.. We give three examples of this.

(A) Magnetic Pumping. If the strength of B in a mirror confinement
system is varied sinusoidally, the particles’ v, would oscillate; but there
would be no gain of energy in the long run. However, if the particles
make collisions, the invariance of p is violated, and the plasma can be
heated. In particular, a particle making a collision during the compres-
sion phase can transfer part of its gyration energy into v energy, and
this is not taken out again in the expansion phase.

(B) Cyclotron Heating. Now imagine that the B field is oscillated at the
frequency w.. The induced electric field will then rotate in phase with
some of the particles and accelerate their Larmor motion continuously.
The condition w « w,is violated, u is not conserved, and the plasma can
be heated.
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Plasma confinement in a cusped magnetic field.

(C) Magnetic Cusps. If the currentin one of the coilsin a simple magnetic
mirror system is reversed, a magnetic cusp is formed (Fig. 2-14). This
configuration has, in addition to the usual mirrors, a spindle-cusp mirror
extending over 360° in azimuth. A plasma confined in a cusp device is
supposed to have better stability properties than that in an ordinary
mirror. Unfortunately, the loss-cone losses are larger because of the
additional loss region; and the particle motion is nonadiabatic. Since the
B field vanishes at the center of symmetry, w, is zero there; and u is
not preserved. The local Larmor radius near the center is larger than
the device. Because of this, the adiabatic invariant ¢ does not guarantee
that particles outside a loss cone will stay outside after passing through
the nonadiabatic region. Fortunately, there is in this case another
invariant: the canonical angular momentum py = mrvy —erdgy. This
ensures that there will be a population of particles trapped indefinitely
until they make a collision.

The Second Adiabatic Invariant, J

Consider a particle trapped between two magnetic mirrors: It bounces
between them and therefore has a periodic motion at the “bounce
frequency.” A constant of this motion is given by § mu; ds, where ds is an
element of path length (of the guiding center) alonga field line. However,
since the guiding center drifts across field lines, the motion is not exactly
periodic, and the constant of the motion becomes an adiabatic invariant.
This is called the longitudinal invariant | and is defined for a half-cycle
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FIGURE 2-15

FIGURE 2-16

A particle bouncing between turning points a
and b in a magnetic field.

between the two turning points (Fig. 2-15):

b
= J vy ds [2-76]

We shall prove that J is invariant in a static, nonuniform B field; the
result is also true for a slowly time-varying B field.

Before embarking on this somewhat lengthy proof, let us consider
an example of the type of problem in which a theorem on the invariance
of J would be useful. As we have already seen, the earth’s magnetic field
mirror-traps charged particles, which slowly drift in longitude around
the earth (Problem 2-8; see Fig. 2-16). If the magnetic field were perfectly
symmetric, the particle would eventually drift back to the same line of
force. However, the actual field is distorted by such effects as the solar
wind. In that case, will a particle ever come back to the same line of
force? Since the particle’s energy is conserved and is equal to smv3 at
the turning point, the invariance of wx indicates that | B| remains the
same at the turning point. However, upon drifting back to the same

Motion of a charged particle in the earth’s magnetic field.



longitude, a particle may find itself on another line of force at a different
altitude. This cannot happen if | is conserved. | determines the length
of the line of force between turning points, and no two lines have the
same length between points with thesame| B|. Consequently, the particle
returns to the same line of force even in a slightly asymmetric field.

To prove the invariance of J, we first consider the invariance of
v 6s, where 8s is a segment of the path along B (Fig. 2-17). Because of
guiding center drifts, a particle on s will find itself on another line of
force 6s' after a time A¢t. The length of 85’ is defined by passing planes
perpendicular to B through the end points of §s. The length of s is
obviously proportional to the radius of curvature:

& _a
R. R;
so that
8s'—68s R:—-R. e
At 8s AtR,
The *“radial” component of v, is just
B Re=ky {2-78]
e M ]
From Egs. [2-24] and [2-26], we have
1 BxVB muiR.XB
Vgc = VuB +vp = £ v, rL [2-79]

2 B? q R’B’

The last term has no component along R,. Using Eqgs. [2-78] and [2-79],
we can write Eq. [2-77] as

1 d R, 1muv? R.
- | =v,.-—=———7=(BxXVB): 2-80
st Ve R4 B ) R? Cma

This is the rate of change of §s as seen by the particle. We must 'now
get the rate of change of vy as seen by the particle. The parallel and

os’

-
-
-

ds
B

Proof of the invariance of J.
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perpendicular energies are defined by
e w2 Ml 21 ey 2 == ,
W =amy| +amv, =amy| + uB = W+ W, [2-81]

Thus vy, can be written

v = [@2/m)(W — uB)]"? [2-82)
Here W and p are constant, and only B varies. Therefore,
) 1 B 1 uB B
Ao g L {2-83]

Uil_ §W—,LLB= QW"_ muj

Since B was assumed static, B is not zero only because of the guiding
center motion:

. dB dr mv{‘l') R, XB

S AR, . P I B ek W 2-84

i a Ve VBET R el

Now we have

9__u (R XB) VB _ 1muv2 (BxVB) R,

— == 2-85
v -q RZB? 249 B R:B? L8-85]
The fractional change in v, s is
1 d( 5) 1 d6s+ 1 dy —
LRt S = s Il z
vy &8s dt i 8s dt vy dt !

From Eqgs. [2-80] and [2-85], we see that these two terms cancel, so that
v 6s = constant [2-87]

This is not exactly the same as saying that J is constant, however. In
taking the integral of v;8s between the turning points, it may be that
the turning points on 8s' do not coincide with the intersections of the
perpendicular planes (Fig. 2-17). However, any error in J arising from
such a discrepancy is negligible because near the turning points, vy is
nearly zero. Consequently, we have proved

b
/= J yyds = constant [2-88])

An example of the violation of J invariance is given by a plasma
heating scheme called transit-time magnetic pumping. Suppose an oscillat-
ing current is applied to the coils of a mirror system so that the mirrors
alternately approach and withdraw from each other near the bounce
frequency. Those particles that have the right bounce frequency will
always see an approaching mirror and will therefore gain vy. J is not
conserved in this case because the change of B occurs on a time scale
not long compared with the bounce time.



The Third Adiabatic Invariant, ®

Referring again to Fig. 2-16, we see that the slow drift of a guiding
center around the earth constitutes a third type of periodic motion. The
adiabatic invariant connected with this turns out to be the total magnetic
flux ® enclosed by the drift surface. It is almost obvious that, as B varies,
the particle will stay on a surface such that the total number of lines of
force enclosed remains constant. This invariant, @, has few applications
because most fluctuations of B occur on a time scale short compared
with the drift period. As an example of the violation of ® invariance,
we can cite some recent work on the excitation of hydromagnetic waves
in the ionosphere. These waves have a long period comparable to the
drift time of a particle around the earth. The particles can therefore
encounter the wave in the same phase each time around. If the phase
is right, the wave can be excited by the conversion of particle drift energy
to wave energy.

2-13. Derive the result of Problem 2-12(b) directly by using the invariance of J.
(a) Let [ vyds = v,L and differentiate with respect to time.

(b) From this, get an expression for T in terms of dL/dt Set dL/dt = —2v,, to
obtain the answer.

2-14. In plasma heating by adiabatic compression, the invariance of . requires
that KT, increase as B increases. The magnetic field, however, cannot accelerate
particles because the Lorentz force qv X B is always perpendicular to the velocity.
How do the particles gain energy?

2-15. The polarization drift v, can also be derived from energy conservation.
If E is oscillating, the E X B drift also oscillates; and there is an energy smv:
associated with the guiding center motion. Since energy can be gained from an
E field only by motion along E, there must be a drift v, in the E direction. By
equating the rate of change of §mv; with the rate of energy gain from v, - E,
find the required value of v,.

2-16. A hydrogen plasma is heated by applying a radiofrequency wave with E
perpendicular to B and with an angular frequency w = 10°rad/sec. The
confining magnetic field is 1 T. Is the motion of (a) the electrons and (b) the
ions in response to this wave adiabatic?

2-17. A 1-keV proton with vy=0 in a uniform magnetic field B=0.1T is
accelerated as B is slowly increased to 1 T. It then makes an elastic collision with
a heavy particle and changes direction so that v, = vj. The B-field is then slowly
decreased back to 0.1 T. What is the proton’s energy now?

2.8.3
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FIGURE P2-18

FIGURE P2-19
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2-18. A collisionless hydrogen plasma is confined in a torus in which external
windings provide a magnetic field B lying almost entirely in the ¢ direction.
The plasma is initially Maxwellian at KT = 1keV. At ¢ =0, B is gradually
increased from 1 T to 3 T in 100 usec, and the plasma is compressed.

(a) Show that the magnetic moment ¢ remains invariant for both ions and
electrons.

(b) Calculate the temperatures T, and T after compression.

2-19. A uniform plasma is created in a toroidal chamber with square cross
section, as shown. The magnetic field is provided by a current I along the axis
of symmetry. The dimensionsarea = 1 cm, R = 10 cm. The plasma is Maxwellian
at KT = 100 eV and has density n = 10'? m™>. There is no electric field.

- Q) —»

a3 —>»

|
—R—]



(a) Draw typical orbits for ions and electrons with vy = 0 drifting in the nonuni-
form B field.

(b) Calculate the rate of charge accumulation (in coulombs per second) on the
entire top plate of the chamber due to the combined vvg and vi drifts. The
magnetic field at the center of the chamber is 1 T, and you may make a large
aspect ratio (R » a) approximation where necessary.

2-20. Suppose the magnetic field along the axis of a magnetic mirror is given by
B. = Bo(l + a?2?).

(a) If an electronatz = 0 has a velocity given by v? = 3u§ = 1.5v3, at what value
of z is the electron reflected?

(b) Write the equation of motion of the guiding center for the direction parallel
to the field.

(c) Show that the motion is sinusoidal, and calculate its frequency.

(d) Calculate the longitudinal invariant J corresponding to this motion.

2-21. An infinite straight wire carries a constant current [ in the +z direction.
At ¢t = 0, an electron of small gyroradius is at z = 0 and r = ro with v,0 = vo. (L
and | refer to the direction relative to the magnetic field.)

(a) Calculate the magnitude and direction of the resulting guiding center drift
velocity.

(b) Suppose that the current increases slowly in time in such a way that a constant
electric field in the +z direction is induced. Indicate on a diagram the relative
directions of I, B, E, and vg.

(c) Do v, and yjincrease, decrease, or remain the same as the current increases?
Why?
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Chapter Three

PLASMAS
AS FLUIDS

INTRODUCTION

In a plasma the situation is much more complicated than that in the last
chapter; the E and B fields are not prescribed but are determined by
the positions and motions of the charges themselves. One must solve a
self-consistent problem; that is, find a set of particle trajectories and field
patterns such that the particles will generate the fields as they move
along their orbits and the fields will cause the particles to move in those
exact orbits. And this must be done in a time-varying situation!

We have seen that a typical plasmadensity might be 10'? ion-electron
pairs per cm®. If each of these particles follows a complicated trajectory
and itis necessary to follow each of these, predicting the plasma’s behavior
would be a hopeless task. Fortunately, this is not usually necessary
because, surprisingly, the majority—perhaps as much as 80% -—of plasma
phenomena observed in real experiments can be explained by a rather
crude model. This model is that used in fluid mechanics, in which the
identity of the individual particle is neglected, and only the motion of
fluid elements is taken into account. Of course, in the case of plasmas,
the fluid contains electrical charges. In an ordinary fluid, frequent
collisions between particles keep the particles in a fluid element moving
together. It is surprising that such a model works for plasmas, which
generally have infrequent collisions. But we shall see that there is a
reason for this.

In the greater part of this book, we shall be concerned with
what can be learned from the fluid theory of plasmas. A more refined

3.1
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treatment—the kinetic theory of plasmas—requires more mathematical
calculation than is appropriate for an introductory course. An introduc-
tion to kinetic theory is given in Chapter 7. ’

In some plasma problems, neither fluid theory nor kinetic theory
is sufficient to describe the plasma’s behavior. Then one has to fall back
on the tedious process of following the individual trajectories. Modern
computers can do this, although they have only enough memory to store
the position and velocity components for about 10* particles and, except
in a few cases, can solve problems only in one or two dimensions.
Nonetheless, computer simulation has recently begun to play an impor-
tant role in filling the gap between theory and experiment in those
instances where even kinetic theory cannot come close to explaining what
is observed.

RELATION OF PLASMA PHYSICS TO ORDINARY
ELECTROMAGNETICS

Maxwell’s Equations

In vacuum:

eV 'E=0 [3-1)
VXE=-B (3-2]
V-B=0 [3-3]
V X B = po(j + €E) (3-4]

In a medium:
V-D=o [3-5]
VXE=-B (3-6]
V-B=0 (3-7]
VxH=j+D (3-8]
D=¢€E [3-9]
B=uH [3-10]

In Egs. [3-5] and [3-8], o and j stand for the “free” charge and current
densities. The “bound” charge and currentdensities arising from polariz-
ation and magnetization of the medium are included in the definition



of the quantities D and H in terms of € and p. In a plasma, the ions
and electrons comprising the plasma are the equivalent of the ‘bound”
charges and currents. Since these charges move in a complicated way,
it is impractical to try to lump their effects into two constants € and u.
Consequently, in plasma physics, one generally works with the vacuum
equations [3-1]-[3-4], in which ¢ and j include all the charges and
currents, both external and internal.

Note that we have used E and B in the vacuum equations rather
than their counterparts D and H, which are related by the constants €g
and po. This is because the forces gE and j X B depend on E and B
rather than D and H, and it is not necessary to introduce the latter
quantities as long as one is dealing with the vacuum equations.

Classical Treatment of Magnetic Materials

Since each gyrating particle has a magnetic moment, it would seem that
the logical thing to de would be to consider a plasma as a magnetic
material with a permeability u,. (We have put a subscript m on the
permeability to distinguish it from the adiabatic invariant u.) To see why
this is not done in practice, let us review the way magnetic materials are
usually treated.

The ferromagnetic domains, say, of a piece of iron have magnetic
moments ®;, giving rise to a bulk magnetization

1
M= Tw -1

per unit volume. This has the same effect as a bound current density
equal to

jo =V xM (3-12]

In the vacuum equation [3-4], we must include in j both this current
and the “free,” or externally applied, current j;:

o' VXB=j;+ij, + ek (3-13]
We wish to write Eq. [3-13]in the simple form
VxH=j+ ek [3-14]
by including j, in the definition of H. This can be done if we let

H=uo'B-M (3-15]

3:2.2
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To get a simple relation between B and H, we assume M to be propor-
tional to B or H:

M = x.H (3-16)
The constant x.. is the magnetic susceptibility. We now have

B=po(l + xmH=uH (3-17]

This simple relation between B and H is possible because of the linear
form of Eq. [3-16].

In a plasma with a magnetic field, each particle has a magnetic
moment M., and the quantity M is the sum of all these p,’s in 1 m®. But
we now have

mvia 1 1
=M. pfoc—
He="5p "B B

The relation between M and H (or B) is no longer linear, and we cannot
write B = ., H with p,, constant. It is therefore not useful to consider a
plasma as a magnetic medium.

Classical Treatment of Dielectrics

The polarization P per unit volume is the sum over all the individual
moments p; of the electric dipoles. This gives rise to a bound charge

density
g, =—-V-P [3-18]

In the vacuum equation [3-1], we must include both the bound charge
and the free charge:

€V E = (o7t 03) [3-19]
We wish to write this in the simple form
V-D=o [3-20]
by including &, in the definition of D. This can be done by letting
D =¢)E+ P =¢E [3-21]
If P is linearly proportional to E,
P = eox.E [3-22]
then € is a constant given by

e =(1+x.)eo [3-23]



There is no a priori reason why a relation like [3-22] cannot be valid in
a plasma, so we may proceed to try to get an expression for € in a plasma.

The Dielectric Constant of a Plasma

We have seen in Section 2.5 that a fluctuating E field gives rise to a
polarization current j,. This leads, in turn, to a polarization charge given
by the equation of continuity:

d
%’+V-j,,=0 [3-24]

This is the equivalent of Eq. [3-18], except that, as we noted before, a
polarization effect does not arise in a plasma unless the electric field is
time varying. Since we have an explicit expression for j, but not for o,
it is easier to work with the fourth Maxwell equation, Eq. [3-4]:

YV X B = woljs + i, + €oE) [3-25)

We wish to write this in the form

V xB = wo(j; + €E) [3-26]
This can be done if we let
€ =€ +%’ [3-27]
From Eq. [2-67] for j,, we have
2
p € fopc
€=€0+E§ or 5R55=1+OB_2 [3-28]

This is the low-frequency plasma dielectric constant for transverse motions. The
qualifications are necessary because our expression for j, is valid only
for w® « w? and for E perpendicular to B. The general expression for
€, of course, is very complicated and hardly fits on one page.

Note that as p > 0, eg approaches its vacuum value, unity, as it
should. As B - ®, eg also approaches unity. This is because the polariz-
ation drift v, then vanishes, and the particles do not move in response
to the transverse electric field. In a usual laboratory plasma, the second
term in Eq. [3-28] is large compared with unity. For instance, if n =
10'°*m™® and B = 0.1 T we have (for hydrogen)

popc? _ (@mx 1077)(10%)(1.67 x 10727)(9 x 10°) B
B? (0.1)°

189
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This means that the electric fields due to the particles in the plasma
greatly alter the fields applied externally. A plasma with large € shields
out alternating fields, just as a plasma with small Ap shields out dc fields.

3-1. Derive the uniform-plasma low-frequency dielectric constant, Eq. [3-28],
by reconciling the time derivative of the equation VD = V - (¢E) = 0 with that
of the vacuum Poisson equation [3-1], with the help of equations [3-24] and [2-67].

3-2. If the ion cyclotron frequency is denoted by (), and the ion plasma frequency
is defined by

0, = (ne®/e,M)?

where M is the ion mass, under what circumstances is the dielectric constant €
approximately equal to Q;/Q2?

THE FLUID EQUATION OF MOTION

Maxwell’s equations tell us what E and B are for a given state of the
plasma. To solve the self-consistent problem, we must also have an
equation giving the plasma’s response to given E and B. In the fluid
approximation, we consider the plasma to be composed of two or more
interpenetrating fluids, one for each species. In the simplest case, when
there is only one species of ion, we shall need two equations of motion,
one for the positively charged ionfluid and one for the negatively charged
electron fluid. In a partially ionized gas, we shall also need an equation
for the fluid of neutral atoms. The neutral fluid will interact with the
ions and electrons only through collisions. The ion and electron fluids
will interact with each other even in the absence of collisions, because
of the E and B fields they generate.

The Convective Derivative

The equation of motion for a single particle is

dv
mz=q(E+va) [3-29]

Assume first that there are no collisions and no thermal motions. Then
all the particlesin a fluid element move together, and the average velocity
u of the particles in the element is the same as the individual particle



velocity v. The fluid equation is obtained simply by multiplying Eq. [3-29]
by the density n:

mn‘fz,—:l=qn(E+u><B) [3-30]

This is, however, not a convenient form to use. In Eq. [3-29], the time
derivative is to be taken at the position of the particles. On the other hand,
we wish to have an equation for fluid elements fixed in space, because it
would be impractical to do otherwise. Consider a drop of cream in a
cup of coffee as a fluid element. As the coffee is stirred, the drop distorts
into a filament and finally disperses all over the cup, losing its identity.
A fluid element at a fixed spot in the cup, however, retains its identity
although particles continually go in and out of it.

To make the transformation to variables in a fixed frame, consider
G(x, t) to be any property of a fluid in one-dimensional x space. The
change of G with time in a frame moving with the fluid is the sum of two
terms:

dG(x,t) 090G dGdx 9G G

e = —=—tu, — (3-31]
dt at  odx dt at " ox

The first term on the right represents the change of G at a fixed point

in space, and the second term represents the change of G as the observer

moves with the fluid into a region in which G is different. In three

dimensions, Eq. [3-31] generalizes to

iG oG
=4 -V 3.32
& o TV B

This is called the convective derivative and is sometimes written DG/Dt.
Note that (u- V) is a scalar differential operator. Since the sign of this
term is sometimes a source of confusion, we give two simple examples.

Figure 3-1 shows an electric water heater in which the hot water
has risen to the top and the cold water has sunk to the bottom. Let G (x, t)
be the temperature T; VG is then upward. Consider a fluid element
near the edge of the tank. If the heater element is turned on, the fluid
element is heated as it moves, and we have dT/dt > 0. If, in addition, a

paddle wheel sets up a flow pattern as shown, the temperature in a fixed
fluid element is lowered by the convection of cold water from the bottom.

In this case, we have dT/dx >0 and u, >0, so that u-VT >0. The
temperature change in the fixed element, dT/d¢, is given by a balance
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FIGURE 3-1

FIGURE 3-2

=y
P
VtT

Q

COLD

Motion of fluid elements in a
hot water heater.

of these effects,

9T _dT

—=—-u-VT [3-33]
ot dt

It is quite clear that 3T/t can be made zero, at least for a short time.
As a second example we may take G to be the salinity S of the water
near the mouth of a river (Fig. 3-2). If x is the upstream direction, there

OCEAN -— VS RIVER Wi

Direction of the salinity gradient at the mouth of a river.



is normally a gradient of § such that 3§/dx < 0. When the tide comes
in, the entire interface between salt and fresh water moves upstream,
and u, > 0. Thus

aS as

—=-u,—>0 [3-34]

ot ox
meaning that the salinity increases at any given point. Of course, if it
rains, the salinity decreases everywhere, and a negative term dS/d! is to
be added to the middle part of Eq. [3-34].

As a final example, take G to be the density of cars near a freeway
entrance at rush hour. A driverwillsee the density around himincreasing
as he approaches the crowded freeway. This is the convective term
(u - V)G. At the same time, the local streets may be filling with cars that
enter from driveways, so thatthe density will increase evenif the observer
does not move. This is the dG/dt term. The total increase seen by the
observer is the sum of these effects.

In the case of a plasma, we take G to be the fluid velocity u and
write Eq. [3-30] as

d
mn 2+ (- O = gn (B + ux B) (3-35]

where du/dt is the time derivative in a fixed frame.

The Stress Tensor

When thermal motions are taken into account, a pressure force has to
be added to the right-hand side of Eq. [3-35]. This force arises from the

Y A B
! ! Ay
k- L
7/
// AZ X
xo-Ax X5 xO+Ax

Origin of the elements of the stress tensor.

3.3.2

FIGURE 3-3
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random motion of particles in and out of a fluid element and does not
appear in the equation for a single particle. Let a fluid element Ax Ay Az
be centered at (xgq, %A)‘, %Az) (Fig. 3-3). For simplicity, we shall consider
only the x component of motion through the faces A and B. The number
of particles per second passing through the face A with velocity v, is

An, 9, Ay Az
where An, is the number of particles per m® with velocity v,:
An, = Av, ﬂ f (Vs vy, v.) dvy du,

Each particle carries a momentum mv,. The density n and temperature
KT in each cube is assumed to have the value associated with the cube’s
center. The momentum P4, carried into the element at xo through A
is then

Pis= Z.8n, mv;"). Ay Az = Ay Az ['rn;_g%n]x“__\x [3-36]

The sum over An, results in the average v—f over the distribution. The
factor 3 comes from the fact that only half the particles in the cube at
xo — Ax are going toward face A. Similarly, the momentum carried out
through face B is

Pg, = Ay Az[mv_f:’%n]n.

Thus the net gain in x momentum from right-moving particles is

Pa.—Pp. = Ay Az s m([nol-ax — [nvike)
[3-37]

d —
= Ay Az s m(—Ax) —(nv3)
. ox
This result will be just doubled by the contribution of left-moving
particles, since they carry negative x momentum and also move in the

opposite direction relative to the gradient of nvZ. The total change of
momentum of the fluid element at xq is therefore

d d ;
= (nmu,) Ax Ay Az = —m B (nvj_\.) Ax Ay Az [3-38]

Let the velocity v, of a particle be decomposed into two parts,

U = Uy F Uy W = Uy



where u, is the fluid velocity and vy, is the random thermal velocity. For 63
a one-dimensional Maxwellian distribution, we have from Eq. [1-7] Plasmas
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smvZ =3KT (3-39]
Equation [3-38] now becomes
d d —3 — — d o KT
— (nmu,) = —m — [n(u; + 2uv,, +v,)] = —m— [n(uf + —>]
at 0x 0x m

We can cancel two terms by partial differentiation:

d(nu,) ou,
~ mnu,
ox ox

o, an d
mn — + mu, — = —mu, —— (nKT) [3-40]
at ot dx

The equation of mass conservation™®

on 0

—+—(nu,)=0 3-41
o (nuy) [3-41]
allows us to cancel the terms nearest the equal sign in Eq. [3-40]. Defining
the pressure

p =nKT [3-42]
we have finally
Oy ouy ap
mn( 2w, ) S 4 [3.43)
at ox ox

This is the usual pressure-gradient force. Adding the electromagnetic
forces and generalizing to three dimensions, we have the fluid equation

mn[ad—l;+ (u- V)u] =qn(E+uxB)-Vp b=dd]

What we have derived is only a special case: the transfer of x
momentum by motion in the x direction; and we have assumed that the
fluid is 1sotropic, so that the same result holds in the y and z directions.
Butitisalso possible to transfer y momentum by motion in the x direction,
for instance. Suppose, in Fig. 3-3, that u, is zero in the cube at x = xq
but is positive on both sides. Then as particles migrate across the faces
A and B, they bring in more positive y momentum than they take out,
and the fluid element gains momentum in the y direction. This shear
stress cannot be represented by a scalar ¢ but must be given by a tensor

* . o . . : -
If the reader has not encountered this before. it is derived in Section 3.3.5.



64
Chapter
Three

3.3.3

P, the stress tensor, whose components P;; = mn vv; specify both the
direction of motion and the component of momentum involved. In the
general case the term —Vp is replaced by =V - P.

We shall not give the stress tensor here except for the two simplest
cases. When the distribution function is an isotropic Maxwellian, P is
written

b 0 0
P={0 p 0) [3-45]
\O 0 {}

V P is just Vp. In Section 1.3, we noted that a plasma could have two
temperatures T, and Tjin the presence of a magnetic field. In that case,
there would be two pressures p, = nKT, and py= nKT). The stress
tensor is then

p. 0 O
P=|0 p. O [3-46]
0 0 Py

where the coordinate of the third row or column is the direction of B.
This is still diagonal and shows isotropy 1n a plane perpendicular to B.

In an ordinary fluid, the off-diagonal elements of P are usually
associated with viscosity. When particles make collisions, they come off
with an average velocity in the direction of the fluid velocity u at the
point where they made their last collision. This momentum is transferred
to another fluid element upon the next collision. This tends to equalize
u at different points, and the resulting resistance to shear flow is what
we intuitively think of as viscosity. The longer the mean free path, the
farther momentum is carried, and the larger is the viscosity. In a plasma
there is a similar effect which occurs even in the absence of collisions.
The Larmor gyration of particles (particularly ions) brings them into
different parts of the plasma and tends to equalize the fluid velocities
there. The Larmor radius rather than the mean free path sets the scale
of this kind of collisionless viscosity. It is a finite-Larmor-radius effect
which occurs in addition to collisional viscosity and is closely related to
the vg drift in a nonuniform E field (Eq. [2-58]).

Collisions

If there is a neutral gas, the charged fluid will exchange momentum
with it through collisions. The momentum lost per collision will be
proportional to the relative velocity u — ug, where uq is the velocity of



the neutral fluid. If 7, the mean free time between collisions, is approxi-
mately constant, the resulting force term can be roughly written as
—mn (u — uy)/7. The equation of motion [3-44] can be generalized to
include anisotropic pressure and neutral collisions as follows:

mn[i)—l:+(u'V)u] =qn(E+uxB)—V'P—ﬁn—(B’-_—_LO) (3-47]

Collisions between charged particles have not been included; these will
be treated in Chapter 5.

Comparison with Ordinary Hydrodynamics

Ordinary fluids obey the Navier-Stokes equation
du 2
pl:a—t + (a- V)u] =-Vp+prVu [3-48]

This is the same as the plasma equation [3-47] except for the absence
of electromagnetic forces and collisions between species (there being
only one species). The viscosity term pv V> u, where v is the kinematic
viscosity coeflicient, is just the collisional part of V- P — Vp in the absence
of magnetic fields. Equation [3-48] describes a fluid in which there are
frequent collisions between particles. Equation [3-47], on the other hand,
was derived without any explicit statement of the collision rate. Since
the two equations are identical except for the E and B terms, can Eq.
[3-47] really describe a plasma species? The answer is a guarded yes,
and the reasons for this will tell us the limitations of the fluid theory.

In the derivation of Eq. [3-47], we did actually assume implicitly
that there were collisions. This assumption came in Eq. [3-39] when we
took the velocity distribution to be Maxwellian. Such a distribution
generally comes about as the result of frequent collisions. However, this
assumption was used only to take the average of Vo Any other distribu-
tion with the same average would give us the same answer. The fluid
theory, therefore, is not very sensitive to deviations from the Maxwellian
distribution, although there are instances in which these deviations are
important. Kinetic theory must then be used.

There is also an empirical observation by Irving Langmuir which
helps the fluid theory. In working with the electrostatic probes which
bear his name, Langmuir discovered that the electron distribution func-
tion was far more nearly Maxwellian than could be accounted for by the
collision rate. This phenomenon, called Langmuir’s paradox, has been

3.34
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attributed at times to high-frequency oscillations. There has been no
satisfactory resolution of the paradox, but this seems to be one of the
few instances in plasma physics where nature works in our favor.

Another reason the fluid model works for plasmas is that the mag-
netic field, when there is one, can play the role of collisions in a certain
sense. When a particle is accelerated, say by an E field, it would con-
tinuously increase in velocity if it were allowed to free-stream. When
there are frequent collisions, the particle comes to a limiting velocity
proportional to E. The electrons in a copper wire, for instance, drift
together with a velocity v= g E, where p is the mobility. A magnetic
field also limits free-streaming by forcing particles to gyrate in Larmor
orbits. The electrons in a plasma also drift together with a velocity
proportional to E, namely, vz = E X B/Bg. In this sense, a collisionless
plasma behaves like a collisional fluid. Of course, particles do free-stream
along the magnetic field, and the fluid picture is not particularly suitable
for motions in that direction. For motions perpendicular to B, the fluid
theory is a good approximation.

Equation of Continuity

The conservation of matter requires that the total number of particles
N in a volume V can change only if there is a net lux of particles across
the surface S bounding that volume. Since the particle flux density is
nu, we have, by the divergence theorem,

aN a3
_=J _"dvz_§nu.ds=—j V. (nu)dV [3-49]
ot v ot v

Since this must hold for any volume V, the integrands must be equal:
6]
£ +V:(na)=0 (3-50]

There is one such equation of continuity for each species. Any sources or
sinks of particles are to be added to the right-hand side.

Equation of State

One more relation is needed to close the system of equations. For this,
we can use the thermodynamic equation of state relating p ton:

p=Cp” [3-51]



where C is a constant and ¥ is the ratio of specific heats C,/C,. The
term Vp is therefore given by
Vp Vn

— =y— 3.52
b i N [3-52]

For isothermal compression, we have
Vp =VnKT)=KTVn

so that, clearly, vy = 1. For adiabatic compression, KT will also change,
giving vy a value larger than one. If N is the number of degrees of
freedom, vy is given by

y=@2+N)/N [3-53)

The validity of the equation of state requires that heat flow be negligible;
that is, that thermal conductivity be low. Again, this is more likely to be
true in directions perpendicular to B than parallel to it. Fortunately,

most basic phenomena can be described adequately by the crude assump-
tion of Eq. [3-51].

The Complete Set of Fluid Equations

For simplicity, let the plasma have only two species: ions and electrons;
extension to more species is trivial. The charge and current densities are
then given by

o =Mng; it nq.
[3-54]
j = niq;Vv; + NeqeVe

Since single-particle motions will no longer be considered, we may now
use v instead of u for the fluid velocity. We shall neglect collisions and

viscosity. Equations [3-1]-[3-4], [3-44], [3-50], and [3-51] form the follow-
ing set:

€0V ' E =nyq; +n.yq. [3-55]
VxE=-B (3-56]
V-B=0 [3-57]
uglv X B = niq;v; + n.q.v. + €ok [3-58]

ov:
it [a_z] + (v V)v,-] =qn(E+v; XB)—=Vp; j=i,e [3-59)

3.3.7
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3.4

n:
a_[]+ V 9 (nivi) = 0 ] ot is e [3'60]

There are 16 scalar unknowns: n;, n,, p;, p., vi, v., E. and B. There are
apparently 18 scalar equations if we count each vector equation as three
scalar equations. However, two of Maxwell’s equations are superfluous,
since Egs. [3-55] and [3-57] can be recovered from the divergences of
Egs. [3-58] and [3-56] (Problem 3-3). The simultaneous solution of this
set of 16 equations in 16 unknowns gives a self-consistent set of fields
and motions in the fluid approximation.

FLUID DRIFTS PERPENDICULAR TO B

Since a fluid element is composed of many individual particles, one
would expect the fluid to have drifts perpendicular to B if the individual
guiding centers have such drifts. However, since the Vp term appears
only in the fluid equations, there is a drift associated with it which the
fluid elements have but the particles do not have. For each species, we
have an equation of motion

mn[%tx + (v -(%)VJ =qn(E+ v@E B)-Vp [3-62]

Consider the ratio of term @ to term ®:

@

5~

mniwv w

W,

qnv , B

Here we have taken 9/dt = iw and are concerned only with v,. For drifts
slow compared with the time scale of w,, we may neglect term @. We
shall also neglect the (v V)v term and show a posterior: that this is all
right. Let E and B be uniform, but let n and p have a gradient. This is
the usual situation in a magnetically confined plasma column (Fig. 3-4).
Taking the cross product of Eq. [3-62] with B, we have (neglecting the
left-hand side)

0=qnEXB+ (v, xB)XxB]—-Vp xXB
=qn[EXB+B(vL/ B)—vJ,Bz]—VpXB
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Diamagnetic drifts in a cylindrical plasma. FIGURE 3-4

Therefore,
vy = B2 anz =VEg+T Vp [3-63]
where
X B
vg = £ 5 E X B drift [3.64)
B
Vp XB
vo=t 2> 2l aagren i [3-65]
qnB

The drift vg is the same as for guiding centers, but there is now a new
drift vp, called the diamagnetic drift. Since vp is perpendicular to the
direction of the gradient, our neglect of (v- V)v is justified if E = 0. If
E=-V¢ #0, (v V)visstillzero if V¢ and Vp are in the same direction;
otherwise, there could be a more complicated solution involving (v - V)v.
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FIGURE 3-5 Origin of the diamagnetic drift.

With the help of Eq. [3-52], we can write the diamagnetic drift as

vyKT 2xVn
Vp = g —— (3-66]
eB n
In particular, for an isothermal plasma in the geometry of Fig. 3-4, in
which Vi = n't, we have the following formulas familiar to experimen-

talists who have worked with Q-machines™:

KT;n' . ,__on
=KD (i)

eB n ar
[3-67]
KT, n’ -
Vpe = eB n g
The magnitude of vp is easily computed from the formula
Up = el Lyl (3-68]
P B(T) A sec

where A is the density scale length |n/n'| in m.

The physical reason for this drift can be seen from Fig. 3-5. Here
we have drawn the orbits of ions gyrating in a magnetic field. There is
a density gradient toward the left, as indicated by the density of orbits.

* A Q-machine producesa quiescent plasma by thermal ionization of Cs or K atomsimpinging
on hot tungsten plates. Diamagnetic drifts were first measured in Q-machines.



Through any fixed volume element there are more ions moving down-
ward than upward, since the downward-moving ions come from a region
of higher density. There is, therefore, a fluid drift perpendicular to Vn
and B, even though the guiding centers are stationary. The diamagnetic drift
reverses sign with g because the direction of gyration reverses. The
magnitude of vp does notdepend on mass because the m™"/? dependence
of the velocity is cancelled by the m'/? dependence of the Larmor
radius—Iess of the density gradient is sampled during a gyration if the
mass is small.

Since ions and electrons drift in opposite directions, there is a
diamagnetic current. For y = Z = 1, this is given by

B X Vn
ip = ne(vp; — vp.) = (KT: + KT.) ? [3-69]

In the particle picture, one would not expect to measure a current if the
guiding centers do not drift. In the fluid picture, the current jp flows
wherever there is a pressure gradient. These two viewpoints can be
reconciled if one considers that all experiments must be carried out in
a finite-sized plasma. Suppose the plasma were in a rigid box (Fig. 3-6).
If one were to calculate the current from the single-particle picture, one
would have to take into account the particles at the edges which have
cycloidal paths. Since there are more particles on the left than on the
right, there is a net current downward, in agreement with the fluid
picture.

The reader may not be satisfied with this explanation because it was
necessary to specify reflecting walls. If the walls were absorbing or if
they were removed, one would find that electric fields would develop

® B

iy o

P& 4

Particle drifts in a bounded plasma,
illustrating the relation to fluid drifts.

FIGURE 3-6
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because more of one species—the one with larger Larmor radius—would
be collected than the other. Then the guiding centers would drift, and
the simplicity of the model would be lost. Alternatively, one could imagine
trying to measure the diamagnetic current with a current probe (Fig.
3-7). This is just a transformer with a core of magnetic material. The
primary winding is the plasma current threading the core, and the
secondary is a multiturn winding all around the core. Let the whole
thing be infinitesimally thin, so it does not intercept any particles. It is
clear from Fig. 3-7 that a net upward current would be measured, there
being higher density on the left than on the right, so that the diamagnetic
current is a real current. From this example, one can see that it can be
quite tricky to work with the single-particle picture. The fluid theory
usually gives the right results when applied straightforwardly, even
though it contains “fictitious” drifts like the diamagnetic drift.

What about the grad-B and curvature drifts which appeared in the
single-particle picture? The curvature drift also exists in the fluid picture,
since the centrifugal force is felt by all the particles in a fluid element
as they move around a bend in the magnetic field. A term Fy=

A

HHHHIIHIIIHHHHVHV
0

Vn

{
==

FIGURE 3-7 Measuring the diamagnetic current in an inhomogeneous plasma.
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In a nonuniform B field the guiding centers drift but the fluid elements donot. ~FIGURE 3-8

m/}?c = nKTj/R,. has to be added to the right-hand side of the fluid
equation of motion. This is equivalent to a gravitational force Mng, with
g = KT/ MR,, and leads to a drift v, = (m/q)(g X B)/B?, as in the par-
ticle picture (Eq. [2-18)).

The grad-B drift, however, does not exist for fluids. It can be shown
on thermodynamic grounds that a magnetic field does not affect a
Maxwellian distribution. This is because the Lorentz force is perpen-
dicular to v and cannot change the energy of any particle. The most
probable distribution f(v) in the absence of B is also the most probable
distribution in the presence of B. If f(v) remains Maxwellian in a nonuni-
form B field, and there is no density gradient, then the net momentum
carried into any fixed fluid element is zero. There is no fluid drift even
though the individual guiding centers have drifts; the particle drifts in
any fixed fluid element cancel out. To see this pictorially, consider the
orbits of two particles moving through a fluid element in a nonuniform
B field (Fig. 3-8). Since there is no E field, the Larmor radius changes
only because of the gradient in B; there is no acceleration, and the
particle energy remains constant during the motion. If the two particles
have the same energy, they will have the same velocity and Larmor
radius while inside the fluid element. There is thus a perfect cancellation
between particle pairs when their velocities are added to give the fluid
velocity.

When there is a nonuniform E field, it is not easy to reconcile the
fluid and particle pictures. Then the finite-Larmor-radius effect of Sec-
tion 2.4 causes both a guiding center drift and a fluid drift, but these
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PROBLEMS

are not the same; in fact, they have opposite signs! The particle drift
was calculated in Chapter 2, and the fluid drift can be calculated from
the off-diagonal elements of P. It is extremely difficult to explain how
the finite-Larmor-radius effects differ. A simple picture like Fig. 3-6 will
not work because one has to take into account subtle points like the
following: In the presence of a density gradient, the density of guiding
centers is not the same as the density of particles!

3-3. Show that Egs. [3-55] and [3-57] are redundant in the set of Maxwell’s
equations.

3-4. Show that the expression for j, on the right-hand side of Eq. [3-69] has
the dimensions of a current density.

3-5. Show thatif the current calculated from the particle picture (Fig. 3-6) agrees
with that calculated from the diamagnetic drift for one width of the box, then
it will agree for all widths.

3-6. An isothermal plasma is confined between the planes x = £a in a magnetic
field B = Bz. The density distribution is
n =ne(l —x2%/a?

(a) Derive an expression for the electron diamagnetic drift velocity vp, as a
function of x.

(b) Draw a diagram showing the density profile and the direction of vp, on both
sides of the midplane if B is out of the paper.

(c) Evaluate vp, atx =a/21f B=0.2T,KT, =2eV,and a = 4 cm.

3-7. A cylindrically symmetric plasma column in a uniform B field has
n(r) = ngexp (—r2/rd) and n; =n, =ngexp(e¢/KT.)

(a) Show that vz and vp, are equal and opposite.

(b) Show that the plasma rotates as a solid body.

(¢) In the frame which rotates with velocity vg, some plasma waves (drift waves)
propagate with a phase velocity v4 = 0.5vp,. What is v, in the lab frame? On a
diagram of the r — @ plane, draw arrows indicating the relative magnitudes and
directions of vg, vp,, and v in the lab frame.

3-8. (a) For the plasma of Problem 3-7, find the diamagnetic current density jp
as a function of radius.

(b) Evaluate jp, in A/m® for B=0.4T, n,=10"°m™, KT, =KT, =0.25eV,
r=ro=1cm.



(c) In the lab frame, is this current carried by ions or by electrons or by both?

3-9. In the preceding problem, by how much does the diamagnetic current
reduce B on the axis? Hint: You may use Ampere’s circuital law over an
appropriate path.

FLUID DRIFTS PARALLEL TO B

The z component of the fluid equation of motion is

v, )
mn[—: + (v V)v:] =qnkE, — o [3-70]
at 0z
The convective term can often be neglected because it is much smaller
than the dv./dt term. We shall avoid complicated arguments here and
simply consider cases in which v, is spatially uniform. Using Eq. [3-52],
we have
ov, KT on
— = iEz el B (3-71]
o m mn 0z
This shows that the fluid is accelerated along B under the combined
electrostatic and pressure gradient forces. A particularly important result
is obtained by applying Eq. [3-71] to massless electrons. Taking the limit
m - 0 and specifying ¢ = —¢ and E = —V¢, we have*

3¢ _ yKT, on

E, =
& eaz n o0z

(3-72]

Electrons are so mobile that their heat conductivity is almost infinite.
We may then assume isothermal electrons and take y = 1. Integrating,
we have

ep =KT.Inn+C

or

n = neexp (e¢/KT.,) [3-73]

This is just the Boltzmann relation for electrons.
What this means physically is that electrons, being light, are very
mobile and would be accelerated to high energies very quickly if there

-
Why can'’t v, » ®©, keeping mv, constant? Consider the energy!

3.5
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FIGURE 3-9
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Physical reason for the Boltzmann relation between density and
potential.

were a net force on them. Since electrons cannot leave a region en masse
without leaving behind a large ion charge, the electrostatic and pressure
gradient forces onthe electrons must be closely in balance. This condition
leads to the Boltzmann relation. Note that Eq. [3-73] applies to each line
of force separately. Different lines of force may be charged to different
potentials arbitrarily unless a mechanism is provided for the electrons
to move across B. The conductors on which lines of force terminate can
provide such a mechanism, and the experimentalist has to take these
end effects into account carefully.

Figure 3-9 shows graphically what occurs when there is alocal density
clump in the plasma. Let the density gradient be toward the center of
the diagram, and suppose KT is constant. There is then a pressure
gradient toward the center. Since the plasma is quasineutral, the gradient
exists for both the electron and ion fluids. Consider the pressure gradient
force F, on the electron fluid. It drives the mobile electrons away from
the center, leaving the ions behind. The resulting positive charge gener-
ates a field E whose force Fg on the electrons opposes F,. Only when Fg
is equal and opposite to F,, is a steady state achieved. If B is constant, E
is an electrostatic field E = —V¢, and ¢ must be large at the center, where
n is large. This is just what Eq. [3-73] tells us. The deviation from strict
neutrality adjusts itself so that there is just enough charge to set up the
E field required to balance the forces on the electrons.



THE PLASMA APPROXIMATION

The previous example reveals an important characteristic of plasmas
that has wide application. We are used to solving for E from Poisson’s
equation when we are given the charge density o. In a plasma, the
opposite procedure is generally used. E is found from the equations of
motion, and Poisson’s equation is used only to find o. The reason is that
a plasma has an overriding tendency to remain neutral. If the ions move,
the electrons will follow. E must adjust itself so that the orbits of the
electrons and ions preserve neutrality. The charge density is of secondary
importance; it will adjust itself so that Poisson’s equation is satisfied. This
is true, of course, only for low-frequency motions in which the electron
inertia is not a factor.

In a plasma, it is usually possible to assume n; =n, and V - E # 0 at
the same time. We shall call this the plasma approximation. It is a funda-
mental trait of plasmas, one which is difficult for the novice to understand.
Do not use Poisson’s equation to obtain E unless it is unavoidable! In the set
of fluid equations [3-55]-[3-61], we may now eliminate Poisson’s equation
and also eliminate one of the unknowns by setting n; = n, = n.

The plasma approximation is almost the same as the condition of
quasineutrality discussed earlier but has a more exact meaning. Whereas
quasineutrality refers to a general tendency for a plasma to be neutral
in its state of rest, the plasma approximation is a mathematical shortcut
that one can use even for wave motions. As long as these motions are
slow enough that both ions and electrons have time to move, it is a good
approximation to replace Poisson’s equation by the equation n; = n,. Of
course, if only one species can move and the other cannot follow, such
as in high-frequency electron waves, then the plasma approximation is
not valid, and E must be found from Maxwell’s equations rather than
from the ion and electron equations of motion. We shall return to the
question of the validity of the plasma approximation when we come to
the theory of ion waves. At that time, it will become clear why we had
to use Poisson’s equation in the derivation of Debye shielding.

3.6
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Chapter Four

WAVLS IN
PLASMAS

REPRESENTATION OF WAVES

Any periodic motion of a fluid can be decomposed by Fourier analysis
into a superposition of sinusoidal oscillations with different frequencies
o and wavelengths A. A simple wave is any one of these components.
When the oscillation amplitude is small, the waveform is generally
sinusoidal; and there is only one component. This is the situation we

shall consider.
Any sinusoidally oscillating quantity—say, the density n—can be
represented as follows:

n=nexp[tk: r—owt)] [4-1]
where, in Cartesian coordinates,
k-r=khx +ky+k.z [4-2]

Here 72 is a constant defining the amplitude of the wave, and k is called
the propagation constant. If the wave propagates in the x direction, k
has only an x component, and Eq. [4-1] becomes

m = ﬁei(kx-—wt)
By convention, the exponential notation means that the real part of the
expression is to be taken as the measurable quantity. Let us choose 7 to
be real; we shall soon see that this corresponds to a choice of the origins

4.1
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of x and ¢. The real part of n is then
Re (n) = 7t cos (kx — wt) [4-3]

A point of constant phase on the wave moves so that (d/dt)(kx — wt) = 0,
or

dx
dt

w
=T =" [4-4]

This is called the phase velocity. If w/k is positive, the wave moves to the
right; that is, x increases as ¢ increases, so as to keep kx — w(¢ constant.
If w/k is negative, the wave moves to the left. We could equally well
have taken

0 = ﬁei(kx+wl)
in which case positive w/k would have meant negative phase velocity.
This is a convention that is sometimes used, but we shall not adopt it.
From Eq. [4-3]. it is clear that reversing the sign of both w and k& makes
no difference.

Consider nowanother oscillating quantity in the wave, say the electric
field E. Since we have already chosen the phase of n to be zero, we must
allow E to have a different phase §:

E=Ecos(kx —wt+8) or E=Eg® (4-5]

where E is a real, constant vector.
It is customary to incorporate the phase information into E by
allowing E to be complex. We can write

o 10 i(kx—wt) _ i(kx—wt)
E=Ee¢ ¢ =E.e

where E. is a complex amplitude. The phase 8 can be recovered from
E., since Re (E.) =E cos § and Im (E.) = E sin §, so that

_ Im (E)

s = =
tan Re (E.)

[4-6]

From now on, we shallassume that all amplitudes are complexand drop
the subscript ¢. Any oscillating quantity g; will be written

g1 =giexpli(k r—ot)] [4-7]

a4



so that g; can stand for either the complex amplitude or the entire
expression [4-7]. There can be no confusion, because in linear wave
theory the same exponential factor will occur on both sides of any equation
and can be cancelled out.

4-1. The oscillating density n, and potential ¢, in a “drift wave" are related by

n,  ed, wy+ia
ne KT, w+1ia

where it is only necessary to know that all the other symbols (except 7) stand for
positive constants.

(a) Find an expression for the phase § of ¢, relative to n,. (For simplicity, assume
that n, is real.)

(b) If w < wy, does ¢, lead or lag n,?

GROUP VELOCITY

The phase velocity of a wave in a plasma often exceeds the velocity of
light c. This does not violate the theory of relativity, because an infinitely
long wave train of constant amplitude cannot carry information. The
carrier of a radio wave, for instance, carries no information until it is
modulated. The modulation information does not travel at the phase
velocity but at the group velocity, which is always less than ¢. To illustrate
this, we may consider a modulated wave formed by adding (“beating”)
two waves of nearly equal frequencies. Let these waves be

E,=Fycos[(k+ Ak)x — (w + Aw)t]
[4-8]
Ey =Fgcos[(k = Ak)x — (w — Aw)t]

E; and E; differ in frequency by 2Aw. Since each wave must have the
phase velocity w/k appropriate to the medium in which they propagate,
one must allow for a difference 2A% in propagation constant. Using the
abbreviations

a =kx — ot

b = (Ak)x — (Aw)t

PROBLEM

4.2
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FIGURE 4-1

4.3

Spatial variation of the electric field of two waves with a frequency
difference.

we have
E,+Es=Eycos(a+b)+Egcos(a—2>b)
= Fo(cosa cos b —sina sin b + cos a cos b + sin a sin b)
= 2Fycosa cos b
E,+Es = 2Fcos [(Ak)x — (Aw)t] cos (kx — wt) [4-9]

This is a sinusoidally modulated wave (Fig. 4-1). The envelope of the
wave, given by cos [(Ak)x — (Aw)t], is what carries information; it travels
at velocity Aw/Ak. Taking the limit Aw - 0, we define the group velocity
to be

v, = dw/dk {4-10)

It is this quantity that cannot exceed c.

PLASMA OSCILLATIONS

If the electrons in a plasma are displaced from a uniform background
of ions, electric fields will be built up in such a direction as to restore
the neutrality of the plasma by pulling the electrons back to their original
positions. Because of their inertia, the electrons will overshoot and
oscillate around their equilibrium positions with a characteristic
frequency known as the plasma frequency. This oscillation is so fast that
the massive ions do not have time to respond to the oscillating field and
may be considered as fixed. In Fig. 4-2, the open rectangles represent
typical elements of the ion fluid, and the darkened rectangles the alter-
nately displaced elements of the electron fluid. The resulting charge
bunching causes a spatially periodic E field, which tends to restore the
electrons to their neutral positions.
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Mechanism of plasma oscillations.

We shall derive an expression for the plasma frequency w, in the
simplest case, making the following assumptions: (1) There is no magnetic
field; (2) there are no thermal motions (KT = 0); (3) the ions are fixed
in space in a uniform distribution; (4) the plasma is infinite in extent;
and (5) the electron motions occur only in the x direction. As a con-
sequence of the last assumption, we have

V =%9/dx E=Ex VXE=0 E=-V¢ [4-11)

There is, therefore, no fluctuating magnetic field; this is an electrostatic
oscillation.
The electron equations of motion and continuity are

dv,
mne[a—‘; + (v, - V)ve] = —en . E [4-12]
an,
87; +V-(nv)=0 [4-13)

The only Maxwell equation we shall need is the one that does notinvolve
B: Poisson’s equation. This case is an exception to the general rule of
Section 3.6 that Poisson’s equation cannot be used to find E. This is a
high-frequency oscillation; electron inertia is important, and the devi-
ation from neutrality is the main effect in this particular case. Con-
sequently, we write

€0V ' E = edE/dx=¢(n; — n,) [4-14)

FIGURE 4-2
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Equations [4-2]-[4-14] can easily be solved by the procedure of
linearization. By this we mean that the amplitude of oscillation is small,
and terms containing higher powers of amplitude factors can be neglec-
ted. We first separate the dependent variables into two parts: an “equili-
brium” part indicated by a subscript 0, and a “perturbation” part indi-
cated by a subscript 1:

ne =nop+ni vV, =vgt+ v E=E,+E; [4-15]

The equilibrium quantities express the state of the plasma in the absence
of the oscillation. Since we have assumed a uniform neutral plasma at
rest before the electrons are displaced, we have

Vn():Vo:E():O

[4-16]
Gy 6V oy,
ot ot at
Equation [4-12] now becomes
av 2
m[a—[l + (v; ZV)VIJ = —¢E, [4-17)

The term (v, : V)v, is seen to be quadratic in an amplitude quantity, and
we shall linearize by neglecting it. The linear theory is valid as long as
|vi| is small enough that such quadratic terms are indeed negligible.
Similarly, Eq. [4-13] becomes
0
on
—1+V * (n0v1 + n];vl) = 0
at
[4-18)
Bnl 2
—+nV -vi+v, - Yne=0
ot
In Poisson’s equation [4-14], we note that n;o = n, in equilibrium and

that n;; = 0 by the assumption of fixed ions, so we have
eV -E, = —en, [4-19]

The oscillating quantities are assumed to behave sinusoidally:

i(kx—owt) A
X

Vi =Uvie

ei(kx—w()

ny=n; [4-20]

E - Eei(kx—wt)ﬁ



The time derivative d/9t can therefore be replaced by —iw, and the
gradient V by ikx. Equations [4-17])-[4-19]) now become

—imwv, = —ek, [4-21]
—iwn, = —ngtkv, [4-22]
theoE1 = —en, [4-23)

Eliminating n, and E,, we have for Eq. [4-21]

. —e —niku; Moe
—tmwv; = —e——— - == i [4-24)
ikey —ilw €Eow

If v, does not vanish, we must have
2 2
w” = nge /mey

The plasma frequency is therefore

1/2

wp = (noe ) rad/sec [4-25]
€om

Numerically, one can use the approximate formula
wp/2m = f, ~9Wn [4-26)

This frequency, depending only on the plasma density, is one of
the fundamental parameters of a plasma. Because of the smallness of
m, the plasma frequency is usually very high. For instance, in a plasma
of density n = 10'®* m™>, we have

fo =9(10"%)"? = 9 x 10°sec”' = 9 GHz

Radiation at f, normally lies in the microwave range. We can compare
this with another electron frequency: w.. A useful numerical formula is

fee =28 GHz/Tesla [4-27]

Thusif B =0.32 Tandn = 10'®* m™>, the cyclotron frequency isapproxi-
mately equal to the plasma frequency for electrons.

Equation [4-25] tells us that if a plasma oscillation is to occur at all,
it must have a frequency depending only on n. In particular, w does not
depend on %, so the group velocity dw/dk is zero. The disturbance does
not propagate. How this can happen can be made clear with a mechanical
analogy (Fig. 4-3). Imagine a number of heavy balls suspended by springs
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PROBLEMS

FIGURE 4-3

equally spaced in a line. If all the springs are identical, each ball will
oscillate vertically with the same frequency. If the balls are started in the
proper phases relative to one another, they can be made to form a wave
propagating in either direction. The frequency will be fixed by the
springs, but the wavelength can be chosen arbitrarily. The two undistur-
bed balls at the ends will not be affected, and the initial disturbance does
not propagate. Either traveling waves or standing waves can be created,
as in the case of a stretched rope. Waves on a rope, however, must
propagate because each segment is connected to neighboring segments.

This analogy is not quite accurate, because plasma oscillations have
motions in the direction of k rather than transverse to k. However, as
long as electrons do not collide with ions or with each other, they can
still be pictured as independent oscillators moving horizontally (in Fig.
4-3). But what about the electric field? Won't that extend past the region
of initial disturbance and set neighboringlayers of plasma into oscillation?
In our simple example, it will not, because the electric field due to equal
numbers of positive and negative infinite, plane charge sheets is zero.
In any finite system, plasma oscillations will propagate. In Fig. 4-4, the
positive and negative (shaded) regions of a plane plasma oscillation are
confined in acylindricaltube. The fringingelectric field causes a coupling
of the disturbance to adjacent layers, and the oscillation does not stay
localized.

4-2. Calculate the plasma frequency with the ion motions included, thus justify-
ing our assumption that the ions are fixed. (Hint: include the term n; in Poisson’s
equation and use the ion equations of motion and continuity.)

2

Synthesis of a wave from an assembly of independent oscillators.
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Plasma oscillations propagate in a finite medium because of
fringing fields.

4-3. For a simple plasma oscillation with fixed ions and a space-time behavior
exp[i(kx — wt)], calculate the phase § for ¢,, E,, and v, if the phase of n, is zero.
Illustrate the relative phases by drawing sine waves representing n,, ¢,, £, and
v;: {(a)asa function of x at { =0, (b)asa functionof(¢ at x=0 for w/k >0,
and (c¢) as a function of t at x=0 for w/k < 0. Note that the time patterns can
be obtained by translating the x patternsin the proper direction, asif the wave
were passing by a fixed observer.

4-4. By writing the linearized Poisson’s equation used in the derivation of simple
plasma oscillations in the form

V-(E)=0

derive an expression for the dielectric constant € applicable to high-frequency
longitudinal motions.

ELECTRON PLASMA WAVES

There is another effect that can cause plasma oscillations to propagate,
and that is thermal motion. Electrons streaming into adjacent layers of
plasma with their thermal velocities will carry information about what
is happening in the oscillating region. The plasma oscillation can then
properly be called a plasma wave. We can easily treat this effect by adding
a term —Vp, to the equation of motion [4-12]. In the one-dimensional
problem, v will be three, according to Eq. [3-53]). Hence,

d
Vb = 3KT, Vn. = 3KT. V(no+n.)—3KTﬂﬁ

and the linearized equation of motion is

av an
mno— = —enoE, — 3KT, — [4-28)
ot 0x

FIGURE 4-4

4.4
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Note that in linearizing we have neglected the terms n, dv,/dt and n,E,
as well as the (v, - V)v; term. With Eq. [4-20], Eq. [4-28] becomes

—imwnov, = —enok; — 3KT.,ikn, [4-29)

E, and n, are still given by Egs. [4-23] and [4-22], and we have

: —e notk
imwnov, = [eno(——, ) + 3KT,zk:| —,0 v
tkeg w
9
noe- 3KT,
O)QUl:( : +—ek2>v1
€om m
0’ =w) +3%k%3 [4-30]

where vi, = 2KT./m. The frequency now depends on %, and the group
velocity is finite:

2w dw = 3v3 2k dk

do 3k 3
e __v(-h=§ﬂ [4-31] -

U = =
£ dk 2w 2 vy
That v, is always less than ¢ can easily be seen from a graph of Eq. [4-30].
Figure 4-5 is a plot of the dispersion relation w (k) as given by Eq. [4-30].
At any point P on this curve, the slope of a line drawn from the origin
gives the phase velocity w/k. The slope of the curve at P gives the group

w
/
/4/
P “/
/
w,. -/
/5/ /// %vth
- v
A//'\Vg I!//‘\925

FIGURE 4-5 Dispersion relation for electron plasma waves (Bohm-Gross waves).
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velocity. This is clearly always less than (3/2)“2:).,,, which, in our nonrela-
tivistic theory, is much less than ¢. Note that atlarge & (small A ), informa-
tion travels essentially at the thermal velocity. At small £ (large A),
information travels more slowly than v, even though v is greater than
vm. This is because the density gradient is small at large A, and thermal
motions carry very little net momentum into adjacent layers.

The existence of plasma oscillations has been known since the days
of Langmuir in the 1920s. It was not until 1949 that Bohm and Gross
worked out a detailed theory telling how the waves would propagate
and how they could be excited. A simple way to excite plasma waves
would be to apply an oscillating potential to a grid or a series of grids
in a plasma; however, oscillators in the GHz range were not generally
available in those days. Instead, one had to use an electron beam to
excite plasma waves. If the electrons in the beam were bunched so that
they passed by any fixed point at a frequency f,, they would generate
an electric field at that frequency and excite plasma oscillations. It is not
necessary to form the electron bunches beforehand; once the plasma
oscillations arise, they will bunch the electrons, and the oscillations will
grow by a positive feedback mechanism. An experiment to test this theory

was first performed by Looney and Brown in 1954. Their apparatus was-

entirely contained in a glass bulb about 10 cm in diameter (Fig. 4-6). A
plasma filling the bulb was formed by an electrical discharge between
the cathodes K and an anode ring A under alow pressure (3 X 1072 Torr)

200V | 3

K

Schematic of the Looney-Brown experiment on plasma oscillations.

FIGURE 4-6
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FIGURE 4-7
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Square of the observed frequency vs. plasma density, which is
generally proportional to the discharge current. The inset shows
the observed spatial distribution of oscillation intensity, indicating
the existence of a different standing wave pattern for each of the
groups of experimental points. [From D. H. Looney and S. C.
Brown, Phys. Rev. 93, 965 (1954).]

of mercury vapor. An electron beam was created in a side arm containing
a negatively biased filament. The emitted electrons were accelerated to
200 V and shot into the plasma through a small hole. A thin, movable
probe wire connected to a radio receiver was used to pick up the
oscillations. Figure 4-7 shows their experimental results for f2 vs. dis-
charge current, which is generally proportional to density. The points
show a linear dependence, in rough agreement with Eq. [4-26]. Devi-
ations from the straight line could be attributed to the k%v}, term in Eq.
[4-30]. However, not all frequencies were observed; & had to be such
that an integral number of half wavelengths fit along the plasma column.
The standing wave patterns are shown at the left of Fig. 4-7. The
predicted traveling plasma waves could not be seen in this experiment,
probably because the beam was so thin that thermal motions carried
electrons out of the beam, thus dissipating the oscillation energy. The



electron bunching was accomplished not in the plasma but in the oscillat-
ing sheaths at the ends of the plasma column. In this early experiment,
one learned that reproducing the conditions assumed in the uniform-
plasma theory requires considerable skill.

A number of recent experiments have verified the Bohm-Gross
dispersion relation, Eq. [4-30], with precision. As an example of modern
experimental technique, we show the results of Barrett, Jones, and
Franklin. Figure 4-8 is a schematic of their apparatus. The cylindrical
column of quiescent plasma is produced in a -machine by thermal
ionization of Cs atoms on hot tungstery plates (not shown). A strong
magnetic field restricts electrons to motions along the column. The waves

EXCITER PROBE
RECEIVER PROBE

g
i
%
DC DC
BREAK BREAK
“ OSSR TAS IS TTETOISEGSAEATEEATITEIE)]
ATTEN-
—=—"]UATOR . Y e '
CRYSTAL
MIXER
SIGNAL
GENERATOR Y
10-1200 MHz R
P z
* Alali TUNED
LOCK AMPLIFIER
MODULATOR ?
500 kHz
CHART
RECORDER
Schematic of an experiment to measure plasma waves. [From P. J. Barrett, FIGURE 4-8

H. G. Jones, and R. N. Franklin, Plasma Physics 10, 911 (1968).]
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FIGURE 4-9

n=2x10"0cm3

(o]

f = 950 MHz
A =35cm
n,= 4x108 cm3
f = 170 MHz
A =13cm

n = 1x107 cm™
f = 20 MHz
A =51cm

Spatial variation of the perturbed density in a plasma wave,
as indicated by an interferometer, which multiplies the
instantaneous density signals from two probes and takes
the time average. The interferometer is tuned to the wave
frequency, which varies with the density. The apparent
damping at low densities is caused by noise in the plasma.
[From Barrett, Jones, and Franklin, loc. cit.]

are excited by a wire probe driven by an oscillator and are detected by
a second, movable probe. A metal shield surrounding the plasma pre-
vents communication between the probes by ordinary microwave (elec-
tromagnetic wave) propagation, since the shield constitutes a waveguide
beyond cutoff for the frequency used. The traveling waveforms are
traced by interferometry: the transmitted and received signals are detec-
ted by a crystal which gives a large dc output when the signals are in
phase and zero output when they are 90° out of phase. The resulting
signal is shown in Fig. 4-9 as a function of position along the column.
Synchronous detection is used to suppress the noise level. The excitation
signal is chopped at 500 kHz, and the received signal should also be
modulated at 500 kHz. By detecting only the 500-kHz component of the
received signal, noise at other frequencies is eliminated. The traces of



Fig. 4-9 give a measurement of k. When the oscillator frequency w is 93
varied, a plot of the dispersion curve (w/w,)? vs. ka is obtained, where Waves in
a is the radius of the column (Fig. 4-10). The various curves are labeled BlasTgs
according to the value of wya/vy,. For vy, = 0, we have the curve labeled
00, which corresponds to the dispersion relation @ = w,. For finite vy,
the curves correspond to that of Fig. 4-5. There is good agreement
between the experimental points and the theoretical curves. The decrease
of w at small ka is the finite-geometry effect shown in Fig. 4-4. In this
particular experiment, that effect can be explained another way. To
satisfy the boundary condition imposed by the conducting shield, namely
that E = 0 on the conductor, the plasma waves must travel at an angle
to the magnetic field. Destructive interference between waves traveling
with an outward radial component of 4 and those traveling inward
enables the boundary condition to be satisfied. However, waves traveling

NQ.
3
~
3 6 -
4 - —
2 :; "
o ¥ ] 5 | | | | | | | ] i
0 2 4 6 8 10 12 14 16 8 20 22 24
ka

Comparison of the measured and calculated dispersion curves for electron FIGURE 4-10
plasma waves in a cylinder of radius a. [From Barrett, Jones, and Franklin,
loc. cit.]
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FIGURE 4-11

PROBLEMS

4.5

.

~ \ sec 6 z

Wavefronts traveling at an angle to the magnetic field are separated,
in the field direction, by a distance larger than the wavelength A.

at an angle to B have crests and troughs separated by a distance larger
than A/2 (Fig. 4-11). Since the electrons can move only along B (if B is
very large), they are subject to less acceleration, and the frequency is
lowered below w,,.

4-5. Electron plasma waves are propagated in a uniform plasma with KT, =
100eV,n = 10'®*m™, B = 0. If the frequency fis 1.1 GHz, what is the wavelength
in cm?

4-6. (a) Compute the effect of collisional damping on the propagation of Lang-
muir waves (plasma oscillations), by adding a term —mnvv to the electron equation
of motion and rederiving the dispersion relation for 7, = 0.

(b) Write an explicit expression for Im (o) and show that its sign indicates that
the wave is damped in time.

SOUND WAVES

Asan introduction to ion waves, let us briefly review the theory of sound
waves in ordinary air. Neglecting viscosity, we can write the Navier-Stokes
equation [3-48], which describes these waves, as

p[i—‘; + (v V)v] =-Vp=- ‘y—pr [4-32]

P



The equation of continuity is

9
Piv-(pv)=0 [4-33)
ot
Linearizing about a stationary equilibrium with uniform p, and ps, we
have

S kp [4-34]

Po

—1wPeV

0 [4-35]

—la)pl +polk V)
where we have again taken a wave dependence of the form
expli(k-r—wt)]

For a plane wave with k = kX and v = vX, we find, upon eliminating p,,

: Ybo ., Potkv,
—tlwpev| = — —Ilk——
Po w
9 2Ybo
wv, =k —uv,
Po

or

e (W") - ("KT) e 2 [4-36)

; He0 Qims 8

Po M

This is the expression for the velocity ¢, of sound waves in a neutral gas.
The waves are pressure waves propagating from one layer to the next
by collisions among the air molecules. In a plasma with no neutrals and
few collisions, an analogous phenomenon occurs. This is called an ion
acoustic wave, or, simply, an ion wave.

ION WAVES

In the absence of collisions, ordinary sound waves would not occur. Ions
can still transmit vibrations to each other because of their charge,
however; and acoustic waves can occur through the intermediary of an
electric field. Since the motion of massive ions will be involved, these

4.6
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will be low-frequency oscillations, and we can use the plasma approxima-
tion of Section 3.6. We therefore assume n; = n, = n and do not use
Poisson’s equation. The ion fluid equation in the absence of a magnetic
field is

v;
Mn[a—‘; (Vg V)v,-] =enE—-Vp = —enVe — v,KT;Vn [4-37}

We have assumed E = —V¢ and used the equation of state. Linearizing
and assuming plane waves, we have
—ilwMngvi) = —engthd, — v;K Tiikn, [4-38]

As for the electrons, we may assume m = 0 and apply the argument of
Section 3.5, regarding motions along B, to the present case of B = 0.
The balance of forces on electrons, therefore, requires

e men () i )

The perturbation in density of electrons, and, therefore, of 1ons, is then

e,
KT,

n; = Mo [4-39]
Here the ng of Boltzmann’s relation also stands for the density in the
equilibrium plasma, in which we can choose ¢¢ = 0 because we have
assumed Eq = 0. In linearizing Eq. [4-39], we have dropped the higher-
order terms in the Taylor expansion of the exponential.

The only other equation needed is the linearized ion equation of
continuity. From Eq. [4-22], we have

iwnl = Tloik‘U,’] [4-40]

In Eq. [4-38], we may substitute for ¢, and n, in terms of v;; from Egs.

[4-39] and [4-40] and obtain

KTe k 'i
twMngv;, = (enoik + YiKTiik>ML—l
eng 1w
w2 = k2<@+YEKTi>
M M
w (KT, +vKT)\'"?
W (__M——> = v, [4-41]
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Dispersion relation for ion
acoustic waves in the limit of
small Debye length.

This is the dispersion relation for ion acoustic waves ; v, is the sound speed
in a plasma. Since the ions suffer one-dimensional compressions in the
plane waves we have assumed, we may set ¥; = 3 here. The electrons
move so fast relative to these waves that they have time to equalize their
temperature everywhere; therefore, the electrons are isothermal, and
v¥. = 1. Otherwise, a factor vy, would appear in front of KT, in Eq. (4-41).

The dispersion curve for ion waves (Fig. 4-12) has a fundamentally
different character from that for electron waves (Fig. 4-5). Plasma oscilla-
tions are basically constant-frequency waves, with a correction due to thermal
motions. lon waves are basically constant-velocity waves and exist only when
there are thermal motions. For ion waves, the group velocity is equal to
the phase velocity. The reasons for this difference can be seen from the
following description of the physical mechanisms involved. In electron
plasma oscillations, the other species (namely, ions) remains essentially
fixed. In ion acoustic waves, the other species (namely, electrons) is far
from fixed; in fact, electrons are pulled along with the ions and tend to
shield out electric fields arising from the bunching of ions. However, this
shielding is not perfect because, as we saw in Section 1.4, potentials of
the order of KT,/e can leak out because of electron thermal motions.
What happens is as follows. The ions form regions of compression and
rarefaction, just as in an ordinary sound wave. The compressed regions
tend to expand into the rarefactions, for two reasons. First, the ion
thermal motions spread out the ions; this effect gives rise to the second
term in the square root of Eq. [4-41]. Second, the ion bunches are
positively charged and tend to disperse because of the resulting electric
field. This field is largely shielded out by electrons, and only a fraction,
proportional to KT,, is available to act on the ion bunches. This effect
gives rise to the first term in the square root of Eq. [4-41]. The ions
overshoot because of theirinertia, and the compressions and rarefactions
are regenerated to form a wave.

FIGURE 4-12
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98 The second effect mentioned above leads to a curious phenomenon.
%‘g”er When KT, goes to zero, ion waves still exist. This does not happen in a
neutral gas (Eq. [4-36]). The acoustic velocity is then given by

v, = (KT,/M)"? [4-42]

This is often observed in laboratory plasmas, in which the condition
T: < T, is a common occurrence. The sound speed v, depends on electron
temperature (because the electric field is proportional to it) and on ion
mass (because the fluid’s inertia is proportional to it).

4.7 VALIDITY OF THE PLASMA APPROXIMATION

In deriving the velocity of ion waves, we used the neutrality condition
n; = n, while allowing E to be finite. To see what error was engendered
in the process, we now allow n; to differ from n, and use the linearized
Poisson equation:

€0V - E, = €ok’¢1 = e(ni1 — n,1) [4-43)

The electron density is given by the linearized Boltzmann relation [4-39]:

ed
n, = K—nno [4-44]

Inserting this into Eq. [4-43]), we have

2
k2+_"_0‘i_> S
€o¢l( KT, en;y

2,9 2 (25
Eo(ﬁ](k-Al—) + 1) = Z?l“/\b

The ion density is given by the linearized ion continuity equation [4-40]:

k
Nn;1 = —MNgU;y [4-46]
w

Inserting Eqs. [4-45] and [4-46] into the ion equation of motion [4-38],

we find
. endk  eAn -
iwMngv; = ( oy ﬁ%— ‘yiKTizk) ;novil
.2 o [4-47]
2 “(no¢ €9 Ap )
== YK
M( 1+503 T VKT
w (K:r,_, 1 yJ(T;)”Q
== 55 [4-48]
k M 1+k°Ap M



This is the same as we obtained previously (Eq. (4-41]) except for the
factor 1+ £%A3. Our assumption n; = n, has given rise to an error of
order kA3 = (27Ap/A)2. Since Ap is very small in most experiments, the
plasma approximation is valid for all except the shortest wavelength
waves.

COMPARISON OF ION AND ELECTRON WAVES

If we consider these short-wavelength waves by taking #°A% » 1, Eq.
[4-47] becomes

2 2
° o No€ Nnoe _ o
w =k e Q
EQMk Golw ’

= [4-49]
We have, for simplicity, also taken the limit T; - 0. Here (), is the ion
plasma frequency. For high frequencies (short wavelengths) the ion
acoustic wave turns into a constant-frequency wave. There is thus a
complementary behavior between electron plasma waves and ion acoustic
waves: the former are basically constant frequency, but become constant
velocity at large k; the latter are basically constant velocity, but become
constant frequency at large &. This comparison is shown graphically in
Fig. 4-13.

Experimental verification of the existence of ion waves was first
accomplished by Wong, Motley, and D’Angelo. Figure 4-14 shows their
apparatus, which was again a Q-machine. (It is no accident that we have
referred to Q-machines so often; careful experimental checks of plasma
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Comparison of the dispersion curves for electron plasma waves and ion
acoustic waves.
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FIGURE 4-13
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100 theory were possible only after schemes to make quiescent plasmas were

g‘ﬂ’m discovered.) Waves were launched and detected by grids inserted into
the plasma. Figure 4-15 shows oscilloscope traces of the transmitted and
received signals. From the phase shift, one can find the phase velocity
(same as group velocity in this case). These phase shifts are plotted as
functions of distance in Fig. 4-16 for a plasma density of 3 x 10" m™>.
The slopes of such lines give the phase velocities plotted in Fig. 4-17 for
the two masses and various plasma densities n,. The constancy of v, with
w and ne is demonstrated experimentally, and the two sets of points for
K and Cs plasmas show the proper dependence on M.

4.9 ELECTROSTATIC ELECTRON OSCILLATIONS
PERPENDICULAR TO B

Up to now, we have assumed B = 0. When a magnetic field exists, many
more types of waves are possible. We shall examine only the simplest
cases, starting with high-frequency, electrostatic, electron oscillations

LANGMUIR
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FIGURE 4-14 Q-machine experiment to detect ion waves. [From N. Rynnand N. D’Angelo, Rev.
Sct. Instrum. 31, 1326 (1960). ]
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Oscillograms of signals from the driver and
receiver grids, separated by a distance d, show-
ing the delay indicative of a traveling wave.
[From A.Y. Wong, R.W. Motley, and N. D’Angelo,
Phys. Rev. 133, A436 (1964).]

propagating at right angles to the magnetic field. First, we should define
the terms perpendicular, parallel, longitudinal, transverse, electrostatic,
and electromagnetic. Parallel and perpendicular will be used to denote
the direction of k relative to the undisturbed magnetic field By. Longi-
tudinal and transverse refer to the direction of k relative to the oscillating
electric field E,. If the oscillating magnetic field B, is zero, the wave is
electrostatic ; otherwise, it is electromagnetic. The last two sets of terms are
related by Maxwell’s equation

VXE, =-B, (4-50]
or
kX E;, = wB,; [4-51]

If a waveislongitudinal, k X E; vanishes, and the wave is also electrostatic.
If the wave is transverse, B, is finite, and the wave is electromagnetic.
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FIGURE 4-16

FIGURE 4-17
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frequencies of the wave exciter. The slope of the lines gives the phase
velocity. [From Wong, Motley, and D’Angelo, loc. cit.]
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loc. cit.]
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Geometry of a longitudinal plane
wave propagating at right angles to B,.

It is of course possible for k to be at an arbitrary angle to By or E;; then
one would have a mixture of the principal modes presented here.

Coming back to the electron oscillations perpendicular to By, we
shall assume that the ions are too massive to move at the frequencies
involved and form a fixed, uniform background of positive charge. We
shall also neglect thermal motions and set KT, = 0. The equilibrium
plasma, as usual, has constant and uniform no and By and zero E, and
vo. The motion of electrons is then governed by the following linearized
equations:

ve
7’ = —¢(E; + v.1 X By) (4-52)
an,
LtV v, =0 [4-53]
ot
eV E; = —en,; [4-54]

We shall consider only longitudinal waves with k||E,. Without loss of
generality, we can choose the x axis to lie along k and E,, and the z axis
tolie along Bg (Fig. 4-18). Thusk, =k, = E, = E, = 0,k = kx,and E = Ex.
Dropping the subscripts 1 and ¢ and separating Eq. [4-52] into com-
ponents, we have

—iwmyv, = —eE — ev,By [4-55]

—iwmu, + ev,.Bo [4-56)

—iwmyv, = 0

FIGURE 4-18
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Solving for v, in Eq. [4-56] and substituting into Eq. [4-55], we have

. 1eB
iwmv, = eF + eBy Ov,
mw
eE/imw
U, = 5% [4-57]
l-w./w

Note that v, becomes infinite at cyclotron resonance, w = w,. This is to
be expected, since the electric field changes sign with v, and continuously
accelerates the electrons. [The fluid and single-particle equations are
identical when the (v-V)v and Vp terms are both neglected; all the
particles move together.] From the linearized form of Eq. [4-53], we have

Ny = —nouy [4-58]
w

Linearizing Eq. [4-54] and using the last two results, we have

. k  ¢E AT
theoE = —e—ny ‘ (1 —9—5)

w

2
(1 —“’—)E =2 (4-59]

The dispersion relation is therefore

wQ = w§ +wf = w;% [4-60]

The frequency wy, is called the upper hybrid frequency. Electrostatic electron
waves across B have this frequency, while those along B are the usual
plasma oscillations with w = w,. The group velocity is again zero as long
as thermal motions are neglected.

A physical picture of this oscillation is given in Fig. 4-19. Electrons
in the plane wave form regions of compression and rarefaction, as in a
plasma oscillation. However, there is now a B field perpendicular to the
motion, and the Lorentz force turns the trajectories into ellipses. There
are two restoring forces acting on the electrons: the electrostatic field
and the Lorentz force. The increased restoring force makes the
frequency larger than that of a plasma oscillation. As the magnetic field
goes to zero, w, goes to zero in Eq. [4-60], and one recovers a plasma
oscillation. As the plasma density goes to zero, w, goes to zero, and one
has a simple Larmor gyration, since the electrostatic forces vanish with
density.



)

ELECTRON
ORBIT

PLANES OF CONSTANT DENSITY

Motion of electrons in an upper hybrid oscillation.

The existence of the upper hybrid frequency has been verified
experimentally by microwave transmission across a magnetic field. As
the plasma density is varied, the transmission through the plasma takes
a dip at the density that makes w, equal to the applied frequency. This
is because the upper hybrid oscillations are excited, and energy is ab-
sorbed from the beam. From Eq. [4-60], we find a linear relationship
between w?/w? and the density:

w? w2 ne’

— —_— 1—

5 =

2
w w €omw

This linear relation is followed by the experimental points on Fig. 4-20,
where w?/w2 is plotted against the discharge current, which is propor-
tional to n.

If we now consider propagation at an angle  to B, we will get two
possible waves. One is like the plasma oscillation, and the other is like
the upper hybrid oscillation, but both will be modified by the angle of
propagation. The details of this are left as an exercise (Problem. 4-8).
Figure 4-21 shows schematically the w — &, diagram for these two waves
for fixed k., where k/k = tan 6. Because of the symmetry of Eq. [4-60),
the case w, > w, is the same as the case w, > w. with the subscripts
interchanged. For large k., the wave travels parallel to Byg. One wave is
the plasma oscillation at w = w,; the other wave, at w = w,, is a spurious
root at k, » 0. For small %., we have the situation of k L Bg discussed in

FIGURE 4-19
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FIGURE 4-20
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Results of an experiment to detect the existence of the upper hybrid
frequency by mapping the conditions for maximum absorption
(minimum transmission) of microwave energy sent across a magnetic
field. The field at which this occurs (expressed as w’/w?) is plotted
against discharge current (proportional to plasma density). [From R.
S. Harp, Proceedings of the Seventh International Conference on Phenomena
in Ionized Gases, Belgrade, 1965, 11, 294 (1966).]

this section. The lower branch vanishes, while the upper branch
approaches the hybrid oscillation at w = w,. These curves were first
calculated by Trivelpiece and Gould, who also verified them experi-
mentally (Fig. 4-22). The Trivelpiece-Gould experiment was done in a
cylindrical plasma column; it can be shown that varying . in this case is
equivalent to propagating plane waves at various angles to Bo.
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The Trivelpiece-Gould dispersion curves FIGURE 4-21
for electrostatic electron waves in a con-

ducting cylinder filled with a uniform

plasma and a coaxial magnetic field. [From

A. W. Trivelpiece and R. W. Gould, J. Appl.

Phys. 30, 1784 (1959).]

4.7. For the upper hybrid oscillation, show that the elliptical orbits (Fig. 4-19) PROBLEMS
are always elongated in the direction of k. (Hint: Froin the equation of motion,
derive an expression for v,/v, in terms of w/w..)
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FIGURE 4-22
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Experimental verification of the Trivelpiece~Gould curves,
showing the existence of backward waves; that is, waves whose
group velocity, as indicated by the slope of the dispersion
curve, is opposite in direction to the phase velocity. [From
Trivelpiece and Gould, loc. cit.]

4.-8. Find the dispersion relation for electrostatic electron waves propagating at
an arbitrary angle 6 relative to Bo. Hint: Choose the x axis so that k and E lie
in the x — z plane (Fig. P4-8). Then

E.=E,sinf, E.=E,cosf, E =0

and similarly for k. Solve the equations of motion and continuity and Poisson’s
equation in the usual way with n, uniform and v, = E, = 0.



z B0
o k,E
—
X

(a) Show that the answer is
0l w?—wi)+olw; cos’ =0

(b) Write out the two solutions of this quadratic for w? and show that in the
limits # -» 0 and 8 -» 7/2, our previous results are recovered. Show that in these
limits, one of the two solutions is a spurious root with no physical meaning.

(c) By completing the square, show that the above equation is the equation of
an ellipse:

()’__ql)__*_i;: 1

1% a- -
where x = cos 0, y = 2w?/w}, and a = 0;/20w,.
(d) Plot the ellipse for w,/w. = 1, 2, and .

(e) Show that if w, > w,, the lower root for w is always less than w, for:any § > 0
and the upper root always lies between w, and w,; and that if w, > w,, the lower
root lies below w, while the upper root is between w, and w.

ELECTROSTATIC ION WAVES PERPENDICULAR TO B

We next consider what happens to the ion acoustic wave when k is
perpendicular to By. It is tempting to set k - By exactly equal to zero, but
this would lead to a result (Section 4.11) which , although mathematically
correct, does not describe what usually happens in real plasmas. Instead,
we shall let k be almost perpendicular to By; what we mean by “almost”
will be made clear later. We shall assume the usual infinite plasma in
equilibrium, with ny and By constant and uniform and vp = E; = 0. For
simplicity, we shall take T; = 0; we shall not miss any important effects
because we know that acoustic waves still exist if 7; = 0. We also assume
electrostatic waves with k X E = 0, so that E = —V¢. The geometry is
shown in Fig. 4-23. The angle 37 — 6 is taken to be so small that we may

FIGURE P4-8
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FIGURE 4-23
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Geometry of an electrostatic ion cyclotron wave
propagating nearly at right angles to B,.

take E = E x and V = ikx as far as the ion motion is concerned. For the
electrons, however, it makes a great deal of difference whether s — 0 is
zero, or small but finite. The electrons have such small Larmor radii
that they cannot move in the x direction to preserve charge neutrality;
all that the E field does is make them drift back and forth in the y
direction. If 6 is not exactly 7/2, however, the electrons can move along
the dashed line (along By) in Fig. 4-23 to carry charge from negative to
positive regions in the wave and carry out Debye shielding. The ions
cannot do this effectively because their inertia prevents them from
moving such long distances in a wave period; this is why we can neglect
k. for ions. The critical angle xy = §m — 6 is proportional to the ratio of
ion to electron parallel velocities: y = (m/M)l/2 (in radians). For angles
x larger than this, the following treatment is valid. For angles y smaller
than this, the treatment of Section 4.11 is valid.

After this lengthy introduction, we proceed to the brief derivation
of the result. For the ion equation of motion, we have

av;
M% = —¢Vd, + evi; XBo [4-61]

Assuming plane waves propagating in the x direction and separating
into components, we have

—twMvix = —etkd, + eviyBo
. [4-62]
—twMu;, = —eviBo



Solving as before, we find

02 -1
) [4-63]

ek ( c
o= (1-
4 Mo b1 w2
where €, = eBy/M 1is the ion cyclotron frequency. The ion equation of
continuity yields, as usual,

k

niyp =MNo Vi [4-64]
w

Assuming the electrons can move along B, because of the finiteness of
the angle x, we can use the Boltzmann relation for electrons. In linearized
form, this is

E_ €¢1

= 4-65
No KT, : !

The plasma approximation n; = n, now closes the system of equations.
With the help of Eqgs. [4-64] and [4-65], we can write Eq. [4-63] as

(1-5),, - o KT,

i) o
w? Mw eng o
KT,
2 2 2
0w —Q; =k 78 [4-66]
Since we have taken KT; = 0, we can write this as
wl=02+£%%2 (4-67]

This is the dispersion relation for electrostatic ion cyclotron waves.

The physical explanation of these waves is very similar to that in
Fig. 4-19 for upper hybrid waves. The ions undergo an acoustic-type
oscillation, but the Lorentz force constitutes a new restoring force giving
rise to the Q7 term in Eq. [4-67). The acoustic dispersion relation w? =
k*v? is valid if the electrons provide Debye shielding. In this case, they
do so by flowing long distances along B.

Electrostatic ion cyclotron waves were first observed by Motley and
D’Angelo, again in a Q-machine (Fig. 4-24). The waves propagated
radially outward across the magnetic field and were excited by a current
drawn along the axis to a small auxiliary electrode. The reason for
excitation is rather complicated and will not be given here. Figure 4-25
gives their results for the wave frequency vs. magnetic field. In this
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FIGURE 4-24 Schematic of a Q-machine experiment on electrostatic ion cyclotron waves.
[After R. W. Motley and N. D'Angelo, Phys. Fluids 6, 296 (1963).]

f (MHz)

B (kG)

FIGURE 4-25 Measurements of frequency of electrostatic ion cyclotron waves vs.
magnetic field. [From Motley and D’Angelo, loc. cit.]

experiment, the k*v? term was small compared to the Q7 term, and the
measured frequencies lay only slightly above (}..

4.11 THE LOWER HYBRID FREQUENCY

We now consider what happens when 6 is exactly #/2, and the electrons
are not allowed to preserve charge neutrality by flowing along the lines
of force. Instead of obeying Boltzmann’s relation, they will obey the full



equation of motion, Eq. [3-62]. If we keep the electron mass finite, this
equation is nontrivial even if we assume T, = 0 and drop the Vp, term;
hence, we shall do so in the interest of simplicity. The ion equation of
motion is unchanged from Eq. [4-63]:

ek Q3!
Vg = md’l (1 —a7> [4-68]

By changing ¢ to —e, M tom, and (), to ~w, in Eq. [4-68], we can write
down the result of solving Eq. [3-62] for electrons, with T, = 0:

2y =1

k c
Vey = — e—qbl(l — wq) [4-69)
mw w

The equations of continuity give

k k
ni) = No—vi Mol = No—V,1 [4-70]
w 1)
The plasma approximation n; = n, then requires v;; = v,,. Setting Egs.

[4-68] and [4-69]) equal to each other, we have

2
a1~ = (13
w w

SO
0’ (M +m)=mo? +MQ?= eQBQ(—+ —)
m

M
y ¢2B2
— 3 Q c
- Mm i
w=(Qw)?=uw (4.71)

This is called the lower hybrid frequency. 1f we had used Poisson’s equation
instead of the plasma approximation, we would have obtained

s=——+— [4-71a]
1

In low-density plasmas the latter term actually dominates. The plasma
approximation is not valid at such high frequencies. Lower hybrid oscilla-
tions can be observed only if 8 is very close to 7/2.
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4.12 ELECTROMAGNETIC WAVES WITH B, =0

Next in the order of complexity come waves with B; # 0. These are

transverse electromagnetic waves—light waves or radio waves traveling

through a plasma. We begin with a brief review of light waves in a
vacuum. The relevant Maxwell equations are

V XE, = -B, [4-72)

¢’V xB,=E,; (4-73]

since in a vacuum j = 0 and eouo = ¢~ °. Taking the curl of Eq. (4-73]
and substituting into the time derivative of Eq. [4-72], we have

¢*V x (VxB,)=VxE, =B, [4-74)
Again assuming planes waves varying as exp [i(kx — wt)], we have
@’B; = —c’k x (k x B,) = —c [k(k - B;) — k°B)] (4-75)
Since k - B, = —iV - B, = 0 by another of Maxwell’s equations, the result
1s
w®=k" [4-76]

and c is the phase velocity w/k of light waves.

In a plasma with Bg = 0, Eq. [4-72] is unchanged, but we must add
a term ji/€o to Eq. [4-73] to account for currents due to first-order
charged particle motions:

i

¢’V xB, = —+E, [4-77)
€9
The time derivative of this is
N _ 1L s
¢’V xB, =—l+E, [4-78]
€ ot

while the curl of Eq. [4-72] is

VX(VXE)=V(V-E,)-V’E, = -V xB, [4-79]

Eliminating V x B, and assuming an exp [i(k * r — wt)] dependence, we
have
; °
~k(kEj) +A°Ey = —xj, + = E, [4-80)
€oC c

By transverse waves we mean k - E; = 0, so this becomes

(w? = c’kD)E, = —iwj, /€0 [4-81]



If we consider light waves or microwaves, these will be of such high
frequency that the ions can be considered as fixed. The current j, then
comes entirely from electron motion:

j1 = —neev.: [4-82]

From the linearized electron equation of motion, we have (for KT, = 0):

= —¢E
at
[4-83]
¢E,
Vel = 7
imw

Equation [4-81] now can be written

; °
w eE1 nee

(02— c*k)E, = —nge—— = E, [4-84]
€ imw €ym

The expression for w}; is recognizable on the right-hand side, and the
result is
w’=w, +c’k° (4-85]
This is the dispersion relation for electromagnetic waves propagating
in a plasma with no dc magnetic field. We see that the vacuum relation
[4-76] is modified by a term wz reminiscent of plasma oscillations. The
phase velocity of a light wave in a plasma is greater than the velocity of
light:

2 2
w w
v§=k—z=62+k—§>62 [4-86]

However, the group velocity cannot exceed the velocity of light. From
Eq. (4-85), we find

dw ®

R (4-87)
so that v, is less than ¢ whenever vy is greater than c. The dispersion
relation [4-85] is shown in Fig. 4-26. This diagram resembles that of Fig.
4-5 for plasma waves, but the dispersion relation is really quite different
because the asymptotic velocity ¢ in Fig. 4-26 is so much larger than the
thermal velocity vy, in Fig. 4-5. More importantly, there is a difference
in damping of the waves. Plasma waves withlarge kv, are highly damped,
a result we shall obtain from kinetic theory in Chapter 7. Electromagnetic
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FIGURE 4-26

k

Dispersion relation for electromag-
netic waves in a plasma with no dc
magnetic field.

waves, on the other hand, become ordinary light waves at large k¢ and
are not damped by the presence of the plasma in this limit.

A dispersion relation like Eq. [4-85] exhibits a phenomenon called
cutoff. If one sends a microwave beam with a given frequency & through
a plasma, the wavelength 27/k in the plasma will take on the value
prescribed by Eq. [4-85]. As the plasma density, and hence wi, is raised,
k® will necessarily decrease; and the wavelength becomes longer and
longer. Finally, a density will be reached such that k® is zero. For densities
larger than this, Eq. [4-85] cannot be satisfied for any real &, and the
wave cannot propagate. This cutoff condition occurs at a critical density
n. such that w = w,; namely (from Eq. [4-25])

n. =meow’/e’ [4-88]

If n is too large or w too small, an electromagnetic wave cannot pass
through a plasma. When this happens, Eq. [4-85] tells us that & is
imaginary:

2 2.1/2 _
) 4=

2 2
¢k = (0" —w, b

ilw? - o7 (4-89]
Since the wave has a spatial dependence exp(ikx), it will be exponentially
attenuated if % is imaginary. The skin depth & is found as follows:
ikx _ —|klx _ —x/8 _ -1 _ 4
e =e =e § =k~ =— 5175 {4-90]
(wp —@7)

For most laboratory plasmas, the cutoff frequency lies in the microwave
range.



EXPERIMENTAL APPLICATIONS

The phenomenon of cutoff suggests an easy way to measure plasma
density. A beam of microwaves generated by a klystron is launched
toward the plasma by a horn antenna (Fig. 4-27). The transmitted beam
is collected by another horn and is detected by a crystal. As the frequency
or the plasma density is varied, the detected signal will disappear
whenever the condition [4-88] is satisfied somewhere in the plasma. This
procedure gives the maximum density. It is not a convenient or versatile
scheme because the range of frequencies generated by a single microwave
generator is limited.

A widely used method of density measurement relies on the disper-
sion, or variation of index of refraction, predicted by Eq. [4-85]). The
index of refraction 7 is defined as

n=clvy =cklw [4-91]

This clearly varies with w, and a plasma is a dispersive medium. A
microwave interferometer employing the same physical principles as the
Michelson interferometer is used to measure density (Fig. 4-28). The
signal from a klystron is split into two paths. Part of the signal goes to
the detector through the “reference leg.” The other part is sent through
the plasma with horn antennas. The detector responds to the mean
square of the sum of the amplitudes of the two received signals. These
signals are adjusted to be equal in amplitude and 180° out of phase in
the absence of plasma by the attenuator and phase shifter, so that the
detector output is zero. When the plasma is turned on, the phase of the
signal in the plasma leg is changed as the wavelength increases (Fig.
4-29). The detector then gives a finite output signal. As the density
increases, the detector output goes through a maximum and a minimum
every time the phase shift changes by 360°. The average density in the

PLASMA

KLYSTRON | DETECTOR

Microwave measurement of plasma density by the cutoff of the transmitted FIGURE 4-27

signal.

4.13

117

Waves in
Plasmas



118
Chapter
Four

plasma is found from the number of such fringe shifts. Actually, one
usually uses a high enough frequency that the fringe shift is kept small.
Then the density is linearly proportional to the fringe shift (Problem
4-13). The sensitivity of this technique at low densities is limited to the
stability of the reference leg against vibrations and thermal expansion.
Corrections must also be made for attenuation due to collisions and for
diffraction and refraction by the finite-sized plasma.

The fact that the index of refraction is less than unity for a plasma
has some interesting consequences. A convex plasma lens (Fig. 4-30) is
divergent rather than convergent. This effect is important in the laser-
solenoid proposal for a linear fusion reactor. A plasma hundreds of
meters long is confined by a strong magnetic field and heated by absorp-
tion of COy laser radiation (Fig. 4-31). If the plasma has a normal density
profile (maximum on the axis), it behaves like a negative lens and causes
the laser beam to diverge into the walls. If an inverted density profile
(minimum on the axis) can be created, however, the lens effect becomes
converging; and the radiation is focused and trapped by the plasma.
The inverted profile can be produced by squeezing the plasma with a
pulsed coil surrounding it, or it can be produced by the laser beam itself.
As the beam heats the plasma, the latter expands, decreasing the density
at the center of the beam. The COg laser operates at A = 10.6 um,

WAVE GUIDE

KLYSTRON

A

'<—REFERENCE LEG—-—|
l-«—PLASMA LEG——>1

ATTENUATOR

PHASE SHIFTER

MEE

FIGURE 4-28

A

MAGIC

DETECTOR  5gciLLOSCOPE

PLASMA

A microwave interferometer for plasma density measurement.
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WAVE PATTERN
IN PLASMA

The observed signal from an interferometer (right) as plasma density is
increased, and the corresponding wave patterns in the plasma (left).

LASER
A plasma confined in a long, linear solenoid will trap the CO, laser light used FIGURE 4-31

DETECTOR
OUTPUT

A plasma lens has unusual optical proper-

DENSITY

CUTOFF

ties, since the index of refraction is less

FIGURE 4-29

FIGURE 4-30

than unity.
R RN T DR RIS
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to heat it only if the plasma has a density minimum on axis. The vacuum
chamber has been omitted for clarity.
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PROBLEMS

corresponding to a frequency

3 x 10°
=————=98x10"Hz

C
=y~ Toex10°

The critical density is, from Eq. [4-88],
n. = meo(2mf)?/e? =10 m™>

However, because of the long path lengths involved, the refraction effects
are important even at densities of 102> m~>. The focusing effect of a
hollow plasma has been shown experimentally.

Perhaps the best known effect of the plasma cutoff is the application
to shortwave radio communication. When a radio wave reaches an
altitude in the ionosphere where the plasma density is sufficiently high,
the wave is reflected (Fig. 4-32), making it possible to send signals around
the earth. If we take the maximum density to be 10" m™? the critical
frequency is of the order of 10 MHz (cf. Eq. [4-26]). To communicate
with space vehicles, it is necessary to use frequencies above this in order
to penetrate the ionosphere. However, during reentry of a space vehicle,
a plasma is generated by the intense heat of friction. This causes a plasma
cutoff, resulting in a communications blackout during reentry (Fig. 4-32).

4-9. A space capsule making a reentry into the earth’s atmosphere suffers a
communications blackout because a plasma is generated by the shock wave in
front of the capsule. If the radio operates at a frequency of 300 MHz, what is
the minimum plasma density during the blackout?

4-10. Hannes Alfvén, the first plasma physicist to be awarded the Nobel prize,
has suggested that perhaps the primordial universe was symmetric between
matter and antimatter. Suppose the universe was at one time a uniform mix-
ture of protons, antiprotons, electrons, and positrons, each species having a
density n,.

(a) Work out the dispersion relation for high-frequency electromagnetic waves
in this plasma. You may neglect collisions, annihilations, and thermal effects.

(b) Work out the dispersion relation for ion waves, using Poisson’s equation.
You may neglect T; (but not T,) and assume that all leptons follow the Boltzmann
relation.

4-11. For electromagnetic waves, show that the index of refraction is equal to
the square root of the appropriate plasma dielectric constant (cf. Problem 4-4).
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FIGURE 4-32

Exaggerated view of the earth’s ionosphere, illustrating the

effect of plasma on radio communications.

4-12. In a potassium Q-machine plasma, a fraction x of the electrons can be
replaced by negative Cl ions. The plasma then has no, K* ions, kny Cl™ ions, and
(1 — k)n, electrons per m®. Find the critical value of no which will cut off a 3-cm

wavelength microwave beam if x = 0.6.
4-13. An 8-mm microwave interferometer is used on an infinite plane-parallel

plasma slab 8 cm thick (Fig. P4-13).
(a) If the plasma density is uniform, and a phase shift of 1/10 fringe is observed,
what is the density? (Note: One fringe corresponds to a 360° phase shift.)

(b) Show that if the phase shift is small, it is proportional to the density.

o] |

8cm

FIGURE P4-13
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4.14

4.14.1

FIGURE 4-33

ELECTROMAGNETIC WAVES PERPENDICULAR TO B,

We now consider the propagation of electromagnetic waves when a
magnetic field is present. We treat first the case of perpendicular propa-
gation, k L Bo. If we take transverse waves, with k L E;, there are still
two choices: E, can be parallel to By or perpendicular to By (Fig. 4-33).

Ordinary Wave, E, || B,

If E, is parallel to By, we may take By, = Boz, E\ = EiZ, and k = kx. In
a real experiment, this geometry is approximated by a beam of micro-
waves incident on a plasma column with the narrow dimension of the
waveguide in line with By (Fig. 4-34).

The wave equation for this case is still given by Eq. (4-81]:

(w® = ckPE, = —iwj, /€0 = inoewv,1/€o [4-92]

Since E, = E 1z, we need only the component v,.. This is given by the
equation of motion

m dv,,/dt = —ekE, (4-93]

Since this is the same as the equation for By = 0, the result is the same
as we had previously for By = 0:

o

w‘=a);‘; +¢%k”® [4-94)

‘| e

Geometry for electromagnetic waves propa-
gating at right angles to B,.
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An ordinary wave launched from a waveguide antenna toward FIGURE 4-34
a magnetized plasma column.

This wave, with E; || By, is called the ordinary wave. The terminology
“ordinary” and “extraordinary” is taken from crystal optics; however,
the terms have been interchanged. In plasma physics, it makes more
sense to let the “ordinary” wave be the one that is not affected by the
magnetic field. Strict analogy with crystal optics would have required
calling this the “extraordinary” wave.

Extraordinary Wave, E; 1 B, 4.14.2

If E, is perpendicular to By, the electron motion will be affected by By,
and the dispersion relation will be changed. To treat this case, one would
be tempted to take E; = E ¥ and k = k% (Fig. 4-33). However, it turns
out that waves with E; L By tend to be elliptically polarized instead of
plane polarized. That is, as such a wave propagates into a plasma, it
develops a component E, along k, thus becoming partly longitudinal and
partly transverse. To treat this mode properly, we must allow E; to have
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FIGURE 4-35

X E

X

The E-vector of an extraordinary wave is
elliptically polarized. The components E, and
E, oscillate 90° out of phase, so that the total
electric field vector E, has a tip that moves in
an ellipse once in each wave period.

both x and y components (Fig. 4-35):
E,=EX+Ey [4-95]
The linearized electron equation of motion (with KT, = 0) is now
—tmwv,; = —¢(E + v,; X By) [4-96]

Only the x and y components are nontrivial; they are

v, = —=(E, + v,B0)
mw
[4-97)]

—ie
vy = E (Ey = 'UxBo)

The subscripts 1 and ¢ have been suppressed. Solving for v, and v, as
usual, we find

e J W, w?
U= ——(—zEx ——E,)(I ——2)
mw 1 )

2\ -1
v, = —e—(—z'E, +%E,)(1 —‘—"—;)

maw w

-1

[4-98]

The wave equation is given by Eq. [4-80], where we must now keep the
longitudinal term k - E, = kE,:

(0?— c2hDE, + c*hE k= —iwj, /€0 = inowev.1/€o [4-99]



Separating this into x and y components and using Eq. [4-98], we have

o 2y =1
w’E, = —WL(iE, +&E,)(1 —“’—;)
w w

€0 Mw
' e [4-100]
iwnge e (. W, 13
(@2 = c*PE, = ——= ——(zEy———E,)<1——°2>
€ mw @ w
Introducing the definition of w,, we may write this set as
o> wiw
[m2(1 ——;) —wz}E, +i——E, =0
w w
® [4-101]

2, 2
[(w2 - ch‘~’)(1 - “’——2) = w,%]E, - z%E =0
w
® ©

These are two simultaneous equations for E, and E,; which are compatible
only if the determinant of the coefficients vanishes:

HA B“—O 4-102]
C D fa

Since the coefficient A is w? —~ w}, where w is the upper hybrid frequency
defined by Eq. [4-60], the condition AD = BC can be written

2 2 2
(@°— au?)[co2 =}, = 62k2(1 o w;)] = (w_pwc)

w w

2,9 2 2 2 2/, 2 ) [Esk0)
kS 0w — [(wyw/0) /(@ — )]

2 = 2

w

2
0w —w;

This can be simplified by a few algebraic manipulations. Replacing the

first w; on the right-hand side by @? + w% and multiplying through by
w?~ w}h, we have

2,9
ck

9@’ —wh) + @jw:/w’)
= 2 2., 2 2
D) (0" —w:) (" —wh)

a)f, a)?(au2 = wz) + wzwf

2 2 2 2 2
0 (0 —w ) —wh)

2 2, 2 2 2, 2 2
W, w (W —w;)—wy(w —w.)
R 2 2 2 2
® (0" —w: )@ —w;)

N

2,2
ck

—2=
13) v

2 2 2
. Wy W — Wy

9 9 9 [4-104]
W W — Wy

| o
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This is the dispersion relation for the extraordinary wave. It is an elec-
tromagnetic wave, partly transverse and partly longitudinal, which
propagates perpendicular to By with E; perpendicular to By.

CUTOFFS AND RESONANCES

The dispersion relation for the extraordinary wave is considerably
more complicated than any we have met up to now. To analyze what it
means, it is useful to define the terms cutoff and resonance. A cutoff occurs
in a plasma when the index of refraction goes to zero; that is, when the
wavelength becomes infinite, since 7 = ck/w. A resonance occurs when
the index of refraction becomes infinite; that is, when the wavelength
becomes zero. As a wave propagates through a region in which o, and
w, are changing, it may encounter cutoffs and resonances. A wave is
generally reflected at a cutoff and absorbed at a resonance.

The resonance of the extraordinary wave is found by setting k4 equal
to infinity in Eq. [4-104]. For any finite w, & -» % implies @ - ws, so that
a resonance occurs at a point in the plasma where

2 2 2 2
W =w, tw, = [4-105]

This is easily recognized as the dispersion relation for electrostatic waves
propagating across Bg (Eq. [4-60]). As a wave of given w approaches the
resonance point, both its phase velocity and its group velocity approach
zero, and the wave energy is converted into upper hybrid oscillations.
The extraordinary wave is partly electromagnetic and partly electrostatic;
it can easily be shown (Problem 4-14) that at resonance this wave loses
its electromagnetic character and becomes an electrostatic oscillation.

The cutoffs of the extraordinary wave are found by setting £ equal
to zero in Eq. [4-104]. Dividing by ® — @}, we can write the resulting
equation for w as follows:

2
@y 1
2

= 4-106
"1~ o)) 100

A few tricky algebraic steps will yield a simple expression for w:

2
w,. (O
lp===5 T = "3
w _wp
2 2, 2
i W, w;/w



w 13}
———g=ﬂ:—c
w w
2 2
w Fow =w, =0 [4-107]

Each of the two signs will give a different cutoff frequency; we shall call
these wg and w;. The roots of the two quadratics are

1 ° 2,1/2

wr = s[w. + (W +4w,) 7]
1 ) 2,1/2 MR
w =sl~w. T (w; +dw,) 7]
We have taken the plus sign in front of the square root in each case
because we are using the convention that w is always positive; waves
going in the —x direction will be described by negative & The cutoff
frequencies wr and w; are called the right-hand and left-hand cutoffs,

respectively, for reasons which will become clear in the next section.
The cutoff and resonance frequencies divide the dispersion diagram
into regions of propagation and nonpropagation. Instead of the usual
w — k diagram, it is more enlightening to give a plot of phase velocity
. 2, 9,9 -9 .

versus frequency; or, to be precise, a plot of w /¢~ = 1/12" vs. w (Fig.
4-36). To interpret this diagram, imagine that w. is fixed, and a wave

X WAVE

o <
N lero

The dispersion of the extraordinary wave, as seen from the behavior of the
phase velocity with frequency. The wave does not propagate in the shaded
regions.

FIGURE 4-36
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FIGURE 4.37

4.16

0/

A similar dispersion diagram for the ordinary wave.

with a fixed frequency w is sent into a plasma from the outside. As the
wave encounters regions of increasing density, the frequencies wr, w,,
wk, and wg all increase, moving to the right in the diagram. This is the
same as if the density were fixed and the frequency w were gradually
being decreased. Taking the latter point of view, we see that at large w
(or low density), the phase velocity approaches the velocity of light. As
the wave travels further, v4 increases until the right-hand cutoff w = wg
is encountered. There, vy becomes infinite. Between the w = wg and
o = wy, layers, w®/k? is negative, and there is no propagation possible.
At w = wy, there is a resonance, and vg goes to zero. Between w = w,
and w = w;, propagation is again possible. In this region, the wave travels
either faster or slower than ¢ depending on whether w is smaller or
larger than w',,. From Eq. [4-104], it is clear that at w = w,, the wave
travels at the velocity ¢. For w < wy, there is another region of nonpropa-
gation. The extraordinary wave, therefore, has two regions of propaga-
tion separated by a stop band.

By way of comparison, we show in Fig. 4-37 the same sort of diagram
for the ordinary wave. This dispersion relation has only one cutoff and
no resonances.

ELECTROMAGNETIC WAVES PARALLEL TO B,

Now we let k lie along the z axis and allow E; to have both transverse
components E, and E,:

k = kz E, =Ex+Ey [4-109]



The wave equation [4-99] for the extraordinary wave can still be used
if we simply change k from k% to £z. From Eq. [4-100], the components

are now
2 o
((1)2— CQkQ)Ex = __(l)—“?’_2_<E'k _ﬂEy)
l-wi/w 13}
wy 1w
(> = c*kE, = ———;’——2<E,, +—CE,)
l-w./w 13)

Using the abbreviation

2
Yy
Q@ =——5—75

1 - (0w
we can write the coupled equations for E, and E, as
(@° = c*k* —a)E, + ia&E, =0

w

(2= —a)E, —ia ZE, =0
w

Setting the determinant of the coefficients to zero, we have
(@ =k —a)’ = (aw/w)’

2,9
0w’ -’k —a = taw/w

Thus
2
2 2,2 W, @y [OA
122 o,
el - 13) I —tw= ) 13)
o 1 + (w/w) wi

P+ (@)l — (@ @) 17 (@/w)

(4-110]

[4-111]

[4-112]

[4-113]

[4-114]

[4-115]

The F sign indicates that there are two possible solutions to Eq. [4-112]
corresponding to two different waves that can propagate along Bo. The

dispersion relations are

o C°k? wylw®
g = = 1 —_ R Vi
A w® 1 — (w/w) ey
2,2 2, 2
k
7% = = = 1— w,;/w (L wave)
w” 1+ (w./w)

[4-116]

[4-117]
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FIGURE 4-38
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Geometry of right- and left-handed circularly
polarized waves propagating along B,.

The R and L waves turn out to be circularly polarized, the designations
R and L meaning, respectively, right-hand circular polarization and left-
hand circular polarization (Problem 4-17). The geometry is shown in Fig.
4-38. The electric field vector for the R wave rotates clockwise in time
as viewed along the direction of By, and vice versa for the L wave. Since
Egs. [4-116] and [4-117] depend only on &7, the direction of rotation of
the E vector is independent of the sign of &; the polarization is the same
for waves propagating in the opposite direction. To summarize: The
principal electromagnetic waves propagating along B, are a right-hand
(R) and a left-hand (L) circularly polarized wave; the principal waves
propagating across Bg are a plane-polarized wave (O-wave) and an ellipti-
cally polarized wave (X-wave).

We next consider the cutoffs and resonances of the R and L waves.
For the R wave, k becomes infiniteatw = w.;the waveistheninresonance
with the cyclotron motion of the electrons. The direction of rotation of
the plane of polarization is the same as the direction of gyration of
electrons; the wave loses its energy in continuously accelerating the
electrons, and it cannot propagate. The L wave, on the other hand, does
not have a cyclotron resonance with the electrons because it rotates in
the opposite sense. As is easily seen from Eq. [4-117], the L wave does
not have a resonance for positive w. If we had included ion motions in
our treatment, the L wave would have been found to have a resonance
at w = (), since it would then rotate with the ion gyration.
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Thev3/c? vs. w diagrams for the L and R waves. The regions of nonpropagation
(v3/c? < 0) have not been shaded, since they are different for the two waves.

The cutoffs are obtained by setting £ = 0 in Eqs. [4-116] and [4-117].
We then obtain the same equations as we had for the cutoffs of the X
wave (Eq. [4-107]). Thus the cutoff frequencies are the same as before.
The R wave, with the minus sign in Eqgs. [4-116] and [4-107], has the
higher cutoff frequency wg given by Eq. [4-108]; the L wave, with the
plus sign, has the lower cutoff frequency w;. This is the reason for the
notation wg, w; chosen previously. The dispersion diagram for the R
and L waves is shown in Fig. 4-39. The L wave has a stop band at low
frequencies; it behaves like the O wave except that the cutoff occurs at
w;. instead of w,. The R wave has a stop band between wr and w,, but
there is a second band of propagation, with vy < ¢, below w.. The wave
in this low-irequency region is called the whistler mode and is of extreme
importance in the study of ionospheric phenomena.

EXPERIMENTAL CONSEQUENCES

The Whistler Mode

Early investigators of radio emissions from the ionosphere were
rewarded by various whistling sounds in the audiofrequency range.
Figure 4-40 shows a spectrogram of the frequency received as a function

FIGURE 4-39

4.17

4.17.1
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FIGURE 4-40

20 —

f (kHz)
|

t (sec)

Actual spectrograms of whistler signals, showing the cur-
vature caused by the low-frequency branch of the R-wave
dispersion relation (Fig. 4-39). At each time ¢, the receiver
rapidly scans the frequency range between 0 and 20 kHz,
tracing a vertical line. The recorder makes a spot whose
darkness is proportional to the intensity of the signal at
each frequency. The downward motion of the dark spot
with time then indicates a descending glide tone. [Courtesy
of D. L. Carpenter, J. Geophys. Res. 71,693 (1966).]

of time. There is typically a series of descending glide tones, which can
be heard over a loudspeaker. This phenomenon is easily explained in
terms of the dispersion characteristics of the R wave. When a lightning
flash occurs in the Southern Hemisphere, radio noise of all frequencies
is generated. Among the waves generated in the plasma of the ionosphere
and magnetosphere are R waves traveling along the earth’s magnetic
field. These waves are guided by the field lines and are detected by
observers in Canada. However, different frequencies arrive at different
times. From Fig. 4-39, it can be seen that for w < w./2, the phase velocity
increases with frequency (Problem 4-19). It can also be shown (Problem
4-20) that the group velocity increases with frequency. Thus the low
frequencies arrive later, giving rise to the descending tone. Several
whistles can be produced by a single lightning flash because of propaga-
tion along different tubes of force A, B, C (Fig. 4-41). Since the waves
have w < w,, they must have frequencies lower than the lowest gyro-
frequency along the tube of force, about 100 kHz. Either the whistles
lie directly in the audio range or they can easily be converted into audio
signals by heterodyning.
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Diagram showing how whistlers are FIGURE 4-41
created. The channels A, B, and C

refer to the signals so marked in Fig.

4-40.

il

Faraday rotation of the plane of polarization of an elec- FIGURE 4-42
tromagnetic wave traveling along B,.

Faraday Rotation 4.17.2

A plane-polarized wave sent along a magnetic field in a plasma will suffer
arotation of its plane of polarization (Fig. 4-42). This can be understood
in terms of the difference in phase velocity of the R and L waves. From
Fig. 4-39, it is clear that for large w, the R wave travels faster than the
L wave. Consider the plane-polarized wave to be the sum of an R wave
and an L wave (Fig. 4-43). Both waves are, of course, at the same
frequency. After N cycles, the E; and Er vectors will return to their
initial positions. After traversing a given distance d, however, the R and
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FIGURE 4-43 A plane-polarized wave as the sum of left- and right-

handed circularly polarized waves.

®8,

FIGURE 4-44 After traversing the plasma, the L wave is advanced in phase

relative to the R wave, and the plane of polarization is rotated.

L waves will have undergone a different number of cycles, since they
require a different amount of time to cover the distance. Since the L
wave travels more slowly, it will have undergone N + € cycles at the
position where the R wave has undergone N cycles. The vectors then
have the positions shown in Fig. 4-44. The plane of polarization is seen
to have rotated. A measurement of this rotation by means of a microwave
horn can be used to give a value of wz and, hence, of the density (Problem
4-22). The effect of Faraday rotation has been verified experimentally,
but it is not as useful a method of density measurement as microwave
interferometry, because access at the ends of a plasma column is usually
difficult, and because the effect is small unless the density is so high that
refraction becomes a problem.

When powerful pulsed lasers are used to produce a dense plasma
by vaporizing a solid target, magnetic fields of megagauss intensities are
sometimes spontaneously generated. These have been detected by Fara-
day rotation using laser light of higher frequency than the main beam.
In interstellar space, the path lengths are so long that Faraday rotation



is important even at very low densities. This effect has been used to
explain the polarization of microwave radiation generated by maser
action in clouds of OH or H.O molecules during the formation of new
stars.

4-14. Prove that the extraordinary wave is purely electrostatic at resonance.
Hint: Express the ratio E,/E, as a function of @ and set w equal to w;,.

4-15. Prove that the critical points on Fig. 4-36 are correctly ordered; namely,
that w; < w, < w, < wg.

4.16. Show that the X-wave group velocity vanishes at cutoffs and resonances.
You may neglect ion motions.

4-17. Prove that the R and L waves are right- and left-circularly polarized as
follows:

(a) Show that the simultaneous equations for E, and E, can be written in the form
F(w)(E, —IE,)=0, G(w)(E, +1E,)=0
where F(w) = 0 for the R wave and G(w) = 0 for the L wave.

(b) Forthe R wave, G(w) # 0;and therefore E, = —iE,. Recalling the exponential
time dependence of E, show that E thenrotatesin the electron gyration direction.
Confirm that E rotates in the opposite direction for the L wave.

(c) For the R wave, draw the helices traced by the tip of the E vector in space
at a given time for (i) k&, > 0 and (ii) k. < 0. Note that the rotation of E is in the
same direction in both instances if one stays at a fixed position and watches the
helix pass by.

4.18. Left-hand circularly polarized waves are propagated along a uniform
magnetic field B = Byz into a plasma with density increasing with z. At what
density is cutoff reached if f = 28 GHz and B, = 0.3 T?

4.19. Show that the whistler mode has maximum phase velocity at w = w./2 and

that this maximum is less than the velocity of light.
4-20. Show that the group velocity of the whistler mode is proportional to w '’
if w < w,and € » 1.

4-21. Show that there is no Faraday rotation in a positronium plasma (equal
numbers of positrons and electrons).

4-22. Faraday rotation of an 8-mm-wavelength microwave beam in a uniform
plasmain a 0.1-T magnetic field is measured. The plane of polarization is found
to be rotated 90° af ter traversing 1 m of plasma. What is the density?
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4-23. Show that the Faraday rotation angle, in degrees, of a linearly polarized
transverse wave propagating along By is given by

L
0=15x 10'“)(3[ B(z)n.(z)dz

0

where A, is the free-space wavelength and L the path length in the plasma.
Assume o’ » w;, w?.

4-24. In some laser-fusion experiments in which a plasma is created by a pulse
of 1.06-um light impinging on a solid target, very large magnetic fields are
generated by thermoelectric currents. These fields can be measured by Faraday
rotation of frequency-doubled light (A, = 0.53 i m) derived from the same laser.
If B=100T, n = 10’ m™>, and the path length in the plasma is 30 um, what
is the Faraday rotation angle in degrees? (Assume k|B.)

4-25. A microwave interferometer employing the ordinary wave cannot be used
above the cutoftf density n.. To measure higher densities, one can use the
extraordinary wave.

(a) Write an expression for the cutoff density n,, for the X wave.

(b) Onawvj/c®vs. w diagram, show the branch of the X-wave dispersion relation
on which such an interferometer would work.

HYDROMAGNETIC WAVES

The last part of our survey of fundamental plasma waves concerns
low-frequency ion oscillations in the presence of a magnetic field. Of the
many modes possible, we shall treat only two: the hydromagnetic wave
along By, or Alfvén wave, and the magnetosonic wave. The Alfvén wave
in plane geometry has k along By; E; and j, perpendicular to By; and
B, and v, perpendicular to both By and E; (Fig. 4-45). From Maxwell’s
equation we have, as usual (Eq. [4-80]),
9 .
VXV XE; = —k(k - E;) + °E, =%E1+ 21 [4-118)

€nC

Since k =4z and E,; = E;X by assumption, only the x component of this
equation is nontrivial. The current j, now has contributions from both
ions and electrons, since we are considering low frequencies. The x
component of Eq. [4-118] becomes

eo(@? = cRDE, = —iwnoe (Vi — Vo) [4-119]

Thermal motions are not important for this wave; we may therefore
use the solution of the ion equation of motion with T; = 0 obtained




. v, By
iy
X

Geometry of an Alfvén wave propagating
along B,.

previously in Eq. [4-63]. For completeness, we include here the com-
ponent v;;, which was not written explicitly before:

. Qf —1
Uix_z_e< __‘_’) El

S = [4-120]
_L&(l _9?)"E
vis Mw w w® !

The corresponding solution to the electron equation of motion is found

by letting M -»> m, ¢ » —e¢, {), > —w,, and then taking the limit wi»

e 0)2
Uex_—_QEl_)O
mw w;
[4-121]
2
e W, W E,
Uy =—— <55 E =——7-
m o o, By

In this limit, the Larmor gyrations of the electrons are neglected, and
the electrons have simply an E X B drift in the y direction. Inserting
these solutions into Eq. [4-119], we obtain

-1

eo(w“’—c?k?)El:—iwnoei(l— 2) El
Mo w

[4-122]

The y components of v, are needed only for the physical picture to be
given later. Using the definition of the ion plasma frequency 1, (Eq.
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[4-49]), we have
0’ —c%h% = Qi( ——2) [4-123]
1)
We must now make the further assumption w’«< Q% hydromagnetic

waves have frequencies well below ion cyclotron resonance. In this limit,
Eq. [4-123] becomes

02— %2 = 292 zn0e2 M~ w2 P’
o = TW —5 = — T = 5]
Q; © oM °B} €0Bo
©® c® _ ¢’ [4-124]
K21+ (p/eoB3) 1+ (PI-LO/B(Q))C?

where p is the mass density noAM. This answer is no surprise, since the
denominator can be recognized as the relative dielectric constant for
low-frequency perpendicular motions (Eq. [3-28]). Equation [4-124]
simply gives the phase velocity for an electromagnetic wave in a dielectric
medium:

¢ c

= f 1
— = = or =

ko (ermr)'”® €X” e

As we have seen previously, € is much larger than unity for most
laboratory plasmas, and Eq. [4-124] can be written approximately as

Bo
1/2

= [4-125]
(top)

1)
==,
k

These hydromagnetic waves travel along By at a constant velocity va,
called the Alfvén velocity:

1/2

va=B/(rop) [4-126]

This is a characteristic velocity at which perturbations of the lines of force
travel. The dielectric constant of Eq. [3-28] can now be written

er =€fep =1+ (c2/vi) [4-127)

Note that v 4 is small for well-developed plasmas with appreciable density,
and therefore ey is large.

To understand what happens physically in an Alfvén wave, recall
that this is an electromagnetic wave with a fluctuating magnetic field B:



given by
VXE, =-B, E.=(w/k)B, [4-128]

The small component By, when added to By, gives the lines of force a
sinusoidal ripple, shown exaggerated in Fig. 4-46. At the point shown,
B, is in the positive y direction, so, according to Eq. [4-128], E. is in the
positive x direction if w/k is in the z direction. The electric field E, gives
the plasma an E; X B, drift in the negative y direction. Since we have
taken the limit w? « Q2, both ions and electrons will have the same drift
v,, according to Eqs. [4-120] and [4-121]. Thus, the fluid moves up and
down in the y direction, as previously indicated in Fig. 4-45. The magni-
tude of this velocity is IEx/Bo|. Since the ripple in the field is moving by
at the phase velocity w/k, the line of force is also moving downward at
the point indicated in Fig. 4-46. The downward velocity of the line of
force is (w/k)|B,/By|, which, according to Eq. [4-128], is just equal to the
fluid velocity |Ex/BOI. Thus, the fluid and the field lines oscillate together
as if the particles were stuck to the lines. The lines of force act as if they
were mass-loaded strings under tension, and an Alfvén wave can be
regarded as the propagating disturbance occurring when the strings are
plucked. This concept of plasma frozen to lines of force and moving
with them is a useful one for understanding many low-frequency plasma
phenomena. It can be shown that this notion is an accurate one as long
as there is no electric field along B.

It remains for us to see what sustains the electric field E, which we
presupposed was there. As E; fluctuates, the ions’ inertia causes them

_ 2
v, =E; x B,/BS

Relation among the oscillating quantities in an Alfvén wave and the (exagger-
ated) distortion of the lines of force.
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FIGURE 4-47

Geometry of a torsional (or shear)
Alfvén wave in a cylindrical column.

to lag behind the electrons, and there is a polarization drift v, in the
direction of E,. This drift v;, is given by Eq. [4-120] and causes a current
j1 to flow in the x direction. The resulting j, X Bo force on the fluid is
in the y direction and is 90° out of phase with the velocity v,. This force
perpetuates the oscillation in the same way as in any oscillator where the
force is out of phase with the velocity. It is, of course, always the ion
inertia that causes an overshoot and a sustained oscillation, but in a
plasma the momentum is transferred in a complicated way via the
electromagnetic forces.

In a more realistic geometry for experiments, E; would be in the
radial direction and v, in the azimuthal direction (Fig. 4-47). The motion
of the plasma is then incompressible. This is the reason the Vp term in
the equation of motion could be neglected. This mode is called the
torsional Alfvén wave. It was first produced in liquid mercury by B.
Lehnert.

Alfvénwavesin a plasma were first generated and detected by Allen,
Baker, Pyle, and Wilcox at Berkeley, California, and by Jephcott in
England in 1959. The work was done in a hydrogen plasma created in
a “slow pinch” dischargebetweentwoelectrodes aligned along a magnetic
field (Fig. 4-48). Discharge of a slow capacitor bank A created the plasma.
The fast capacitor B, connected to the metal wall, was then fired to create
an electric field E; perpendicular to By. The ringing of the capacitor
generated a wave, which was detected, with an appropriate time delay,
by probes P. Figure 4-49 shows measurements of phase velo¢ity vs.
magnetic field, demonstrating the linear dependence predicted by Eq.
[4-126].
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Schematic of an experiment to detect Alfvén waves. [From . M. Wilcox, FIGURE 4-48
F. 1. Boley, and A. W. DeSilva, Phys. Fluids 3, 15 (1960).]
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Measured phase velocity of Alfvén waves vs. magnetic field. [From Wilcox, FIGURE 4-49
Boley, and DeSilva, loc. cit.]

This experiment was a difficult one, because a large magnetic field
of 1 T was needed to overcome damping. With large By, va, and hence
the wavelength, become uncomfortably large unless the density is high.
In the experiment of Wilcox et al., a density of 6 x 10" m™> was used to

achieve a low Alfvén speed of 2.8 X 10°> m/sec. Note that it is not possible
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to increase p by using a heavier atom. The frequency @ = kv is propor-
tional to M~"/%, while the cyclotron frequency . is proportional to M ™"
Therefore, the ratio w/Q, is proportional to M'/?, With heavier atoms
it is not possible to satisfy the condition w? « 0l

MAGNETOSONIC WAVES

Finally, we consider low-frequency electromagnetic waves propagating
across By. Again we may take By = Byz and E; = E %, but we now let
k = ky (Fig. 4-58). Now we see that the E, X B, drifts lie along k, so that
the plasma will be compressed and released in the course of the oscilla-
tion. It is necessary, therefore, to keep the V¢ term in the equation of
motion. For the ions, we have

avi
A/[TLO a—

tl = eno(El + v;; X Bo) = y,—KT,—an [4-129]

With our choice of E; and k, this becomes

e

ix, = E, +v,B 4-130
v Mw( viyBo) [ ]
e k yiKT; n,
by = — (—viBo) + — —— — 4.131
Yy .Mw( vixBo) w M ne (A3
z
P&
Y
k
X E

1

FIGURE 4-50 Geometry of a magnetosonic wave

propagating at right angles to B,

B



The equation of continuity yields

ni k
—=—uy [4-132]
no w
so that Eq. [4-131] becomes
ie k* vKT;
iy = Ty viBo + Ay [4-133]
With the abbreviation
k® yKT;
4=t T
w- M
this becomes
0,
(1= A) = — =, [4-134]
w
Combining this with Eq. [4-130], we have
ie Q.1 10, -
X1 = x + = 1 ik A ix
Y Mw E W ( W )( )

[4-135]

This is the only component of v;, we shall need, since the only nontrivial
component of the wave equation [4-81] is

| eo(w® — c2kDE, = —iwnoe (Ui, — Vex) [4-136]

! To obtain v.., we need only to make the appropriate changes in Eq.
[4-135] and take the limit of small electron mass, so that 0’ « o and
w?< ki,

. 2
e w

E. (4-137]

Vex =

k? v K k2 v, KT,
(1__2% Te>Ex_) kY

2 i 2
mw w, m wBy e

Putting the last three equations together we have

023 2,9 - ie I_A
o(w® = k) = —iwnoe] o B T (Qf/wg))
kM y,KTEE]
ng eM

[4-138]
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We shall again assume w® « QZ, so that 1 — A can be neglected relative
to Q7 /w”. With the help of the definitions of €, and v., we have

: o k’c® v.KT,
2 212 P 2 e e
=z k ==, s : i ANl —
@ mew)= e U= A=
. [4-139]
2 2,2 Y.KT, Qu( o 2 ViKT;
—,Iz(1+—q)+—§( —k —)=0
& ( Mua Q7 . M
Since
02/02 = c?fvi [4-140]

Eq. [4-139] becomes

2 2
< 2,9 e e &l iKTi 2,92 s
wz(l +C—2> = c“k‘(l +£QL—) = czk“(l + 1;) [4-141]
AM'UA

Va VA

where v, is the acoustic speed. Finally, we have

2 2 +v2
w v A

= c2;—+—9— [4-142]
c VA

This is the dispersion relation for the magnetosonic wave propagating
perpendicular to By. It is an acoustic wave in which the compressions
and rarefactions are produced not by motions along E, but by ExX B
drifts across E. In the limit Bo » 0, v, » 0, the magnetosonic wave turns
into an ordinary ion acoustic wave. In the limit KT -» 0, v, > 0, the
pressure gradient forces vanish, and the wave becomes a modified Alfvén
wave. The phase velocity of the magnetosonic mode is almost always
larger than v 4; for this reason, it is often called simply the “fast” hydro-

magnetic wave.

4.20 SUMMARY OF ELEMENTARY PLASMA WAVES

Electron waves (electrostatic)
Bo=0ork || Bo: w2 = wi Gt? %k 2!1(2;, (Plasma oscillations) [4-143)

2 2 2 2 (Upper hybrid
k L Bo: w0’ =wp 0 =08y blntions [4-144]



lon waves (electrostatic)

B():OOT‘(”B()Z w

k 1 By: w

2 _ 42 9
=k~ v,

= k2 M (Acoustic waves)

M

(Electrostatic ion
cyclotron waves)

7= Qf+k2v3

(Lower hybrid
oscillations)

Electron waves (electromagnetic)

By = 0: 0®= w',? + k3% (Light waves)
c%k? i
k LBy, E; || Bo: —w=1- —.’_Z (O wave)
W
2,2 2 2 o2
C w o
| k1Bop,E, LBy —5=1- —‘; ——2———5 (X wave)
» 0w 0w — wj
|
} k”B ] C2 2_ — wz/wg (R wave)
} 0- w2 ol = (wc/w) (whistler mode)
! c’k? wi/w‘"
1 5 — (L wave)
;_ 1) 1+ (w/w)
!
’ Ton waves (electromagnetic)
Bo = 0: None
k || Bo: w’= k2v2A (Alfvén wave)
w? v? +v3
k 1 By: e c? ‘;—Qé (Magnetosonic wave)
k c"+v A

[4-145]

{4-146]

[4-147]

[4-148]

[4-149]

{4-150]

[4-151]

[4-152]

[4-153]

[4-154]

This set of dispersion relations is a greatly simplified one covering

only the principal directions of propagation. Nonetheless, it is a very
useful set of equations to have in mind as a frame of reference
for discussing more complicated wave motions. It is often possible to
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understand acomplexsituation asa modification or superposition of these
basic modes of oscillation.

THE CMA DIAGRAM

When propagation occurs at an angle to the magnetic field, the phase
velocities change with angle. Some of the modes listed above with k || B,
and k L By change continuously into each other; other modes simply
disappear at a critical angle. This complicated state of affairs is greatly
clarified by the Clemmow-Mullaly-Allis (CMA) diagram, so named for
its co-inventors by T. H. Stix. Such a diagram is shown in Fig. 4-51. The
CMA diagram is valid, however, only for cold plasmas, with T; = T, = 0.
Extension to finite temperatures introduces so much complexity that the
diagram is no longer useful.

Figure 4-51 is a plot of w./w vs. w3/w” or, equivalently, a plot of
magnetic field vs. density. For a given frequency w, any experimental
situation characterized by w, and w, is denoted by a point on the graph.
The total space is divided into sections by the various cutoffs and reson-
ances we have encountered. For instance, the extraordinary wave cutoff
at 0’ =w’ +w§ is a quadratic relation between w./w and wﬁ/wg; the
resulting parabola can be recognized on Fig. 4-51 as the curve labeled
“upper hybrid resonance.” These cutoff and resonance curves separate
regions of propagation and nonpropagation for the various waves. The
sets of waves that can exist in the different regions will therefore be
different.

The small diagram in each region indicates not only which waves
are present but also how the phase velocity varies qualitatively with angle.
Themagneticfield isimagined to be vertical on the diagram. The distance
from the center to any point on an ellipse or figure-eight at an angle 6
to the vertical is proportional to the phase velocity at that angle with
respect to the magnetic field. For instance, in the triangular region
marked with an * on Fig. 4-51, we see that the L wave becomes the X
wave as 6 varies from zero to w/2. The R wave has a velocity smaller
than the L wave, and it disappears as 6 varies from zero to /2. It does
not turn into the O wave, because wl< wf, in that region, and the O
wave does not exist.

The upper regions of the CMA diagram correspond to @ < w,. The
low-frequency ion waves are found here. Since thermal velocities have
been neglected on this diagram, the electrostaticion waves do not appear;
they propagate only in warm plasmas. One can regard the CMA diagram
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PROBLEMS

as a “plasma pond”: A pebble dropped in each region will send out
ripples with shapes like the ones shown.

&

4-26. A hydrogen discharge in a 1-T field produces a density of 10'® m™.
(a) What is the Alfvén speed v.,?

(b) Suppose v, had come out greater than ¢. Does this mean that Alfvén waves
travel faster than the speed of light?

4-27. Calculate the Alfvén speed in a region of the magnetosphere where
B=10"°T,n=10°m* and M = My = 1.67 x 107" kg.

4-28. Suppose you have created a laboratory plasma with n = 10> m™ and
B =10"2T. You connect a 160-M Hz signal generator to a probe inserted into
the plasma.

(a) Draw a CMA diagram and indicate the region in which the experiment is
located.

(b) What electromagnetic waves might be excited and propagated in the plasma?

4-29. Suppose you wish to design an experiment in which standing torsional
Alfvén waves are generated in a cylindrical plasma column, so that the standing
wave has maximum amplitude at the midplane and nodes at the ends. To satisfy
the condition w « Q,, you make w = 0.1{},.

(a) If you could create a hydrogen plasma with n = 10" m™ and B =1 T, how
long does the column have to be?

(b) If you tried to do this with a 0.3 T Q-machine, in which the singly charged
Cs ions have an atomic weight 133 and a density n = 10'®* m™®, how long would
the plasma have to be? Hint: Figure out the scaling factors and use the result
of part (a).

4-30. A pulsar emits a broad spectrum of electromagnetic radiation, which is
detected with a receiver tuned to the neighborhood of f = 80 MHz. Because of
the dispersion in group velocity caused by the interstellar plasma, the observed
frequency during each pulse drifts at a rate given by df/dt = —5 MHz/sec.

(a) If the interstellar magnetic field is negligible and w® » w?, show that

where f, is the plasma frequency and x is the distance of the pulsar.

(b) If the average electron density in space is 2 X 10> m™>, how far away is the
pulsar? (1 parsec = 3 x 10'°m.)



4-31. A three-component plasma has a density n, of electrons, (1 — e)no of ions
of mass M. and en,, of ions of mass M,. Let T;, = T;o =0, T, # 0.

(a) Derive a dispersion relation for electrostatic ion cyclotron waves.
(b) Find a simple expression for w® when € is small.

(c) Evaluate the wave frequencies for a case when € is not small: a 50-50% D-T
mixtureat KT, = 10keV, Bo=5T,and k = 1cm™".

4-32. For a Langmuir plasma oscillation, show that the time-averaged electron
kinetic energy per m?® is equal to the electric field energy density 5eo(E?).

4-33. For an Alfvén wave, show that the time-averaged ion kinetic energy per
m® is equal to the magnetic wave energy (BY)/2uo.

4-34. Figure P4-34 shows a far-infrared laser operating at A = 337 um. When
By =0, this radiation easily penetrates the plasma whenever w, is less than w,
orn <n.=1022m™3 However, because of the long path length, the defocusing
effect of the plasma (cf. Fig. 4-30) spoils the optical cavity, and the density is
limited by the conditions w}; < ew? where € « 1. In the interest of increasing
the limiting density, and hence the laser output power, a magnetic field By is
added.

(a) If e isunchanged, show that the limiting density can be increased if left-hand
circularly polarized waves are propagated.

(b) If n is to be doubled, how large does B, have to be?

s

DISCHARGE PULSER

— CONCAVE MIRROR FLAT MIRRORWITH
OUTPUT COUPLING HOLE —

PLASTIC WINDOW —

Schematic of a pulsed HCN laser.

A

FIGURE P4-34
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(c) Show that the plasma is a focusing lens for the whistler mode.

(d) Can one use the whistler mode and therefore go to much higher densities”
4-35., Use Maxwell’s equations and the electron equation of motion to derive
the dispersion relation for light waves propagating through a uniform, unmag-

netized, collisionless, isothermal plasma with density n and finite electron tem-
perature T .. (Ignore ion motions.)

4-36. Prove that transverse waves are unaffected by the Vp term whenever
k X Bo = 0, even if ion motion is included.

4-37. Consider the damping of an ordinary wave caused by a constant collision
frequency v between electrons and ions.
(a) Show that the dispersion relation is

2
c’k? w;

2

w w(w + iv)

(b) For waves damped in time (k£ real) when v/w « 1, show that the damping
rate ¥ = —Im (w) is approximately

IE
1ol 1o
N | =

‘y =

13)

(c) For waves damped in space (w real) when v/w « 1, show that the attenuation
distance 8 = (Im k)" is approximately

26 (1)2 2\ 1/2

§==—— (1 - —f;)

W

2
v w,

4-38. It has been proposed to build a solar power station in space with huge
panels of solar cells collecting sunlight 24 hours a dav. The power is transmitted
to earth in a 30-cm-wavelength microwave beam. We wish to estimate how much
of the power is lost in heating up the ionosphere. Treating the latter as a weakly
ionized gas with constant electron-neutral collision frequency, what fraction of
the beam power is lost in traversing 100 km of plasma with n, = 10" m™,
n, = 10" m™3 and ov = 107"* m*/sec?

4-39. The Appleton—-Hartree dispersionrelation for high-frequency electromag-
netic waves propagating at an angle 8 to the magnetic field is
czkz_ 2w (l-w;/w’)

< =1- 9 ) 9 . o o . 9 o 9 B)
w? Qw‘(l—w;/wz)*w,‘ sin’ @ +w [w? sin® 6+4w‘(l—w;/w‘)2 cos” 0]

%2
Discuss the cutoffs and resonances of this equation. Which are independent of 4?

4-40. Microwaves with free-space wavelength A, equal to 1 cm are sent through
a plasma slab 10 cm thick in which the density and magnetic field are uniform
and given by n,=2.8x10""m™ and Bo,=1.07 T. Calculate the number of
wavelengths inside the slab if (see Fig. P4-40)

e



E
(a) / Bo

—

(b)

T e

z

(a) the waveguide is oriented so that E, is in the 7 direction;

(b) the waveguide is oriented so that E, is in the ¥ direction.

4-41. A cold plasma is composed of positive ions of charge Ze and mass M. and
negative ions of charge —e and mass M_. In the equilibrium state, there is no
magnetic or electric field and no velocity; and the respective densities are ng.
and no- = Zny,. Derive the dispersion relation for plane electromagnetic waves.

4-42. Ion waves are generated in a gas-discharge plasma in a mixture of argon
and helium gases. The plasma has the following constituents:

(a) Electrons of density ng and temperature KT.,;
(b) Argon ions of density n,, mass M, charge +Ze, and temperature 0; and
(c) He ions of density ny, mass My, charge +¢, and temperature 0.

Derive an expression for the phase velocity of the waves using a linearized,
one-dimensional theory with the plasma approximation and the Boltzmann
relation for electrons.

4-43. In a remote part of the universe, there exists a plasma consisting of
positrons and fully stripped antifermium nuclei of charge —Ze, where Z = 100.
From the equations of motion, continuity, and Poisson, derive a dispersion
relation for plasma oscillations in this plasma, including ion motions. Define the
plasma frequencies. You may assume KT =0, B,=0, and all other simplifying
initial conditions.

FIGURE P4-40
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FIGURE P4-46

4-44. Intelligent life on a planet in the Crab nebula tries to communicate with
us primitive creatures on the earth. We receive radio signals in the 10°-10° Hz
range, but the spectrum stops abruptly at 120 MHz. From optical measurements,
it is possible to place an upper limit of 36 G on the magnetic field in the vicinity
of the parent star. If the star is located in an HII region (one which contains
ionized hydrogen), and if the radio signals are affected by some sort of cutoff
in the plasma there, what is a reasonable lower limit to the plasma density?
(1 gauss=10"*T.)

4-45. A space ship is moving through the ionosphere of Jupiter at a speed of
100 km/sec, parallel to the 107>-T magnetic field. If the motion is supersonic
(v >wv,), ion acoustic shock waves would be generated. If, in addition, the motion
is super-Alfvénic (v > v,). magnetic shock waves would also be excited. Instru-
ments on board indicate the former but not the latter. Find limits to the plasma
density and electron temperature and indicate whether these are upper or lower
limits. Assume that the atmosphere of Jupiter contains cold, singly charged
molecular ions of H,, He, CH;, CO., and NH, with an average atomic weight
of 10.

4-46. An extraordinary wave with frequency w isincident on a plasma from the
outside. The variation of the right-hand cutoff frequency wg and the upper
hybrid resonance frequency w, with radius are as shown. There is an evanescent
layer in which the wave cannot propagate. If the density gradient at the point
where w =w, is given by |9n/dr| = n/ro, show that the distance d between the
© = wg and w, points is approximately d = (w./w)r,.




4-47. By introducing a gradient in By, it is possible to make the upper hybrid
resonance accessible to an X wave sent in from the outside of the plasma (cf.
preceding problem).

(a) Draw on an w./w vs. w;/w? diagram the path taken by the wave, showing
how the wy cutoff is avoided.

(b) Show that the required change in B, between the plasma surface and the
upper hybrid layer is

ABoy=Bow?2/20?

4-48. A certain plasma wave has the dispersion relation

272 =2
ck @,

2 2 2
w o (w.—Q,)
wZ_chc+__f__‘_

-2

2
@, —w +wld

where @?=w?2+0Q;. Write explicit expressions for the resonance and cutoff
frequencies (or for the squares thereof), when e =m/M « 1.

4-49. The extraordinary wave with ien motions included has the following
dispersion relation:

° 2
(a)c w; Q. O )'
. SO =S
ekt w; Q; 0 0-w! o 0’-Q2

3] w-w! 0°-Q2 w; (0

1-

2 2~ 2 9
w —w., w =

(a) Show that this is identical to the equation in the previous problem. (Warning:
this problem may be hazardous to your mental health.)

(b) If w; and w, are the lower hybrid and left-hand cutoff frequencies of this
wave, show that the ordering Q. < w; =< w; is always obeyed.

(¢) Using these results and the known phase velocity in the @ -0 limit, draw a
qualitative v3/c® vs. w plot showing the regions of propagation and evanescence.

4-50. We wish to do lower-hybrid heating of a hydrogen plasma column with
w,=0atr =g and w, = jw, at thecenter,in a uniform magnetic field. The antenna
launches an X wave with £;=0.
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(a) Draw a qualitative plot of w,, ()., w;, and w, vs. radius. This graph should
not be to scale, but it should show correctly the relative magnitudes of these
frequencies at the edge and center of the plasma.

(h) Estimate the thickness of the evanescent layer between w; and w, (cf. previous
problem) if the rf frequency w is set equal to w; at the center.

(¢) Repeat (a)and (b) for w,(max) = 2w,, and drawa conclusion about this antenna
design.

4.51. The electromagnetic ion cyclotron wave (Stix wave) is sometimes used for
radiofrequency heating of fusion plasmas. Derive the dispersion relation as

follows:

(a) Derive a wave equation in the form of Eq. (4-118] but with displacement
current neglected.

(b) Write the x and y components of this equation assuming k, = 0, k> = k? + k2,
and kk.E. =0.

(c) To evaluate j; = nge(v; — v,), derive the ion equivalent of Eq. [4-98] to obtain
v,, to make a low-frequency approximation so that v, is simply the E X B drift.

(d) Insert the result of (c) into (b) to obtain two simultaneous homogeneous
equations for E, and E,, using the definition for 0, in Eq. [4-49)].

(e) Set the determinant to zero and solve to lowest order in ()} to obtain

2 =3
w?= Qf[l +&(L+]—)]

c2\k2 R



Separating this into x and y components and using Eq. [4-98], we have
2,

R P P
w w

=1

€p MW
o [4-100]
iwnee e (. w w
(@° = cRHE, = ——= —(zE, ——°E,)(1 ——%)
€0 Mw 1) w
Introducing the definition of w,, we may write this set as
w? wiw
o) 055 -
) w
[4-101

2 2

[(w2 - c2k2)(1 —‘—"—;) —wi]E, —i 2% p =0
w w
® ©

These are two simultaneous equations for E, and E, which are compatible
only if the determinant of the coefficients vanishes:

i B”—O 4-102
C D [4-102]

Since the coefficient A is w® — w}, where wy, is the upper hybrid frequency
defined by Eq. [4-60], the condition AD = BC can be written

2, 2
(@® —wf)[wg—wf —62k2(1 _a)_;)] = (w—pwc>
w w

2,2 2 2 2 2 2 2
c’k _ W T wp ~[(wﬁwc/w) [(@” — wi)]
w® w2—w3

2

[4-103]

This can be simplified by a few algebraic manipulations. Replacing the
first w; on the right-hand side by @2 + > and multiplying through by
w?- wE, we have

22 L co%(cu2 -0+ (wzw?/wg)

z 3 2y, 2 2
® (@ —w: )0 — o)

s 0 (@ - w})+ wiw?
="'g=O 2
0 (o

—w?)(w® —wh)

2 2, 2 2 2, 2 2
_ﬁw(w —w;) —wy (0w —w;)

2 ) 2y, 2 )
2] (0" —w:)(w” —wh)
2,2 P) 2 2 2
sk 6 _ Wy, W —w,
Z o ks g 2 [4-104]
w Uy W W —Wp
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4.15

This is the dispersion relation for the extraordinary wave. It is an elec-
tromagnetic wave, partly transverse and partly longitudinal, which
propagates perpendicular to By with E; perpendicular to Bo.

CUTOFFS AND RESONANCES

The dispersion relation for the extraordinary wave is considerably
more complicated than any we have met up to now. To analyze what it
means, it is useful to define the terms cutoff and resonance. A cutoff occurs
in a plasma when the index of refraction goes to zero; that is, when the
wavelength becomes infinite, since 7 = ck/w. A resonance occurs when
the index of refraction becomes infinite; that is, when the wavelength
becomes zero. As a wave propagates through a region in which w, and
w. are changing, it may encounter cutoffs and resonances. A wave is
generally reflected at a cutoff and absorbed at a resonance.

The resonance of the extraordinary wave is found by setting 4 equal
to infinity in Eq. [4-104]). For any finite w, & -» % implies @ - wy, so that
a resonance occurs at a point in the plasma where

2 2

2 2
Wy =w, tw, =w

[4-105]
This is easily recognized as the dispersion relation for electrostatic waves
propagating across By (Eq. [4-60]). As a wave of given w approaches the
resonance point, both its phase velocity and its group velocity approach
zero, and the wave energy is converted into upper hybrid oscillations.
The extraordinary wave is partly electromagneticand partly electrostatic;
it can easily be shown (Problem 4-14) that at resonance this wave loses
its electromagnetic character and becomes an electrostatic oscillation.

The cutoffs of the extraordinary wave are found by setting £ equal
to zero in Eq. [4-104]. Dividing by w?- wﬁ, we can write the resulting
equation for w as follows:

2.
@ p 1
2

= = 4-106
o 1= [l —wil) kR

A few tricky algebraic steps will yield a simple expression for w:

2 2
w, Wy
= 2 ON= " N2
0w —w, o
2 2, 2
w, w:/w
1~

o> 1 —(@3/w®)



.
w w
2 b
w Fow =w, =0 [4-107]

Each of the two signs will give a different cutoff frequency; we shall call
these wgr and w,;. The roots of the two quadratics are
wr = Hw + (@ +40p)')
[4-108]
w, = s[~w. + (@ +4w;)'"?]
We have taken the plus sign in front of the square root in each case
because we are using the convention that w is always positive; waves
going in the —x direction will be described by negative &. The cutoft
frequencies wg and w; are called the right-hand and left-hand cutoffs,
respectively, for reasons which will become clear in the next section.
The cutoff and resonance frequencies divide the dispersion diagram
into regions of propagation and nonpropagation. Instead of the usual
w — k diagram, it is more enlightening to give a plot of phase velocity
versus frequency; or, to be precise, a plot of w?/c%k® = 1/7% vs. w (Fig.
4-36). To interpret this diagram, imagine that w, is fixed, and a wave

/ X WAVE
|

wL m ///4 o

'\\
\\

The dispersion of the extraordinary wave, as seen from the behavior of the
phase velocity with frequency. The wave does not propagate in the shaded
regions.

FIGURE 4-36
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FIGURE 4-37

4.16

52 7
7

0 =
O.Jp W —=

A similar dispersion diagram for the ordinary wave.

with a fixed frequency w is sent into a plasma from the outside. As the
wave encounters regions of increasing density, the frequencies w;, w,,
wh, and wg all increase, moving to the right in the diagram. This is the
same as if the density were fixed and the frequency w were gradually
being decreased. Taking the latter point of view, we see that at large w
(or low density), the phase velocity approaches the velocity of light. As
the wave travels further, v, increases until the right-hand cutoff w = wg
is encountered. There, vy, becomes infinite. Between the w = wz and
w = wy, layers, w>/k? is negative, and there is no propagation possible.
At w = wy, there is a resonance, and vy goes to zero. Between w = w,
and w = w;, propagation is again possible. In this region, the wave travels
either faster or slower than ¢ depending on whether w is smaller or
larger than w,. From Egq. [4-104], it is clear that at @ = w,, the wave
travels at the velocity ¢. For w < wy, there is another region of nonpropa-
gation. The extraordinary wave, therefore, has two regions of propaga-

tion separated by a stop band.
By way of comparison, we show in Fig. 4-37 the same sort of diagram

for the ordinary wave. This dispersion relation has only one cutoff and
no resonances.

ELECTROMAGNETIC WAVES PARALLEL TO B,

Now we let k lie along the z axis and allow E; to have both transverse
components E, and E,:

k = kz E,=Ex+Ey [4-109]



The wave equation [4-99] for the extraordinary wave can still be used
if we simply change k from &% to k2. From Eq. [4-100], the components
are now

2 .
(% = TRE, = ——2— (Ex = ﬂEy)
l—w./w w
5 ) [4-110]
(wQ _ Cgkg)E)- = —wf;—; (E) 4 %Ex)
l-w;/w” w
Using the abbreviation
)
SRP.... N— [4-111]
T T (e
we can write the coupled equations for E, and E; as
%= k% - @)E, +iaE, =0
1)
[4-112]
@2 =k —a)E, —ia —=E, =0
)
Setting the determinant of the coefhicients to zero, we have
(w®— k% — a)’ = (aw/w)’ [4-113]
0wl —a = taw /o [4-114]
Thus
2
2 2,2 W, Wy w,
— = == 1= e + —
Lotk a(liw> l—(a)f/a)')(1 w>
> 1 + (0/w) w,
= w =
[+ @)1 ~ (@/w)] 17 (@/w)
[4-115]

The F sign indicates that there are two possible solutions to Eq. [4-112]
corresponding to two different waves that can propagate along Bo. The
dispersion relations are

L 1 wp/w® R wave) [4-116]
n-= oF = = (/@) (R wave -
.o Ck? wylw?

- = =1- L g 4-117
n a)2 1+ (wc/w) (L wave) [ ]
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FIGURE 4-38
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Geometry of right- and left-handed circularly
polarized waves propagating along B,.

The R and L waves turn out to be circularly polarized, the designations
R and L meaning, respectively, right-hand circular polarization and left-
hand circular polarization (Problem 4-17). The geometry is shown in Fig.
4-38. The electric field vector for the R wave rotates clockwise in time
as viewed along the direction of By, and vice versa for the L wave. Since
Egs. [4-116] and [4-117] depend only on k%, the direction of rotation of
the E vector is independent of the sign of &; the polarization is the same
for waves propagating in the opposite direction. To summarize: The
principal electromagnetic waves propagating along B, are a right-hand
(R) and a left-hand (L) circularly polarized wave; the principal waves
propagating across B are a plane-polarized wave (O-wave) and an ellipti-
cally polarized wave (X-wave).

We next consider the cutoffs and resonances of the R and L waves.
For the R wave,k becomes infiniteatw = w.;thewaveistheninresonance
with the cyclotron motion of the electrons. The direction of rotation of
the plane of polarization is the same as the direction of gyration of
electrons; the wave loses its energy in continuously accelerating the
electrons, and it cannot propagate. The L wave, on the other hand, does
not have a cyclotron resonance with the electrons because it rotates in
the opposite sense. As is easily seen from Eq. [4-117], the L wave does
not have a resonance for positive w. If we had included ion motions in
our treatment, the L wave would have been found to have a resonance
atw = {1, since it would then rotate with the ion gyration.
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The v3/c? vs. w diagrams for the L and R waves. The regions of nonpropagation
(v2/c® < 0) have not been shaded, since they are different for the two waves.

The cutoffs are obtained by setting £ = 0in Eqs. [4-116] and [4-117].
We then obtain the same equations as we had for the cutoffs of the X
wave (Eq. [4-107]). Thus the cutoff frequencies are the same as before.
The R wave, with the minus sign in Eqgs. [4-116] and [4-107], has the
higher cutoff frequency wr given by Eq. [4-108]; the L wave, with the
plus sign, has the lower cutoff frequency w;. This is the reason for the
notation wg, wr chosen previously. The dispersion diagram for the R
and L waves is shown in Fig. 4-39. The L wave has a stop band at low
frequencies; it behaves like the O wave except that the cutoff occurs at
oy instead of w,. The R wave has a stop band between wg and w,, but
there is a second band of propagation, with vy < ¢, below w.. The wave
in this low-frequency region is called the whistler mode and is of extreme
importance in the study of ionospheric phenomena.

EXPERIMENTAL CONSEQUENCES

The Whistler Mode

Early investigators of radio emissions from the ionosphere were
rewarded by various whistling sounds in the audiofrequency range.
Figure 4-40 shows a spectrogram of the frequency received as a function

FIGURE 4-39

4.17

4.17.1
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FIGURE 4-40
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Actual spectrograms of whistler signals, showing the cur-
vature caused by the low-frequency branch of the R-wave
dispersion relation (Fig. 4-39). At each time ¢, the receiver
rapidly scans the frequency range between 0 and 20 kHz,
tracing a vertical line. The recorder makes a spot whose
darkness is proportional to the intensity of the signal at
each frequency. The downward motion of the dark spot
with time then indicates a descending glide tone. [Courtesy
of D. L. Carpenter, J. Geophys. Res. 71, 693 (1966).]

of time. There is typically a series of descending glide tones, which can
be heard over a loudspeaker. This phenomenon is easily explained in
terms of the dispersion characteristics of the R wave. When a lightning
flash occurs in the Southern Hemisphere, radio noise of all frequencies
is generated. Among the waves generated in the plasma of the ionosphere
and magnetosphere are R waves traveling along the earth’s magnetic
field. These waves are guided by the field lines and are detected by
observers in Canada. However, different frequencies arrive at different
times. From Fig. 4-39, it can be seen that for o < w./2, the phase velocity
increases with frequency (Problem 4-19). It can also be shown (Problem
4-20) that the group velocity increases with frequency. Thus the low
frequencies arrive later, giving rise to the descending tone. Several
whistles can be produced by a single lightning flash because of propaga-
tion along different tubes of force A, B, C (Fig. 4-41). Since the waves
have w < w,, they must have frequencies lower than the lowest gyro-
frequency along the tube of force, about 100 kHz.’ Either the whistles
lie directly in the audio range or they can easily be converted into audio
signals by heterodyning.



TR NS W

Diagram showing how whistlers are
created. The channels A, B, and C
refer to the signals so marked in Fig.
4-40.

Faraday rotation of the plane of polarization of an elec-
tromagnetic wave traveling along B,.

Faraday Rotation

A plane-polarized wave sent along a magnetic field in a plasma will suffer
a rotation of its plane of polarization (Fig. 4-42). This can be understood
in terms of the difference in phase velocity of the R and L waves. From
Fig. 4-39, it is clear that for large w, the R wave travels faster than the
L wave. Consider the plane-polarized wave to be the sum of an R wave
and an L wave (Fig. 4-43). Both waves are, of course, at the same
frequency. After NV cycles, the E; and Er vectors will return to their
initial positions. After traversing a given distance d, however, the R and
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FIGURE 4-43 A plane-polarized wave as the sum of left- and right-

handed circularly polarized waves.

®8,

FIGURE 4-44 After traversing the plasma, the L wave is advanced in phase

relative to the R wave, and the plane of polarization is rotated.

L waves will have undergone a different number of cycles, since they
require a different amount of time to cover the distance. Since the L
wave travels more slowly, it will have undergone N + € cycles at the
position where the R wave has undergone N cycles. The vectors then
have the positions shown in Fig. 4-44. The plane of polarization is seen
to have rotated. A measurement of this rotation by means of a microwave
horn can be used to give a value of w}, and, hence, of the density (Problem
4-22). The effect of Faraday rotation has been verified experimentally,
but it is not as useful a method of density measurement as microwave
interferometry, because access at the ends of a plasma column is usually
difficult, and because the effect is small unless the density is so high that
refraction becomes a problem.

When powerful pulsed lasers are used to produce a dense plasma
by vaporizing a solid target, magnetic fields of megagauss intensities are
sometimes spontaneously generated. These have been detected by Fara-
day rotation using laser light of higher frequency than the main beam.
In interstellar space, the path lengths are so long that Faraday rotation



is important even at very low densities. This effect has been used to
explain the polarization of microwave radiation generated by maser
action in clouds of OH or H;O molecules during the formation of new
stars.

4-14. Prove that the extraordinary wave is purely electrostatic at resonance.
Hint: Express the ratio E,/E, as a function of w and set w equal 0 wj.

4.15. Prove that the critical points on Fig. 4-36 are correctly ordered; namely,
that w; <w, < w, < wg.

4-16. Show that the X-wave group velocity vanishes at cutoffs and resonances.
You may neglect ion motions.

4-17. Prove that the R and L waves are right- and left-circularly polarized as
follows:

(a) Show that the simultaneous equations for E, and E, can be written in the form
F(w)(E. —iE,) =0, G(w)(E,+1iE,)=0
where F(w) = 0 for the R wave and G(w) = 0 for the L wave.

(b) For the R wave. G(w) # 0; and therefore E. = —iE,. Recalling the exponential
time dependence of E, show that E then rotates in the electron gyration direction.
Confirm that E rotates in the opposite direction for the L wave.

(c) For the R wave, draw the helices traced by the tip of the E vector in space
at a given time for (i) k&, > 0 and (ii) £. < 0. Note that the rotation of E is in the
same direction in both instances if one stays at a fixed position and watches the
helix pass by.

4.18. Left-hand circularly polarized waves are propagated along a uniform
magnetic field B = B,z into a plasma with density increasing with z. At what

density is cutoff reached if f = 2.8 GHz and B, = 0.3 T?

w,/2 and

4-19. Show that the whistler mode has maximum phase velocity at w
that this maximum is less than the velocity of light.

4-20. Show that the group velocity of the whistler mode is proportional to w'/?
ifw <w.and e » 1.

4-21. Show that there is no Faraday rotation in a positronium plasma (equal
numbers of positrons and electrons).

4-22. Faraday rotation of an 8-mm-wavelength microwave beam in a uniform
plasma in a 0.1-T magnetic field is measured. The plane of polarization is found
to be rotated 90° after traversing 1 m of plasma. What is the density?
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4-23. Show that the Faraday rotation angle, in degrees, of a linearly polarized
transverse wave propagating along B, is given by

L
f=15x IO_HA(Q)J B(z)n,(z) dz

0

where A, is the free-space wavelength and L the path length in the plasma.
Assume 0> > w;, w:.

4.24. In some laser-fusion experiments in which a plasma is created by a pulse
of 1.06-um light impinging on a solid target, very large magnetic fields are
generated by thermoelectric currents. These fields can be measured by Faraday
rotation of frequency-doubled light (A, = 0.53 p.m) derived from the same laser.
If B=100T, n = 10’ m~°, and the path length in the plasma is 30 s m, what
is the Faraday rotation angle in degrees? (Assume k|[B.)

4.25. A microwave interferometer employing the ordinary wave cannot be used
above the cutoff density n. To measure higher densities, one can use the
extraordinary wave.

(a) Write an expression for the cutoff density n,, for the X wave.

(b) Onavj/c®vs. w diagram, show the branch of the X-wave dispersion relation
on which such an interferometer would work.

HYDROMAGNETIC WAVES

The last part of our survey of fundamental plasma waves concerns
low-frequency ion oscillations in the presence of a magnetic field. Of the
many modes possible, we shall treat only two: the hydromagnetic wave
along By, or Alfvén wave, and the magnetosonic wave. The Alfvén wave
in plane geometry has k along By; E; and j, perpendicular to By; and
B, and v, perpendicular to both By and E,; (Fig. 4-45). From Maxwell’s
equation we have, as usual (Eq. [4-80]),

Lo .
VXVXEI=—k(k-E,)+lz2E1=w—2E1+£2jl [4-118]
C C

€0
Since k=42 and E,; = E & by assumption, only the x component of this
equation is nontrivial. The current j; now has contributions from both
ions and electrons, since we are considering low frequencies. The x
component of Eq. [4-118] becomes

€o(w2 ~c’k 2)E, = —twnoe (Vix — Vex) [4-119)

Thermal motions are not important for this wave; we may therefore
use the solution of the ion equation of motion with T; = 0 obtained

e



- vy, By
1.4

X

Geometry of an Alfvén wave propagating
along B,.

previously in Eq. [4-63). For completeness, we include here the com-
ponent v;,, which was not written explicitly before:

i (1 Qg)qE 1

Uy, ===\ l—=% -
Mw w® ! [4-120]
e O (5 e

= — ]._ c) E

B ( w’ !

The corresponding solution to the electron equation of motion is found
by letting M - m, ¢ » —¢, Q. » —w., and then taking the limit @2 » v

e w
vex=——2-El—>0
mw w;
[4-121]
2
e w, w £ E,
Doy = gl e
2 mea)f By

In this limit, the Larmor gyrations of the electrons are neglected, and
the electrons have simply an E X B drift in the y direction. Inserting
these solutions into Eq. [4-119], we obtain

ie Q™!

eolw’ —ckPE, = —iwnoe—(l = 2) E\ [4-122]
Mw w

The y components of v, are needed only for the physical picture to be
given later. Using the definition of the ion plasma frequency (, (Eq.

FIGURE 4-45
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(4-49]), we have
2 2
w’— k%= Qf(l ——;) (4-123]
w

q 2 % 5
We must now make the further assumption w” « £);; hydromagnetic
waves have frequencies well below ion cyclotron resonance. In this limit,
Eq. [4-123] becomes

2 ) 2
2_ 22 2 onoe. M o P
CoN =T 2 = T T or oo W 2
¢ em\f[e Bo GoB()
2 2 2

w G c

o = = - 4.124
k® 1+ (p/eoBy) 1+ (ppo/Bo)c” [ :

where p is the mass density noM. This answer is no surprise, since the
denominator can be recognized as the relative dielectric constant for
low-frequency perpendicular motions (Eq. [3-28]). Equation [4-124]
simply gives the phase velocity for an electromagnetic wave in a dielectric

medium:
w G c ‘ 1
— = — or Mg =
k (ERI-LR)”? 5112/2 "

As we have seen previously, € is much larger than unity for most
laboratory plasmas, and Eq. [4-124] can be written approximately as

Bo
72

=75 [4-125]
(noP)

)
Z =y
k

These hydromagnetic waves travel along By at a constant velocity va,
called the Alfvén velocity:

va=B/(uop)'"? [4-126)

This is a characteristic velocity at which perturbations of the lines of force
travel. The dielectric constant of Eq. [3-28] can now be written

€r = €/eo = | +(c?/v}) [4-127]

Note that v 5 is small for well-developed plasmas with appreciable density,
and therefore €g is large.

To understand what happens physically in an Alfvén wave, recall
that this is an electromagnetic wave with a fluctuating magnetic field B,



given by
VXE, =-B, E,. = (w/k)B, [4-128]

The small component By, when added to By, gives the lines of force a
sinusoidal ripple, shown exaggerated in Fig. 4-46. At the point shown,
B, is in the positive y direction, so, according to Eq. [4-128], E, is in the
positive x direction if w/k is in the z direction. The electric field E, gives
the plasma an E; X B, drift in the negative y direction. Since we have
taken the limit w? « Q2, both ions and electrons will have the same drift
v,, according to Eqs. [4-120] and [4-121]. Thus, the fluid moves up and
down in the y direction, as previously indicated in Fig. 4-45. The magni-
tude of this velocity is |E,/Bo|. Since the ripple in the field is moving by
at the phase velocity w/k, the line of force is also moving downward at
the point indicated in Fig. 4-46. The downward velocity of the line of
force is (w/k)|By/Bo|, which, according to Eq. [4-128], is just equal to the
fluid velocity |E,/Bo|. Thus, the fluid and the field lines oscillate together
as if the particles were stuck to the lines. The lines of force act as if they
were mass-loaded strings under tension, and an Alfvén wave can be
regarded as the propagating disturbance occurring when the strings are
plucked. This concept of plasma frozen to lines of force and moving
with them is a useful one for understanding many low-frequency plasma
phenomena. It can be shown that this notion is an accurate one as long
as there is no electric field along B.

It remains for us to see what sustains the electric field E, which we
presupposed was there. As E; fluctuates, the ions’ inertia causes them

= 2
v, =E;x B,/B:

Relation among the oscillating quantities in an Alfvén wave and the (exagger-
ated) distortion of the lines of force.
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FIGURE 4-47

Geometry of a torsional (or shear)
Alfvén wave in a cylindrical column.

to lag behind the electrons, and there is a polarization drift v, in the
direction of E,. This drift v;, is given by Eq. [4-120] and causes a current
j1 to flow in the x direction. The resulting j, X By force on the fluid is
in the y direction and is 90° out of phase with the velocity v;. This force
perpetuates the oscillation in the same way as in any oscillator where the
force is out of phase with the velocity. It is, of course, always the ion
inertia that causes an overshoot and a sustained oscillation, but in a
plasma the momentum is transferred in a complicated way via the
electromagnetic forces.

In a more realistic geometry for experiments, E; would be in the
radial direction and v, in the azimuthal direction (Fig. 4-47). The motion
of the plasma is then incompressible. This is the reason the Vp term in
the equation of motion could be neglected. This mode is called the
torsional Alfvén wave. It was first produced in liquid mercury by B.
Lehnert.

Alfvén wavesin a plasma were first generated and detected by Allen,
Baker, Pyle, and Wilcox at Berkeley, California, and by Jephcott in
England in 1959. The work was done in a hydrogen plasma created in
a “slow pinch” discharge between two electrodes aligned along a magnetic
field (Fig. 4-48). Discharge of a slow capacitor bank A created the plasma.
The fast capacitor B, connected to the metal wall, was then fired to create
an electric field E, perpendicular to By. The ringing of the capacitor
generated a wave, which was detected, with an appropriate time delay,
by probes P. Figure 4-49 shows measurements of phase velogity vs.
magnetic field, demonstrating the linear dependence predicted by Eq.
[4-126].



Schematic of an experiment to detect Alfvén waves. [From ]. M. Wilcox,
F. 1. Boley, and A. W. DeSilva, Phys. Fluids 3, 15 (1960).]
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Measured phase velocity of Alfvén waves vs. magnetic field. [From Wilcox,
Boley, and DeSilva, loc. cit.]

This experiment was a difficult one, because a large magnetic field
of 1 T was needed to overcome damping. With large By, v4, and hence
the wavelength, become uncomfortably large unless the density is high.
In the experiment of Wilcox et al., a density of 6 X 102" m 2 was used to
achieve a low Alfvénspeed of 2.8 x 10° m/sec. Note that it is not possible
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4.19

to increase p by using a heavier atom. The frequency w = kv 4 is propor-
tional to M ~'/2, while the cyclotron frequency €. is proportional to M.
Therefore, the ratio w/€), is proportional to M2 With heavier atoms
it is not possible to satisfy the condition w® « Q2.

MAGNETOSONIC WAVES

Finally, we consider low-frequency electromagnetic waves propagating
across Bo. Again we may take By = B¢z and E, = E X, but we now let
k = ky (Fig. 4-50). Now we see that the E; X By drifts lie along k, so that
the plasma will be compressed and released in the course of the oscilla-
tion. It is necessary, therefore, to keep the Vp term in the equation of
motion. For the ions, we have

av;
Mno % = eno(E1 + vi1 X Bo) — v:KT:Vn, [4-120]

With our choice of E; and k, this becomes

1e

Vix = (Ex +05B0) [4-130]

Mw

ie k 'YiKT,‘ g
iy = 7 (—viBo) + — i 4-131
w Mo ( v 0) w M Mo : 1
74
i
Y
k
X E

1

FIGURE 4-50 Geometry of a magnetosonic wave

propagating at right angles to B,

——

e
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No w
so that Eq. [4-131] becomes
ie k2 ‘)’iKTi
= ——=——UsBo+—3 ; 4-133
A T S AT T B
With the abbreviation
k* v.KT;
A= -5 X
w- M
this becomes
10,
Uy(l =A)== UVix [4-134)]
1)

Combining this with Eq. [4-130], we have

b= B+ S (B0 - )T,
Mo %) )

Q‘f/w2> ie
ix - = Ex
v (1 1-4/) Mo

[4-135]

This is the only component of v;; we shall need, since the only nontrivial
component of the wave equation [4-81] is

eolw? — c2kPE, = —iwnoe(vi — Vex) [4-136]
To obtain v,,, we need only to make the appropriate changes in Eq.

[4-135] and take the limit of small electron mass, so that w®> < w? and
w?« ki,

E, [4-137]

Uex =

. 2 2 2
e w (I_k_Q'y,KT,>Ex_>_ tk°® v.KT,

2 2,
mw o, wBy e

Putting the last three equations together we have

2 2,9 . e 1-A
B Ex - [_ E"( )
eo(w —ckY) lwnoe Mo A= (Qf/wq)
kM v.KT, ]
2 Ex
wBo eM

[4-138]
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We shall again assume w’« Qf, so that | — A can be neglected relative
to Q2/w®. With the help of the definitions of {, and v a, we have

0 k*c® v.KT,
2 9,9 » o K1,
—CckT)=—— —A)+—
e 0z (1=4) vi M
i [4-139]
2 2,9 YeKTe> QE( 2 2 ‘)’iKT.'>
- k (l b=l —k =
@ e Mus 0?2 'L M .
Since
Q3/Q: =¢*/va (4-140]

Eq. [4-139] becomes

9 . 9, ¢ e e + iKTi 2 's
w‘(l +C—,> = c‘kz(l +ﬂ—T—J——) = c2k‘(l + L—z) [4-141]
VA AMUA

where v, is the acoustic speed. Finally, we have

2 2

w o Us +UA
2 2
c ‘+"UA

[4-142]

This is the dispersion relation for the magnetosonic wave propagating
perpendicular to By. It is an acoustic wave in which the compressions
and rarefactions are produced not by motions along E, but by Ex B
drifts across E. In the limit Bg » 0, vy » 0, the magnetosonic wave turns
into an ordinary ion acoustic wave. In the limit KT - 0, v, » 0, the
pressure gradient forces vanish, and the wave becomes a modified Alfvén
wave. The phase velocity of the magnetosonic mode is almost always
larger than v,; for this reason, it is often called simply the “fast” hydro-
magnetic wave.

4.20 SUMMARY OF ELEMENTARY PLASMA WAVES

Electron waves (electrostatic)

2
Bo=0ork ” By w™ = w% + %k Qv,?h (Plasma oscillations) [4-143)
. ol 19 2 _ 2 (Upper hybrid
k L Bo: W =wp tw: = wh oscillations) [4-144]
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kJ.B()I

B():OZ

k1 Bo, El ”BoZ

k.LB(),E} J_B():

k ”Bo:

B() = 0:
k” B()Z
k lBo:

ITon waves (electrostatic)

w?=k%?
=k9 y:KTe +‘YIKTI
M
0= Q2 + k%2
or
w’l=wi = Q.

Electron waves (electromagnetic)

5_ .9 . 128
w =w, tkc

2,2 2
k™ W,
9 AT
9,9 2 9 9
Ck (x)pw —'(Up
2 — 1= "9 7o o
13) ww —w
2 2 2
c’k? wylw
e
1 — (w/w)
2,9 2, 2
ck w,/w
-=1-
w 1 + (w./w)
None
2 2 9
w =k vA
2 2 2
W~ 2VUs +UA
9 — 2 2
k ¢ +va

Ton waves (electromagnetic)

2
h

(Acoustic waves)

(Electrostatic ion
cyclotron waves)

(Lower hybrid
oscillations)

(Light waves)

(O wave)

(X wave)

(R wave)
(whistler mode)

(L wave)

(Alfvén wave)

(Magnetosonic wave)

[4-145]

[4-146]

(4-147]

[4-148)

(4-149]

[4-150]

[4-151]

[4-152]

[4-153]

[4-154]

This set of dispersion relations is a greatly simplified one covering
only the principal directions of propagation. Nonetheless, it is a very
useful set of equations to have in mind as a frame of reference
for discussing more complicated wave motions. It is often possible to
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understand a complex situation as a modification or superposition of these
basic modes of oscillation.

THE CMA DIAGRAM

When propagation occurs at an angle to the magnetic field, the phase
velocities change with angle. Some of the modes listed above with k || B,
and k L By change continuously into each other; other modes simply
disappear at a critical angle. This complicated state of affairs is greatly
clarified by the Clemmow-Mullaly-Allis (CMA) diagram, so named for
its co-inventors by T. H. Stix. Such a diagram is shown in Fig. 4-51. The
CMA diagram is valid, however, only for cold plasmas, with T; = T, = 0.
Extension to finite temperatures introduces so much complexity that the
diagram is no longer useful.

Figure 4-51 is a plot of w./w vs. ws/w? or, equivalently, a plot of
magnetic field vs. density. For a given frequency w, any experimental
situation characterized by w, and w, is denoted by a point on the graph.
The total space is divided into sections by the various cutoffs and reson-
ances we have encountered. For instance, the extraordinary wave cutoff
at 0’ =w’ +w§ is a quadratic relation between w./w and w;‘:/w?; the
resulting parabola can be recognized on Fig. 4-51 as the curve labeled
“upper hybrid resonance.” These cutoff and resonance curves separate
regions of propagation and nonpropagation for the various waves. The
sets of waves that can exist in the different regions will therefore be
different.

The small diagram in each region indicates not only which waves
are present but also how the phase velocity varies qualitatively with angle.
The magnetic field is imagined to be vertical on the diagram. The distance
from the center to any point on an ellipse or figure-eight at an angle 6
to the vertical is proportional to the phase velocity at that angle with
respect to the magnetic field. For instance, in the triangular region
marked with an * on Fig. 4-51, we see that the L wave becomes the X
wave as @ varies from zero to #/2. The R wave has a velocity smaller
than the L wave, and it disappears as 6 varies from zero to /2. It does
not turn into the O wave, because w® < w; in that region, and the O
wave does not exist.

The upper regions of the CMA diagram correspond to w € w.. The
low-frequency ion waves are found here. Since thermal velocities have
been neglected on this diagram, the electrostaticion waves do not appear;
they propagate only in warm plasmas. One can regard the CMA diagram
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PROBLEMS

as a “plasma pond”: A pebble dropped in each region will send out
ripples with shapes like the ones shown.

3

4-26. A hydrogen discharge in a 1-T field produces a density of 10'® m™.
(a) What is the Alfvén speed v,?

(b) Suppose v, had come out greater than ¢. Does this mean that Alfvén waves
travel faster than the speed of light?

4-27. Calculate the Alfvén speed in a region of the magnetosphere where
B=10°%T,n=10m™ and M = M, = 1.67 x 10 ¥ kg.

4-28. Suppose you have created a laboratory plasma with n = 10'> m™ and
B =10"2T. You connect a 160-MHz signal generator to a probe inserted into
the plasma.

(a) Draw a CM A diagram and indicate the region in which the experiment is
located.

(b) What electromagnetic waves might be excited and propagated in the plasma?

4-29. Suppose you wish to design an experiment in which standing torsional
Alfvén waves are generated in a cylindrical plasma column, so that the standing
wave has maximum amplitude at the midplane and nodes at the ends. To satisfy
the condition w « (), you make w = 0.1Q),.

(a) If you could create a hydrogen plasma withn = 10" m™ and B = 1T, how
long does the column have to be?

(b) If you tried to do this with a 0.3 T Q-machine, in which the singly charged
Cs ions have an atomic weight 133 and a density » = 10"* m™>, how long would
the plasma have to be? Hint: Figure out the scaling factors and use the result
of part (a).

4-30. A pulsar emits a broad spectrum of electromagnetic radiation, which is
detected with a receiver tuned to the neighborhood of f = 80 MHz. Because of
the dispersion in group velocity caused by the interstellar plasma, the observed
frequency during each pulse drifts at a rate given by df/dt = —5 MHz/sec.

(a) If the interstellar magnetic field is negligible and w® » w}, show that

where f, is the plasma frequency and x is the distance of the pulsar.

(b) If the average electron density in space is 2 X 10°> m™2, how far away is the
pulsar? (1 parsec = 3 x 10'*m.)



4-31. A three-component plasma has a density n, of electrons, (1 — €)n, of ions
of mass A,. and en, of ions of mass M,. Let T;, = T;o =0, T, #0.

(a) Derive a dispersion relation for electrostatic ion cyclotron waves.
(b) Find a simple expression for w® when € is small.

(c) Evaluate the wave frequencies for a case when € is not small: a 50-50% D-T
mixtureat KT, = [0keV, Bo=5T,and £ = 1cm™".

4-32. For a Langmuir plasma oscillation, show that the time-averaged electron
kinetic energy per m? is equal to the electric field energy density seo(E ).

4-33. For an Alfvén wave, show that the time-averaged ion kinetic energy per
m?® is equal to the magnetic wave energy (B})/2u,.

4-34. Figure P4-34 shows a far-infrared laser operating at A = 337 um. When
Bo =0, this radiation easily penetrates the plasma whenever w, is less than w,
orn <n. =102 m™> However, because of the long path length, the defocusing
effect of the plasma (cf. Fig. 4-30) spoils the optical cavity, and the density is
limited by the conditions w2 < ew?, where € « 1. In the interest of increasing
the limiting density, and hence the laser output power, a magnetic field By is
added.

(a) If € is unchanged, show that the limiting density can be increased if left-hand
circularly polarized waves are propagated.

(b) If n is to be doubled, how large does B, have to be?

¥ ® ®°%° @ ® X

3 B%
7
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Schematic of a pulsed HCN laser.

A

FIGURE P4-34

149

Waves in
Plasmas



150
Chapter
Four

(c) Show that the plasma is a focusing lens for the whistler mode.

(d) Can one use the whistler mode and therefore go to much higher densities?

4-35. Use Maxwell’s equations and the electron equation of motion to derive
the dispersion relation for light waves propagating through a uniform, unmag-
netized, collisionless, isothermal plasma with density n and finite electron tem-

perature T,. (Ignore ion motions.)

4-36. Prove that transverse waves are unaffected by the Vp term whenever
k X Bo = 0, even if ion motion is included.

4.37. Consider the damping of an ordinary wave caused by a constant collision
frequency v between electrons and ions.
(a) Show that the dispersion relation is

c*k? w;

w?® w(w + iv)

(b) For waves damped in time (% real) when v/w « 1, show that the damping
rate y = —Im (w) is approximately

s

y =

(&)

v
w2
(c) Forwavesdamped in space (w real) when v/w « 1, show that the attenuation

distance 8 = (Im k)" is approximately

2

3=§£(1_g)"’

2 2
v w,

2

4-38. It has been proposed to build a solar power station in space with huge
panels of solar cells collecting sunlight 24 hours a day. The power is transmitted
to earth in a 30-cim-wavelength microwave beam. We wish to estimate how much
of the power is lost in heating up the ionosphere. Treating the latter as a weakly
ionized gas with constant electron-neutral collision frequency, what fraction of
the beam power is lost in traversing 100 km of plasma with n, = 10'' m™,
n, =10"°m™3 and o7 = 107" m*/sec?

4-39. The Appleton-Hartree dispersion relation for high-frequency electromag-
netic waves propagating at an angle 8 to the magnetic field is
c’k? 2w§(1—w§/w2)

=] — E) 9 9 . i 9 9 >
w? 2w (l-wi/w®)~w? sin® ftw[w?sin® 0+4w’ (1 -wl/w’)’ cos’ 8)'*

Discuss the cutoffs and resonances of this equation. Which are independent of 6?

4-40. Microwaves with free-space wavelength A, equal to 1 cm are sent through
a plasma slab 10 cm thick in which the density and magnetic field are uniform
and given by n,=28x10"*m™ and Bo,=1.07 T. Calculate the number of
wavelengths inside the slab if (see Fig. P4-40)




E
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(a) the waveguide is oriented so that E| is in the Z direction;

(b) the waveguide is oriented so that E, is in the y direction.

4-41. A cold plasma is composed of positive ions of charge Ze and mass M. and
negative ions of charge —e and mass M_. In the equilibrium state, there is no
magnetic or electric field and no velocity; and the respective densities are no.
and no- = Zny,. Derive the dispersion relation for plane electromagnetic waves.

4-42. lon waves are generated in a gas-discharge plasma in a mixture of argon
and helium gases. The plasma has the following constituents:

(a) Electrons of density n,and temperature KT,;
(b) Argon ions of density n4, mass M4, charge +Z¢, and temperature 0; and
(c) He ions of density ng, mass M, charge +¢, and temperature 0.

Derive an expression for the phase velocity of the waves using a linearized,
one-dimensional theory with the plasma approximation and the Boltzmann
relation for electrons.

4-43. In a remote part of the universe, there exists a plasma consisting of
positrons and fully stripped antifermium nuclei of charge —Ze, where Z = 100.
From the equations of motion, continuity, and Poisson, derive a dispersion
relation for plasma oscillations in this plasma, including ion motions. Define the
plasma frequencies. You may assume KT =0, B;=0, and all other simplifying
initial conditions.

P x
?

FIGURE P4-40
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FIGURE P4-46

4-44. Intelligent life on a planet in the Crab nebula tries to communicate with
us primitive creatures on the earth. We receive radio signals in the 10°~10° Hz
range, but the spectrumstopsabruptly at 120 MHz. From optical measurements,
it is possible to place an upper limit of 36 G on the magnetic field in the vicinity
of the parent star. If the star is located in an HII region (one which contains
ionized hydrogen), and if the radio signals are affected by some sort of cutoff
in the plasma there, what is a reasonable lower limit to the plasma density?
(1 gauss=10"*T.)

4.45. A space ship is moving through the ionosphere of Jupiter at a speed of
100 km/sec, parallel to the 107°-T magnetic field. If the motion is supersonic
(v >w,), ion acoustic shock waves would be generated. If, in addition, the motion
is super-Alfvénic (v >wv,). magnetic shock waves would also be excited. Instru-
ments on board indicate the former but not the latter. Find limits to the plasma
density and electron temperature and indicate whether these are upper or lower
limits. Assume that the atmosphere of Jupiter contains cold, singly charged
molecular ions of Hy, He, CH;, CO,, and NH; with an average atomic weight
of 10.

4-46. An extraordinary wave with frequency w is incident on a plasma from the
outside. The variation of the right-hand cutoff frequency wz and the upper
hybrid resonance frequency w, with radius are as shown. There is an evanescent
layer in which the wave cannot propagate. If the density gradient at the point
where w =w, is given by |8n/6r|=n/ro. show that the distance d between the

® =wpr and w, points is approximately d = (w./w)ro.

i avaY wh

0
T




4-47. By introducing a gradient in B,, it is possible to make the upper hybrid
resonance accessible to an X wave sent in from the outside of the plasma (cf.
preceding problem).

(a) Draw on an w./w vs. w;/w?® diagram the path taken by the wave, showing
how the wg cutoff is avoided.

(b) Show that the required change in B, between the plasma surface and the
upper hybrid layer is

ABo=Bow}/2w?

4-48. A certain plasma wave has the dispersion relation

R &2
w? . w(w, —0.)?
wz—wcﬂz +T—t———

@r—w '+ w0,

where @’=w2+02 Write explicit expressions for the resonance and cutoff
frequencies (or for the squares thereof), when e =m/M « 1.

4-49. The extraordinary wave with ion motions included has the following
dispersion relation:

o)
2

2 <
ok 1 w; QF 0w w’-w! o w’-Q
w? w’-w! -0 w; Q;

1

2 2 2 2
w —w, o —Q;

(a) Show that this is identical to the equation in the previous problem. (Warning:
this problem may be hazardous to your mental health.)

(b) If w, and w; are the lower hybrid and left-hand cutoff frequencies of this
wave, show that the ordering ), <w, <w; is always obeyed.

(c) Using these results and the known phase velocity in the w - 0 limit, draw a
qqualitative v3/c® vs. @ plot showing the regions of propagation and evanescence.

4-50. We wish to do lower-hybrid heating of a hydrogen plasma column with
w,=0atr =a and w, =sw, atthecenter,inauniform magneticfield. Theantenna
launches an X wave with ky=0.
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(a) Draw a qualitative plot of w., ., @, and w, vs. radius. This graph should
not be to scale, but it should show correctly the relative magnitudes of these
frequencies at the edge and center of the plasma.

(h) Estimate thethicknessof the evanescentlayer between w; and w, (cf. previous
problem) if the rf frequency w is set equal to w; at the center.
(c) Repeat(a)and (b) forw,(max)=2w,,anddrawa conclusion about this antenna

design.

4.51. The electromagnetic ion cyclotron wave (Stix wave) is sometimes used for
radiofrequency heating of fusion plasmas. Derive the dispersion relation as

follows:

(a) Derive a wave equation in the form of Eq. [4-118] but with displacement
current neglected.

(b) Write the x and y components of this equation assuming &, = 0, k> = &2 + k2,
and kk.E, = 0.

(c) To evaluate j, = nge(v; — v,.), derive the ionequivalent of Eq. [4-98] to obtain
v;, to make a low-frequency approximation so that v, is simply the E X B drift.
(d) Insert the result of (c) into (b) to obtain two simultaneous homogeneous
equations for £, and E,, using the definition for Q, in Eq. [4-49].

(e) Set the determinant to zero and solve to lowest order in Qz to obtain

Q71 1IzTT
2 2 st SR =
= Q‘[1+c2(k3+k?)]



Chapter Five

DIFFUSION AND
RESISTIVITY

DIFFUSION AND MOBILITY IN WEAKLY IONIZED GASES

The infinite, homogeneous plasmas assumed in the previous chapter for
the equilibrium conditions are, of course, highly idealized. Any realistic
plasma will have a density gradient, and the plasma will tend to diffuse
toward regions of low density. The central problem in controlled ther-
monuclear reactions is to impede the rate of diffusion by using a magnetic
field. Before tackling the magnetic field problem, however, we shall
consider the case of diffusion in the absence of magnetic fields. A further
simplification results if we assume that the plasma is weakly ionized, so
that charge particles collide primarily with neutral atoms rather than
with one another. The case of a fully ionized plasma is deferred to a
later section, since it results in a nonlinear equation for which there are
few simple illustrative solutions. In any case, partially ionized gases are
not rare: High-pressure arcs and ionospheric plasmas fall into this
category, and most of the early work on gas discharges involved fractional
ionizations between 107 and 107°, when collisions with neutral atoms
are dominant.

The picture, then, is of a nonuniform distribution of ions and
electrons in a dense background of neutrals (Fig. 5-1). As the plasma
spreads out as a result of pressure-gradient and electric field forces, the
individual particles undergo a random walk, colliding frequently with
the neutral atoms. We begin with a brief review of definitions from
atomic theory.

5.1

(&1
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FIGURE 5-1 Diffusion of gas atoms by random
collisions.

5.1.1 Collision Parameters

When an electron, say, collides with a neutral atom, it may lose any
fraction of its initial momentum, depending on the angle at which it
rebounds. In a head-on collision with a heavy atom, the electron can
lose twice its initial momentum, since its velocity reverses sign after the
collision. The probability of momentum loss can be expressed in terms
of the equivalent cross section o that the atoms would have if they were
perfect absorbers of momentum.

In Fig. 5-2, electrons are incident upon a slab of area A and thickness
dx containing n, neutral atoms per m>. The atoms are imagined to be
opaque spheres of cross-sectional area o ; that is, every time an electron

. o G o 9 N
*——n c ©O
® - A 0o
o co 3
Q )
e ]
S
—>dx-<-_

FIGURE 5-2 Illustration of the definition of cross section.



comes within the area blocked by the atom, the electron loses all of its
momentum. The number of atoms in the slab is

n.A dx
The fraction of the slab blocked by atoms is
n,Aoc dx/A = n.o dx

If a flux T of electrons is incident on the slab, the lux emerging on the
other side is

I' =T(1 — n,odx)
Thus the change of T with distance is
dl'/dx = —n,ol
or
I'=Tye ™™ =Tge [5-1)

In a distance A, the flux would be decreased to 1/e of its initial value.
The quantity A,, is the mean free path for collisions:

An = 1/n,0 [5-2]

After traveling a distance A,,, a particle will have had a good probability
of making a collision. The mean time between collisions, for particles of
velocity v, is given by

T=Anv
and the mean frequency of collisions is
= U/Am = nov [5-3]

If we now average over particles of all velocities v in a Maxwellian
distribution, we have what is generally called the collision frequency v:

vV =n,00 [5-4]

Diffusion Parameters

The fluid equation of motion including collisions is, for any species,

d
mn— = mn[—v+ (v V)v] =+enE —Vp — mnvv [5-5]

5.1.2
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where again the = indicates the sign of the charge. The averaging
process used to compute v is such as to make Eq. [5-3] correct; we need
not be concerned with the details of this computation. The quantity »
must, however, be assumed to be a constant in order for Eq. [5-3] to be
useful. We shall consider a steady state in which dv/at = 0. If v is
sufficiently small (or v sufhiciently large), a fluid element will not move
into regions of different E and Vp in a collision time, and the convective
derivative dv/dt will also vanish. Setting the left-hand side of Eq. [53-3]
to zero, we have, for an isothermal plasma,

1
v=——(xenE - KT Vn)
mny
[5-6]

The coefhicients above are called the mobility and the diffusion coefficient:

w=|q|/mv| Mobility (5-7]

D= KT/mv Diffusion coefficient [5-8]

These will be different for each species. Note that D is measured in
m®/sec. The transport coefficients . and D are connected by the Einstein
relation :

w =|q|D/KT (5-9]

With the help of these definitions, the flux I'; of the jth species can be
written

I =nv;=xunE—D;Vn {5-10)

Fick’s law of diffusion is a special case of this, occurring when either
E = 0 or the particles are uncharged, so that u = 0:

I'=-DVn Fick's law (5-11]




This equation merely expresses the fact that diffusion is a random-walk
process, in which a net flux from dense regions to less dense regions
occurs simply because more particles start in the dense region. This flux
is obviously proportional to the gradient of the density. In plasmas, Fick’s
law is not necessarily obeyed. Because of the possibility of organized
motions (plasma waves), a plasma may spread out in a manner which is
not truly random.

DECAY OF A PLASMA BY DIFFUSION

Ambipolar Diffusion

We now consider how a plasma created in a container decays by diffusion
to the walls. Once ions and electrons reach the wall, they recombine
there. The density near the wall, therefore, is essentially zero. The Auid
equations of motion and continuity govern the plasma behavior; but if
the decay is slow, we need only keep the time derivative in the continuity
equation. The time derivative in the equation of motion, Eq. [5-3], will
be negligible if the collision frequency v is large. We thus have

M VT, =0 (5-12]
at

with T'; given by Eq. [5-10]. It is clear that if I'; and I', were not equal,
a serious charge imbalance would soon arise. If the plasma is much
larger than a Debye length, it must be quasineutral; and one would
expect that the rates of diffusion of ions and electrons would somehow
adjust themselves so that the two species leave at the same rate. How
this happens is easy to see. The electrons, being lighter, have higher
thermal velocities and tend to leave the plasma first. A positive charge
is left behind, and an electric field is set up of such a polarity as to retard
the loss of electrons and accelerate the loss of ions. The required E field
is found by setting I'; = I', = I'. From Eq. [5-10], we can write

I'=wumE—-D;Vn=—-unE—-D,Vn [5-13]

_Di—D,Vn

i [5-14]

5.2

5.2.1
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I'= i
i + Me
- il = D, = Dy = D,
i+,
_ miDe + p.D;

=i =i———=——=Vin [5-15}
i+ e

Vn — D; Vn

Vn

This is Fick’s law with a new diffusion coefhicient

- #'iDe =+ /J'eDi

D,
i & Me

[5-16]

called the ambipolar diffusion coefficient. If this is constant, Eq. [5-12]
becomes simply

an/ot = D, V’n [5-17)]
The magnitude of D, can be estimated if we take p, >» w;. That this
is true can be seen from Eq. [5-7]. Since v is proportional to the thermal

velocity, which is proportional to m~'"2, u is proportional to m "2,
Equations [5-16] and [5-9] then give

DaxDi+ﬁD,¥Di+LDi {5-18)
K. Ti
For T, = T;, we have

D, =2D; [5-19]

The effect of the ambipolar electric field is to enhance the diffusion of
ions by a factor of two, but the diffusion rate of the two species together
is primarily controlled by the slower species.

Diffusion in a Slab

The diffusion equation [5-17] can easily be solved by the method of
separation of variables. We let

n(r,t) = T()S(r) [5-20)



whereupon Eq. [5-17], with the subscript on D, understood, becomes

dT ,

Y _ prves )
Sd( [5-21]
1 dT D,

— — ==V 5.22
T & & [>-22]

Since the left side is a function of time alone and the right side a function
of space alone, they must both be equal to the same constant, which we
shall call —1/7. The function T then obeys the equation

S e 523
dt T ]
with the solution
T=Tee " (5-24]
The spatial part S obeys the equation
5 1
Vs = = — 5-25
S Dr S [5-25]
In slab geometry, this becomes
e
dx® Dr [5-26]
with the solution
x . %
S=A COSW-I—B SIHW [5-27]

We would expect the density to be nearly zero at the walls (Fig. 5-3) and
to have one or more peaks in between. The simplest solution is that with
a single maximum. By symmetry, we can reject the odd (sine) term in
Eq. [5-27]. The boundary conditions § = 0 at x = £L then requires

L o
(D’r)”' B 5
or
T= (gé)gi [5-28]
@/ D

Combining Egs. [5-20], [5-24], [5-27], and [5-28], we have

/7 RS
cos 27 [5-29]

=t
n =mnpe
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FIGURE 5-3
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Density of a plasma at various
times as it decays by diffusion
to the walls.

This is called the lowestdiffusion mode. The density distribution is a cosine,
and the peak density decays exponentially with time. The time constant
7 increases with L and varies inversely with D, as one would expect.
There are, of course, higher diffusion modes with more than one
peak. Suppose the initial density distribution is as shown by the top curve
in Fig. 5-4. Such an arbitrary distribution can be expanded in a Fourier

series:

(+ é)'rrx mmx
= ) [5-30]

n = no<Z a; cos + Y by sin —

! m L
We have chosen the indices so that the boundary condition at x = £L is
automatically satisfied. To treat the time dependence, we can try a
solution of the form

[+3 - x
(—2)—‘”+me6’ /™ sin m) [5-31]

=t/ T
n= no(Z aje " cos
7 L = L

Substituting this into the diffusion equation [5-17], we see that each
cosine term vyields a relation of the form

e —D[(Z + l)EJQ {5-32]
Tl B 2LL
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Decay of an initially nonuniform
plasma, showing the rapid disappear-
ance of the higher-order diffusion
modes.

and similarly for the sine terms. Thus the decay time constant for the
{th mode is given by

_[L]QL o
"“lu+hal D P

The fine-grained structure of the density distribution, corresponding to
large [ numbers, decays faster, with a smaller time constant 7. The
plasma decay will proceed as indicated in Fig. 5-4. First, the fine structure
will be washed out by diffusion. Then the lowest diffusion mode, the
simple cosine distribution of Fig. 5-3, will be reached. Finally, the peak
density continues to decay while the plasma density profile retains the
same shape.

Diffusion in a Cylinder

The spatial part of the diffusion equation, Eq. [5-25], reads, in cylindrical
geometry,

ﬁ + Lo + LS =0 5-34

dr®* rdr Dr .
This differs from Eq. [5-26] by the addition of the middle term, which
merely accounts for the change in coordinates. The need for the extra
term is illustrated simply in Fig. 5-5. If a slice of plasma in (A) is moved
toward larger x without being allowed to expand, the density would
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FIGURE 5-5

Motion of a plasma slab in rectilinear and cylindrical geometry, illustrating the
difference between a cosine and a Bessel function.

remain constant. On the other hand, if a shell of plasma in (B) is moved
toward larger r with the shell thickness kept constant, the density would
necessarily decrease as 1/r. Consequently, one would expect the solution
to Eq. [5-34] to be like a damped cosine (Fig. 53-6). This function is called
a Bessel function of order zero, and Eq. [5-34] is called Bessel’s equation (of
order zero). Instead of the symbol cos, it is given the symbol J,. The
function Jo(r/[D7]"'?) is a solution to Eq. [5-34], just as cos [x/(D1)""?}) is
a solution to Eq. [5-26]. Both cos kx and Jy(kr) are expressible in terms

Jo (kr)

FIGURE 5-6 The Bessel function of order zero.



of infinite series and may be found in mathematical tables. Unfortunately,
Bessel functions are not yet found in hand calculators.

To satisfy the boundary condition n =0 at r = a, we must set
a/(D'r)”2 equal to the first zero of Jo; namely, 2.4. This yields the decay
time constant 7. The plasma again decays exponentially, since the tem-
poral part of the diffusion equation, Eq. [5-23], is unchanged. We have
described the lowest diffusion mode in a cylinder. Higher diffusion
modes, with more than one maximum in the cylinder, will be given in
terms of Bessel functions of higher order, in direct analogy to the case
of slab geometry.

STEADY STATE SOLUTIONS

In many experiments, a plasma is maintained in a steady state by con-
tinuous ionization or injection of plasma to offset the losses. To calculate
the density profile in this case, we must add a source term to the equation
of continuity:

on

5 D V’n = Q(r) (5-35)

The sign is chosen so that when Q is positive, it represents a source
and contributes to positive dn/dt. In steady state, we set an/dt = 0 and
are left with a Poisson-type equation for n(r).

Constant Ionization Function

In many weakly ionized gases, ionization is produced by energetic elec-
trons in the tail of the Maxwellian distribution. In this case, the source
term Q is proportional to the electron density n. Setting Q = Zn, where
Z is the “ionization function,” we have

V2n = —(Z/D)n [5-36]

This is the same equation as that for S, Eq. [5-25]. Consequently, the
density pfofile is a cosine or Bessel function, as in the case of a decaying
plasma, only in this case the density remains constant. The plasma is
maintained against diffusion losses by whatever heat source keeps the
electron temperature at its constant value and by a small influx of neutral
atoms to replenish those that are ionized.

5.3

5.3.1
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5.3.2 Plane Source

5.3.3

FIGURE 5-7

We next consider what profile would be obtained in slab geometry if
there is a localized source on the plane x = 0. Such a source might be,
for instance, a slit-collimated beam of ultraviolet light strong enough to
ionize the neutral gas. The steady state diffusion equation is then

d™n Q6(0)

dx2=_5

[5-37]

Except at x = 0, the density must satisfy 6°n/6x = 0. This obviously has
the solution (Fig. 5-7)

n= n(,( =i %) [5-38]

The plasma has a linear profile. The discontinuity in slope at the source
is characteristic of §-function sources.

Line Source

Finally, we consider a cylindrical plasma with a source located on the
axis. Such a source might, for instance, be a beam of energetic electrons
producing ionization along the axis. Except at r = 0, the density must
satisfy

19 d
e (r—n> =0 [5-39]
r or

The solution that vanishes atr = a is

n =ngln(a/r) [5-40]

=t 0 +L

The triangular density profile
resulting from a plane source
under diffusion.
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The logarithmic density profile FIGURE5-8
resulting from a line source under
diffusion.

The density becomes infinite at r = 0 (Fig. 3-8); it is not possible to
determine the density near the axis accurately without considering the
finite width of the source.

RECOMBINATION 5.4

When an ion and an electron collide, particularly at low relative velocity,
they have a finite probability of recombining into a neutral atom. To
conserve momentum, a third body must be present. If this third body
is an emitted photon, the process is called radiative recombination. If it is
a particle, the process is called three-body recombination. The loss of plasma
by recombination can be represented by a negative source term in the
equation of continuity. It is clear that this term will be proportional to
n.n; = n>. Inthe absence of the diffusion terms, the equation of continuity
then becomes

on/ot = —an’ [5-41]

The constant of proportionality a is called the recombination coefficient
and has units of m®/sec. Equation [5-41] is a nonlinear equation for n.
This means that the straightforward method for satisfying initial and
boundary conditions by linear superposition of solutions is not available.
Fortunately, Eq. [5.41] is such a simple nonlinear equation that the
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solution can be found by inspection. It is

1 - 1
n(r,t) - no(r)

+ at [5-42]
where ny(r) is the initial density distribution. It is easily verified that this
satisfies Eq. [5-41]. After the density has fallen far below its initial value,
it decays reciprocally with time:

nocl/at (5-43]

This is a fundamentally different behavior from the case of diffusion,
in which the time variation is exponential.

Figure 5-9 shows the results of measurements of the density decay
in the afterglow of a weakly ionized H plasma. When the density is high,
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FIGURE 5-9 Density decay curves of a weakly ionized plasma under recombination and

diffusion. [From S. C. Brown, Basic Data of Plasma Physics, John Wiley and Sons,
New York, 1959.]
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A charged particle in a magnetic field will gyrate about
the same line of force until it makes a collision.

recombination, which is proportional to n®, is dominant, and the density
decays reciprocally. After the density has reached a low value, diffusion
becomes dominant, and the decay is thenceforth exponential.

DIFFUSION ACROSS A MAGNETIC FIELD

The rate of plasma loss by diffusion can be decreased by a magnetic
field; this is the problem of confinement in controlled fusion research.
Consider a weaklyionized plasmain a magnetic field (Fig. 5-10). Charged
particles will move along B by diffusion and mobility according to Eq.
[5-10], since B does not affect motion in the parallel direction. Thus we
have, for each species,

an
. =xunkE, — D— [5-44]
174

If there were no collisions, particles would not diffuse at all in the
perpendicular direction—they would continue to gyrate about the same-
line of force. There are, of course, particle drifts across B because of
electric fields or gradients in B, but these can be arranged to be parallel
to the walls. For instance, in a perfectly symmetric cylinder (Fig. 5-11),
the gradients are all in the radial direction, so that the guiding center
drifts are in the azimuthal direction. The drifts would then be harmless.

When there are collisions, particles migrate across B to the walls
along the gradients. They do this by a random-walk process (Fig. 5-12).
Whenan ion, say, collides with a neutral atom, the ion leaves the collision
traveling in a different direction. It continues to gyrate about the mag-
netic field in the same direction, but its phase of gyration is changed
discontinuously. (The Larmor radius may also change, but let us suppose
that the ion does not gain or lose energy on the average.)
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FIGURE 5-11

FIGURE 5-12

Particle drifts in a cylindrically sym-
metric plasma column do not lead to
losses.

Diffusion of gyrating par-
ticles by collisions with
neutral atoms.

The guidingcenter, therefore, shifts positionin a collision and undergoes
a random walk. The particles will d’fuse in the direction opposite Vn.
The steplength in the random walk is no longer A,,, as in magnetic-field-
free diffusion, but has instead the magnitude of the Larmor radius ry.
Diffusion across B can therefore be slowed down by decreasing ry; that
is, by increasing B.

Tosee how this comes about, we write the perpendicular component
of the fluid equation of motion for either species as follows:

d
mn%=ien(E+leB)—KTVn—mnvv=0 [5-45]



We have again assumed that the plasma is isothermal and that » is large
enough for the dv, /dt term to be negligible. The x and y components are

on
mnyv, = enkE, — KTa— * env,B
X

an
mnyv, = tenk; — KTG_ Fenv.B
)

Using the definitions of u and D, we have

Don o,
v, = 2pE, — — —x—y,
nox v
D on _ w,
vk SRl b
nady v

Substituting for v, we may solve for v,:

(1 + ") = +uE DT e,
Uy LT Wk, " 5 wc'rB w .

[}
=

where 7 = »~'. Similarly, v, is given by

D on o E KT 1 on
. (1 +w272)=i#Ex - —+0d ' 2Feit— ——

(5-46)

[5-47]

[5-48)

[5-49]

[5-50]

n ox B T ¢B n ady
The last two terms of these equations contain the E X B and diamagnetic
drifts:
B Lk,
v = 5 Vs =~ g
¥KT 1 on N KT 1 on
) = —_— v =; _—
= eB n dy = eB n ox

The first two terms can be simplified by defining the perpendicular

mobility and diffusion coefhicients:

D
”22 D,

#J'—l'f'wcf _1+w31'2

[5-51]

With the help of Egs. [5-50] and [5-51], we can write Egs. [5-48] and

[5-49] as

Vn ve + Vvp
—ap E—-D,—+—= 2
vy M A - l+(V2/wf)

[5-52]
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5.5.1

From this, it is evident that the perpendicular velocity of either
species 1s composed of two parts. First, there are usual vg and vp drifts
perpendicular to the gradients in potential and density. These drifts are
slowed down by collisions with neutrals; the drag factor 1+ (v?/w?
becomes unity when v - 0. Second, there are the mobility and diffusion
drifts parallel to the gradients in potential and density. These drifts have
the same form as in the B = 0 case, but the coefficients # and D are
reduced by the factor 1 + w?72,

The product w7 is an important quantity in magnetic confinement.
When w272 « 1, the magnetic field has little effect on diffusion. When
w27 > 1, the magnetic field significantly retards the rate of diffusion
across B. The following alternative forms for w.r can easily be verified:

T =w /v =uB = AT [5-53]

. . 2,9
In the limit w 7" » 1, we have

KT KT
Dlz— 55 = 4

2
mv w.T° mw

[5-54]

Comparing with Eq. [5-8], we see that the role of the collision frequency
v has been reversed. In diffusion parallel to B, D is proportional to v ™',
since collisions retard the motion. In diffusion perpendicular to B, D,
is proportional to v, since collisions are needed for cross-field migration.
The dependence on m has also been reversed. Keeping in mind that v
is proportional to m~"/%, we see that D om™"? while D, cm'’?
parallel diffusion, electrons move faster than ions because of their higher
thermal velocity; in perpendicular diffusion, electrons escape more slowly

because of their smaller Larmor radius.

. In

Disregarding numerical factors of order unity, we may write Eq.
[5-8] as

D=KT/mv~vir~AL/r [5-55]

This form, the square of a length over a time, shows that diffusion is a

random-walk process with a step length A,,. Equation [5-54] can be written

% 2
KTv o Ty {7y

D, = g ~Uwh 5V~ — [5-56]
mw . Vth ‘A

This shows that perpendicular diffusion is a random-walk process with
a step length r, rather than A,,.

Ambipolar Diffusion across B

Because the diffusion and mobility coefficients are anisotropic in the
presence of a magnetic field, the problem of ambipolar diffusion is not



Fel
—
r"" — f =
— B
r F. =S

ell

Parallel and perpendicular particle fluxes in a magnetic field.

as straightforward as in the B =0 case. Consider the particle Auxes
perpendicular to B (Fig. 5-13). Ordinarily, since I',, is smaller than I';,,
a transverse electric field would be set up so as to aid electron diffusion
and retard ion diffusion. However, thiselectric field can be short-circuited
by an imbalance of the fluxes along B. That is, the negative charge
resulting from I',; < T, can be dissipated by electrons escaping along
the field lines. Although the total diffusion must be ambipolar, the
perpendicular part of the losses need not be ambipolar. The ions can
diffuse out primarily radially, while the electrons diffuse out primarily
along B. Whether or not this in fact happens depends on the particular
experiment. In short plasma columns with the field lines terminating on
conducting plates, one would expect the ambipolar electric field to be
short-circuited out. Each species then diffuses radially at a different rate.
In long, thin plasma columns terminated by insulating plates, one would
expect the radial diffusion to be ambipolar because escape along B is
arduous.

Mathematically, the problem is to solve simultaneously the equations
of continuity [5-12] for ions and electrons. It is not the fluxes I'; but the
divergences V- T'; which must be set equal to each other. Separating
V - T’} into perpendicular and parallel components, we have

) d
VIi=V,  (inE, —Diy, Vo) + — (Pﬂin—Ez - D; —ﬁ)
9z 0z
[5-57]
d on
V'Fe =VL & (—lenE_L’_DeJ_ Vn) +_(—MenE1 —'Dg—>
0z 0z

The equationresulting from settingV - I'; = V - T", cannot easily be separ-
ated into one-dimensional equations. Furthermore, the answer depends
sensitively on the boundary conditions at the ends of the field lines.
Unless the plasma is so long that parallel diffusion can be neglected
altogether, there is no simple answer to the problem of ambipolar
diffusion across a magnetic field.
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5.5.2 Experimental Checks

ANODE

Whether or not a magnetic field reduces transverse diffusion in accord-
ance with Eq. [5-51] became the subject of numerous investigations. The
first experiment performed in a tube long enough that diffusion to the
ends could be neglected was that of Lehnert and Hoh in Sweden. They
used a helium positive column about 1 cm in diameter and 3.5 m long
(Fig. 5-14). In such a plasma, the electrons are continuously lost by radial
diffusion to the walls and are replenished by ionization of the neutral
gas by the electrons in the tail of the velocity distribution. These fast
electrons, in turn, are replenished by acceleration in the longitudinal
electric field. Consequently, one would expect E. to be roughly propor-
tional to the rate of transverse diffusion. Two probes set in the wall of
the discharge tube were used to measure E, as B was varied. The ratio
of E,(B) to E;(0) is shown as a function of B in Fig. 5-15. At low B fields,
the experimental points follow closely the predicted curve, calculated on
the basis of Eq. [5-52]. At a critical field B, of about 0.2 T, however, the
experimental points departed from theory and, in fact, showed an increase
of diffusion with B. The critical field B, increased with pressure, suggest-
ing that a critical value of w. was involved and that something went
wrong with the “classical” theory of diffusion when w.r was too large.
The trouble was soon found by Kadomtsev and Nedospasov in the
U.S.S.R. These theorists discovered that an instability should develop at
high magnetic fields; that is, a plasma wave would be excited by the E.
field, and that this wave would cause enhanced radial losses. The theory
correctly predicted the value of B,.. The wave, in the form of a helical
distortion of the plasma column, was later seen directly in an experiment
by Allen, Paulikas, and Pyle at Berkeley. This helical instability of the
positive column was the first instance in which “anomalous diffusion”
across magnetic fields was definitively explained, but the explanation was
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The Lehnert-Hoh experiment to check the effect of a magnetic field on
diffusion in a weakly ionized gas.
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applicable only to weakly ionized gases. In the fully ionized plasmas of
fusion research, anomalous diffusion proved to be a much tougher
problem to solve.

5.1. The electron—neutral collision cross section for 2-eV electrons in He is about
6maa, where ao = 0.53 X 10"%cm is the radius of the first Bohr orbit of the
hydrogen atom. A positive column with no magnetic field has p = 1 Torr of
He (at room temperature) and KT, =2eV.

(a) Compute the electron diffusion coefficient in m?®/sec, assuming that oo
averaged over the velocity distribution is equal to ov for 2-eV electrons.

(b) If the current density along column is 2 kA/m?® and the plasma density is
10'® m™, what is the electric field along the column?

1§75
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5.6

5-2. A weakly ionized plasma slab in plane geometry has a density distribution
n(x) = ngcos (wx/2L) ~L<x=sL

The plasma decays by both diffusion and recombination. If L =0.03m, D =
0.4 m?/sec, and @ = 107> m®/sec, at what density will the rate of loss by diffusion
be equal to the rate of loss by recombination?

5-3. A weakly ionized plasma is created in a cubical aluminum box of length L
on each side. It decays by ambipolar diffusion.

(a) Write an expression for the density distribution in the lowest diffusion mode.

(b) Define what you mean by the decay time constant and compute it if D, =
1072 m?/sec.

5-4. A long, cylindrical positive column has B = 0.2 T, KT; = 0.1 eV, and other
parameters the same as in Problem 5-1. The density profile is

n(r) = nofo(r/[D7]'?)
with the boundary condition n =0 atr =a = 1 cm. Note: Jo(z) = 0atz = 2.4,

(a) Show that the ambipolar diffusion coefficient to be used above can be approxi-
mated by D ..

(b) Neglecting recombination and losses from the ends of the column, compute
the confinement time 7.

5.5. For the density profile of Fig. 5-7, derive an expression for the peak density
ne in terms of the source strength Q and the other parameters of the problem.
(Hint: Equate the source per m? to the particle flux to the walls per m?.)

5.6. You do a recombination experiment in a weakly ionized gas in which the
main loss mechanism is recombination. You create a plasma of density 10*°m™
by a sudden burst of ultraviolet radiation and observe that the density decays
to half its initial value in 10 msec. What is the value of the recombination
coefhicient a? Give units.

COLLISIONS IN FULLY IONIZED PLASMAS

When the plasma is composed of ions and electrons alone, all collisions
are Coulomb collisions between charged particles. However, there is a
distinct difference between (a) collisions between like particles (ion-ion
or electron-electron collisions) and (b) collisions between unlike particles
(ion-electron or electron-ion collisions). Consider two identical particles
colliding (Fig. 5-16). If itis a head-on collision, the particles emerge with
their velocities reversed; they simply interchange their orbits, and the
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Shift of guiding centers of two like particles
making a 90° collision.

two guiding centers remain in the same places. The result is the same
as in a glancing collision, in which the trajectories are hardly disturbed.
The worst that can happen is a 90° collision, in which the velocities are
changed 90°in direction. The orbits after collision will then be the dashed
circles, and the guiding centers will have shifted. However, it is clear
that the “center of mass” of the two guiding centers remains stationary.
For this reason, collisions between like particles give rise to very little diffusion.
This situation is to be contrasted with the case of ions colliding with
neutral atoms. In that case, the final velocity of the neutral is of no
concern, and the ion random-walks away from its initial position. In the
case of ion-ion collisions, however, there is a detailed balance in each
collision; for each ion that moves outward, there is another that moves
inward as aresult of the collision.

When two particles of opposite charge collide, however, the situation
is entirely different (Fig. 5-17). The worst case is now the 180° collision,
in which the particles emerge with their velocities reversed. Since they
must continue to gyrate about the lines of force in the proper sense,
both guiding centers will move in the same direction. Unlike-particle
collisions give rise to diffusion. The physical picture is somewhat different
for ions and electrons because of the disparity in mass. The electrons
bounce off the nearly stationary ions and random-walk in the usual
fashion. The ions are slightly jostled in each collision and move about
as a result of frequent bombardment by electrons. Nonetheless, because
of the conservation of momentum in each collision, the rates of diffusion
are the same for ions and electrons, as we shall show.
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FIGURE 5-17

5.6.1

\ / OB

Shift of guiding centers of two
oppositely charged particles mak-
ing a 180° collision.

Plasma Resistivity

The fluid equations of motion including the effects of charged-particle
collisions may be written as follows (cf. Eq. [3-47]):

dv;
,Mnd—:=en(E+ vi XB)—Vp — V- m + P,
[5-58]

dv,
mnd—‘;=—en(E+ v, XxB)-Vp, - V-;, + P,

The terms P;, and P.; represent, respectively, the momentum gain of
the ion fluid caused by collisions with electrons, and vice versa. The
stress tensor P; has been split into the isotropic part p; and the anisotropic
viscosity tensor ;. Like-particle collisions, which give rise to stresses
within each fluid individually, are contained in ;. Since these collisions
do not give rise to much diffusion, we shall ignore the terms V - 7;. As
for the terms P,; and P;,, which represent the friction between the two
fluids, the conservation of momentum requires

P. =P, (5-59]



We can write P,; in terms of the collision frequency in the usual
manner:

P =mn(v; — v.)v. [5-60]

and similarly for P;,. Since the collisions are Coulomb collisions, one
would expect P,; to be proportional to the Coulomb force, which is
proportional to ¢” (for singly charged ions). Furthermore, P,; must be
proportional to the density of electrons n, and to the density of scattering
centers n;, which, of course, is equal to n,. Finally, P,; should be propor-
tional to the relative velocity of the two fluids. On physical grounds,
then, we can write P,; as

P,; = ne’n®(vi — v.) [5-61]

where 7 is a constant of proportionality. Comparing this with Eq. [5-60],
we see that

Ve =—n [5-62)

The constant 5 is the specific resistivity of the plasma; that this jibes with
the usual meaning of resistivity will become clear shortly.

Mechanics of Coulomb Collisions

When an electron collides with a neutral atom, no force is felt until the
electron is close to the atom on the scale of atomic dimensions; the
collisions are like billiard-ball collisions. When an electron collides with
an ion, the electron is gradually deflected by the long-range Coulomb
field of the ion. Nonetheless, one can derive an effective cross section
for this kind of collision. It will suffice for our purposes to give an
order-of-magnitude estimate of the cross section. In Fig. 5-18, an electron
of velocity vapproaches a fixed ion of charge ¢. In the absence of Coulomb
forces, the electron would have a distance of closest approach ry, called
the impact parameter. In the presence of a Coulomb attraction, the electron
will be deflected by an angle x, which is related to ro. The Coulomb force
is

F=- [5-63]

5.6.2
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FIGURE 5-18

Orbit of an electron making a Coulomb collision with an ion.

This force is felt during the time the electron is in the vicinity of the
ion; this time is roughly
T =ry/v [5-64]

The change in the electron’s momentum is therefore approximately

2
e

A(mv) = |FT| = m [5-65]

We wish to estimate the cross section for large-angle collisions, in which
x = 90°. For a 90° collision, the change in mv is of the order of muv itself.
Thus

Amv)=mv = ¢ /4meorov, ro = e2/4'n'€0mv2 [5-66]
The cross section is then
o=mri=c¢"/16meim?v? (5-67)

The collision frequency is, therefore,

v,: = nov = net/16me2m?v? (5-68]
and the resistivity is
2
m e
N = e VEls = o s [5-69]
ne 167e ymu

o 0 5 . 2
For a Maxwellian distribution of electrons, we may replace v° by KT,/m
for our order-of-magnitude estimate:
2 1/2
me m

e 5-70
(@meo (KT s

n



Equation [5-70] is the resistivity based on large-angle collisions alone.
In practice, because of the long range of the Coulomb force, small-angle
collisions are much more frequent, and the cumulative effect of many
small-angle deflections turns out to be larger than the effect of large-angle
collisions. It was shown by Spitzer that Eq. [5-70] should be multiplied
by a factor In A:

——;—QOw In A 5.71
e -
B e RT 5=
where

A=Ap/ro =12 ‘n'nAg (5-72]

This factor represents the maximum impact parameter, in units of rq as
given by Eq. [5-66], averaged over a Maxwellian distribution. The
maximum impact parameter is taken to be Ap because Debye shielding
suppresses the Coulomb field at larger distances. Although A depends
on n and KT,, its logarithm is insensitive to the exact values of the plasma
parameters. Typical values of In A are given below.

KT, (eV) n (m™?) In A
0.2 10*® 9.1 (Q-machine)
2 10'7 10.2 (lab plasma)
100 10'° 13.7 (typical torus)
10* 10%! 16.0 (fusion reactor)
10® 10%7 6.8 (laser plasma)

Itis evident that In A varies only a factor of two as the plasma parameters
range over many orders of magnitude. For most purposes, it will be
sufficiently accurate to let In A = 10 regardless of the type of plasma
involved.

Physical Meaning of

Let us suppose that an electric field E exists in a plasma and that the

current that itdrives is all carried by the electrons, which are much more
mobile than the ions. Let B =0 and KT, =0, so that VP, = 0. Then,
in steady state, the electron equation of motion [5-58] reduces to

enE =P, [5-73]

5.6.3
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Since j = en(v; — v.), Eq. [5-61] can be written
P.; = nenj (5-74]
so that Eq. [5-73] becomes
E=nj [5-75]

This is simply Ohm’s law, and the constant 5 is just the specific resistivity.
The expression for n in a plasma, as given by Eq. [5-71] or Eq. [5-69],
has several features which should be pointed out.

(A) In Eq. [5-71], we see that 5 is independent of densily (except for
the weak dependence in In A). This is a rather surprising result. since
it means that if a field E is applied to a plasma, the current j, as given
by Eq. [5-75]. is independent of the number of charge carriers. The
reason is that although j increases with n,, the frictional drag against the
ionsincreases withn;. Since n, = n;, these two effects cancel. This cancella-
tion can be seen in Egs. [5-68] and [5-69]. The collision frequency v,; is
indeed proportional to n, but the factor n cancels outin 5. A fullyionized
plasma behaves quite differently from a weaklyionized one in this respect.
In a weakly ionized plasma, we have j = —nev,, v. = —¢.E, so that j =
new . E. Since ., depends only on the density of neutrals, the current is
proportional to the plasma density n.

(B) Equation [5-71] shows that 5 is proportional to (KT.)™2. Asa
plasma is heated, the Coulomb cross section decreases, and the resistivity
drops rather rapidly with increasing temperature. Plasmas at thermonu-
clear temperatures (tens of keV) are essentially collisionless; this is the
reason so much theoretical research is done on collisionless plasmas. Of
course, there must always be some collisions; otherwise, there would not
be any fusion reactions either. An easy way to heat a plasma is simply
to pass a current through it. The I°R (or jgn) losses then turn up as an
increase in electron temperature. This is called ohmic heating. The
(KT,,)_?’/2 dependence of 7, however, does not allow this method to be
used up to thermonuclear temperatures. The plasma becomes such a
good conductor at temperatures above 1 keV that ohmic heating is a
very slow process in that range.

(C) Equation [5-68] shows that v,; varies as v >, The fast electrons
in the tail of the velocity distribution make very few collisions. The
current is therefore carried mainly by these electrons rather than by the
bulk of the electrons in the main body of the distribution. The strong
dependence on v has another interesting consequence. If an electric
field is suddenly applied to a plasma, a phenomenon known as electron
runaway can occur. A few electrons which happen to be moving fast in



the direction of —E when the field is applied will have gained so much
energy before encountering an ion that they can make only a glancing
collision. This allows them to pick up more energy from the electric field
and decrease their collision cross section even further. If E is large
enough, the cross section falls so fast that these runaway electrons never
make a collision. They form an accelerated electron beam detached from
the main body of the distribution.

Numerical Values of

Exact computations of n which take into account the ion recoil in each
collision and are properly averaged over the electron distribution were
first given by Spitzer. The following result for hydrogen is sometimes
called the Spitzer resistivity:

ZInA

m=52%x10"° ohm-m 5-76]

Here Z is the ion charge number, which we have taken to be 1 elsewhere
in this book. Since the dependence on M is weak, these values can also
be used for other gases. The subscript | means that this value of 7 is to
be used for motions parallel to B. For motions perpendicular to B, one
should use 1, given by

n.=2.0m [5-77)

This does not mean that conductivity along B is only two times better
than conductivity across B. A factor like w272 still has to be taken into
account. The factor 2.0 comes from a difference in weighting of the
various velocities in the electron distribution. In perpendicular motions,
the slow electrons, which have small Larmor radii, contribute more to
the resistivity than in parallel motions.

For KT, = 100eV, Eq. [5-76] yields

n =5%x 107" ohm-m

This is to be compared with various metallic conductors:

COPPEer . .vvvvieiannn.. 7 =2x10"%ohm-m
stainless steel .......... n =7% 107" ohm-m
MEICUTY « v vveennennnn n = 107° ohm-m

A 100-eV plasma, therefore, has a conductivity like that of stainless steel.

5.6.4
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5.7 THE SINGLE-FLUID MHD EQUATIONS

We now come to the problem of diffusion in a fully ionized plasma.
Since the dissipative term P,; contains the difference in velocities v; — v.,
it is simpler to work with a linear combination of the ion and electron
equations such that v; — v, is the unknown rather than v; or v, separately.
Up to now, we have regarded a plasma as composed of two interpenetrat-
ing fluids. The linear combination we are going to choose will describe
the plasma as a single fluid, like liquid mercury, with a mass density p
and an electrical conductivity 1/%. These are the equations of magnetohy-
drodynamics (MHD).

For a quasineutral plasma with singly charged ions, we can define the
mass density p, mass velocity v, and current density j as follows:

p=n;M+nm=n(M+m) [5-78)
1 A‘f i + e

v=-—mMv; + nmv,) = ks b inl [5-79]
p AW +m

i=emivi —n.v,) = ne(vi —v.) [5-80]

In the equation of motion, we shall add a term Mng for a gravitational
force. This term can be used to represent any nonelectromagnetic force
applied to the plasma. The ion and electron equations can be written

vy _

Mn3:—= en(E + vi X B) — Vp; + Mng + P,, (5-81]
v, .

mnW= —-en(E+v.,XB)-Vp, +mng+P, [5-82]

For simplicity, we have neglected the viscosity tensor 7, as we did earlier.
This neglect does not incur much error if the Larmor radius is much
smaller than the scale length over which the various quantities change.
We have also neglected the (v+ V)v terms because the derivation would
be unnecessarily complicated otherwise. This simplification is more
difficult to justify. To avoid a lengthy discussion, we shall simply say that
v is assumed to be so small that this quadratic term is negligible.
We now add Egs. [5-81] and [5-82], obtaining

9
na—t(fl{vl +mv,)=en(vi —v.,) XB-Vp+n(M+m)g [5-83]

The electric field has cancelled out, as have the collision terms P,; = —P,..
We have introduced the notation

P =pi tp. [5-84]



for the total pressure. With the help of Eqgs. [5-78]-[5-80], Eq. [5-83] can
be written simply

3
pa—tv=j><B—Vp+pg (5-85]

This is the single-fluid equation of motion describing the mass flow. The
electric field does not appear explicitly because the fluid is neutral. The
three body forces on the right-hand side are exactly what one would
have expected.

A less obvious equation is obtained by taking a different linear
combination of the two-fluid equations. Let us multiply Eq. [5-81] by m
and Eq. [5-82] by M and subtract the latter from the former. The result
is

d
A/[mna (vi—Ve)=en(M +m)E + en(mv; + Mv,) X B —m Vp;

+MVp, — (M +m)P, [5-86]

With the help of Egs. [5-78], [5-80], and [5-61], this becomes

A" j
fmn :_[(l) =¢pE — (M + m)nenj—m Vp, + M Vp,
e

n
+en(mv; + Mv,) XB [5-87]
The last term can be simplified as follows:
mv; + Mv, = Mv; + mv, + M(v, —vi;) + m(vi — v.)

=Bv—(11/[—m)i [5-88]
n ne

Dividing Eq. [5-87] by ep, we now have

1 [Mmn 9 (]
E+v><B—nj=;16 5(%)+(M—m)jxB+mVp;—MVpe]

[5-89]
The 9/9¢ term can be neglected in slow motions, where inertial (i.e.,
cyclotron frequency) effects are unimportant. In the limit m/M - 0, Eq.

[5-89] then becomes

1
E+va=nj+€—n(ij—Vpe) [5-90]
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This is our second equation, called the generalized Ohm’s law. It describes
the electrical properties of the conducting fluid. The j X B term is called
the Hall current term. It often happens that this and the last term are
small enough to be neglected; Ohm'’s law is then simply

E+vXxXB=17j [5-91]

Equations of continuity for mass p and charge o are easily obtained
from the sum and difference of the ion and electron equations of
continuity. The set of MHD equations is then as follows:

av
p—=ixB-Vp+pg  [585

at

E+vxB =17j [5-91]
ap
—+V-(pv)=0 [5-92]
at

do

—+V.j3=0 5-93

Py ) [ ]

Together with Maxwell’s equations, this set is often used to describe the
equilibrium state of the plasma. It can also be used to derive plasma
waves, but it is considerably less accurate than the two-fluid equations
we have been using. For problems involving resistivity, the simplicity of
the MHD equations outweighs their disadvantages. The MHD equations
have been used extensively by astrophysicists workingin cosmic electrody-
namics, by hydrodynamicists working on MHD energy conversion, and
by fusion theorists working with complicated magnetic geometries.

DIFFUSION IN FULLY IONIZED PLASMAS

In the absence of gravity, Eqgs. [5-85] and [5-91] for a steady state plasma
become

jxB=Vp (5-94]

E+ vXB=nj [5-95]
The parallel component of the latter equation is simply

Ey = nyjy



which is the ordinary Ohm’s law. The perpendicular componentis found
by taking the cross-product with B:

EXB+ (v, xB)xB=7n,jXxB=n,Vp
EXB—VJ_BQ=nJ,Vp

_EXB_E

3% g Vp [5-96]

Vi

The first term is just the E X B drift of both species together. The second
term is the diffusion velocity in the direction of —Vp. For instance, in an
axisymmetric cylindrical plasma in which E and Vp are in the radial
direction, we would have

E, M. 9p

Vg = —— v, =——%— [5-97]

The flux associated with diffusion is

n.n(KT; + KT,)
— e
This has the form of Fick’s law. Eq. [5-11], with the diffusion coefhcient

Vn [5-98]

,=nv,=

_nuniIKT

5 5-99
B2 [5-99]

L

This is the so-called “classical” diffusion coefhcient for a fully ionized gas.

Note that D, is proportional to 1/B%, just as in the case of weakly
ionized gases. This dependence is characteristic of classical diffusion and
can ultimately be traced back to the random-walk process with a step
length r;. Equation [5-99], however, differs from Eq. [5-54] for a partially
ionized gas in three essential ways. First, D, is nol a constant in a fully
ionized gas; it is proportional to n. Thisis because the density of scattering
centers is not fixed by the neutral atom density but is the plasma density
itself. Second, since n is proportional to (KT)™%2, D, decreases with
increasing temperature in a fully ionized gas. The opposite is true in a
partially ionized gas. The reason for the difference is the velocity depen-
dence of the Coulomb cross section. Third, diffusion is automatically
ambipolar in a fully ionized gas (as long as like-particle collisions are
neglected). D, in Eq. [5-99] is the coefhcient for the entire fluid; no
ambipolar electric field arises, because both species diffuse at the same
rate. This is a consequence of the conservation of momentum in ion-
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5.9.1

electron collisions. This point is somewhat clearer if ones uses the two-
fluid equations (see Problem 5-15).

Finally, we wish to point out that there is no transverse mobility in a
fully ionized gas. Equation [5-96) for v, contains no component along
E which depends on E. If a transverse E field is applied to a uniform
plasma, both species drift together with the E X B velocity. Since there
is no relative drift between the two species, they do not collide, and there
is no drift in the direction of E. Of course, there are collisions due to
thermal motions, and this simple result is only an approximate one. It
comes from our neglect of (a) like-particle collisions, (b) the electron
mass, and (c) the last two terms in Ohm's law, Eq. [5-90].

SOLUTIONS OF THE DIFFUSION EQUATION
Since D is not a constant in a fully ionized gas, let us define a quantity
A which is constant:
A =nKT/B? [5-100]
We have assumed that KT and B are uniform, and that the dependence
of i on n through the In A factor can be ignored. For the case T; = T,
we then have
D, =2nA [5-101]
The equation of continuity [5-92] can now be written
an/at =V - (D, Vn)=A V- (2n Vn)
an/at = A Vn? [5-102]

This is a nonlinear equation for n, for which there are very few simple
solutions.

Time Dependence

If we separate the variables by letting
n=T(@)S(r)

we can write Eq. [5-102] as

Lo e
s —==V§" == 5-103
a5 = -



where —1/7 is the separation constant. The spatial part of this equation 189
is difficult to solve, but the temporal part is the same equation that we DiﬂIgSiQ" and
encountered in recombination, Eq. [5-41]. The solution, therefore, is ESREs

.
T,

ate [5-104]

N~

'S
T

At large times ¢, the density decays as 1/¢, as in the case of recombination.
This reciprocal decay is what would be expected of a fully ionized plasma
diffusing classically. The exponential decay of a weakly ionized gas is a
distinctly different behavior.

Time-Independent Solutions 5.9.2

There is one case in which the diffusion equation can be solved simply.
Imagine a long plasma column (Fig. 5-19) with a source on the axis which
maintains a steady state as plasma is lost by radial diffusion and recombi-
nation. The density profile outside the source region will be determined
by the competition between diffusion and recombination. The density
falloff distance will be short if diffusion is small and recombination is
large, and will be long in the opposite case. In the region outside the
source, the equation of continuity is

—A Vn?=—an? [5-105]

This equation is linear in n2 and can easily be solved. In cylindrical
geometry, the solutionis a Bessel function. In plane geometry, Eq. [5-105]
reads

n [5-106]

Diffusion of a fully ionized cylindrical plasma across a magnetic field. FIGURE 5-19
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with the solution
n?= n(?)exp [—(a/A)]/Qx] [5-107]
The scale distance is
[ =(4/a)’? [5-108]

Since A changes with magnetic field while @ remains constant, the change
of [ with B constitutes a check of classical diffusion. This experiment
was actually tried on a Q-machine, which provides a fully ionized plasma.
Unfortunately, the presence of asymmetric E X B drifts leading to
another type of loss—by convection—made the experiment inconclusive.

Finally, we wish to point out a scaling law which is applicable to any
fully ionized steady state plasma maintained by a constant source Q in
a uniform B field. The equation of continuity then reads

—A Vn® = —nKT V' n®?/B>=Q [5-109]

Since n and B occur only in the combination n/B, the density profile
will remain unchanged as B is changed, and the density itself will increase
linearly with B:

n oCB [5-110]

One might have expected the equilibrium density n to scale as B>, since
D, << B % but one must remember that D, is itself proportional to n.

BOHM DIFFUSION AND NEOCLASSICAL DIFFUSION

Although the theory of diffusion via Coulomb collisions had been known
for a long time, laboratory verification of the 1/B* dependence of D,
in a fully ionized plasma eluded all experimenters until the 1960s. In
almost all previous experiments, D, scaled as B ~! rather than B _9, and
the decay of plasmas was found to be exponential, rather than reciprocal,
with time. Furthermore, the absolute value of D, was far larger than
that given by Eq. [5-99]. This anomalously poor magnetic confinement
was first noted in 1946 by Bohm, Burhop, and Massey, who were
developing a magnetic arc for use in uranium isotope separation. Bohm
gave the semiempirical formula

D, =— = Dg [5-111]



This formula was obeyed in a surprising number of different experi-
ments. Diffusion following this law is called Bohm diffusion. Since Djy is
independent of density, the decay is exponential with time. The time
constant in a cylindrical column of radius R and length L can be estimated
as follows:

_ N nwR’L _ nR
T T dN/dt  T,2mRL 2T,

where N is the total number of ion-electron pairs in the plasma. With
the flux I, given by Fick’s law and Bohm’s formula, we have

o

nR nR R”
T = =~ =]
2Dg dnfdr 2Dgn/R 2Dy

=T [5-112]

The quantity 7 is often called the Bohm time.

Perhaps the most extensive series of experiments verifying the Bohm
formula was done on a half-dozen devices called stellarators at Princeton.
A stellarator is a toroidal magnetic container with the lines of force
twisted so as to average out the grad-B and curvature drifts described
in Section 2.3. Figure 5-20 shows a compilation of data taken over a
decade on many different types of discharges in the Model C Stellarator.
The measured values of 7 lie near a line representing the Bohm time
rp. Close adherence to Bohm diffusion would have serious consequences
for the controlled fusion program. Equation [5-111] shows that Dy
increases, rather than decreases, with temperature, and though it
decreases with B, it decreases more slowly than expected. In absolute
magnitude, Dy is also much larger than D ;. For instance, for a 100-eV
plasma in 1-T field, we have

~ 1 .(105(16x107")
BT16 (1.6 x1079)(1)

=6.25m"/sec

If the density is 10'° m™, the classical diffusion coefficient is

_2nKTn. _ (2)(10'9)(10%)(1.6 x 10'9)

L= B2 (1)2

(2.0)(5.2 x 10°)(10)

=(320)(1.04 % 10°°) =3.33x 10™* m?/sec

The disagreement is four orders of magnitude.
Several explanations have been proposed for Bohm diffusion. First,
there is the possibility of magnetic field errors. In the complicated
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FIGURE 5-20
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Summary of confinement time measurements taken on various types of dis-
charges in the Model C Stellarator, showing adherence to the Bohm diffusion
law. [Courtesy of D. J. Grove, Princeton University Plasma Physics Laboratory,
sponsored by the U.S. Atomic Energy Commission.]

geometries used in fusion research, it is not always clear that the lines
of force either close upon themselves or even stay within the chamber.
Since the mean free paths are so long, only a slight asymmetry in the
magnetic coil structure will enable electrons to wander out to the walls
without making collisions. The ambipolar electric field will then pull the
ions out. Second, there is the possibility of asymmetric electric fields.
These can arise from obstacles inserted into the plasma, from asym-
metries in the vacuum chamber, or from asymmetries in the way the
plasma is created or heated. The dc E x B drifts then need not be parallel
to the walls, and ions and electrons can be carried together to the walls
by E X B convection. The drift patterns, called convective cells, have been
observed. Finally, thereis the possibility of oscillating electric fields arising



from unstable plasma waves. If these fluctuating fields are random, the
E x B drifts constitute a collisionless random-walk process. Even if the
oscillating field is a pure sine wave, it can lead to enhanced losses because
the phase of the E X B drift can be such that the drift is always outward
whenever the fluctuation in density is positive. One may regard this
situation as a moving convective cell pattern. Fluctuating electric fields
are often observed when there is anomalous diffusion, butin many cases,
it can be shown that the fields are not responsible for all of the losses.
All three anomalous loss mechanisms may be present at the same time
in experiments on fully ionized plasmas.

The scaling of Dy with KT, and B can easily be shown to be the
natural one whenever the losses are caused by E X B drifts, either station-
ary or oscillating. Let the escape flux be proportional to the E X B drift
velocity:

I'l =nv,<nE/B [5-113]

Because of Debye shielding, the maximum potential in the plasma is
given by

ePmax = KT, [5-114]

If R is a characteristic scale length of the plasma (of the order of its
radius), the maximum electric field is then
=l ¢max = KT

Emax"" =3 5-115
R eR [ ]

This leads to a flux I, given by

n KT, KT,
Bk

FJ_*’)’E eB ¢eB

Vn = -D3gVn [5-116]

where vy is some fraction less than unity. Thus the fact that Dy is
proportionalto KT,/eB isnosurprise. The value y = ichas no theoretical
justification but is an empirical number agreeing with most experiments
to within a factor of two or three.

Recent experiments on toroidal devices have achieved confinement
times of order 1007g. This was accomplished by carefully eliminating
oscillations and asymmetries. However, in toroidal devices, other effects
occur which enhance collisional diffusion. Figure 5-21 shows a torus with
helical lines of force. The twist is needed to eliminate the unidirectional
grad-B and curvature drifts. As a particle follows a line of force, it sees
a larger | B| near the inside wall of the torus and a smaller | B| near the
outside wall. Some particles are trapped by the magnetic mirror effect
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FIGURE 5.21 A banana orbit of a particle confined in the twisted magnetic field of
a toroidal confinement device. The “orbit” is really the locus of points
at which the particle crosses the plane of the paper.

BANANA DIFFUSION

MODIFIED
PLATEAU CLASSICAL
REGION DIFFUSION

FIGURE 5-22 Behavior of the neoclassical diffusion coefficient with
collision frequency v.

and do not circulate all the way around the torus. The guiding centers
of these trapped particles trace out banana-shaped orbits as they make
successive passes through a given cross section (Fig. 5-21). As a particle
makes collisions, it becomes trapped and untrapped successively and
goes from one banana orbit to another. The random-walk step length
is therefore the width of the banana orbit rather than r., and the
“classical” diffusion coefhcient is increased. This is called nreoclassical
diffusion. The dependence of D, on v is shown in Fig. 5-22. In the
region of small v, banana diffusion is larger than classical diffusion. In
the region of large v, there is classical diffusion, but it is modified by



currents along B. The theoretical curve for neoclassical diffusion has
been observed experimentally by Ohkawa at La Jolla, California.

5-7. Show that the mean free path A,; for electron-ion collisions is proportional
to T2

5-8. A Tokamak is a toroidal plasma container in which a current is driven in
the fully ionized plasma by an electric field applied along B (Fig. P5-8). How
many V/m must be applied to drive a tetal current of 200 kA in a plasma with
KT, =500eV and a cross-sectional area of 75 cm®?

5-9. Suppose the plasma in a fusion reactor is in the shape of a cylinder 1.2 m
in diameter and 100 m long. The 5-T magnetic field is uniform except for short
mirror regions at the ends, which we may neglect. Other parameters are KT; =
20keV, KT, = 10keV, and n = 10*' m™ (at r = 0). The density profile is found
experimentally to be approximately as sketched in Fig. P5-9.

(a) Assuming classical diffusion, calculate D, at r = 0.5 m.

(b) Calculate dN/dt, the total number of ion-electron pairs leaving the central
region radially per second.

50 50

0 r (cm)

[ p——
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(c) Estimate the confinement time r by r = —N/(dN/dt). Note: a rough estimate
is all that can be expected in this type of problem. The profile has obviously
been affected by processes other than classical diffusion.

5.10. Estimate the classical diffusion time of a plasma cylinder 10 ¢cm in radius,
withn =102 m™> KT, =KT,=10keV, B =5T.

5.11. A cylindrical plasma column has a density distribution
n=ne(l —r?/a®

where a = 10cm and n,=10""m™. If KT, =100eV, KT, = 0, and the axial
magnetic field Bo is 1 T, what is the ratio between the Bohm and the classical
diffusion coefficients perpendicular to By?

5-12. A weakly ionized plasma can still be governed by Spitzer resistivity if
v; » v.,, where v,, is the electron-neutral collision frequency. Here are some
data for the electron-neutral momentum transfer cross section o, in square
angstroms (A2):

E=2ev E=10eV

Helium 6.3 4.1
Argon 25 13.8

For singly ionized He and A plasmas with KT, = 2 and 10 eV (4 cases), estimate
the fractional ionization f = n;/(ne + n;) at which v,; = v,,, assuming that the value
of av(T.) can be crudely approximated by o (E)|v|(E), where E = KT,. (Hint:
For v,,, use Eq. [7-11]; for »,;, use Eqgs. [5-62] and [5-76].

5-13. The plasma in a toroidal stellarator is ohmically heated by a current along
B of 10> A/m?. The density is uniform at n = 10'*m™ and does not change.
The Joule heat 17 goes to the electrons. Calculate the rate of increase of KT, in
eV/wsec at the time when K7, = 10 eV.

5-14. In a 6-pinch, a large current is discharged through a one-turn coil. The
rising magnetic field inside the coil induces a surface current in the highly
conducting plasma. The surface currentis opposite in direction to the coil current
and hence keeps the magnetic field out of the plasma. The magnetic field pressure
between the coil and the plasma then compresses the plasma. This can work
only if the magnetic field does not penetrate into the plasma during the pulse.
Using the Spitzer resistivity, estimate the maximum pulse length for a hydrogen
8-pinch whose initial conditions are XT, = 10 eV, n = 10> m~>, r = 2 cm. if the
field is to penetrate only 1/10 of the way to the axis.

5-15. Consider an axisymmetric cylindrical plasma with E = E,f, B = Bz, and
Vp; = Vp. = top/ar. If we neglect the (v - V)vterm, which is tantamountto neglect-
ing the centrifugal force, the steady state two-fluid gquations can be written in
the form

en(E+v; X B)— Vp; — eann(vi -v,)=0

—en(E+v, XxB)— Vp, + e‘zngn(v,- -v,)=0



(a) From the § components of these equations, show that v, = v,,.
(b) From the r components, show that vj, = vg + vp (J = i. e).

(c) Find an expression for v;, showing that it does not depend on E,.

5-16. Use the single-fluid MHD equation of motion and the mass continuity
equation to calculate the phase velocity of an ion acoustic wave in an unmagnet-
ized, uniform plasma with T, » T..

5-17 Calculate the resistive damping of Alfvén waves by deriving the dispersion
relation from the single-fluid equations [5-85]and [5-91] and Maxwell's equations
[4-72] and [4-77). Linearize and neglect gravity, displacement current, and Vp.

(a) Show that

w® (BS . )
— =€l — —iwn
k* Po

(b) Find an explicit expression for Im (k) when w is real and 7 is small.

5-18. If a cylindrical plasma diffuses at the Bohm rate, calculate the steady state
radial density profile n(r), ignoring the fact that it may be unstable. Assume that
the density is zero at r = 20 and has a value nq at r = r,.

5.19. A cylindrical column of plasmain a uniform magnetic field B = B,z carries
a uniform current density j = j.Z, where z is a unit vector parallel to the axis of
the cylinder.

(a) Calculate the magnetic field B(r) produced by this plasma current.

(b) Write an expression for the grad-B drift of a charged particle with vy = 0 in
terms of B., j., 7, v, ¢, and m. You may assume that the field calculated in (a)
is small compared to B, (but not zero).

(c) If the plasma has electrical resistivity, there is also an electric field E = E. z.
Calculate the azimuthal electron drift due to this field, taking into account the

helicity of the B field.

(d) Draw a diagram showing the direction of the drifts in (b) and (c) for both
ions and electrons in the (r, §) plane.
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Chapter Six

EQUILIBRIUM
AND STABILITY

INTRODUCTION

If we look only at the motions of individual particles. it would be easy
to design a magnetic field which will confine a collisionless plasma. We
need only make sure that the lines of force do not hit the vacuum wall
and arrange the symmetry of the system in such a way that all the particle
drifts vg, vy, and so forth are parallel to the walls. From a macroscopic
fluid viewpoint, however, it is not easy to see whether a plasma will be
confined in a magnetic field designed to contain individual particles. No
matter how the external fields are arranged, the plasma can generate
internal fields which affect its motion. For instance, charge bunching can
create E fields which can cause E x B drifts to the wall. Currents in the
plasma can generate B fields which cause grad-B drifts outward.

We can arbitrarily divide the problem of confinement into two parts:
the problem of equilibrium and the problem of stability. The difference
between equilibrium and stability is best illustrated by a mechanical
analogy. Figure 6-1 shows various cases of a marble resting on a hard
surface. An equilibrum is a state in which all the forces are balanced, so
that a time-independent solution is possible. The equilibrium is stable
or unstable according to whether small perturbations are damped or
amplified. In case (F), the marble is in a stable equilibrium as long as it
is not pushed too far. Once it is moved beyond a threshold, it is in an
unstable state. This is called an “explosive instability.” In case (G), the
marble is in an unstable state, but it cannot make very large excursions.

6.1
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FIGURE 6-1 Mechanical analogy of various types of equlibrium.



Such an instability is not very dangerous if the nonlinear limit to the
amplitude of the motion is small. The situation with a plasma is, of
course, much more complicated than what is seen in Fig. 6-1; to achieve
equilibrium requires balancing the forces on each fluid element. Of the
two problems, equilibrium and stability, the latter is easier to treat. One
can linearize the equations of motion for small deviations from an
equilibrium state. We then have linear equations, just as in the case of
plasma waves. The equilibrium problem, on the other hand, is a nonlinear
problem like that of diffusion. In complex magnetic geometries, the
calculation of equilibria is a tedious process.

HYDROMAGNETIC EQUILIBRIUM

Although the general problem of equilibrium is complicated, several
physical concepts are easily gleaned from the MHD equations. For a
steady state with /8¢t = Oand g = 0, the plasma must satisfy (cf. Eq. [5-85])

Vp =jxB [6-1]
and
V X B = poj (6-2]

From the simple equation [6-1], we can already make several observa-

tions.
(A) Equation [6-1] states that there is a balance of forces between

the pressure-gradient force and the Lorentz force. How does this come
about? Consider a cylindrical plasma with Vp directed toward the axis
(Fig. 6-2). To counteract the outward force of expansion, there must be
an azimuthal current in the direction shown. The magnitude of the
required current can be found by taking the cross product of Eq. [6-1]
with B:

BxV v
3= B2 P = (KT; + KT,)B%2 [6-3]

This is just the diamagnetic current found previously in Eq. [3-69]! From
a single-particle viewpoint, the diamagnetic current arises from the
Larmor gyration velocities of the particles, which do not average to zero
when there i1s a density gradient. From an MHD fluid viewpoint, the
diamagnetic current is generated by the Vp force across B; the resulting
current is just sufficient to balance the forces on each element of fluid
and stop the motion.

6.2
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FIGURE 6-2 The j x B force of the diamagnetic cur-
rent balances the pressure-gradient
force in steady state.

(B) Equation [6-1] obviously tells us that j and B are each perpen-
dicular to Vp. This is not a trivial statement when one considers that the
geometry may be very complicated. Imagine a toroidal plasma in which
there is a smooth radial density gradient so that the surfaces of constant
density (actually, constant p) are nested tori (Fig. 6-3). Since j and B are
perpendicular to Vp, they must lie on the surfaces of constant p. In
general, the lines of force and of current may be twisted this way and
that, but they must not cross the constant-p surfaces.

FIGURE 6-3 Both the j and B vectors lie on constant-pressure surfaces.
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Expansion of a plasma streaming into a mirror.

(C) Consider the component of Eq. [6-1] along B. It says that
aplas =0 [6-4)

where s is the coordinate along a line of force. For constant KT, this
means that in hydromagnetic equilibrium the density is constant along
a line of force. At first sight, it seems that this conclusion must be in
error. For, consider a plasma injected into a magnetic mirror (Fig. 6-4).
As the plasma streams through, following the lines of force, it expands
and then contracts; and the density is clearly not constant along a line
of force. However, this situation does riot satisfy the conditions of a static
equilibrium. The (v * V)v term, which we neglected along the way, does
not vanish here. We must consider a static plasma with v= 0. In that
case, particles are trapped in the mirror, and there are more particles
trapped near the midplane than near the ends because the mirror ratio
is larger there. This effect just compensates for the larger cross section
at the midplane, and the net result is that the density is constant along
a line of force.

THE CONCEPT OF g

We now substitute Eq. [6-2] into Eq. [6-1] to obtain

Vb =uo (VXB)XB=pus'[(B:V)B-3VB’| [6-5]
or
B? 1
V(p " —) -—(B-V)B (6-61
2u, Ho

In many interesting cases, such as a straight cylinder with axial field,
the right-hand side vanishes; B does not vary along B. In many other

FIGURE 6-4

6.3
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FIGURE 6-5

In a finite-3 plasma, the diamagnetic current
significantly decreases the magnetic field,
keeping the sum of the magnetic and particle
pressures a constant.

cases, the right-hand side 1s small. Equation [6-6] then says that

2
p + — = constant [6-7)
2uo
Since B?/2u, is the magnetic field pressure, the sum of the particle
pressure and the magnetic field pressure is a constant. In a plasma with
a density gradient (Fig. 6-5), the magnetic field must be low where the
density is high, and vice versa. The decrease of the magnetic field inside
the plasma is caused, of course, by the diamagnetic current. The size of
the diamagnetic effect is indicated by the ratio of the two terms in Eq.
[6-7]). This ratio is usually denoted by B:

SnkT Particle pressure

g = [6-8]

B?/2u0 a Magnetic field pressure
Up to now we have implicitly considered low-B plasmas, in which 8 is
between 1072 and 107°. The diamagnetic effect, therefore, is very small.
This is the reason we could assume a uniform field By in the treatment
of plasma waves. If B is low, it does not matter whether the denominator
of Eq. [6-8] is evaluated with the vacuum field or the field in the presence
of plasma. If B is high, the local value of B can be greatly reduced by
the plasma. In that case, it is customary to use the vacuum value of B



in the definition of B. High-B plasmas are common in space and MHD
energy conversion research. Fusion reactors will have to have 8 well in
excess of 1% in order to be economical, since the energy produced is
proportional to n®, while the cost of the magnetic container increases
with some power of B.

In principle, one can have a 8 = 1 plasma in which the diamagnetic
current generates a field exactly equal and opposite to an externally
generated uniform field. There are then two regions: a region of plasma
without field, and a region of field without plasma. If the external field
lines are straight, this equilibrium would likely be unstable, since it is
like a blob of jelly held together with stretched rubber bands. It remains
to be seen whether a 8 = 1 plasma of this type can ever be achieved. In
some magnetic configurations, the vacuum field has a null inside the
plasma; the local value of 8 would then be infinite there. This happens,
for instance, when fields are applied only near the surface of a large
plasma. It is then customary to define B as the ratio of maximum particle
pressure to maximum magnetic pressure; in this sense, it is not possible
for a magnetically confined plasma to have 8 > 1.

DIFFUSION OF MAGNETIC FIELD INTO A PLASMA

A problem which often arises in astrophysics is the diffusion of a magnetic
field into a plasma. If there is a boundary between a region with plasma
but no field and a region with field but no plasma (Fig. 6-6), the regions
will stay separated if the plasma has no resistivity, for the same reason
that flux cannot penetrate a superconductor. Any emf that the moving
lines of force generate will create an infinite current, and this is not
possible. As the plasma moves around, therefore, it pushes the lines of

B ONLY
© © 6 0 © © © ® © ®
® © © o ©°9 4 Gg © 0,4

T 77 777

PLASMA ONLY

In a perfectly conducting plasma, regions of plasma and magnetic field can
be separated by a sharp boundary. Currents on the surface exclude the field
from the plasma.

6.4
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force and can bend and twist them. This may be the reason for the
filamentary structure of the gas in the Crab nebula. If the resistivity is
finite, however, the plasma can move through the field and vice versa.
This diffusion takes a certain amount of time, and if the motions are
slow enough, the lines of force need not be distorted by the gas motions.
The diffusion time is easily calculated from the equations (cf. Eq. [5-91))

VXE=—-B [6-9]
E+vXxB =nj [6-10]

For simplicity, let us assume that the plasma is at rest and the field lines
are moving into it. Then v =0, and we have

dB/ot = -V X nj [6-11]
Since j is given by Eq. [6-2], this becomes
oB 5
. ' 9yx(VxB)= -2 [V(V-B)-V°B] (6-12]
ot Mo Mo
Since V+ B = 0, we obtain a diffusion equation of the type encountered
in Chapter 3:
iB o
ek V'B [6-13]
at Ko

This can be solved by the separation of variables, as usual. To get a
rough estimate, let us take L to be the scale length of the spatial variation
of B. Then we have

g = #:LQ (6-14]
B=B,e" [6-15]

where
T =wol?/m e

This is the characteristic time for magnetic field penetration into a
plasma.

The time 7 can also be interpreted as the time for annihilation of
the magnetic field. As the field lines move through the plasma, the
induced currents cause ohmic heating of the plasma. This energy comes
from the energy of the field. The energy lost per m® in a time 7 is 5j°7.
Since

toj =VXB=

e~

[6-17]



from Maxwell’sequation with displacement current neglected, the energy
dissipation is

Bs?ud® B® B?
nj°r = n( ) B = - 2(——) (6-18]
wol n Ko 2u0

Thus 7 is essentially the time it takes for the field energy to be dissipated
into Joule heat.

6-1. Suppose that an electromagnetic instability limits 8 to (m/M)'® in a D-D
reactor. Let the magnetic field be limited to 20 T by the strength of materials.
If KT, = KT; = 20 keV, find the maximum plasma density that can be contained.

6-2. In laser-fusion experiments, absorption of laser light on the surface of a
pellet creates a plasma of densityn = 10>’ m™>and temperature T, = T; = 10* eV.
Thermoelectric currents can cause spontaneous magnetic fields as high as 10* T.

(a) Show that w.r,; » | in this plasma, and hence electron motion is severely
affected by the magnetic field.

(b) Show that8 » 1, so that magnetic fields cannot effectively confine the plasma.
(¢) How do the plasma and field move so that the seemingly contradictory

conditions (a) and (b) can both be satisfied?

6-3. A cylindrical plasma column of radius a contains a coaxial magnetic field
B = B,z and has a pressure profile

p = p, cos® (mr/2a)

(a) Calculate the maximum value of p,.

(b) Using this value of p,, calculate the diamagnetic current j(r) and the total
field B(r).

(c) Show j(r), B(r), and p(r) on a graph.

(d) If the cylinder is bent into a torus with the lines of force closing upon
themselves after a single turn, this equilibrium, in which the macroscopic forces
are everywhere balanced, is obviously disturbed. Is it possible to redistribute the
pressure p(r, 8) in such a way that the equilibrium is restored?

6-4. Consider aninfinite,straight cylinder of plasma with a square density profile
created in a uniform field B, (Fig. P6-4). Show that B vanishes on the axis if
B =1, by proceeding as follows.

(a) Using the MHD equations, find j, in steady state for KT = constant.
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n(r)

0
FIGURE P6-4

6.5

(b) Using V X B = p,j and Stokes’ theorem, integrate over the area of the loop
shown to obtain

Bu — By = uUZKTJ an_ﬁirdr B.. =B,

o B(r)

(c) Do the integral by noting that dn/dr is a §-function, so that B(r) at r = a is
the average between B,. and B,.

6-5. A diamagneticloop is a device used to measure plasma pressure by detecting
the diamagnetic effect (Fig. P6-3). As the plasma is created, the diamagnetic
current increases, B decreases inside the plasma, and the Aux ® enclosed by the
loop decreases, inducing a voltage, which is then time-integrated by an RC circuit
(Fig. P6-3).

(a) Show that
I th=—NA(I>=—NJ'Bd~dS B, =B — By
loop

(b) Use the technique of the previous problem to find B,(r), but now assume
n(r) = nyexp [—(r/ro)’]. To do the integral, assume B « 1, so that B can be
approximated by B, in the integral.

(c) Show that | Vdt = $N#r2BB,, with B defined as in Eq. [6-8].

CLASSIFICATION OF INSTABILITIES

In the treatment of plasma waves, we assumed an unperturbed state
which was one of perfect thermodynamic equilibrium: The particles had



N TURNS

VOLTAGE
INDUCED

B =B, OUTSIDE PLASMA

t —» t —

Maxwellian velocity distributions, and the density and magnetic field
were uniform. In such a state of highest entropy, thereis no free energy
available to excite waves, and we had to consider waves that were excited
by external means. We now consider states that are not in perfect
thermodynamic equilibrium, although they are in equilibrium in the
sense that all forces are in balance and a time-independent solution is
possible. The free energy which is available can cause waves to be
self-excited; the equilibrium is then an unstable one. An instability is
always a motion which decreases the free energy and brings the plasma
closer to true thermodynamic equilibrium.

Instabilities may be classified according to the type of free energy
available to drive them. There are four main categories.

1. Streaming instabilities. In this case, either a beam of energetic
particles travels through the plasma, or a current is driven through the
plasma so that the different species have drifts relative to one another.
The drift energy is used to excite waves, and oscillation energy is gained
at the expense of the drift energy in the unperturbed state.

2. Rayleigh—Taylor instabilities. In this case, the plasma has a density
gradient or a sharp boundary, so that it is not uniform. In addition, an
external, nonelectromagnetic force is applied to the plasma. It is this
force which drives the instability. An analogy is available in the example
of an inverted glass of water (Fig. 6-7). Although the plane interface
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FIGURE 6-7

S T
s

/7
. i /* :
|

g

Hydrodynamic Rayleigh-~Taylor instability of a heavy fluid
supported by a light one.

between the water and air is in a state of equilibrium in that the weight
of the water is supported by the air pressure, it is an unstable equilibrium.
Any ripple in the surface will tend to grow at the expense of potential
energy in the gravitational field. This happens whenever a heavy fluid
is supported by a light fluid, as is well known in hydrodynamics.

3. Universal instabilities. Even when there are no obvious driving
forces such as an electric or a gravitational field, a plasma is not in perfect
thermodynamic equilibrium aslongasitis confined. The plasma pressure
tends to make the plasma expand, and the expansion energy can drive
an instability. This type of free energy is always present in any finite
plasma, and the resulting waves are called universal instabilities.

4. Kinetic instabilities. In fluid theory the velocity distributions are
assumed to be Maxwellian. If the distributions are in fact not Maxwellian,
there is a deviation from thermodynamic equilibrium; and instabilities
can be drived by the anisotropy of the velocity distribution. For instance,
if Ty and T, are different, an instability called the modified Harris
instability can arise. In mirror devices, there is a deficit of particles with
large v/v, because of the loss cone; this anisotropy gives rise to a “loss
cone instability.”

In the succeeding sections, we shall give a simple example of each
of these types of instabilities. Theinstabilities driven by anisotropy cannot
be described by fluid theory and a detailed treatment of them is beyond
the scope of this book.

Not all instabilities are equally dangerous for plasma confinement.
A high-frequency instability near w,, for instance, cannot affect the
motion of heavy ions. Low-frequency instabilities with w « )., however,
can cause anomalous ambipolar losses via E x B drifts. Instabilities with
o = (), do not efliciently transport particles across B but are dangerous



in mirror machines, where particles are lost by diffusion in velocity space
into the loss cone.

TWO-STREAM INSTABILITY

Asasimple example of astreaming instability, consider a uniform plasma
in which the ions are stationary and the electrons have a velocity v,
relative to the ions. That is, the observer is in a frame moving with the
“stream” of ions. Let the plasma be cold (KT, = KT; = 0), and let there
be no magnetic field (By = 0). The linearized equations of motion are
then

8v,-1
A/[no—a[— = enoE, [6-19]

av.
mno[%ﬁ- (vo - V)v“] = —engE, [6-20]

The term (v.; * V)vo in Eq. [6-20] has been dropped because we assume
vo to be uniform. The (vo - V)v, term does not appear in Eq. [6-19]
because we have taken v;o = 0. We look for electrostatic waves of the form

E, = Ee'*™ ™% [6-21]

where x is the direction of vo and k. Equations [6-19] and [6-20] become

. ie .
—sznov“ = e‘floEl vi1 = —FEx {6-22]
Mw
. : te Ex
mno(—iw + thkvg)v.y = —engE1 v, = - ———— [6-23]
mw — kU()

The velocities v;, are in the x direction, and we may omit the subscript
x. The ion equation of continuity yields

on;, k tenok
+noV:v,, =0 Ny = —Nol;] = ——
& o O Me?

[6-24]

Note that the other terms in V - (nv;) vanish because Vng = vo; = 0. The
electron equation of continuity is

anel

= +ngV:ver+ (vo VI, =0 [6-25]

(—iw + thkvo)n., + thngv,; = 0 [6-26]
kng tekn g

BP0 g ™ e — kvo)gE [6-27)

6.6
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Since the unstable waves are high-frequency plasma oscillations, we may
not use the plasma approximation but must use Poisson’s equation:

€V ' E| =e(n;; —n.) [6-28]

ikfoE

Il

1 1
enokE [ 5 + q] 6-
¢ (emokE) Mw~ m(w — kvo)” 2%y

The dispersion relation is found upon dividing by tkeoE:

1= “’['"/M+ ! ] 6.30
Wy o @ — kv0)2 [6-30]

Let us see if oscillations with real £ are stable or unstable. Upon
multiplying through by the common denominator, one would obtain a
fourth-order equation for w. If all the roots w; are real, each root would
indicate a possible oscillation

E) = Eei(k.\'—w’l)i

If some of the roots are complex, they will occur in complex conjugate
pairs. Let these complex roots be written

Wy = 0 ¥ l‘)’J [6-31]

where a and y are Re(w) and Im(w), respectively. The time dependence
is now given by

E = E'® ™% (6-32]

Positive Im(w) indicates an exponentially growing wave; negative Im(w)
indicates a damped wave. Since the roots w; occur in conjugate pairs,
one of these will always be unstable unless all the roots are real. The
damped roots are not self-excited and are not of interest.

The dispersion relation [6-30] can be analyzed without actually
solving the fourth-order equation. Let us define

x =w/w, y =kvo/w, [6-33]
Then Eq. [6-30] becomes

=M§A—J+—1§EF(x,y) [6-34]
x (x —y)

For any given value of y, we can plot F(x,y) as a function of x. This

function will have singularities at x = 0 and x = y (Fig. 6-8). The intersec-

tions of this curve with the line F(x,y) = 1 give the values of x satisfying

the dispersion relation. In the example of Fig. 6-8, there are four

intersections, so there are four real roots w;. However, if we choose a

1



0 Y X ——

The function F(x,y) in the two-stream instability, when the plasma is
stable.

1 — — — SN 2

0 y X ——

The function F(x, y) in the two-stream instability, when the plasma
is unstable.

smaller value of y, the graph would look as shown in Fig. 6-9. Now there
are only two intersections and, therefore, only two real roots. The other
two roots must be complex, and one of them must correspond to an
unstable wave. Thus, for sufficiently small kvy, the plasma is unstable.
For any given vy, the plasma is always unstable to long-wavelength
oscillations. The maximum growth rate predicted by Eq. [6-30] is, for

m/M< 1,
1/3
Im (3) =~ (ﬁ) [6-35]
w‘; 1W

Since a small value of kv, is required for instability, one can say that
for a given k&, vg has to be sufficiently small for instability. This does not
make much physical sense, since vy is the source of energy driving the

FIGURE 6-8

FIGURE 6-9
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instability. The difficulty comes from our use of the fluid equations. Any
real plasma has a finite temperature, and thermal effects should be taken
into account by a kinetic-theory treatment. A phenomenon known as
Landau damping (Chapter 7) will then occur for vo =< vy, and no instabil-
ity is predicted if vy is too small.

This “Buneman” instability, as it is sometimes called, has the follow-
ing physical explanation. The natural frequency of oscillations in the
electron fluid is w,, and the natural frequency of oscillations in the ion
fluid is Q, = (7n/1\/!)”2w,,. Because of the Doppler shift of the w, oscilla-
tions in the moving electron fluid, these two frequencies can coincide in
the laboratory frame if kv, has the proper value. The density fluctuations
of ions and electrons can then satisfy Poisson’s equation. Moreover. the
electron oscillations can be shown to have negative energy. That is to say,
the total kinetic energy of the electrons is less when the oscillation is
present than when it is absent. In the undisturbed beam, the kinetic
energy per m” is ymnovg. When there is an oscillation, the kinetic energy
is §m (no + n1)(vo + v,)°. When this is averaged over space, it turns out
to be less than %mnovg because of the phase relation between n, and v,
required by the equation of continuity. Consequently, the electron oscilla-
tions have negative energy, and the ion oscillations have positive energy.
Both waves can grow together while keeping the total energy of the
system constant. An instability of this type is used in klystrons to generate
microwaves. Velocity modulation due to E; causes the electrons to form
bunches. As these bunches pass through a microwave resonator, they
can be made to excite the natural modes of the resonator and produce
microwave power.

6-6.(a) Derive the dispersion relation for a two-stream instability occurring when
there are two cold electron streams with equal and opposite v, in a background
of fixed ions. Each stream has a density 3n,.

(b) Calculate the maximum growth rate.

6-7. A plasma consists of two uniform streams of protons with velocities +vok
and —vyX, and respective densities 31, and 3n,. There is a neutralizing electron
fluid with density n, and with vy, = 0. All species are cold, and there is no
magnetic feld. Derive a dispersion relation for streaming instabilities in this
system.

6-8. A cold electron beam of density én, and velocity u is shot into a cold plasma
of density n, at rest.



(a) Derive a dispersion relation for the high-frequency beam-plasma instability
that ensues.

(b) The maximum growth rate y,, is difficult to calculate, but one can make a
reasonable guess if § « 1 by analogy with the electron-ion Buneman instability.
Using the result given without proof in Eq. [6-35], give an expression for y,, in
terms of 6.

6-9. Let two cold, counterstreaming ion fluids have densities 3n and velocities
+v,¥ in a magnetic field B,z and a cold neutralizing electron fluid. The field B,
is strong enough to confine electrons but not strong enough to affect ion orbits.

(a) Obtain the following dispersion relation for electrostatic waves propagating
in the =¥ direction in the frequency range QO « w? < w?:

2 2 2

Q; 05 w;

Uw — kvo)® 2w + kuy)? - w—;

(b) Calculate the dispersion w(k), growth rate y(k), and the range of wave
numbers of the unstable waves.

THE “GRAVITATIONAL” INSTABILITY

In a plasma, a Rayleigh-Taylor instability can occur because the magnetic
field acts as a light fluid supporting a heavy fluid (the plasma). In curved
magnetic fields, the centrifugal force on the plasma due to particle motion
along the curved lines of force acts as an equivalent “gravitational” force.
To treat the simplest case, consider a plasma boundary lying in the y—z
plane (Fig. 6-10). Let there be a density gradient Vngin the —x direction
and a gravitational field g in the x direction. We may let KT; = KT, =0
for simplicity and treat the low-8 case, in which By is uniform. In the
equilibrium state, the ions obey the equation

Mny(vo - V)vo = envy X By + Mnog (6-36]

PLASMA
* Vno @ 2

=G

L

Y
VACUUM * . I y

A plasma surface subject to a gravitational instability.
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FIGURE 6-11

If g is a constant, vo will be also; and (vo - V)vo vanishes. Taking the cross
product of Eq. [6-36] with By, we find, as in Section 2.2,

- (6-37]
The electrons have an opposite drift which can be neglected in the limit
m/M - 0. There is no diamagneticdriftbecause KT = 0, and no E; X By
drift because Eq = 0.

If a ripple should develop in the interface as the result of random
thermal fluctuations, the drift vy will cause the ripple to grow (Fig. 6-11).
The drift of ions causes a charge to build up on the sides of the ripple,
and an electric field develops which changes sign as one goes from crest
to trough in the perturbation. As can be seen from Fig. 6-11, the E, X By
drift is always upward in those regions where the surface has moved
upward. and downward where it has moved downward. The ripple grows
as a result of these properly phased E, X By drifts.

To find the growth rate, we can perform the usual linearized wave
analysis for waves propagating in the y direction: k = k£y. The perturbed
ion equation of motion is

a
M(no + 711)[8_{("0 +vi)+(vot+vi) V(v + Vl)]

=e(ng+ny)[E, + (vo+ vy) X Bo] + M(ny+n,)g [6-38]
We now multiply Eq. [(6-36] by 1 + (n,/n0) to obtain
Mg+ n1)(vy-V)vg=e(ng+n,)voX Bo+ M(no+ n,)g [6-39]

Subtracting this from Eq. [6-38] and neglecting second-order terms, we
have

d
I’llnolig‘;l + (Vo s V)V]] = 871()(E1 + v X Bo) [6-40]

Feose, |

Physical mechanism of the gravitational instability.



Note that g has cancelled out. Information regarding g, however, is still
contained in vg. For perturbations of the form exp [i(ky — wt)], we have

M(w — kvy)vy = ie(E| + v X By) (6-41]

This is the same as Eq. [4-96] except that w is replaced by w — kv, and
electron quantitiesarereplaced byion quantities. The solution, therefore,
is given by Eq. [4-98] with the appropriate changes. For E, = 0 and

Q2> (0 — ko)’ (6-42]
the solution is

E)- ZCI) i kl’() E),
171\. = -— AR — {p—
Q. By

= — [6-43]
Bo

Vix

The latter quantity is the polarization drift in the ion frame. The corres-
ponding quantity for electrons vanishes in the limit m/M - 0. For the
electrons, we therefore have

Ve = Ey/Bo Uy =0 [6-44]
The perturbed equation of continuity for ions is

an
El—+V- (novo) + (vo* V)n, +n,V - wo

+(vi Vng+neV-vi+V-(nv)) =0 [6-45]

The zeroth-order term vanishes since vq is perpendicular to Vng, and
the n, V - vy term vanishes if vq is constant. The first-order equation is,
therefore,

—iwn, + thvon; + ving + thnovy, = 0 [6-46]

where ng = dny/dx. The electrons follow a simpler equation, since veo = 0
and v, = 0:

—iwn,; +v.ng =0 [6-47]

Note that we have used the plasma approximation and have assumed
n;; = n.;. This is possible because the unstable waves are of low frequen-
cies (this can be justified a posteriori). Equations [6-43] and [6-46] yield

w _kvo 5

. E )
(w — kvo)n; + i == n{ + ikng

=0 6-48
B, Q. B, Ete)

Equations [6-44] and [6-47] yield
PRORIL . SSTRSNY, (R TR L (6-49]

Bo BO nop
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Substituting this into Eq. [6-48), we have

w — kU()) wny

(w = kvo)n, — (n(, + kny =
1,

7
noy

kn, w — kvo)
—w =0 [6-50]

w—kv(,—(l+—
Q

« Mo
w(w — kvo) = —voQdmi/no [6-51]
Substituting for v, from Eq. [6-37]. we obtain a quadratic equation for w:
w® = kvow — g(no/no) =0 [6-52)
The solutions are
w = kv £ BhZE+ gy/ng)]'? [6-53)

There is instability if w 1s complex; that is, if
—gnb/no > 1k%vg (6-54]

From this. we see that instability requires g and n/n, to have opposite
sign. This is just the statement that the light fluid is supporting the heavy
fluid; otherwise, w is real and the plasma is stable. Since g can be used
to model the effects of magnetic field curvature, we see from this that
stability depends on the sign of the curvature. Configurations with field
lines bending in toward the plasma tend to be stabilizing, and vice versa.
For sufficiently small ¥ (long wavelength), the growth rate is given by

y =1Im (0) = [-g(no/ny))'"? [6-55]

Note that the real part of w is skvy. Since v is an ion velocity, this is a
low-frequency oscillation, as previously assumed. The factor of § is
merely a consequence of neglecting v,,. The wave is stationary in the
frame in which the density-weighted average of all the vy's is zero, which
in this case is the frame moving at {v,. The laboratory frame has no
particular significance in this case.

This instability, which has k L By, is sometimes called a “flute” insta-
bility for the following reason. In a cylinder, the waves travel in the 6
direction if the forces are in the r direction. The surfaces of constant

density then resemble fluted Greek columns (Fig. 6-12).

RESISTIVE DRIFT WAVES

A simple example of a universal instability is the resistive drift wave. In
contrast to gravitational flute modes, drift waves have a small but finite



e

A “flute” instability.

component of k along By. The constant density surfaces, therefore,
resemble flutes with a slight helical twist (Fig. 6-13). If we enlarge the
cross section enclosed by the box in Fig. 6-13 and straighten it out into
Cartesian geometry, it would appear as in Fig. 6-14. The only driving
force for the instability is the pressure gradient KT Vn, (we assume
KT = constant, for simplicity). In this case, the zeroth-order drifts (for
E, = 0) are

KT no ,
Vi0 = Vipi = Sp— [6-56]
eBU ny
KT,ny,
Ve = Vpe = — - [6-57]
eBU no

From our experience with the flute instability, we might expect drift
waves to have a phase velocity of the order of vp; or vp,. We shall show
that w/k, is approximately equal to vp..

Since drift waves have finite k., electrons can flow along By to establish
a thermodynamic equilibrium among themselves (cf. discussion of Sec-
tion 4.10). They will then obey the Boltzmann relation (Section 3.5):

ni/no=ep/KT, [6-58]

At point A in Fig. 6-14 the density is larger than in equilibrium, n, is
positive, and therefore ¢, is positive. Similarly, at point B, n; and ¢, are
negative. The difference in potential means there is an electric field E,
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FIGURE 6-13

Geometry of adrift instability in a cylinder. The region
in the rectangle is shown in detail in Fig. 6-14.

between A and B. Just as in the case of the flute instability, E, causes a
drift v; = E, x Bo/Bj in the x direction. As the wave passes by, traveling
in the y direction, an observer at point A will see n, and ¢, oscillating
in time. The drift v, will also oscillate in time, and in fact it is v; which
causes the density to oscillate. Since there is a gradient Vng in the —x
direction, the drift v, will bring plasma of different density to a fixed
observer A. A drift wave, therefore, has a motion such that the fluid
moves back and forth in the x direction although the wave travels in the
y direction.
To be more quantitative, the magnitude of v, is given by

Uix = E)'/BO = *Zk)(ﬁI/BO [6-59]

We shall assume v, does not vary with x and that k. is much less than
ky; that is, the fluid oscillates incompressibly in the x direction. Consider
now the number of guiding centers brought into 1 m® at a fixed point
A it is obviously

an,/ot = —v,,0no/0x [6-60]

This is just the equation of continuity for guiding centers, which, of
course, do not have a fluid drift vp. The term no V * v, vanishes because
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Physical mechanism of a drift wave.

of our previous assumption. The difference between the density of
guiding centers and the density of particles n; gives a correction to Eq.
[6-60] which is higher order and may be neglected here. Using Egs.
[6-59] and [6-58], we can write Eq. [6-60] as

ik
—iwn, = %n{) = —iw ;{q;_le no [6-61]
Thus we have
® KT, ng -
— = — — = Upe o
ky eBo ng o

These waves, therefore, travel with the electron diamagnetic drift velocity
and are called drift waves. This is the velocity in the y, or azimuthal,
direction. In addition, there is a component of k in the z direction. For
reasons not given here, this component must satisfy the conditions

kz < ky Uthi K w/kz &K Uthe [6-63]
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To see why drift waves are unstable, one must realize that v, is not
quite E,/ By for the ions. There are corrections due to the polarization
drift, Eq. [2-66], and the nonuniform E drift, Eq. [2-59]. The result of
these drifts is always to make the potential distribution &, lag behind
the density distribution n, (Problem 4-1). This phase shift causes v, to
be outward where the plasma has already been shifted outward, and
vice versa; hence the perturbation grows. In the absence of the phase
shift, n; and @&, would be 90° out of phase. as shown in Fig. 6-14, and
drift waves would be purely oscillatory.

The role of resistivity comes in because the field E; must not be
short-circuited by electron flow along Bo. Electron-ion collisions, together
with a long distance 3A. between crest and trough of the wave, make it
possible to have a resistive potential drop and a finite value of E;. The
dispersion relation for resistive drift waves is approximately

w®+io|(w — wy) = 0 (6-64]
where
w4 = kyp. [6-65]
and
o= k_; Qe (@cTei) (6-66]

¥

If oy is large compared with o, Eq. [6-64] can be satisfied only if w = w,.
In that case, we may replace w by w, in the first term. Solving for w, we
then obtain

w =~ w,+ (w/o) (6-67)

This shows that Im(w) is always positive and is proportional to the
resistivity n. Drift waves are, therefore, unstable and will eventually occur
in any plasma with a density gradient. Fortunately, the growth rate is
rather small, and there are ways to stop it altogether by making By
nonuniform.

Note that Eq. [6-52) for the flute instability and Eq. [6-64] for the
drift instability have different structures. In the former, the coefhicients



are real, and w is complex when the discriminant of the quadratic is
negative; thisis typical of a reactive instability. In thelatter,the coefficients
are complex, so w is always complex; this is typical of a dissipative
instability.

6-10. A toroidal hydrogen plasma with circular cross section has major radius
R =50 cm, minorradiusa =2cm,B=1T,KT,=10eV,KT;=1eV,and n, =
10" m™*. Taking n,/n) = a/2 and g = (KT, + KT;)/MR, estimate the growth
rates of the m = 1 resistive drift wave and the m = 1 gravitational flute mode.
(One can usually apply the slab-geometry formulas to cvlindrical geometry by
replacing k, by m/r, where m is the azimuthal mode number.)

THE WEIBEL INSTABILITY*

As an example of an instability driven by anisotropy of the distribution
function, we give a physical picture (due to B. D. Fried) of the Weibel
instability, in which a magnetic perturbation is made to grow. This will also
serveas an example of an electromagnetic instability. Let the ions be fixed,
and lettheelectronsbe hotter in the y direction thanin thex or:z directions.
There is then a preponderance of fast electrons in the +y directions (Fig.
6-15), butequal numbers flow up and down, so that there is no net current.
Suppose a field B = B,z coskx spontaneously arises from noise. The
Lorentz force —evx B then bends the electron trajectories as shown by
the dashed curves, with the result that downward-moving electrons

MoA 4 B A
\ 1/’ If \

Physical mechanism of the Weibel instability.

* A salute to a good friend. Erich Weibel (1925-1983).
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congregate at A and upward-moving ones at B. The resulting current
sheets j = —enyv, are phased exactly right togenerate a B field of the shape
assumed, and the perturbation grows. Though the general case requires a
kinetic treatment, the limiting case vy = vy, v« = v, = 0 can be calculated
very simply from this physical picture, yielding a growth rate y = w,v/c.



Chapter Seven

THE MEANING OF f(v)

The fAluid theory we have been using so far is the simplest description
of a plasma; it is indeed fortunate that this approximation is sufficiently
accurate to describe the majority of observed phenomena. There are
some phenomena, however, for which a fluid treatment is inadequate.
For these, we need to consider the velocity distribution function f(v) for
each species; this treatment is called kinetic theory. In fluid theory, the
dependent variables are functions of only four independent variables:
x, ¥, z, and ¢. This is possible because the velocity distribution of each
species is assumed to be Maxwellian everywhere and can therefore be
uniquely specified by only one number, the temperature T. Since col-
lisions can be rare in high-temperature plasmas, deviations from thermal
equilibrium can be maintained for relatively long times. As an example,
consider two velocity distributions f;(v.) and fs(v,) in a one-dimensional
system (Fig. 7-1). These two distributions will have entirely different
behaviors, but as long as the areas under the curves are the same, fluid
theory does not distinguish between them.

The density is a function of four scalar variables: n = n(r, ¢). When
we consider velocity distributions, we have seven independent variables:
f=f(r,v,t). By f(r,v, ), we mean that the number of particles per m>
at position r and time ¢ with velocity components between v, and v, + dv,,
vy and v, + dv,, and v, and v, + dv, is

f(x, 9, z, vy, vy, Uy, t) du, dvy dv,

7.1
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FIGURE 7-1

N

X X

Examples of non-Maxwellian distribution functions.

The integral of this is written in several equivalent ways:

n(r, t) = Jt: dv, Jidvy Ji: dv.f(r,v, t) = J::f(r, v, t)d>v

oo

= I f(r,v, t)dv [7-11

Note that dv is not a vector; it stands for a three-dimensional volume
element in velocity space. If f is normalized so that

[ce)

J f(r, v,t)dv =1 [7-21
~0

it is a probability, which we denote byﬁ Thus

f(r,v,t) =n(r, O)f(r, v, ) [7-3]

Note that f is still a function of seven variables, since the shape of the
distribution, as well as the density, can change with space and time. From
Eq.[7-2],itisclear thatf has the dimensions (m/sec)_?’; and consequently,
from Eq. [7-3], f has the dimensions sec’-m °.

A particularly important distribution function is the Maxwellian:

A

Fn = (m/20KTY*"? exp (—v*/vi) [7-4]
where

v=@2+v2+0)"  and v, =@QKT/m)"? [7-51



vz

Three-dimensional velocity space.

By using the definite integral

[e e}

J exp (—x°) dx = ar [7-6]

one easily verifies that the integral of fm over dv, dv, dv, is unity.

There are several average velocities of a Maxwellian distribution
thatarecommonlyused. In Section 1.3, we saw that the root-mean-square
velocity is given by

(0")"? = (3KT/m)'"* [7-7]

The average magnitude of the velocity | v|, or simply 7, is found as follows:

[oe]

v = I v]?(v) d*v [7-8]

Since f,, is isotropic, the integral is most easily done in spherical coordin-
ates in v space (Fig. 7-2). Since the volume element of each spherical
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7= (m/27TKT)3/2J v[exp (=v?/vi Y4mv® dv [7-9]

0

= () P4mul, I lexp (—y))y* dy (7-10]

[ ]
The definite integral has a value 5, found by integration by parts. Thus
7 =27 2y, = 2QKT/mm)"? (7-11)

The velocity component in 2 single direciion, say vy, has a different average.
Of course, 7, vanishes for an isotropic distribution; but | v,| does not:

m=ﬂv,¢]fm(v)d3v [7-12)
i 3/2 a0 —'U)2 © _v2
- o exp(T2) [ exn ()
(27TKT> J‘_w e Ut2h —0 b ‘U?h
oo _vz
X J 2v, exp( 5 ) dvuy [7-13]
0 Uth

From Eq. [7-6], each of the first two integrals has the value 7204, The
last integral is simple and has the value ¢ %. Thus we have

3/2 4 1/

lve| = (med) > 2molh, = 77 %0y = QKT/mm)'"? (7-14]

The random flux crossing an imaginary plane from one side to the other
is given by

nv [7-15)

-

Frandom = %nl Ux] =

Here we have used Eq. [7-11] and the fact that only half the particles
cross the plane in either direction. To summarize: For a Maxwellian,

Vems = (3K T/m)'"? [7.7]
[v] = 2@KT/7m)"? (7-11]
[ve] = QKT /7m)* [7-14]

7. =0 [7-16]

For an isotropicdistribution like a Maxwellian, we can define another
function g(v) which is a function of the scalar magnitude of v such that

o o]

|

g(v)dv = j_ fv)d’v (7-17)



For a Maxwellian, we see from Eq. [7-9] that

gv) = 47'rn(m/27rKT)3/2v2 exp (—=v%/vd) [7-18]
Figure 7-3 shows the difference between g(v) and a one-dimensional
Maxwellian distribution f(v,). Although f(v,) ismaximum for v, = 0, g(v)
is zero for v = 0. This is just a consequence of the vanishing of the
volume in phase space (Fig. 7-2) for v = 0. Sometimes g(v) is carelessly
denoted by f(v), as distinct from f(v); but g(v) is a different function of
its argument than f(v) is of its argument. From Eq. [7-18], it is clear that
g(v) has dimensions sec/m".

It is impossible to draw a picture of f(r, v) at a given time ¢ unless
we reduce the number of dimensions. In a one-dimensional system,
f(x,v.)can be depicted as a surface (Fig. 7-4). Intersections of that surface
with planes x = constant are the velocity distributions f (v, ). Intersections
with planes v, = constant give density profiles for particles with a given
v,. If all the curves f(v,) happen to have the same shape, a curve through
the peaks would represent the density profile. The dashed curves in Fig.
7-4 are intersections with planes f = constant; these are level curves, or
curves of constant f. A projection of these curvesontothe x-v, plane will
give a topographical map of f. Such maps are very useful for getting a
preliminary idea of how the plasma behaves; an example will be given
in the next section.

Another type of contour map can be made for f if we consider f(v)
at a given point in space. For instance, if the motion is two dimensional,
the contours of f(v., v,) will be circles if f is isotropic in v, v,. An

flv,) glv)
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FIGURE 7-4

7.2

X

A spatially varying one-dimensional distribution f(x, v,).

anisotropic distribution would have elliptical contours (Fig. 7-5). A drift-
ing Maxwellian would have circular contours displaced from the origin,
and a beam of particles traveling in the x direction would show up as a
separate spike (Fig. 7-6).

A loss conedistribution of a mirror-confined plasmacanbe represen-
ted by contours of f in v,, v space. Figure 7-7 shows how these would
look.

EQUATIONS OF KINETIC THEORY

The fundamental equation which f(r, v, t) has to satisfy is the Boltzmann
equation:

[7-19]

) F o ad
_f_*.VVf_'__i:(_f)

at m dv \dt/.
Here F is the force acting on the particles, and (3f/dt). is the time rate
of change of f due to collisions. The symbol V stands, as usual, for the

gradient in (x,y,z) space. The symbol 8/dv or V, stands for the gradient



Yy 231
Kinetic Theory

~
e V

)

Contours of constant f for a two-dimensional, anisotropic FIGURE 7-5
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Contours of constant f for a drifting Maxwellian distribution and a “beam” FIGURE 7-6
in two dimensions.
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FIGURE 7-7

Vi

Contours of constant f for a loss-cone distribution. Here vy and v, stand
for the components of v along and perpendicular to the magnetic field,
respectively.

in velocity space:
)
—=%—ty—+i— (7-20]

The meaning of the Boltzmann equation becomes clear if one
remembers that f is a function of seven independent variables. The total
derivative of f with time is, therefore

B0l . 0 dx O d)) Gfyin . G Ove.. Sl Gt wIOL dus

7-21
dt 9t odxdt dydt 9z dt dv, dt v, dt v, dt [ ]

Here, df/0t is the explicit dependence on time. The next three terms are
just v+ V£, With the help of Newton’s third law,

dv
m—=F [7-22]

dt
the last three terms are recognized as (F/m) - (3f/dv). As discussed pre-
viously in Section 3.3, the total derivative df/dt can be interpreted as the
rate of change asseen in aframe moving with the particles. The difference
is that now we must consider the particles to be moving in six-dimensional
(r,v) space; df/dt is the convective derivative in phase space. The



X

A group of points in phase
space, representing the posi-
tion and velocity coordinates
of a group of particles, retains
the same phase-space density
as it moves with time.

Boltzmann equation [7-19] simply says that df/dt is zero unless there are
collisions. That this should be truecan be seen from the one-dimensional
example shown in Fig. 7-8.

The group of particles in an infinitesimal element dx dv, at A all
have velocity v. and position x. The density of particles in this phase
space is just f(x, v, ). As time passes, these particles will move to a different
x as a result of their velocity v, and will change their velocity as a result
of the forces acting on them. Since the forces depend on x and v, only,
all the particles at A will be accelerated the same amount. After a time
t, all the particles will arrive at B in phase space. Since all the particles
moved together, the density at B will be the same as at A. If there are
collisions, however, the particles can be scattered; and f can be changed
by the term (df/at)..

In a sufhciently hot plasma, collisions can be neglected. If, further-
more, the force F is entirely electromagnetic, Eq. [7-19] takes the special
form

)
—f+v-Vf+i(E+v><B)~
ot m

¥,

7-23
av ; ]

This is called the Vliasov equation. Because of its comparative simplicity,
this is the equation most commonly studied in kinetic theory. When
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FIGURE 7-9

there are collisions with neutral atoms, the collision term in Eq. [7-19]
can be approximated by

(7-24]

(%) L=t

at T

where f, is the distribution function of the neutral atoms, and 7 is a
constant collision time. This is called a Krook collision term. It is the kinetic
generalization of the collision term in Eq. [5-5]. When there are Coulomb
colllisions, Eq. [7-19] can be approximated by

df 8 1 &

5 el ™ (f(AV))2 v (KAv Av)) [7-25]

This is called the Fokker-Planck equation; it takes into account binary
Coulomb collisions only. Here, Av is the change of velocity in a collision,
and Eq. [7-23] is a shorthand way of writing a rather complicated
expression.

The fact that df/dt is constant in the absence of collisions means
that particles follow the contours of constant f as they move around in
phase space. As an example of how these contours can be used, consider
the beam-plasma instability of Section 6.6. In the unperturbed plasma,
the electrons all have velocity vo, and the contour of constant f is a straight
line (Fig. 7-9). The function f(x, v,) is a wall rising out of the plane of
the paper at v, = vo. The electrons move along the trajectory shown.
When a wave develops, the electric field E; causes electrons to suffer

changes in v, as they stream along. The trajectory then develops a
sinusoidal ripple (Fig. 7-10). This ripple travels at the phase velocity,

0 X

Representation in one-dimensional phase space of a beam of electrons all
with the same velocity v,. The distribution function f(x, v, ) is infinite along
the line and zero elsewhere. The line is also the trajectory of individual
electrons, which move in the direction of the arrow.
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Appearance of the graph of Fig. 7-9 when a plasma wave exists in the
electron beam. The entire pattern moves to the right with the phase
velocity of the wave. If the observer goes to the frame of the wave, the
pattern would stand still, and electrons would be seen to trace the curve
with the velocity vy — vg.

-e¢1

TRAPPED FREE ELECTRON
ELECTRON ® .
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FIGURE 7-10
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The potential of a plasma wave, as seen by an electron. The pattern moves
with the velocity v,. An electron with small velocity relative to the wave would
be trapped in a potential trough and be carried along with the wave.

not the particle velocity. Particles stay on the curve as they move relative
to the wave. If E, becomes very large as the wave grows, and if there
are a few collisions, some electrons will be trapped in the electrostatic
potential of the wave. In coordinate space, the wave potential appears
as in Fig. 7-11. In phase space, f(x, v.) will have peaks wherever there is
a potential trough (Fig. 7-12). Since the contours of f are also electron
trajectories, one sees that some electrons move in closed orbits in phase
space; these are just the trapped electrons.

Electron trapping is a nonlinear phenomenon which cannot be
treated by straightforward solution of the Vlasov equation. However,
electron trajectories can be followed on a computer, and the results are

FIGURE 7-11



236
Chapter
Seven

N
N-\_/\
0\ J= D\

FIGURE 7-12

7.3

S = =y o=/ 7
| o~

“\/\\
V\_N

Electron trajectories, or contours of constant f, as seen in the wave frame, in
which the pattern is stationary. This type of diagram, appropriate for finite
distributions f(v), is easier to understand than the -function distribution of
Fig. 7-10.

often presented in the form of a plot like Fig. 7-12. An example of a
numerical result is shown in Fig. 7-13. This is for a two-stream instability
in which initially the contours of f have a gap near v, = 0 which separates
electrons moving in opposite directions. The development of this unin-
habited gap with time is shown by the shaded regions in Fig. 7-13. This
figure shows that the instability progressively distorts f(v) in a way which
would be hard to describe analytically.

DERIVATION OF THE FLUID EQUATIONS

The fluid equations we have been using are simply moments of the
Boltzmann equation. The lowest moment is obtained by integrating Eq.
[7-19] with F specialized to the Lorentz force:

Igdv+Jv Vfdv+—J(E+ X B)-— J(f) dv  [7-26]
The first term gives
4o = EJ’ _on
J a Ty )=y =l



Since v is an independent variable and therefore is not affected by the 237
operator V, the second term gives Kinetic Theory

Jv-Vfdv=V'Jvfa’v=V‘(n€')EV-(nu) [7-28]

INCREASING TIME

Phase-space contours for electrons in a two-stream instability. The shaded FIGURE 7-13
region, initially representing low velocities in the lab frame, is devoid of

electrons. As the instability develops past the linear stage, these empty regions

in phase space twist into shapes resembling “water bags.” [From H. L. Berk,

C. E. Nielson, and K. V. Roberts, Phys. Fluids 13, 986 (1970).]
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where the average velocity u is the fluid velocity by definition. The E
term vanishes for the following reason:

of 9 - dS =
JE'EdVZJ'E'(fE)dV—LJE dS=0 [7-29]

The perfect divergence is integrated to give the value of f E on the surface
at v = 00, This vanishes if f - 0 faster than v™° as v - ©0, as is necessary
for any distribution with finite energy. The v X B term can be written
as follows:

J(vXB)'d—fdv=Ji'(vaB)dv—in X (vXB)dv=0 {[71-30]
av av av

The first integral can again be converted to a surface integral. For a
Maxwellian, f falls faster than any power of v as v » 0, and the integral
therefore vanishes. The second integral vanishes because v X B is perpen-
dicular to 3/dv. Finally, the fourth term in Eq. [7-26] vanishes because
collisions cannot change the total number of particles (recombination is
not considered here). Equations [7-27]-[7-30] then yield the equation of
continuity:
a—n+ V:(nu)=0 [7-31]
at
The next moment of the Boltzmann equation is obtained by multiplying
Eq. [7-19] by mv and integrating over dv. We have

mJ‘vg—{dv+mJ‘v(v-V)fdv+qJv(E+vXB)~g—£dv=J.'mv(g{)cdv

[7-32]

"The right-hand side is the change of momentum due to collisions and

will give the term P;; in Eq. [5-58). The first term in Eq. [7-32] gives

of 9 J 9
] =is = m— =m— 7-33
m J vat dv mat vfdv mat (nu) [7-33]

The third integral in Eq. [7-32] can be written

Jv(E+vXB)-§—{,dv=J%’[fv(E+va)]dv

= J-fv-i- (E+vx B)dv— J-f(E+v>< B): -ivdv [7-34]
ov av



The first two integrals on the right-hand side vanish for the same reasons
as before, and dv/dv is just the identity tensor . We therefore have

qu(E+va)-§l(dv=—q[(E+va)fdv=—qn(E+uxB)
v

[7-35]

Finally, to evaluate the second integral in Eq. [7-32], we first make use
of the fact that v is an independent variable not related to V and write

[viv - V)fdv=[V-(fw)dv=V"|fevdv [7-36]

Since the average of a quantity is 1/n times its weighted integral over
v, we have

V- ffwvdv=V " nw (7-37]

Now we may separate v into the average (fluid) velocity u and a thermal
velocity w:
v=u-+w [7-38]

Since u is already an average, we have
V-mvw) =V (nuu) +V - (nww) + 2V - (nuw) [7-39]

The average w is obviously zero. The quantity mnww is precisely what
is meant by the stress tensor P:

P=mnww [7-40]
The remaining term in Eq. [7-39] can be written
V- (nuu) =uV: (nu)+n(u-Vu [7-41]
Collecting our results from Eq. [7-33], [7-35], [7-40], and [7-41], we can
write Eq. [7-32] as
m(%(nu)+muv c(mu)+mnu-V)Yu+V-P—gn(E+uxB)=P;
[7-42]
Combining the first two terms with the help of Eq. [7-31], we finally
obtain the fluid equation of motion :

d
m"[a_l;wL(u-V)u]=qn(E+uXB)—V‘P+Pii (7-43)

This equation describes the flow of momentum. To treat the flow
of energy, we may take the next moment of Boltzmann equation by
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multiplying by smvv and integrating. We would then obtain the heat flow
equation, in which the coefticient of thermal conductivity k would arise
in the same manner as did the stress tensor P. The equation of state
p < p” is a simple form of the heat flow equation for « = 0.

PLASMA OSCILLATIONS AND LANDAU DAMPING

As an elementary illustration of the use of the Vlasov equation, we shall
derive the dispersion relation for electron plasma oscillations, which we
treated from the fluid point of view in Section 4.3. This derivation will
require a knowledge of contour integration. Those not familiar with this
may skip to Section 7.5. A simpler but longer derivation not using the
theory of complex variables appears in Section 7 .6.

In zeroth order, we assume a uniform plasma with a distribution
fo(v), and we let By = Eo = 0. In first order, we denote the perturbation

in f(r, v, t) by fi(r, v, ¢):
fr,v,t) = fo(v) +fi(r,v,t) [7-44)

Since v is now an independent variable and is not to be linearized, the
first-order Vlasov equation for electrons is

a—fl+V'Vf1‘-£E]'
at m

a_f():_

0 7-45
P [7-45]

As before, we assume the ions are massive and fixed and that the waves
are plane waves in the x direction

f] oc ei(kx—wl) [7-46]

Then Eq. [7-45] becomes

e d
—iwf + thu fi1 = —Exﬁ [7-47]
m 00Uy

_ ZE_E: afO/avx

7-48
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Poisson’s equation gives

€V "E| = tkepE, = —en, = —¢ J‘JJ fi d’v [7-49]



Substituting for f, and dividing by ike(E,, we have

= JJJ %o/ dv: d*v (7-50]
kmeo w — kv,
A factor n, can be factored out if we replace fo by a normalized function
fo:
20 2 ® 8fo(vs, vy, v.)/ 30,
] = — & J’ dv: J d‘U). I M dvx [7_51]
k —co —o —o w — kvx

If fois a Maxwellian or some other factorable distribution, the integrations
over v, and v, can be carried out easily. What remains is the one-
dimensional distribution fo(vx). For instance, a one-dimensional Maxwel-
lian distribution is

fu(vy) = (/2K T)"® exp (—mvi/2KT) (7-52]
The dispersion relation is, therefore,

L@ [T fo(we)/bus

= . 3.
1 ) e — (f0) ™" (7531

Since we are dealing with a one-dimensional problem we may drop the
subscript x, being careful not to confuse v (which is really v,) with the
total velocity v used earlier:

l_w_f,r 8fo/0v
Tk v — (w/k)

Here, fo is understood to be a one-dimensional distribution function,
the integrations over v, and v, having been made. Equation [7-54] holds
for any equilibrium distribution fo(v); in particular, if fo is Maxwellian,
Eq. [7-52] is to be used for it.

The integral in Eq. [7-54] is not straightforward to evaluate because
of the singularity at v = w/k. One might think that the singularity would

dv [7-54]

be of no concern, because in practice w is almost never real; waves are
usually slightly damped by collisions or are amplified by some instability
mechanism. Since the velocity v is a real quantity, the denominator in
Eq. [7-54] never vanishes. Landau was the first to treat this equation
properly. He found that even though the singularity lies off the path of
integration, its presence introduces an important modification to the
plasma wave dispersion relation—an effect not predicted by the fluid
theory.

Consider an initial value problem in which the plasma is given a
sinusoidal perturbation, and therefore k is real. If the perturbation grows
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or decays, w will be complex. The integral in Eq. [7-54] must be treated
as a contour integral in the complex v plane. Possible contours are shown
in Fig. 7-14 for (a) an unstable wave, with Im(w) > 0, and (b) a damped
wave, with Im(w) < 0. Normally, one would evaluate the line integral
along the real v axis by the residue theorem:

L

where G is the integrand, C, is the path along the real axis, Cs is the
semicircle at infinity, and R(w/k) is the residue at w/k. This works if the
integral over Cy vanishes. Unfortunately, this does not happen for a
Maxwellian distribution, which contains the factor

G dv +J Gdv = 2miR(w/k) [7-55)

1 Co

exp (—v°/v)

This factor becomes large for v - £700, and the contribution from Cy
cannot be neglected. Landau showed that when the problem is properly
treated as an initial value problem the correct contour to use is the curve
C) passing below the singularity. This integral must in general be evalu-
ated numerically, and Fried and Conte have provided tables for the case
when fo is a Maxwellian.

Although an exact analysis of this problem is complicated, we can
obtain an approximate dispersion relation for the case of large phase
velocity and weak damping. In this case, the pole at w/k lies near the
real v axis (Fig. 7-15). The contour prescribed by Landau is then a

Im(v) fm(v)
Cy
e w/k
—
. Re(v)
Re(v) & elv
o) w/k
(a) (b)

FIGURE 7-14

Integration contours for the Landau problem for (a) Im(w)>0 and
(b) Im (w) < 0.
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w/k Re(v)

Integration contour in the complex v plane for the case of small FIGURE 7-15
Im (w).

§'e
0 v

Normalized Maxwellian distribution for the case vy » vy, FIGURE 7-16

straight line along the Re(v) axis with a small semicircle around the pole.

In going around the pole, one obtains 277 times half the residue there.
Then Eq. [7-54] becomes

2 © a 7
wp afo/av . af()
1=9[p[ Ry in e
kQ[ —o U — (w/k) v lwav

] [7-56]
v=w/k

where P stands for the Cauchy principal value. To evaluate this, we
integrate along the real v axis but stop just before encountering the
pole. If the phase velocity vy = w/k is sufficiently large, as we assume,
there will not be much contribution from the neglected part of the
contour, since both fo and afo/av are very small there (Fig. 7-16). The
integral in Eq. [7-56] can be evaluated by integration by parts:

I

T = 2
—0 0V U — Uy U —Ug —o (V —vg) oo(v—vd,)q

[7-57]
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Since this is just an average of (v — v4) > over the distribution, the real
part of the dispersion relation can be written

2
Wy~ =9
N k—gp(v —g) [7-58]
Since vy » v has been assumed, we can expand (v — ve) %

=2

—9 o v 9 20 $v? 40°
(v —vg) =vd,“(l———> =vg (1+—+—2+—T+~-- [7-59]
U Vs Vo Ve

The odd terms vanish upon taking the average, and we have

— o/ By
(v —vg) ‘xvd,“(l+—2) [7-60]
Vo

a . =5 .
We now let fo be Maxwellian and evaluate v°. Remembering that v here
is an abbreviation for v,, we can write

Imul = 3KT, (7-61]

there being only one degree of freedom. The dispersion relation [7-58]
then becomes

2 2 2
k k- KT,
1=ﬂ—2(1 - ) (7-62]
k w” m
9

9 9 » 3KT,

w'=w;+w—§—k2 [7-63]
w m

If the thermal correction is small, we may replace w” by w?, in the second
term. We then have
2 2 + 3KTC

w?=w k2 [7-64]

m
which is the same as Eq. [4-30], obtained from the fluid equations with
v =3

We now return to the imaginary term in Eq. [7-56]. In evaluating
this small term, it will be sufficiently accurate to neglect the thermal
correction to the real part of w and let ? zwi. From Egs. [7-57] and
[7-60], we see that the principal value of the integral in Eq. [7-56] is
approximately £%/w>. Equation [7-56] now becomes

[7-65]

o2
o . Wy afo] ) 2
1 —im—=|— = 7.
[0} ( 1 kQ[av . [ [7-66)




Treating the imaginary term as small, we can bring it to the right-hand
side and take the square root by Taylor series expansion. We then obtain

Fl e
av v =U¢

If fo is a one-dimensional Maxwellian, we have

2
wp
72

T
W =w,,(l+l§ X

2

of, O =2 —v Qv —v?
T i 2 (e (Z) - Eoew (L) e
v VUth Uth \/ﬂv[h Uth

We may approximate vy by w,/k in the coeflicient, but in the exponent
we must keep the thermal correction in Eq. [7-64]. The damping is then
given by

3 2
Im(w)z_Zﬂgw_iLexp(—w )
2 k% kv, k*ud,
wp \° —w; =]
== b, e - 7-69
(i) ew(Fet)ew(3) oo
(%) —( W, \ —
2-omile) i) o
Im(w) 0.22vw — exp TRH [7-70]

Since Im (w) is negative, there s a collisionless damping of plasma waves;
this is called Landau damping. As is evident from Eq. [7-70], this damping
is extremely small for small kA p, but becomes important for kAp = O(1).
This effect is connected with f,, the distortion of the distribution function
caused by the wave.

THE MEANING OF LANDAU DAMPING

The theoretical discovery of wave damping without energy dissipation
by collisions is perhaps the most astounding result of plasma physics
research. That this is a real effect has been demonstrated in the labora-
tory. Although a simple physical explanation for this damping is now
available, it is a triumph of applied mathematics that this unexpected
effect was firstdiscovered purely mathematically in the course of a careful
analysis of a contour integral. Landau damping is a characteristic of
collisionless plasmas, but it may also have application in other fields. For
instance, in the kinetic treatment of galaxy formation, stars can be
considered as atoms of a plasma interacting via gravitational rather than

7.5
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electromagnetic forces. Instabilities of the gas of stars can cause spiral
arms to form, but this process is limited by Landau damping.

To see what is reponsible for Landau damping, we first notice that
Im (w) arises from the pole at v = v,. Consequently, the effect is con-
nected with those particles in the distribution that have a velocity nearly
equal to the phase velocity—the “resonant particles.” These particles
travel along with the wave and do not see a rapidly fluctuating electric
field: They can, therefore, exchange energy with the wave effectively.
The easiest way to understand this exchange of energy is to picture a
surfer trying to catch an ocean wave (Fig. 7-17). (Warning: this picture
isonly for directing our thinking along the right lines; it does not correctly
explain Eq. [7-70].) If the surfboard is not moving, it merely bobs up
and down as the wave goes by and does not gain any energy on the
average. Similarly, a boat propelled much faster than the wave cannot
exchange much energy with the wave. However, if the surfboard has
almost the same velocity as the wave, it can be caught and pushed along
by the wave; this is, after all, the main purpose of the exercise. In that
case, the surfboard gains energy, and therefore the wave must lose
energy and is damped. On the other hand, if the surfboard should be
moving slightly faster than the wave, it would push on the wave as it
moves uphill; then the wave could gain energy. In a plasma, there are
electronsboth faster and slower than the wave. A Maxwellian distribution,

however, has more slow electrons than fast ones (Fig. 7-18). Con-
sequently, there are more particles taking energy from the wave than

PARTICLE WAVE
GAINS ENERGY GAINS ENERGY
FIGURE 7-17 Customary physical picture of Landau damping.
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Distortion of a Maxwellian distribution in the region
v = vy caused by Landau damping.

f (v)

0 v¢ v

A double-humped distribution and the region where
instabilities will develop.

vice versa, and the wave is damped. As particles with v = v, are trapped
in the wave, f(v) is flattened near the phase velocity. This distortion is
fi(v) which we calculated. As seen in Fig. 7-18, the perturbed distribution
function contains the same number of particles but has gained total
energy (at the expense of the wave).

From this discussion, one can surmise that if fo(v) contained more
fast particles than slow particles, a wave can be excited. Indeed, from
Eq. [7-67], it is apparent that Im (w) is positive if afo/dv is positive at
U = vg. Such a distribution is shown in Fig. 7-19. Waves with v4 in the
region of positive slope will be unstable, gaining energy at the expense
of the particles. This is just the finite-temperature analogy of the two-
stream instability. When there are two cold (KT = 0) electron streams
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in motion, fo(v) consists of two S-functions. This is clearly unstable
because dfy/dv is infinite; and, indeed, we found the instability from
fluid theory. When the streams have finite temperature, kinetic theory
tells us that the relative densities and temperatures of the two streams
must be such as to have a region of positive dfo/dv between them; more
precisely, the total distribution function must have a minimum for
instability.

The physical picture of a surfer catching waves is very appealing,
but it is not precise enough to give us a real understanding of Landau
damping. There are actually two kinds of Landau damping: linear
Landau damping, and nonlinear Landau damping. Both kinds are
independent of dissipative collisional mechanisms. If a particle is caught
in the potential well of a wave, the phenomenon is called “trapping.” As
in the case of the surfer, particles can indeed gain or lose energy in
trapping. However, trapping does not lie within the purview of the linear
theory. That this is true can be seen from the equation of motion

m d’x/dt* = qE (x) [7-71]

If one evaluates E (x) by inserting the exact value of x, the equation would
be nonlinear, since E (x) is something like sin kx. What is done in linear
theory is to use for x the unperturbed orbit; i.e., x = xo + vot. Then Eq.
[7-71] is linear. This approximation, however, is no longer valid when
a particle is trapped. When it encounters a potential hill large enough
to reflect it, its velocity and position are, of course, greatly affected by
the wave and are not close to their unperturbed values. In fluid theory,
the equation of motion is

av
m [a+ (v- V)v] = gE(x) [7-721

Here, E(x) is to be evaluated in the laboratory frame, which is easy; but
to make up for it, there is the (v- V)v term. The neglect of (v; * V)vi in
linear theory amounts to the same thing as using unperturbed orbits.
In kinetictheory, the nonlinear term that is neglected is, from Eq. [7-45],

)
iElL [7-73]
m dv

When particles are trapped, they reverse their direction of travel relative
to the wave, so the distribution function f(v) is greatly disturbed near
v = w/k. This means that 3f;/dv is comparable to dfo/dv, and the term
[7-73] is not negligible. Hence, trapping is not in the linear theory.
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Dissection of a distribution fy,(v) into a large number of
monoenergetic beams with velocity u and density 7,

When a wave grows to a large amplitude, collisionless damping with
trapping does occur. One then finds that the wave does not decay
monotonically; rather, the amplitude fluctuates during the decay as the
trapped particles bounce back and forth in the potential wells. This is
nonlinear Landau damping. Since the result of Eq. [7-67] was derived
from a linear theory, it must arise from a different physical effect. The
question is: Can untrapped electrons moving close to the phase velocity
of the wave exchange energy with the wave? Before giving the answer,
let us examine the energy of such electrons.

The Kinetic Energy of a Beam of Electrons

We may divide the electron distribution fo(v) into a large number of
monoenergetic beams (Fig. 7-20). Consider one of these beams: It has
unperturbed velocity v and density n,. The velocity © may lie near vy,
so that this beam may consist of resonant electrons. We now turn on a
plasma oscillation E (x, t) and consider the kinetic energy of the beam as
it moves through the crests and troughs of the wave. The wave is caused
by a self-consistent motion of all the beams together. If n, is small enough
(the number of beams large enough), the beam being examined has a
negligible effect on the wave and may be considered as moving in a given

249
Kinetic Theory

FIGURE 7-20

7.5.1




250
Chapter
Seven

field E(x,¢). Let
E = Eysin (kx — wt) = —d¢/dx [7-74)]
¢ = (Eo/k) cos (kx — wt) [7-75]

The linearized fluid equation for the beam is

dv v .
m(—l + u—l> = —¢E(sin (kx — wt) [7-76]
at dx

A possible solution is

3 e_E_O cos (kx — wt) (777

vy =
m w —ku
This is the velocity modulation caused by the wave as the beam electrons
move past. To conserve particle lux, there is a corresponding oscillation
in density, given by the linearized continuity equation:

anl on, a‘Ul

u =—n,— [7-78]
ot ox dx

Since v, is proportional to cos (kx — wt), we can try n; = 11, cos (kx — wt).
Substitution of this into Eq. [7-78] yields

eEok cos (kx — wt)
m (w — ku)g

ny = —n, [7-79]

Figure 7-21 shows what Eqgs. (7-77) and (7-79) mean. The first two
curves show one wavelength of E and of the potential —e¢ seen by the
beam electrons. The third curve is a plot of Eq. [7-77] for the case
w —ku <0, or u >v4. This is easily understood: When the electron a
has climbed the potential hill, its velocity is small, and vice versa. The
fourth curve is v; for the case u < v, and it is seen that the sign is
reversed. This is because +he electron 6, moving to the left in the frame
of the wave, is decelerated geing up to the top of the potential barrier;
but since it is moving the opposite way, its velocity v, in the positive x
direction is maximum there. The moving potential hill accelerates elec-
tron b to the right, so by the time it reaches the top, it has the maximum
v;. The final curve on Fig. 7-21 shows the density n,, as given by Eq.
[7-79]. This does not change sign with u — v4, because in the frame of
the wave, both electron a and electron & are slowest at the top of the
potential hill, and therefore the density is highest there. The point is
that the relative phase between n; and v, changes sign with u — v,.
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Phase relations of velocity and density for electrons moving in an FIGURE 7-21
electrostatic wave.

We may now compute the kinetic energy W, of the beam:

Wi = sm(n, + n1)(u +v,)°
1 2 2 2 [7-80]
=smnu” +n,uy +2un vy +nu” + 2nuv, +nvy)

The last three terms contain odd powers of oscillating quantities, so they
will vanish when we average over a wavelength. The change in Wy due
to the wave is found by subtracting the first term, which is the original
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energy. The average energy change is then

(AW,) = smlnw’ + Qun,vy) [7-81)
From Eq. [7-77], we have
e2E(2)

] -8
m*(w — ku)® Gt

nu (1) = m,
the factor 3 representing (cos” (kx — wt)). Similarly, from Eq. [7-79], we
have

22
Eck

Qulnvy) = nuTe_ou—s' [7-83)

m(w — ku)

Consequently,

(AW,) = mnu

o [ L 2hu }
m®(w — ku)® (w — ku)
_EegEg w +ku
T4 0m (w—hu)

[7-84]

This result shows that (AW,) depends on the frame of the observer
and that it does not change secularly with time. Consider the picture of
a frictionless block sliding over a washboard-like surface (Fig. 7-22). In
the frame of the washboard, AW, is proportional to —(ku) ">, as seen by
taking w = 0in Eq. [7-84]. It is intuitively clear that (1) (AW},) is negative,
since the block spends more time at the peaks than at the valleys, and
(2) the block does not gain or lose energy on the average, once the
oscillation is started. Now if one goesinto a frame in which the washboard
is moving with a steady velocity w/k (a velocity unaffected by the motion
of the block, since we have assumed that n,, is negligibly small compared
with the density of the whole plasma), it is still true that the block does
not gain or lose energy on the average, once the oscillation is started.
But Eq. [7-84] tells us that (AW, ) depends on the velocity w/k, and hence
on the frame of the observer. In particular, it shows that a beam has

FIGURE 7-22

W//m ) ==

k

Mechanical analogy for an electron moving in a moving potential.
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The quadratic relation between
kinetic energy and velocity causes a
symmetric velocity perturbation to
give rise to an increased average
energy.

less energy in the presence of the wave than in its absence if w —ku <0
or u > v,, and it has more energy if w —ku >0 or u < vg. The reason
for this can be traced back to the phase relation between n; and v,. As
Fig. 7-23 shows, W, is a parabolic function of v. As v oscillates between
u —|vy| and u +|v)|, Wi will attain an average value larger than the
equilibrium value W, provided that the particle spends an ‘equal amount
of time in each half of the oscillation. This effect is the meaning of the
first term in Eq. [7-81], which is positive definite. The second term in
that equation is a correction due to the fact that the particle does not
distribute its time equally. In Fig. 7-21, one sees that both electron a
and electron 6 spend more time at the top of the potential hill than at
the bottom, but electron a reaches that point after a period of deceler-
ation, so that v, is negative there, while electron 6 reaches that point
after a period of acceleration (to the right), so that v, is positive there.
This effect causes (AW;) to change sign at u = v,

The Effect of Initial Conditions

The result we have just derived, however, still has nothing to do with
linear Landau damping. Damping requires a continuous increase of W,
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at the expense of wave energy, but we have found that (AW,) for
untrapped particles is constant in time. If neither the untrapped particles
nor particle trapping is responsible for linear Landau damping, what
is? The answer can be gleaned from the following observation: If (AW,)
is positive, say, there must have been a time when it was increasing.
Indeed, there are particles in the original distribution which have
velocities so close to vg that at time ¢t they have not yet gone a half-
wavelength relative to the wave. For these particles, one cannot take the
average (AW;). These particles can absorb energy from the wave and
are properly called the “resonant” particles. As time goes on, the number
of resonant electrons decreases, since an increasing number will have
shifted more than 3A from their original positions. The damping rate,
however, can stay constant, since the amplitude is now smaller, and it
takes fewer electrons to maintain a constant damping rate.

The effect of the initial conditions is most easily seen from a phase-
space diagram (Fig. 7-24). Here, we have drawn the phase-space trajec-
tories of electrons, and also the electrostatic potential —e¢, which they
see. We have assumed that this electrostatic wave exists at t = 0, and that
the distribution fo(v), shown plotted in a plane perpendicular to the
paper, is uniform in space and monotonically decreasing with |v| at that
time. For clarity, the size of the wave has been greatly exaggerated. Of
course, the existence of a wave implies the existence of an f;(v) at ¢ = 0.
However, the damping caused by this is a higher-order effect neglected
in the linear theory. Now let us go to the wave frame, so that the pattern
of Fig. 7-24 does not move, and consider the motion of the electrons.
Electrons initially at A start out at the top of the potential hill and move
to the right, since they have v > vy4. Electrons initially at B move to the
left, since they have v < vg. Those at C and D start at the potential
trough and move to the right and left, respectively. Electrons starting
on the closed contours E have insufhicient energy to go over the potential
hill and are trapped. In the limit of small initial wave amplitude, the
population of the trapped electrons can be made arbitrarily small. After
some time ¢, short enough that none of the electrons at A, B, C or D
has gone more than half a wavelength, the electrons will have moved to
the positions marked by open circles. It is seen that the electrons at A
and D have gained energy, while those at B and C have lost energy.
Now, if fo(v) was initially uniform in space, there were originally more
electrons at A than at C, and more at D than at B. Therefore, there is
a net gain of energy by the electrons, and hence a net loss of wave
energy. This is linear Landau damping, and it is critically dependent on
the assumed initial conditions. After a long time, the electrons are so



smeared out in phase that the initial distribution is forgotten, and there 255
is no further average energy gain, as we found in the previous section. Kinetic Theory
In this picture, both the electrons with v > vy and those with v < vy,

when averaged over a wavelength, gain energy at the expense of the

wave. This apparent contradiction with the idea developed in the picture

of the surfer will be resolved shortly.

Phase-space trajectories (top) for electrons moving in a potential wave (bottom). FIGURE 7-24
The entire pattern moves to the right. The arrows refer to the direction of

electron motion relative to the wave pattern. The equilibrium distribution f,(v)

is plotted in a plane perpendicular to the paper.
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7.6 A PHYSICAL DERIVATION OF LANDAU DAMPING

We are now in a position to derive the Landau damping rate without
recourse to contour integration. As before, we divide the plasma up into
beams of velocity u and density n,, and examine their motion in a wave

E = E,|sin (kx — wt) [7-85]
From Eq. [7-77], te velocity of each beam is

_ eE, cos (kx — wt)

v, = {7-86]

m w —ku
This solution satisfies the equation of motion [7-76], but it does not
satisfy the initial condition v, = 0 at ¢t = 0. It is clear that this initial
condition must be imposed; otherwise, v, would be very large in the
vicinity of u = w/k, and the plasma would be in a specially prepared
state initially. We can fix up Eq. [7-86] to satisfy the initial condition by
adding an arbitrary function of kx — kut. The composite solution would
still satisfy Eq. [7-76] because the operator on the left-hand side of Eq.
[7-76], when applied to f(kx — kut), gives zero. Obviously, to get v, =0
at t = 0, the function f(kx — kut) must be taken to be —cos (kx — kut).
Thus we have, instead of Eq. [7-86],

—eE| cos (kx — wt) — cos (kx — kut)
U =

7-87
m w —ku : ]

Next, we must solve the equation of continuity [7-78] for n,, again subject
to the initial condition n, = 0 at ¢t = 0. Since we are now much cleverer
than before, we may try a solution of the form

ny = n;[cos (kx — wt) — cos (kx — kut)] [7-88]
Inserting this into Eq. [7-78] and using Eq. [7-87] for v,, we find

eE 1k sin (kx — wt) — sin (kx — kut)
(0 — ku)®

7y sin (kx — wt) = —n,, [7-89]

Apparently, we were not clever enough, since the sin (kx — wt) factor
does not cancel. To get a term of the form sin (kx — kut), which came
from the added termin v, we can add aterm of the form At sin (kx — kut)
to ny. This term obviously vanishes at ¢ = 0, and it will give the sin (kx —
kut) term when the operator on the left-hand side of Eq. [7-78] operates
on the ¢ factor. When the operator operates on the sin (kx — kut) factor,
it yields zero. The coefficient A must be proportional to (w — ku)™" in



order to match the same factor in dv,/dx. Thus we take

BE]k 1

X [cos (kx — wt) — cos (kx — kut) — (w — ku)t sin (kx — kut)]  [7-90]

This clearly vanishes at ¢ = 0, and one can easily verify that it satisfies
Eq. [7-78].

These expressions for v, and n, allow us now to calculate the work
done by the wave on each beam. The force acting on a unit volume of
each beam is

F, = —¢E sin (kx — wt)(n, +n,) [7-91]

and therefore its energy changes at the rate

aw .
—=F,(u +v)) = —eE;sin (kx — wt)(nu +n,0; +nju +n,0))

dt ® @ o
[7-92]

We now take the spatial average over a wavelength. The first term
vanishes because n,u is constant. The fourth term can be neglected
because it is second order, but in any case it can be shown to have zero
average. The terms @ and ® can be evaluated using Egs. [7-87] and
[7-90] and the identities

(sin (kx — wt) cos (kx — kut)) = —3 sin (wt — kut)

: [7-93]
(sin (kx — wt) sin (kx — kut)) = 5 cos (wt — kut)
The result is easily seen to be
<d_W> _e’E} [sin (et = hut)
dt /u om w — ku
+hu sin (wt — kut) — (v — ku?)t cos (wt — kut)] e
(w — ku)

Note that the only terms that survive the averaging process come from
the initial conditions.

The total work done on the particles is found by summing over all
the beams:

% ()

dt

[ s [ B 0
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Inserting Eq. [7-94) and using the definition of w,, we then find for the
rate of change of kinetic energy

dWi\ _ €oE} U sin (ot — kut)
<a’t>_ g @l ) o T

a i t — kut) — —ku)t t — kut
+Jf0(u)51n (w ut) — (w uQ) cos (w u )lzu a'u] 06
(w —ku)
1 5 2J‘°° - {sin (wt — kut) d [sin (wt —kut)]}
= — ——-—-—-+ —_——_— L
QEOEle _me(u) du w — ku ua’u w — ku
(7-97)
1 N d in (wt — kut
=—60E?wﬁj fo(u)du—[u%—u—)j] [7-98]
2 BN du w —ku

This is to be set equal to the rate of loss of wave energy density W,
The wave energy consists of two parts. The first part is the energy density
of the electrostatic field:

(We) = eo(E*)/2 = €0E3/4 (7-99]

The second part is the kinetic energy of oscillation of the particles. If
we again divide the plasma up into beams, Eq. [7-84] gives the energy
per beam:

1 n, e°E2 2ku
= - — ( [7-100]

(AW, =

Y4 m (w—ku) w — ku)
In deriving this result, we did not use the correct initial conditions, which
are important for the resonant particles; however, the latter contribute
very little to the total energy of the wave. Summing over the beams, we

have

2 ~2 s <]
<Ale)=leElJ’ folu) [1+ 2L ]du [7-101]

4 m o (@ —ku)? w —ku

The second term in the brackets can be neglected in the limit w/k » vy,
which we shall take in order to compare with our previous results. The
dispersion relation is found by Poisson’s equation:

keoE 1 cos (kx —wt) = —e Y. n, [7-102)

Using Eq. [7-79)] for n,, we have

2 2

ik & T e J'Oo fo(u) du

T eom 5 (w—ku)gzeom _m(a)—lzu)(2

[7-103]
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1 %E? ¥ o3
(AWk)=Zem - e—:l—"=e°4 L= (W) [7-104]
Thus
W, = ek /2 [7-105)

The rate of change of this is given by the negative of Eq. [7-98]:

aw.,

sin (w — ku)t]
7 —|du

=-W, w,,j fo(u)_[ w — ku

[7-106]

Integration by parts gives

aw,

sin (w — ku)t:,<x>
dt —

- ‘Wwwg{[ufow) w —ku

_J'OO dfosm(w ku)t }
o du w — ku

The integrated part vanishes for well-behaved functions fo(u), and we
have

dw, 1) 2‘[ [sm (w — ku)t]
= —_ _— 7-107
= ka Wy fo( ) e du [7-107]

where u has been set equal to w/k (a constant), since only velocities very
close to this will contribute to the integral. In fact, for sufhciently large
¢, the square bracket can be approximated by a delta function:

k 1 -k
6(u = 9) = —lim [ﬂw_u_)t] [7-108]
k T > w — ku
Thus
dw, o @ 4 ( ) w?-,(w)
= = , — = 7-109
& ey e Womwsiolg i
Since Im (w) is the growth rate of E,, and W, is proportional to E2, we
must have
dW,/dt = 2[Im (w)]W,, [7-110]
Hence
Im(w) = 5 kao( ) [7-111]

in agreement with the previous result, Eq. [7-67], for o = w,.
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sin{w-ku)t
(c-ku)

FIGURE 7-25 A function which describes the relative contribution of various

7.6.2

velocity groups to Landau damping.

The Resonant Particles

We are now in a position to see precisely which are the resonant particles
that contribute to linear Landau damping. Figure 7-25 gives a plot of
the factor multiplying f()(u) in the integrand of Eq. [7-107]. We see that
the largest contribution comes from particles with |w — ku| < w/t, or
lv — velt < w/k = A/2; i.e., those particles in the initial distribution that
have not yet traveled a half-wavelength relative to the wave. The width
of the central peak narrows with time, as expected. The subsidiary peaks
in the “diffraction pattern” of Fig. 7-25 come from particles that have
traveled into neighboring half-wavelengths of the wave potential. These
particles rapidly become spread out in phase, so that they contribute
little on the average; the initial distribution is forgotten. Note that the
width of the central peak is independent of the initial amplitude of the
wave; hence, the resonant particles may include both trapped and
untrapped particles. This phenomenon is unrelated to particle trapping.

Two Paradoxes Resolved

Figure 7-25 shows that the integrand in Eq. [7-107] is an even function
of w — ku, so that particles going both faster than the wave and slower
than the wave add to Landau damping. This is the physical picture we
found in Fig. 7-24. On the other hand, the slope of the curve of Fig.
7-25, which represents the factor in the integrand of Eq. [7-106], is an



f,v)
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A Maxwellian distribution seen from a moving frame appears to
have a region of unstable slope.

odd function of w — ku; and one would infer from this that particles
traveling faster than the wave give energy to it, while those traveling
slower than the wave take energy from it. The two descriptions differ
by an integration by parts. Both descriptions are correct; which one is
to be chosen depends on whether one wishes to have fo(u) or f{)(u) in
the integrand.

A second paradox concerns the question of Galilean invariance. If
we take the view that damping requires there be fewer particles traveling
faster than the wave than slower, there is no problem as long as one is
in the frame in which the plasma is at rest. However, if one goes into
another frame moving with a velocity V (Fig. 7-26), there would appear
to be more particles faster than the wave than slower, and one would
expect the wave to grow instead of decay. This paradox is removed by
reinsertingthesecond term in Eq. [7-100], which we neglected. As shown
in Section 7.5.1, this term can make (AW, ) negative. Indeed, in the frame
shown in Fig. 7-26, the second term in Eq. [7-100] is not negligible,
(AW,) is negative, and the wave appears to have negative energy (that
is, there is more energy in the quiescent, drifting Maxwellian distribution
than in the presence of an oscillation). The wave “grows,” but adding
energy to a negative energy wave makes its amplitude decrease.

BGK AND VAN KAMPEN MODES

We have seen that Landau damping is directly connected to the require-
ment that fo(v) be initially uniform in space. On the other hand, one can
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7.8

generate undamped electron waves if f(v,¢t = 0) is made to be constant
along the particle trajectories initially. It is easy to see from Fig. 7-24
that the particles will neither gain nor lose energy, on the average, if
the plasma is initially prepared so that the density is constant along each
trajectory. Such a wave is called a BGK mode, since it was I. B. Bernstein,
J. M. Greene, and M. D. Kruskal who first showed that undamped waves
of arbitrary w, &, amplitude, and waveform were possible. The crucial
parameter to adjust in tailoring f(v,¢ = 0) to form a BGK mode is the
relative number of trapped and untrapped particles. If we take the
small-amplitude limit of a BGK mode, we obtain what is called a Van
Kampen mode. In this limit, only the particles with v = v, are trapped.
We can change the number of trapped particles by adding to f(v, ¢ = 0)
a term proportional to § (v — v4). Examination of Fig. 7-24 will show that
adding particles along the line v = v will not cause damping—at a later
time, there are just as many particles gaining energy as losing energy.
In fact, by choosing distributions with 8-functions at other values of v,
one can generate undamped Van Kampen modes of arbitrary vs. Such
singular initial conditions are, however, not physical. To get a smoothly
varying f(v,t =0), one must sum over Van Kampen modes with a
distribution of vgs. Although each mode is undamped, the total per-
turbation will show Landau damping because the various modes get out
of phase with one another.

EXPERIMENTAL VERIFICATION

Although Landau’s derivation of collisionless damping was short and
neat, it was not clear that it concerned a physically observable
phenomenon until J. M. Dawson gave the longer, intuitive derivation
which was paraphrased in Section 7.6. Even then, there were doubts
that the proper conditions could be established in the laboratory. These
doubts were removed in 1965 by an experiment by Malmberg and
Wharton. They used probes to excite and detect plasma waves along a
collisionless plasma column. The phase and amplitude of the waves as
a function of distance were obtained by interferometry. A tracing of the
spatial variation of the damped wave is shown in Fig. 7-27. Since in the
experiment w was real but £ was complex, the result we obtained in Eq.
[7-70] cannot be compared with the data. Instead, a calculation of
Im (k)/Re (k) for real w has to be made. This ratio also contains the
factor exp (=v3/v3), which is proportional to the number of resonant



INTERFEROMETER
OUTPUT

| |
10 20 30 40
PROBE SEPARATION

Interferometer trace showing the perturbed density pattern in a damped FIGURE 7-27
plasma wave. [From J. H. Malmberg and C. B. Wharton, Phys. Rev. Lett. 17,175
(1966).]

electrons in a Maxwellian distribution. Consequently, the logarithm of
Im (k)/Re (k) should be proportional to (vs/v.)°. Figure 7-28 shows the
agreement obtained between the measurements and the theoretical
curve.

A similar experiment by Derfler and Simonen was done in plane
geometry, so that the results for Re (w) can be compared with Eq. [7-64].
Figure 7-29 shows their measurements of Re (k) and Im (%) at different
frequencies. The dashed curve represents Eq. [7-64] and is the same as
the one drawn in Fig. 4-5. The experimental points deviate from the
dashed curve because of the higher-order terms in the expansion of Eq.
[7-59]. The theoretical curve calculated from Eq. [7-54], however, fits
the data well.

7-1. Plasma waves are generated ina plasmawithn = 10" m2and KT, = 10ev. PROBLEMS
If k = 10*m™, calculate the approximate Landau damping rate |Im (w/w,)|.

7-2. An electron plasma wave with 1-cm wavelength is excited in a 10-eV plasma
with 7 = 10"> m™>. The excitation is then removed, and the wave Landau damps
away. How long does it take for the amplitude to fall by a factor of e?
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FIGURE 7-28
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Verification of Landau damping in the Malmberg-Wharton
experiment (loc. cit.)

7-3. An infinite, uniform plasma with fixed ions has an electron distribution
function composed of (1) a Maxwellian distribution of “plasma” electrons with
density n, and temperature T, at rest in the laboratory, and (2) a Maxwellian
distribution of “beam” electrons with density n, and temperature T, centered at
v = Ux (Fig. P7-3). If n, is infinitesimally small, plasma oscillations traveling in
the x direction are Landau-damped. If n, is large, there will be a two-stream
instability. The critical n, at which instability sets in can be found by setting the
slope of the total distribution function equal to zero. To keep the algebra simple,
we can find an approximate answer as follows.

(a) Write expressions for f,(v) and f,(v), using the abbreviations v = v,, a® =
2KT,/m, b°> = 2KT,/m.

(b) Assume that the phase velocity v, will be the value of v at which f,(v) has
the largest positive slope. Find vy and f;(vy).

(c) Find f;(vs) and set f;(vg) + f5(vs) = 0.



265
Kinetic Theory

200 T

N
2 =t
2
> (@,
®
2 100 B
L
3 o)
w O
o
- o)
lee=
_— / —
/7
/7
Ve
L / —
Ve
//
P Vi NI G S S WO I T
0 0.8 1.6 2.4

k (mm'1)

Experimental measurement of the dispersion relation for plasma FIGURE 7-29
waves in plane geometry. [From H. Derfler and T. Simonen, J. Appl.
Phys. 38, 5018 (1967).]

(d) For V >» b, show that the critical beam density is given approximately by

%90y L Y erp (~v2/ay)
n, T, a
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FIGURE P7-3

fp(vx)

Unperturbed distribution functions f,(v,) and f,(v,) for the
plasma and beam electrons, respectively, in a beam~plasma
interaction.

7-4. To model a warm plasma, assume that the ion and electron distribution
functions are given by

= a, 1
feolv) = ; vi+ af
A a; 1
fiolv) = mvi+al

(a) Derive the exact dispersion relation in the Vlasov formalism assuming an
electrostatic perturbation.

(b) Obtain an approximate expression for the dispersion relation if w = Q,.
Under what conditions are the waves weakly damped? Explain physically why
w =, for very large %.

7-5. Consider an unmagnetized plasma with a fixed, neutralizing ion back-
ground. The one-dimensional electron velocity distribution is given by

foe(v) = go(v) + ho(v)

where
a 1
gov)=n,— 5—5  ho(v) =md(v — vo)
v +a,
Ng =mn, +n, and ny K 1,

(a) Derive the dispersion relation for high-frequency electrostatic perturbations.

(b) In the limit w/k « a, show that a solution exists in which Im (w) >0 (i.e.,
growing oscillations).



7-6. Consider the one-dimensional distribution function 967
fw)=A lv] < U Kinetic Theory

f@=0  Jo|=v.
(a) Calculate the value of the constant 4 in terms of the plasma density n,.

(b) Use the Vlasov and Poisson equations to derive an integral expression for
electrostatic electron plasma waves.

(c) Evaluate the integral and obtain a dispersion relation w(k), keeping terms
to third order in the small quantity &v./w.

ION LANDAU DAMPING 7.9

Electrons are not the only possible resonant particles. If a wave has a
slow enough phase velocity to match the thermal velocity of ions, ion
Landau damping can occur. The ion acoustic wave, for instance, is greatly
affected by Landau damping. Recall from Eq. [4-41] that the dispersion
relation for ion waves is

5 (KTE + y,—KT,—) e

_:US:
M

7-112
% [ I

If T, < T;, the phase velocity lies in the region wherefy;(v) has a negative
slope, as shown in Fig. 7-30(A). Consequently, ion waves are heavily
Landau-damped if T, = T;. Ion waves are observable only if T, » T;
(Fig. 7-30(B)], so that the phase velocity lies far in the tail of the ion
velocity distribution. A clever way to introduce Landau damping in a

0 0
(A) T,~T, (B) T,>>T,

Explanation of Landau damping of ion acoustic waves. For T, = T, the phase FIGURE 7-30
velocity lies well within the ion distribution; for 7, » T,, there are very few

ions at the phase velocity. Addition of a light ion species (dashed curve)

increases Landau damping.
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7.9.1

controlled manner was employed by Alexeff, Jones, and Montgomery.
A weakly damped ion wave was created in a heavy-ion plasma (such as
xenon) with T, » T;. A small amount of a light atom (helium) was then
added. Since the helium had about the same temperature as the xenon
but had much smaller mass, its distribution function was much broader,
as shown by the dashed curve in Fig. 7-30(B). The resonant helium ions
then caused the wave to damp.

The Plasma Dispersion Function

To introduce some of the standard terminology of kinetic theory, we
now calculate the ion Landau damping of ion acoustic waves in the
absence of magnetic fields. Ions and electrons follow the Vlasov equation
[7-23] and have perturbations of the form of Eq. [7-46] indicating plane
waves propagating in the x direction. The solution for f, is given by Eq.
[7-48] with appropriate modifications:

_ M afo,‘/av,‘

= [7-113)

R m; w — kvi

where E and v; stand for E,, v,;; and the jth species has charge g;, mass
m;, and particle velocity v;. The density perturbation of the jth species
is given by
(o) . s <]
1g;E dfo;/ dv;
Tllj:J' fl,-(v,-)dvj=——]—'[ Ldv‘,’
—co

[7-114]
m,— —o W — k'Uj

Let the equilibrium distributions fo; be one-dimensional Maxwellians:

no;j =iy, B
= _—]1/2 PR TACY Uihj = (21{!7}/1711')1/2 [7-115)
Uthj T

foj

Introducing thedummy integration variables = v;/v;, we can writen; as

ny; 175 ds [7-116]

_ iqiEng; 1 J"" (d/ds)(e*")
km,»v‘{)hj T Lo S =4

where

§i = wfkvg; [7-117)

We now define the plasma dispersion function Z({):

—s52

=L

] [s o)
Z(¢) = x/ej R I, >0 [7-118]
w —o S



This is a contour integral, as explained in Section 7.4, and analytic
continuation to the lower half plane must be used if Im () < 0. Z({) is
a complex function of a complex argument (since w or k usually has an
imaginary part). In cases where Z({) cannot be approximated by an
asymptotic formula, one can use the tables of Fried and Conte or a
standard computer subroutine.

To express ny; in terms of Z({), we take the derivative with respect

to {:

1 [(®
Z'¢Q) = 1/2J‘ 5 ds
w

Integration by parts yields

—6""] 5 1 J‘ (d/dS)(ef’)dS
—co o

1/2
- Plw s—¢

The first term vanishes, as it must for any well-behaved distribution

oo 1
Z(év)“ﬂl/a[

function. Equation [7-116] can now be written

1qEn0 ;
ny == Z'() [7-119]
U thj
Poisson’s equation is
€0V - E = theoE =) qn,; [7-120]
i

Combining the last two equations, separating out the electron term
explicitly, and defining

Oy = (noiZ2e%/eoM;)'? (7-121)

we obtain the dispersion relation

2 2
B = 2/ + L —E Z'(¢) [7.122]
Uthe 7 Uthj

Electron plasma waves can be obtained by setting Q,; = 0 (infinitely
massive ions). Defining

kD = 2w3/ine =AD" [7-123]
we then obtain
k*/kD = 3Z'(L.) [7-124]

which is the same as Eq. [7-54] when f,. is Maxwellian.
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7.9.2 Ton Waves and Their Damping

To obtain ion waves, go back to Eq. [7-122] and use the fact that
their phase velocity w/k is much smaller than vy, ; hence £, is small, and
we can expand Z({.) in a power series:

Z) =iNme ™ =201 =32+ ) (7-125]

The imaginary term comes from the residue at a pole lying near the
real s axis (of Eq. [7-56]) and represents electron Landau damping. For
{. « 1, the derivative of Eq. [7-125] gives

Z'(¢)=-2iVale -2+ =2 (7-126]

Electron Landau damping can usually be neglected in ion waves because
the slope of f,(v) is small near its peak. Replacing Z'({,) by —2 in Eq.
[7-122] gives the ion wave dispersion relation

()
ALY Sz =1+kA0 =1 (7-127]
i Uthj
The term k°A}, represents the deviation from quasineutrality.
We now specialize to the case of a single ion species. Since ny, = Z;no;,

the coethcient in Eq. [7-127] is
s 0  €oKT, noZ’e® M ZT,
/\D 5 =

1
V2 fiocel eoM 20T, 2 T

For k2A% « 1, the dispersion relation becomes

Z'( 2 ) - [7-128]
kvlhi ZTe ’

Solving this equation is a nontrivial problem. Suppose we take real
k and complex w to study dampingin time. Then the real and imaginary
parts of @ must be adjusted so that Im (Z') = 0 and Re (Z') = 2T:/ZT..
There are in general many possible roots w that satisfy this, all of them
having Imw < 0. The least damped, dominant root is the one having
the smallest [Im w|. Damping in space is usually treated by taking w real
and k complex. Again we get a series of roots & with Im & > 0, represent-
ing spatial damping. However, the dominant root does not correspond
to the same value of {; as in the complex w case. It turns out that the
spatial problem has to be treated with special attention to the excitation
mechanism at the boundaries and with more careful treatment of the
electron term Z'({,).



Toobtain an analytic result, we consider the limit {; » 1, correspond- 271
ing to large temperature ratio § = ZT,/T:. The asymptotic expression Kinetic Theory
for Z'({;) is

Z'¢&) = —2ivalie FH T i+ - [7-129]

If the damping is small, we can neglect the Landau term in the first
approximation. Equation [7-128] becomes

1 <1 L3 31 > 2
{1 2 gz 6
Since 6 is assumed large, L3 s large; and we can approximate 8 by 6/2
in the second term. Thus
1 ( 3) 2 o 3 .0
1+ 2 T=T 4+ 7-130
2 ) 4 5" o [ ]

or

w? 2KT:(3 ZT)\ ZKT,+ 3KT,;
— = (— + ) B oo sereee e [7-131]

oM \2 2T, M
This is the ion wave dispersion relation [4-41] with y; = 3, generalized
to arbitrary Z.
We now substitute Egs. [7-129]and [7-130] into Eq. [7-128] retaining
the Landau term:

{L?( %)—21\/77{3 =

DN

i?( g) (1 + iV 6ie ™)

+0 142 N T o B
é“?:(g ) (1 +ivaose H™

Expanding the square root, we have

1/2

+ 1 = 2
&= (3—é—g) (1 =5 i 6L e‘“) [7-132]

The approximate damping rate is found by using Eq. [7-130] in the
imaginary term:

Im{; Imw m /2 1/2  —(3+6)/2
S Rt (5) 93 +6)"2e [7-133]

where 8§ = ZT,/T; and Re w is given by Eq. [7-131].
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This asymptotic expression, accurate for large 6, shows an exponen-
tial decrease in damping with increasing §. When 6 falls below 10, Eq.
[7-133] becomes inaccurate, and the damping must be computed from
Eq. [7-128], which employs the Z-function. For the experimentally
interesting region 1 <6 <10, the following simple formula is an analytic

fit to the exact solution:

-Imw/Rew = 1.16""* exp (—67)

[7-134)

These approximations are compared with the exact result in Fig. 7-31.

0 = T/ZT,

10

Ion Landau damping of acoustic waves. (A) is the exact solution of Eq. [7-128];
(B) is the asymptotic formula, Eq. [7-133]; and (C) is the empirical fit, Eq.
[7-134], good for 1 < 4 < 10.



What happens when collisions are added to ion Landau damping?
Surprisingly little. Ion-electron collisions are weak because the ion and
electron fluids move almost in unison, creating little friction between
them. Ion-ion collisions (ion viscosity) can damp ion acoustic waves, but
we know that sound waves in air can propagate well in spite of the
dominance of collisions. Actually, collisions spoil the particle resonances
that cause Landau damping, and one finds that the total damping is less
than the Landau damping unless the collision rate is extremely large.
In summary, ion Landau dampingis almost always the dominant process
with ion waves, and this varies exponentially with the ratio Z7,/T:.

7-7. lon acoustic waves of 1-cm wavelength are excited in a single ionized xenon
(A = 131) plasma with T, = 1 eV and T; = 0.1 eV. If the exciter is turned off,
how long does it take for the waves to Landau damp to 1/e of their initial
amplitude? '

7-8. lon waves with A =5 cm are excited in a singly ionized argon plasma with
n,=10"m™3 T, =2eV.T: =0.2eV;and the Landaudampingrate is measured.
A hydrogen impurity of density ny; = an, is then introduced. Calculate the value
of a that will double the damping rate.

7-9. Inlaser fusion experiments one often encounters a hot electron distribution
with density n, and temperature T} in addition to the usual population with n,,
T.. The hot electrons can change the damping of ion waves and hence affect
such processes as stimulated Brillouin scattering. Assume Z = 1 ions with n; and
T,, and define 8, =T./T;, 6, =T,/T;, @« = ny/n;, 1 —a =n,/n,, € =m/M and
kY = nie’/eoK T

(a) Write the ion wave dispersion relation for this three-component plasma,
expanding the electron Z-functions .

(b) Show that electron Landau damping is not appreciably increased by n, if
T,>»>T,.

(c) Show that ion Landau damping is decreased by n,, and that the effect can
be expressed as an increase in the effective temperature ratio T,/ T

7-10. The dispersion relation for electron plasma waves propagating along Bz
can be obtained from the dielectric tensor € (Appendix B) and Poisson’s equation,
V-(e-E) =0, where E = —V¢. We then have, for a uniform plasma,

a
——(eu—¢) =€.kip =0
oz
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7.10

or €,. = 0. For a cold plasma, Problem 4-4 and Eq. [B-18] give

w, .
€. =1—— or w = w,
o>

For a hot plasma, Eq. [7-124] gives

wy [ @
€. =1 Z( =0

= R
kZvin kv

By expanding the Z-function in the proper limits, show that this equation yields
the Bohm-Gross wave frequency (Eq. [4-30]) and the Landau damping rate (Eq.
[7-701). ’

KINETIC EFFECTS IN A MAGNETIC FIELD

When either the dc magnetic field By or the oscillating magnetic field
B, is finite, the v X B term in the Vlasov equation [7-23] for a collisionless
plasma must be included. The linearized equation [7-45] is then replaced
by

9fo

of 1 q of1
- - 7-135
ad av [ ]

Lyyv Vfi+ LvxBy) =~ L(E, +vxBy):
ot m v m

Resonant particles moving along By still cause Landau damping if w/k =
v, but two new kinetic effects now appear which are connected with
the velocity component v, perpendicular to By. One of these is cyclotron
damping, which will be discussed later; the other is the generation of
cyclotron harmonics, leading to the possibility of the oscillations com-
monly called Bernstein waves.

Harmonics of the cyclotron frequency are generated when the
particles’ circular Larmor orbits are distorted by the wave fields E; and
Bi. These finite-r; effects are neglected in ordinary fluid theory but can
be taken into account to order k*r; by including the viscosity &. A kinetic
treatment can be accurate even for k’ri = O(1). To understand how
harmonics arise, consider the motion of a particle in an electric field:

E=E. " % [7-136]
The equation of motion (cf. Eq. [2-10]) is

i(kx—wt)

1
i +wx=—E.e (7.137]
m

If kr; is not small, the exponent varies from one side of the orbit to the
other. We can approximate kx by substituting the undisturbed orbit



x =r. sinwt from Eq. [2-7]:

i

P+l = T E ettisinedmen [7-138]

The generating function for the Bessel functions J,(z) is

o
eSO/ Y t".(2) [7-139]

n=-oc

Letting z = kr; and { = exp (iw.t), we obtain

eHNOL = T T (k) o™ [7-140]
—00
o]

ftok="LE, T [u(krp)e @ [7-141]
m —c0

The following solution can be verified by direct substitution:

© kT 7i(w—nwc)t
x = iEx 5. Julkr) e 5 [7-142]

2
m o we — (0w —nw,)

This shows that the motion has frequency components differing from
the driving frequency by multiples of ., and that the amplitudes of
these components are proportional to J,(kr.)/[w? — (w — nw,)?]. When
the denominator vanishes, the amplitude becomes large. This happens
when w — nw, = +w, orw = (n = Nw., n =0, £1, £2,...; that is, when
the field E(x, t) resonates with any harmonic of w.. In the fluid limit
krp > 0, [, (krp) can be approximated by (kr;/2)"/n!, which approaches
0 for all n except n = 0. For n = 0, the coefhcient in Eq. [7-142] becomes
(@? —w?7", which is the fluid result (cf. Eq. [4-57]) containing only the
fundamental cyclotron frequency.

The Hot Plasma Dielectric Tensor

After Fourier analysis of f,(r, v, ¢) in space and time, Eq. [7-135] can be
solved for a Maxwellian distribution fo(v), and the resulting expressions
fi(k, v, w) can be used to calculate the density and current of each species.
The result is usually expressed in the form of an equivalent dielectric
tensor €, such that the displacement vector D = € - E can be used in the
Maxwell’s equations V- D = 0 and V X B = oD to calculate dispersion
relations for various waves (see Appendix B). The algebra is horrendous
and therefore omitted. We quote only a restricted result valid for nonrela-
tivistic plasmas with isotropic pressure (T, = T}) and no zero-order drifts

7.10.1
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276 vo;; these restrictions are easily removed, but the general formulas are
Chapter too cluttered for our purposes. We further assume k = £, % + 4.2, with 3
Seven . . . . .
being the direction of By; no generality is lost by setting &, equal to zero,
since the plasma is isotropic in the plane perpendicular to By. The
elements of €eg = €/¢€p are then

-b

ez~ 1+Z—~zo z n*L(6)Z (L)

e),,._1+z“’"" ;oz (n°L.(6) + 2621, (b) — I, (B)IZ(L0)

2

e & =i T ﬁ:z))—ge_b{u_f 1[I (6) = IL(0)Z (L)

s

[7-143)

= o]

(Qb)l/Q 50 X nIn(b)Zl(fn)

2 1/2

b - o)
o= 2 1= =T i“’—;(—) %0 T Un(6) — I4(6)Z'(L)
w 2 —00

s

Cl)
exz‘—“ezxzz —£

2 =
w - ¥
€ =1-X=5¢7"% L L(b)6Z'(&)
where Z(¢) is the plasma dispersion function of Eq. [7-118], I,,(b) is the
nth order Bessel function of imaginary argument, and the other symbols

are defined by
Wy =noZie’[€gm,
fns = (@ + 105) [ kvins Los = 0/ kuUins
Wy = IZSeBO/m,| [7-144]
Vihs = 2KT./m,
by = skire, = kKT /mw,

The first sum is over species s, with the understanding that w,, 6, {,, and
£ all depend on s, and that the = stands for the sign of the charge. The
second sum is over the harmonic number n. The primes indicate
differentiation with respect to the argument.

As foreseen, thereappear Bessel functions of the finite-r; parameter
b.[The change from J,(b)to I, (b) occurs in the integration over velocities.]
The elements of € involving motion along # contain Z'({,,), which gives
rise to Landau damping when n = 0 and w/k. = v,,. The n # 0 terms
now make possible another collisonless damping mechanism, cyclotron
damping, which occurs when (w + nw.)/k, = v,.



(a) (b)

The mechanism of cyclotron damping.

7-11. In the limit of zero temperature, show that the elements of € in Eq. [7-143]
reduce to the cold-plasma dielectric tensor given in Appendix B.

Cyclotron Damping

When a particle moving along By in a wave with finite k4, has the
right velocity, it sees a Doppler-shifted frequency w — kv, equal to +nw,
and is therefore subject to continuous acceleration by the electric field
E, of the wave. Those particles with the “right” phase relative to E, will
gain energy; those with the “wrong” phase will lose energy. Since the
energy change is the force times the distance, the faster accelerated
particles gain more energy per unittime than what the slower decelerated
particles lose. There is, therefore, a net gain of energy by the particles,
on the average, at the expense of the wave energy; and the wave is
damped. This mechanism differs from Landau damping because the
energy gained is in the direction perpendicular to By, and hence perpen-
dicular to the velocity componentthat brings the particle into resonance.
The resonance is not easily destroyed by phenomena such as trapping.
Furthermore, the mere existence of resonant particles suffices to cause
damping; one does not need a negative slope f,(v.), as in Landau
damping.

To clarify the physical mechanism of cyclotron damping, consider
a wave with k = k. X + k.2 with &, positive. The wave electric field E, can
be decomposed into left- and right-hand circularly polarized com-
ponents, as shown in Fig. 7-32. For the left-hand component, the vector
E, at positions A, B, and C along the z axis appears as shown in Fig.
7-32a. Since the wave propagates in the +z direction, a stationary electron
would sample the vectors at C, B, and A in succession and therefore
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would see a left-rotating E-field. It would not be accelerated because its
Larmor gyration is in the right-hand (clockwise) direction. However. if
the electron were moving faster than the wave in the z direction, it would
see the vectorsat A, B, and Cin that order and hence would be resonantly
accelerated if its velocity satished the condition w — kv, = —w.. The
right-hand component of E would appear as shown in Fig. 7-32b. Now
an electron would see a clockwise rotating E-field if it moved more slowly
than the wave, so that the vectors at C, B, and A were sampled in
succession. This electron would be accelerated if it met the condition
w — kv, = +w. A plane or elliptically polarized wave would. therefore,
be cvclotron damped by electrons moving in either direction in the wave
frame.

Bernstein Waves

Electrostatic waves propagating at right angles to B, at harmonics
of the cvclotron frequency are called Bernstein waves. The dispersion
relation can be found by using the dielectric elements given in Eq. [7-143)]
in Poisson’s equation V- e+ E = 0. If we assume electrostatic perturba-
tions such that E; = =Vé,. and consider waves of the form @, =
diexp itk r—wt), Poisson’s equation can be written

kle. + Qkke. +hie. =0 (7-145]

Note that we have chosen a coordinate svstem that has k lying in the x—z
plane, so that &, = ). We next substitute for €. €,., and e.. from Eq.
[7-143) and express Z'(¢,) in terms of Z({.) with the identity

28 = 21 + {Z2()] [7-146]

7-12. Prove Eq. [7-146] directly from the integral expressions for Z({) and Z'({).
7-13. The principal part of Z(¢{) for small and large ¢. as used in Eqs. [7-125]
and [7-129%], is given by

Z(¢) = =20 (1 =5 +--) [¢] <1

Z({)

I

*{’(l+%§""+~") 'g]»]

Prove these by expanding the denominator in the definition [7-118] of Z({).

Equation [7-143] becomes

=)
w

) 5] " x
kI kT +Y e, S 1.(b)
. W

x[lz*

)

n Z L)( )L,
[) £

%o

DS

nkk (1 + £,7) — 2632, (1 + g..Z)] =0 7uam



The expression in the square brackets can be simplified in a few algebraic
steps to QR2[L_n + L22(L0)] by using the definitions 6 = £203./20w? and
{n = (w + nw,)/ kv, Further noting that Qk?wié'o/wz = 2w§/v(2h =k for
each species, we can write Eq. [7-147] as

s

Y L.(B)[{-n/o+ {0Z(L)] =0 [7-148]

n=-—

K2 +k2+Thbe™®

The term ¢ /¢y is 1 — nw./w. Since I,(b) = I_.(b), the term I,,(b)nw./w
sums to zero when n goes from —00 to o; hence, {-,./{o can be replaced
by 1. Defining k2= k2 + k., we obtain the general dispersion relation
for Bernstein waves:
ki %
14376 T LGN +0ZE)] =0 [7-149]
s n=-—o0

s

(A) Electron Bernstein Waves. Let us first consider high-frequency waves
in which the ions do not move. These waves are not sensitive to small
deviations from perpendicular propagation, and we may set &, = 0, so
that {, » 0. There is, therefore, no cyclotron damping; the gaps in the
spectrum that we shall find are not caused by such damping. For large
{., we may replace Z({,) by —1/¢,, according to Eq. [7-129]. Then =0
term in the second sum of Eq. [7-149] then cancels out, and we can
divide the sum into two sums, as follows:

kS + Zk%e“”[ ; L)1 = Lo/ &) + gl I, ()1 - go/gﬁn)] =0
[7-150]

or

k3+2k%e"’§ln(b)[-— 2 ___Z ]=0 [7-151]
s n=1

ot nw, w-—no.

The bracket collapses to a single term upon combining over a common

denominator:
by - & on’w?
1=XYzse™ X Ly [7-152]
s v n=1 W —Nn w,

Using the definitions of k5 and b, one obtains the well-known &, = 0
dispersion relation
22 1.(6)

L TP —1 [7-153]
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FIGURE 7-33
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The function a(w, ) for electron Bernstein waves. [From I. B. Bernstein,

Phys. Rev. 109, 10 (1958).]

We now specialize to the case of electron oscillations. Dropping the
sum over species, we obtain from Eq. [7-152]
kL

E)’

-b
S e I.(b)
ey B

= w2 n’=a(w,b) {7-154]

e’ - nw:
The function @ (w, 6) for one value of 6 is shown in Fig. 7-33. The possible
values of w are found by drawing a horizontalline at a (w, 6) = k2/k2 > 0.
It is then clear that possible values of w lie just above each cyclotron
harmonic, and that there is a forbidden gap just below each harmonic.

To obtain the fluid limit, we replace I, () by its small-6 value (6/2)"/n!
in Eq. [7-153]. Only the n = | term remains in the limit 6 - 0, and we
obtain

2 = 2
1 w?%ﬁ(“’__l) = [7-155]

w?
orw?= wg +w? = wi, which is the upper hybrid oscillation. As &, - 0,
this frequency must be one of the roots. If w, falls between two high
harmonics of w,, the shape of the @ — & curves changes near o = w, to
allow this to occur. The @ —#& curves are computed by multiplying Eq.
[7-154] by 2w}/w? to obtain kir? = 4wia(w,b). The resulting curves
for w/w. vs. k,r; are shown in Fig. 7-34 for various values of wﬁ/w?.
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Electron Bernstein wave dispersion relation. [Adapted from
F. W. Crawford, J. Appl. Phys. 36, 2930 (1965).]

Note that for each such value, the curves change in character above the
corresponding hybrid frequency for that case. At the extreme left of the
diagram, where the phase velocity approaches the speed of light waves
in the plasma, these curves must be modified by including electromag-
netic corrections.

Electron Bernstein modes have been detected in the laboratory, but
inexplicably large spontaneous oscillations at high harmonics of w, have
also been seen in gas discharges. The story is too long to tell here.

(B) Ion Bernstein Waves. In the case of waves at ion cyclotron harmonics,
one has todistinguishbetween pure ion Bernstein waves, for which &, = 0,
and neutralized ion Bernstein waves, for which &, has a small but finite
value. The difference, as we have seen earlier for lower hybrid oscilla-
tions, is that finite &, allows electrons to flow along B, to cancel charge
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separations. Though the k. = 0 case has already been treated in Eq.
[7-153], the distinction between the two cases will be clearer if we go
back a step to Egs. [7-148] and [7-149]. Separating out the n = 0 term
and using Eq. [7-146], we have

B2+ k2 + T kbe o) —3Z'(Lo)) + L ke " go L.(b)[1 + {oZ(La)] = 0
[7-156]

The dividing line between pure and neutralized ion Bernstein waves lies
in the electron n = 0 term. If {,, » | for the electrons, we can use Eq.
[7-129] to write Z'({o.) = 1/¢&.. Since w/k. > vy, in this case, electrons
cannot flow rapidly enough along By to cancel charge. If ¢, « 1, we can
use Eq. [7-126] to write Z'({o.) = —2. In this case we have w/k, < v,
and the electrons have time to follow the Boltzmann relation [3-73].

Taking first the {o. » | case, we note that {o; » 1 is necessarily true
also, so that the n = 0 term in Eq. [7-156] becomes

2 2
—kf[“’—é’ L at )
0
Here we have taken 6, » 0 and omitted the subscript from 6;, The n # 0
terms in Eq. [7-156] are treated as before, so that the electron part is
given by Eq. [7-155], and the ion part by the ion term in Eq. [7-153].
The pure ion Bernstein wave dispersion relation then becomes
2 )

0w, Q, _ w; 0. .
k?[l——’;——f}e blo(b>]+ki[1——f’—2——§—e '
0] w W T W, Qc b
L2 L® J‘ :
21 (w/nQ, - 1) [7-157]

Since {o. » | implies small k2, the first term is usually negligible. To

examine the fluid limit, we can set the second bracket to zero, separate

out the n = 1 term, and use the small-b expansion of I,(b), obtaining
@y Qp 2 n0e/)"

= - - = .
w’-w? 0'-02 ngzn!(wQ—nQQf) 0 =LA

The sum vanishes for 4 = 0, and the remaining terms are equal to the
quantity S of Appendix B. The condition § = 0 yields the upper and
lower hyrbid frequencies (see the equation following Eq. [4-70]). Thus,
for k, > 0, the low-frequency root approaches w,. For finite 6, one of
the terms in the sum can balance the electron term if w = n{,, so there
are roots near the ion cyclotron harmonics. The dispersion curves w/ .
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Pure ion Bernstein waves: agreement between theory and experi-
ment in a Q-machine plasma. {From J. P. M. Schmitt, Phys. Rev.
Lett. 31, 982 (1973).]

vs. k,7;; resemble the electron curves in Fig. 7-34. The lowest two roots
for the ion case are shown in Fig. 7-35, together with experimental
measurements verifying the dispersion relation.

The lower branches of the Bernstein wave dispersion relation exhibit
the backward-wave phenomenon, in which the w — & curve has a negative
slope, indicating that the group velocity is opposite in direction to
the phase velocity. That backward waves actually exist in the laboratory
has been verified not only by @ vs. £ measurements of the type shown
in Fig. 7-35, but also by wave interferometer traces which show the
motion of phase fronts in the backward direction from receiver to
transmitter.

Finally, we consider neutralized Bernstein waves, for which ¢, is
small and Z'({o.) = —2. The electron n = 0 term in Eq. [7-156] becomes
simply kb.. Assuming that o; > 1 still holds, the analysis leading to Eq.
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FIGURE 7-36
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Neutralized ion Bernstein modes: agreement between theory
and experiment in a He microwave discharge. [From E. Ault
and H. Ikezi, Phys. Fluids 13, 2874 (1970).]

[7-157] is unchanged, and Eq. [7-156] becomes

L ]

2
k: [1+k2—9” "’Io(b)]
2 2
0, 2. I.(6)
+k2[1—&7+ f;— —:’ 0 7-159
. wl—wl Q% =1 (w/nQ)? -1 [7-159]

2 2 . . . . .
for k; « k3, an approximate relation for neutralized ion Bernstein waves
can be written

0:2 _,,w L.(%)

2
1)

1+k2/\2[1——"——+ —~—-————}=O 7160

= (1)2* 3 92 n=l(w/ch_l)2 [ :

Note that electron temperature is now contained in Ap, whereas pure

ion Bernstein waves, Eq. [7-157], are independent of KT,. If £*A% is

small, the bracket in Eq. [7-160] must be large; and this can happen only

near a resonance @ == n{).. Thus the neutralized modes are not sensitive



to the lower hybrid resonance w = w;. Indeed, as k7 ; = 0 the envelope
of the dispersion curves approaches the electrostatic ion cyclotron wave
relation [4-67], which is the fluid limit for neutralized waves.

Neutralized Bernstein modes are not as well documented in experi-
ment as pure Bernstein modes, but we show in Fig. 7-36 one case in
which the former have been seen.
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Chapter Eight

NONLINEAR
EFFECTS

INTRODUCTION

Up to this point, we have limited our attention almost exclusively to
linear phenomena; that is, to phenomena describable by equations in
which the dependent variable occurs to no higher than the first power.
The entire treatment of waves in Chapter 4, for instance, depended on
the process of linearization, in which higher-order terms were regarded
as small and were neglected. This procedure enabled us to consider only
one Fourier component at a time, with the secure feeling that any
nonsinusoidal wave can be handled simply by adding up the appropriate
distribution of Fourier components. This works as long as the wave
amplitude is small enough that the linear equations are valid.

Unfortunately, in many experiments waves are no longer describable
by the linear theory by the time they are observed. Consider, for instance,
the case of drift waves. Because they are unstable, drift waves would,
according to linear theory, increase their amplitude exponentially. This
period of growth is not normally observed—since one usually does not
know when to start looking—but instead one observes the waves only
after they have grown to a large, steady amplitude. The fact that the
waves are no longer growing means that the linear theory is no longer
valid, and some nonlinear effect is limiting the amplitude. Theoretical
explanation of this elementary observation has proved to be a surprisingly
difficult problem, since the observed amplitude at saturation is rather
small.

8.1
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A wave can undergo a number of changes when its amplitude gets
large. It can change its shape—say, from a sine wave to a lopsided
triangular waveform. This is the same as saying that Fourier components
at other frequencies (or wave numbers) are generated. Ultimately, the
wave can “break,” like ocean waves on a beach, converting the wave
energy into thermal energy of the particles. A large wave can trap
particles in its potential troughs, thus changing the properties of the
medium in which it propagates. We have already encountered this effect
in discussing nonlinear Landau damping. If a plasma is so strongly
excited that a continuous spectrum of frequencies is present, it is in a
state of turbulence. This state must be described statistically, as in the case
of ordinary fluid hydrodynamics. An important consequence of plasma
turbulence is anomalous resistivity, in which electrons are slowed down
by collisions with random electric field fluctuations, rather than with
ions. This effect is used for ohmic heating of a plasma (Section 5.6.3) to
temperatures so high that ordinary resistivity is insufhcient.

Nonlinear phenomena can be grouped into three broad categories:

1. Basically nonlinearizable problems. Diffusion in a fully ionized gas,
for instance, is intrinsically a nonlinear problem (Section 5.8) because
the diffusion coefhicient varies with density. In Section 6.1, we have seen
that problems of hydromagnetic equilibrium are nonlinear. In Section
8.2, we shall give a further example—the important subject of plasma
sheaths.

2. Wave-particle interactions. Particle trapping (Section 7.5) is an
example of this and can lead to nonlinear damping. A classic example
is the quasilinear effect, in which the equilibrium of the plasma is changed
by the waves. Consider the case of a plasma with an electron beam (Fig.
8-1). Since the distribution function has a region where df,/dv is positive,
the system has inverse Landau damping, and plasma oscillations with vy
in the positive-slope region are unstable (Eq. [7-67]). The resonant
electrons are the first to be affected by wave-particle interactions, and
their distribution function will be changed by the wave electric field. The
waves are stabilized when f,(v) is flattened by the waves, as shown by the
dashed line in Fig, 8-1, so that the new equilibrium distribution no longer
has a positive slope. This is a typical quasilinear effect. Another example
of wave—particle interactions, that of plasma wave echoes, will be given
in Section 8.6.

3. Wave-wave interactions. Waves can interact with each other even
in the fluid description, in which individual particle effects are neglected.
A single wave can decay by first generating harmonics of its fundamental
frequency. These harmonics can then interact with each other and with
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A double-humped, unstable electron distribution.

the primary wave to form other waves at the beat frequencies. The beat
waves in turn can grow so large that they can interact and form many
more beat frequencies, until the spectrum becomes continuous. It is
interesting to discuss the direction of energy flow in a turbulent spectrum.
In fluid dynamics, long-wavelength modes decay into short-wavelength
modes, because the large eddies contain more energy and can decay
only by splitting into small eddies, which are each less energetic. The
smallest eddies then convert their kinetic motion into heat by viscous
damping. In a plasma, usually the opposite occurs. Short-wavelength
modes tend to coalesce into long-wavelength modes, which are less
energetic. This is because the electric field energy E°/87 is of order
k2¢?%/8m, so that if ed is fixed (usually by KT,), the small-%, long-A modes
have less energy. As a consequence, energy will be transferred to small
k by instabilities at large %, and some mechanism must be found to
dissipate the energy. No such problem exists at large &, where Landau
damping can occur. For motions along By, nonlinear “modulational”
instabilities could cause the energy at small £ to be coupled to ions and
to heat them. For motions perpendicular to Bo, the largest eddies will
have wavelengths of the order of the plasma radius and could cause
plasma loss to the walls by convection.

Although problems still remain to be solved in the linear theory of
waves and instabilities, the mainstream of plasma research has turned
to the much less well understood area of nonlinear phenomena. The
examples in the following sections will give an idea of some of the effects
that have been studied in theory and in experiment.

FIGURE 8-1
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8.2

8.2.1

FIGURE 8-2

SHEATHS

The Necessity for Sheaths

In all practical plasma devices, the plasma is contained in a vacuum
chamber of finite size. What happens to the plasma at the wall? For
simplicity, let us confine our attention to a one-dimensional model with
no magnetic field (Fig. 8-2). Suppose there is no appreciable electric field
inside the plasma; we can then let the potential ¢ be zero there. When
ions and electrons hit the wall, they recombine and are lost. Since
electrons have much higher thermal velocities than ions, they are lost
faster and leave the plasma with a net positive charge. The plasma must
then have a potential positive with respect to the wall; i.e., the wall
potential ¢, is negative. This potential cannot be distributed over the
entire plasma, since Debye shielding (Section 1.4) will confine the poten-
tial variation to a layer of the order of several Debye lengths in thickness.
This layer, which must exist on all cold walls with which the plasma is
in contact, is called a sheath. The function of a sheath is to form a potential
barrier so that the more mobile species, usually electrons, is confined
electrostatically. The height of the barrier adjusts itself so that the flux
of electrons that have enough energy to go over the barrier to the wall
is just equal to the flux of ions reaching the wall.
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The plasma potential ¢ forms sheaths near the walls so that
electrons are reflected. The Coulomb barrier ¢¢,, adjusts itself so
that equal numbers of ions and electrons reach the walls per
second.



The potential ¢ in a planar sheath. Cold ions are
assumed to enter the sheath with a uniform velocity u,.

The Planar Sheath Equation

In Section 1.4, we linearized Poisson’s equation to derive the Debye
length. To examine the exact behavior of ¢(x) in the sheath, we must
treat the nonlinear problem; we shall find that there is not always a
solution. Figure 8-3 shows the situation near one of the walls. At the
plane x = 0, ions are imagined to enter the sheath region from the main
plasma with a drift velocity uo. This drift is needed to account for the
loss of ions to the wall from the region in which they were created by
ionization. For simplicity, we assume 7; = 0, so that all ions have the
velocity upatx = 0. We consider the steady state problem in a collisionless
sheath region. The potential ¢ is assumed to decrease monotonically
with x. Actually, ¢ could have spatial oscillations, and then there would
be trapped particles in the steady state. This does not happen in practice
because dissipative processes tend to destroy any such highly organized
state.
If u(x) is the ion velocity, conservation of energy requires

= dmud — e (x) (8-1)

9 1/2
u = (ug = 674)) [8-2]

1
Smu

FIGURE 8-3
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8.2.3

The ion equation of continuity then gives the ion density n; in terms of
the density no in the main plasma:

Moo = M;(x)u(x) , (8-3]
Qeé—)l 2
i p—t 1_‘ S -
ni(x) no< Muy Lo

In steady state, the electrons will follow the Boltzmann relation closely:
n.(x) = noexp (e¢/KT,) (8-5)

Poisson’s equation is then

2

d_¢_ (n, = ny) = [ (ed))_(l_Qed))—l/Q] )
eode e(n, — n;) = eno| exp KT Mug [8-6]

The structure of this equation can be seen more clearly if we simplify
it with the following changes in notation:

1/2

2
e x noe > Uo
== =—=x|—— M=———77 -7
X="%r, ‘"1 x(eOKT, KT BT
Then Eq. [8-6] becomes
” 2X _1/2 =
X"= (1 ’Vt?) =e [8-81

where the prime denotes d/d¢. This is the nonlinear equation of a plane
sheath, and it has an acceptable solution only if ./ is large enough. The
reason for the symbol .# will become apparent in the following section
on shock waves.

The Bohm Sheath Criterion

Equation [8-8] can be integrated once by multiplying both sides by x':
3 3 QX —=1/2 £
J x'x" dé: =J (1 +F> x'dé —J e x'dé (8-9]
(0] 0 0
where £, is a dummy variable. Since x = 0 at £ = 0, the integrations
easily yield
| 2 2[( 2/\’)1/2 ] =
" —x0)=M)\1+—=5] —1|+e ¥ -1 8-10
9 (6 Xo) U 4 [ ]
If E = 0 in the plasma, we must set xo = 0 at £ = 0. A second integration
to find y would have to be done numerically; but whatever the answer
is, the right-hand side of Eq. [8-10] mustbe positive for all . In particular,



for x « 1, we can expand the right-hand terms in Taylor series:

2
1
a1+ - S Xy gt >0

S8l ey
2"( %
ME>T1 or  uo> (KT, M)V? (8-11]

This inequality is known as the Bohm sheath criterion. It says that ions
must enter the sheath region with a velocity greater than the acoustic
velocity v,. To give the ions this directed velocity ug, there must be a
finite electric field in the plasma. Our assumption that y' =0 at ¢ =0 is
therefore only an approximate one, made possible by the fact that the
scale of the sheath region is usually much smaller than the scale of the
main plasma region in which the ions are accelerated. The value of ug
is somewhat arbitrary, depending on where we choose to put the boun-
dary x = 0 between the plasma and the sheath. Of course, the ion flux
nouo is fixed by the ion production rate, so if uo is varied, the value of
noat x = 0 will vary inversely with uy. If the ions have finite temperature,
the critical drift velocity uo will be somewhat lower.

The physical reason for the Bohm criterion is easily seen from a
plot of the ion and electron densities vs. x (Fig. 8-4). The electron density
n, falls exponentially with x, according to the Boltzmann relation. The

nip (U >(KT /M)1/2)

1/2
S Ny [ug<(KT,/M) " <]

—== TO WALL

0 x = -e¢/KT,

Variation of ion and electron density (logarithmic scale) with nor-
malized potential y in a sheath. The ion density is drawn for two
cases: u, greater than and u, less than the critical velocity.

FIGURE 8-4
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ion density also falls, since the ions are accelerated by the sheath potential.
If the ions start with a large energy, n;(x) falls slowly, since the sheath
field causes a relatively minor change in the ions’ velocity. If the ions
start with a small energy, n;(x) falls fast, and can go below the n, curve.
In that case, n, — n; is positive near y = 0; and Eq. [8-6] tells us that ¢ (x)
must curve upward, in contradiction to the requirement that the sheath
must repel electrons. In order for this not to happen, the slope of n;(y)
at ¥ = 0 must be smaller (in absolute value) than that of n.(x); this
condition is identical with the condition (%> 1.

The Child-Langmuir Law

Since n,(x) fallsexponentially with y, the electron densitycan be neglected
in the region of large x next to the wall (or any negative electrode).
Poisson’s equation is then approximately

o1 2 o
X i (QX)x/z -12]
Multiplying by x’ and integrating from &, = & to & = £ we have

S - x ) =V - x)) (8-13]

where & is the place where we started neglecting n,. We can redefine
the zero of x so that x; = 0 at ¢ = &. We shall also neglect y;, since the
slope of the potential curve can be expected to be much steeper in the
n, = 0 region than in the finite-n, region. Then Eq. [8-13] becomes

X/? — 23/2/%X1/2

X’ _ 23/4‘/%1/2/\/1/4 [8-14]
or
dX/XIM = 93/4 y1/2 d¢ [8-15]
Integrating from ¢ = & to § = & +d/Ap = &wan, we have
%X?u“ = 93/4 4 1/2 d/Ap [8-16]
or
42 x 32
PRCALE Y (8-17)
9 q*

Changing back to the variables #¢ and ¢, and noting that the ion current
into the wall is J = enguo, we then find

4 &>1/2€0|¢w|3/2



This is just the well-known Child-Langmuir law of space-charge-limited
current in a plane diode.

The potential variation in a plasma-wall system can be divided into
three parts. Nearest the wall is an electron-free region whose thickness
d is given by Eq. [8-18]. Here J is determined by the ion production
rate, and ¢,, is determined by the equality of electron and ion fluxes.
Next comes a region in which n, is appreciable; as shown in Section 1.4,
this region has the scale of the Debye length. Finally, there is a region
with much larger scale length, the “presheath,” in which the ions are
accelerated to the required velocity u, by a potential drop | ¢| = 3K T./e.
Depending on the experiment, the scale of the presheath may be set by
the plasma radius, the collision mean free path, or the ionization mechan-
ism. The potential distribution, of course, varies smoothly; the division
into three regions is made only for convenience and is made possible by
the disparity in scale lengths. In the early days of gas discharges, sheaths
could be observed as dark layers where no electrons were present to
excite atoms to emission. Subsequently, the potential variation has been
measured by the electrostatic deflection of a thin electron beam shot
parallel to a wall.

Electrostatic Probes

The sheath criterion, Eq. [8-11], can be used to estimate the flux of ions
to a negatively biased probe in a plasma. If the probe has a surface area
A, and if the ions entering the sheath have a drift velocity uo=
(KT./M)"2, then the ion current collected is

I = neAKT./M)"? (8-19]

The electron current can be neglected if the probe is sufficiently negative
(several times KT,) relative to the plasma to repel all but the tail of the
Maxwellian electron distribution. The density n, is the plasma density at
the edge of the sheath. Let us define the sheath edge to be the place
where ug is exactly (KT,/M) 2 Toaccelerate ions to this velocity requires
apresheath potential | ¢| = $K7T./e,sothatthe sheath edge has a potential

¢ = —3KT./e [8-20]

relative to the body of the plasma. If the electrons are Maxwellian, this
determines n;:

ne =noe e =nge V2 = 0.61n, [8-21]

8.2.5
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For our purposes it is accurate enough to replace 0.61 with a round
number like 1/2; thus, the “saturation ion current” to a negative probe
is approximately

Is = 3noeA (KT./M)"? [8-22]

15, sometimes called the “Bohm current,” gives the plasma density easily,
once the temperature is known.

If the Debye length Ap, and hence the sheath thickness, is very small
compared to the probe dimensions, the area of the sheath edge is
effectively the same as the area A of the probe surface, regardless of its
shape. At low densities, however, Ap can become large, so that some ions
entering the sheath can orbit the probe and miss it. Calculations of orbits
for various probe shapes were first made by I. Langmuir and L. Tonks—
hence the name “Langmuir probe” ascribed to this method of measure-
ment. Though tedious, these calculations can give accurate determina-
tions of plasma density because an arbitrary definition of sheath edge
does not have to be made. By varying the probe voltage, the Maxwellian
electron distribution is sampled, and the current-voltage curve of a
Langmuir probe can also yield the electron temperature. The electro-
static probe was the first plasma diagnostic and is still the simplest and
the most localized measurement device. Unfortunately, material elec-
trodes can be inserted only in low-density, cool plasmas.

8-1. A probe whose collecting surface is a square tantalum foil 2 X 2 mm in area
is found to give a saturation ion current of 100 #A in a singly ionized argon
plasma (atomic weight = 40). If KT, = 2 eV, what is the approximate plasma
density? (Hint: Both sides of the probe collect ions!)

8-2. A solar satellite consisting of 10 km® of photovoltaic panels is placed in
synchronous orbit around the earth. It is immersed in a 1-eV atomic hydrogen
plasma at density 10°m™. During solar storms the satellite is bombarded by
energetic electrons, which charge it to a potential of =2 kV. Calculate the flux

of energetic ions bombarding each m’ of the panels.

8-3. The sheath criterion of Eq. [8-11] was derived foracold-ion plasma. Suppose
the ion distribution had a thermal spread in velocity around an average drift
speed u,. Without mathematics, indicate whether you would expect the value of
o to be above or below the Bohm value, and explain why.

8-4. Anion velocity analyzer consists of a stainless steel cylinder 5 mm in diameter
with one end covered with a fine tungsten mesh grid (grid 1). Behind this,



inside the cylinder, are a series of insulated, parallel grids. Grid 1 is at “Hoating”
potential—it is not electrically connected. Grid 2 is biased negative to repel all
electrons coming through grid 1, but it transmits ions. Grid 3 is the analyzer
grid, biased so as to decelerate ions accelerated by grid 2. Those ions able to
pass through grid 3 are all collected by a collector plate. Grid 4 is a suppressor
grid that turns back secondary electrons emitted by the collector. If the plasma
density is too high, a space charge problem occurs near grid 3 because the ion
density is so large that a potential hill forms in front of grid 3 and repels ions
which would otherwise reach grid 3. Using the Child-Langmuir law, estimate
the maximum meaningful He” current that can be measured on a 4-mm-diam
collector if grids 2 and 3 are separated by 1 mm and 100 V.

ION ACOUSTIC SHOCK WAVES

When a jet travels faster than sound, it creates a shock wave. This is a
basically nonlinear phenomenon, since there is no period when the wave
is small and growing. The jet is faster than the speed of waves in air, so
the undisturbed medium cannot be “warned” by precursor signals before
the large shock wave hits it. In hydrodynamic shock waves, collisions are
dominant. Shock waves also exist in plasmas, even when there are no
collisions. A magnetic shock, the “bow shock,” is generated by the earth
as it plows through the interplanetary plasma while dragging along a
dipole magnetic field. We shall discuss a simpler example: a collisionless,
one-dimensional shock wave which develops from a large-amplitude ion
wave.

The Sagdeev Potential

Figure 8-5 shows the idealized potential profile of an ion acoustic shock
wave. The reason for this shape will be given presently. The wave is
traveling to the left with a velocity uy. If we go to the frame moving with
the wave, the function ¢(x) will be constant in time, and we will see a
stream of plasma impinging on the wave from the left with a velocity
uo. For simplicity, let T; be zero, so that all the ions are incident with
the same velocity ug, and let the electrons be Maxwellian. Since the shock
moves much more slowly than the electron thermal speed, the shift in
the center velocity of the Maxwellian can be neglected. The velocity of
the ions in the shock wave is, from energy conservation,

2 1/2
u= (u?, = :f) [8-23]

8.3
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FIGURE 8-5
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— u

0
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Typical potential distribution in an ion acoustic shock wave. The
wave moves to the left, so that in the wave frame ions stream into
the wave from the left with velocity u,.

If ny is the density of the undisturbed plasma, the ion density in the
shock is

9 ~1/2
i, e BB no(l = ed;) (8-24]
u Mug

The electron density is given by the Boltzmann relation. Poisson’s
equation then gives

2

d%¢ ed e\ /2
L= =enfon(Z) (1 247 wan

This is, of course, the same equation (Eq. [8-6]) as we had for a sheath.
A shock wave is no more than a sheath moving through a plasma. We
now introduce the dimensionless variables

=% e =l 8-26
S O T Wk Cak

Note that we have changed the sign in the definition of x so as to keep
X Ppositive in this problem as well as in the sheath problem. The quantity
M 1s called the Mach number of the shock. Equation [8-25] can now be
written

d? 2x\ /2 dVv
X X—(l X) PRC 4.9, [8-27]

z- %) =%
which differs from the sheath equation [8-8] only because of the change
in sign of y.



The behavior of the solution of Eq. [8-27] was made clear by R. Z.
Sagdeev, who used an analogy to an oscillator in a potential well.
The displacement x of an oscillator subjected to a force — m dV(x)/dx
is given by

d’x/dt*> = —dV/dx (8-28]

If the right-hand side of Eq. (8-27] is defined as —dV/dy, the equation
is the same as that of an oscillator, with the potential x playing the role
of x, and d/d¢ replacing d/dt. The quasipotential V(x) is sometimes called
the Sagdeev potential. The function V(x) can be found from Eq. [8-27]
by integration with the boundary condition V(x) = 0 at y = 0:

2 X s
Vix)=1—e*+4 [1—(1——2) ] [8-29]
M

For M lying in a certain range, this function has the shape shown in Fig.
8-6. If this were a real well, a particle entering from the left will go to
the right-hand side of the well (x > 0), reflect, and return to x =0,
making a single transit. Similarly, a quasiparticle in our analogy will
make a single excursion to positive x and return to x = 0, as shown in
Fig. 8-7. Such a pulse is called a soliton; it is a potential and density
disturbance propagating to the left in Fig. 8-7 with velocity u,.

Now, if a particle suffers a loss of energy while in the well, it will
never return to x = 0 but will oscillate (in time) about some positive value
of x. Similarly, a little dissipation will make the potential of a shock wave
oscillate (in space) about some positive value of ¢. This is exactly the
behavior depicted in Fig. 8-5. Actually, dissipation is not needed for this;
reflection of ions from the shock front has the same effect. To understand
this, imagine that the ions have a small thermal spread in energy and
that the height e¢ of the wave front is just large enough to reflect some
of the ions back to the left, while the rest go over the potential hill to
the right. The reflected ions cause an increase in ion density in the
upstream region to the left of the shock front (Fig. 8-5). This means
that the quantity

1 3
X'=_j (n. — n;) dé, (8-30]
No Jo

is decreased. Since x’ is the analog of dx/dt in the oscillator problem,
our virtual oscillator has lost velocity and is trapped in the potential well
of Fig. 8.6.
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FIGURE 8-6

FIGURE 8-7

8.3.2

/
0 X

The Sagdeev potential V'(y). The upper arrow
is the trajectory of a quasiparticle describing a
soliton: it is reflected at the right and returns.
Thelower arrows show the motion of a quasipar-
ticle that has lost energy and is trapped in the
potential well. The bouncing back and forth
describes the oscillations behind a shock front.

(or x) ® Yo

x {or &)

The potential in a soliton moving to the left.

The Critical Mach Numbers

Solutions of either the soliton type or the wave-train type exist only for
a range of /. A lower limit for # is given by the condition that V(x)
be a potential well, rather than a hill. Expanding Eq. [8-29] for y « 1
yields

- oC/2y>0  MP>1 (8-31]

This is exactly the same, both physically and mathematically, as the Bohm
criterion for the existence of a sheath (Eq. [8-11]).

An upper limit to # is imposed by the condition that the function
V(x) of Fig. 8-6 must cross the x axis for y > 0; otherwise, the virtual



particle will not be reflected, and the potential will rise indefinitely. From
Eq. [8-29], we require

. , % 1/2
eX—-1l<uMl [1—(1—/%5) ] [8-32]
for some x > 0. If the lower critical Mach number is surpassed (/ > 1),
the left-hand side, representing the integral of the electron density from
zero to x, is initially larger than the right-hand side, representing the
integral of the ion density. As x increases, the right-hand side can catch
up with with the left-hand side if £ is not too large. However, because
of the square root, the largest value x can have is .#¢>/2. This is because
ed cannot exceed sMu3; otherwise, ions would be excluded from the
plasma in the downstream region. Inserting the largest value of x into
Eq. [8-32], we have

exp M2/ —1<M® or M<16 [8-33]

This is the upper critical Mach number. Shock waves in a cold-ion plasma
therefore exist only for 1 <./ < 1.6.

As in the case of sheaths, the physical situation is best explained by
a diagram of n; and n, vs. x (Fig. 8-8). This diagram differs from Fig.
8-4 because of the change of sign of ¢. Since the ions are now decelerated
rather than accelerated, n; will approach infinity at x = .#°/2. The lower
critical Mach number ensures that the n; curve lies below the n, curve

n;o (M>1.6)

nn .

b e e e e e e R e -

I
|
I
=

0 X = ecj)/KTe m2/2

Variation of ion and electron density (logarithmic
scale) with normalized potential y in a soliton. The
ion density is drawn for two cases: Mach number
greater than and less than 1.6.

FIGURE 8-8
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at small y, so that the potential ¢ (x) starts off with the right sign for its
curvature. When the curve n;, crosses the n, curve, the soliton ¢(x) (Fig.
8-7) has an inflection point. Finally, when x is large enough that the
areas under the n; and n, curves are equal, the soliton reaches a peak,
and the n;; and n, curves are retraced as x goes back to zero. The equality
of the areas ensures that the net charge in the soliton is zero; therefore,
there is no electric field outside. If 4 is larger than 1.6, we have the
curve n;e, in which the area under the curve is too small even when y
has reached its maximum value of .#°/2.

Wave Steepening

If one propagates an ion wave in a cold-ion plasma, it will have the phase
velocity given by Eq. [4-42], corresponding to .# = 1. How, then, can
one create shocks with # > 1? One must remember that Eq. [4-42] was
a linear result valid only at small amplitudes. As the amplitude is
increased, an ion wave speeds up and also changes from a sine wave to
a sawtooth shape with a steep leading edge (Fig. 8-9). The reason is that
the wave electric field has accelerated the ions. In Fig. 8-9, ions at the
peak of the potential distribution have a larger velocity in the direction
of v4 than those at the trough, since they have just experienced a period
of acceleration as the wave passed by. In linear theory, this difference
in velocity is taken into account, but not the displacement resulting from

- N\ N\

N S N

n LINEAR
or Y} ¢ —l
=V
v \/"" \/ \
NONLINEAR
FIGURE 8-9 A large-amplitude ion wave steepens so that the leading edge has a larger slope

than the trailing edge.



it. In nonlinear theory, it is easy to see that the ions at the peak are
shifted to the right, while those at the trough are shifted to the left, thus
steepening the wave shape. Since the density perturbation is in phase
with the potential, more ions are accelerated to the right than to the left,
and the wave causes a net mass flow in the direction of propagation.
This causes the wave velocity to exceed the acoustic speed in the
undisturbed plasma, so that ./ is larger than unity.

Experimental Observations

Ion acoustic shock waves of the form shown in Fig. 8-5 have been
generated by R. J. Taylor, D. R. Baker, and H. Ikezi. To do this, a new
plasma source, the DP (or double-plasma) device, was invented. Figure
8-10 shows schematically how it works. Identical plasmas are created in
two electrically isolated chambers by discharges between filaments F and
the walls W. The plasmas are separated by the negatively biased grid G,
which repels electrons and forms an ion sheath on both sides. A voltage
pulse, usually in the form of aramp, is applied between the two chambers.
This causes the ions in one chamber to stream into the other, exciting
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Schematic of a DP machine in which ion acoustic shock waves were produced
and detected. [Cf. R. J. Taylor, D. R. Baker, and H. Ikezi, Phys. Rev. Lett. 24, 206
(1970).]

FIGURE 8-10
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FIGURE 8-11

PROBLEM
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Measurements of the density distribution in a shock wave at various
times, showing how the characteristic shape of Fig. 8-5 develops. [From
Taylor et al., loc cit.)

a large-amplitude plane wave. The wave is detected by a movable probe
or particle velocity analyzer P. Figure 8-11 shows measurements of the
density fluctuation in the shock wave as a function of time and probe
position. It is seen that the wavefront steepens and then turns into a
shock wave of the classic shape. The damping of the oscillations is due
to collisions.

8-5. Calculate the maximum possible velocity of an ion acoustic shock wave in
an experiment such as that shown in Fig. 8-10, where T, =15eV, T; = 02 eV,
and the gasis argon. What is the maximum possible shock wave amplitude in volts?



Double Layers

A phenomenon related to sheaths and ion acoustic shocks is that of the
double layer. This is a localized potential jump, believed to occur
naturally in the ionosphere, which neither propagates nor is attached to
a boundary. The name comes from the successive layers of net positive
and net negative charge that are necessary to create a step in ¢(x). Such
a step can remain stationary in space only if there is a plasma flow that
Doppler shifts a shock front down to zero velocity in the lab frame, or
if the distribution functions of the transmitted and reflected electrons
and ions on each side of the discontinuity are specially tailored so as to
make this possible. Double layers have been created in the laboratory in
“triple-plasma” devices, which are similar to the DP machine shown in
Fig. 8-10, but with a third experimental chamber (without filaments)
inserted between the two source chambers. By adjusting the relative
potentials of the three chambers, which are isolated by grids, streams of
ions or electrons can be spilled into the center chamber to form a double
layer there. In natural situations double layers are likely to arise where
there are gradients in the magnetic field B, not where B is zero or
uniform, as in laboratory simulations. In that case, the VB force (Eq.
[2-38]) can play a large role in localizing a double layer away from all
boundaries. Indeed, the thermal barrier in tandem mirror reactors is
an example of a double layer with strong magnetic trapping.

THE PONDEROMOTIVE FORCE

Light waves exert a radiation pressure which is usually very weak and
hard to detect. Even the esoteric example of comet tails, formed by the
pressure of sunlight, is tainted by the added effect of particles streaming
from the sun. When high-powered microwaves or laser beams are used
to heat or confine plasmas, however, the radiation pressure can reach
several hundred thousand atmospheres! When applied to a plasma, this
force is coupled to the particles in a somewhat subtle way and is called
the ponderomotive force. Many nonlinear phenomena have a simple expla-
nation in terms of the pondermotive force.

The easiest way to derive this nonlinear force is to consider the
motion of an electron in the oscillating E and B fields of a wave. We
neglect dc Eo; and By, fields. The electron equation of motion is

d
m d_: = —¢[E(r) + vX B(r)] [8-34]

8.3.5
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This equation is exact if E and B are evaluated at the instantaneous
position of the electron. The nonlinearity comes partly from the vx B
term, which is second order because both v and B vanish in the equili-
brium, so that the term is no larger than v; X B,, where v, and B, are
the linear-theory values. The other part of the nonlinearity, as we shall
see, comes from evaluating E at the actual position of the particle rather
than its initial position. Assume a wave electric field of the form

E = E:(r) cos wt [8-35]

where E(r) contains the spatial dependence. In first order, we may
neglect the v X B term in Eq. [8-34] and evaluate E at the initial position
ro. We have

mdv;/dt = —eE(ry) [8-36]
v = —(¢/mw)E, sin wt = dr,/dt [8-37)
or, = (e/mwg)Es cos wt [8-38]

It is important to note that in a nonlinear calculation, we cannot write
iwt

e and take its real part later. Instead, we write its real part explicitly
as cos wt. This is because products of oscillating factors appear in non-
linear theory, and the operations of multiplying and taking the real part
do not commute.

Going to second order, we expand E(r) about ry:

E(r) = E(ro) + (611 - V)E|, .y + -+ - [8-39]

We must now add the term v, X B,, where B, is given by Maxwell’s
equation:
V XE = —-93B/at
B, = —(1/w)V X E|,=,, sin wt (8-40]

The second-order part of Eq. [8-34] is then

mdve/dt = —¢[(8r; - V)E + v; X B,] [8-41}
Inserting Egs. [8-37], [8-38], and [8-40] into [8-41] and averaging over
time, we have

2

1
m(d—v“’> e l[(E.-V)E +E X (VXE)]=fn  [842)
dt mw” 2

Here we used (sin® wt) = (cos® wt) = 5. The double cross product can be
written as the sum of two terms, one of which cancels the (E; * V)E; term.



What remains is

— VE? [8-43]

This is the effective nonlinear force on a single electron. The force per
m® is fn times the electron density ng, which can be written in terms of
wi. Since E3 = 2(E?), we finally have for the ponderomotive force the
formula

2
Fno=—-—V (8-44]

If the wave is electromagnetic, the second term in Eq. [8-42] is
dominant, and the physical mechanism for Fyi is as follows. Electrons
oscillate in the direction of E, but the wave magnetic field distorts their
orbits. That is, the Lorentz force —ev X B pushes the electrons in the
direction of k (since v is in the direction of E, and E X B isin the direction
of k). The phases of vand B are such that the motion does not average
to zero over an oscillation, but there is a secular drift along k. If the
wave has uniform amplitude, no force is needed to maintain this drift;
but if the wave amplitude varies, the electrons will pile up in regions of
small amplitude, and a force is needed to overcome the space charge.
This is why the effective force Fyy is proportional to the gradient of (E?).
Since the drift for each electron is the same, Fyy is proportional to the
density—hence the factor w,%/a)2 in Eq. [8-44].

If the wave is electrostatic, the first term in Eq. [8-42] is dominant.
Then the physical mechanism is simply that an electron oscillating along
k | E moves farther in the half-cycle when it is moving from a strong-field
region to a weak-field region than vice versa, so there is a net drift.

Although Fyi acts mainly on the electrons, the force is ultimately
transmitted to the ions, since it is a low-frequency or dc effect. When
electrons are bunched by Fyy, a charge-separation field E is created.
The total force felt by the electrons is

F,=—¢Es+FnL [8-45]

Since the ponderomotive force on the ions is smaller by Q%/wf, =m/M,
the force on the ion fluid is approximately

F; = ¢eE. [8-46)

Summing the last two equations, we find that the force on the plasma
iS FNL-
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A direct effect of Fy is the self-focusing of laser light in a plasma.
In Fig. 8-12 we see that a laser beam of finite diameter causes a radially
directed ponderomotive force in a plasma. This force moves plasma out
of the beam, so that w, is lower and the dielectric constant € is higher
inside the beam than outside. The plasma then acts as a convex lens,
focusing the beam to a smaller diameter.

8-6. A one-terawatt laser beam is focused to a spot 50 pm in diameter on a solid
target. A plasma is created and heated by the beam, and it tries to expand. The
ponderomotive force of the beam, which acts mainly on the region of critical
density (n =n, or w = w,), pushes the plasma back and causes “profile
modification,” which is an abrupt change in density at the critical layer.

(a) How much pressure (in N/m? and in 1bf/in.?) is exerted by the ponderomo-
tive force? (Hint: Note that Fy, is in units of N/m® and that the gradient length
cancels out. To calculate (E£2), assume conservatively that it has the same value
as in vacuum, and set the |-TW Poynting flux equal to the beam’s energy density
times its group velocity in vacuum. )

—

f it

FIGURE 8-12

FIGURE 8-13

Self-focusing of a laser beam is caused by the ponderomotive force.

A mechanical analog of a parametric instability.



(b) What is the total force, in tonnes, exerted by the beam on the plasma?

(c) If T; = T, = 1keV, how large a density jump can the light pressure support?

8-7. Self-focusing occurs when a cylindrically symmetric laser beam of frequency
w is propagated through an underdense plasma; that is, one which has

o 2 2
n<n,=eogmw-/e

In steady state, the beam’s intensity profile and the density depression caused
by the beam (Fig. 8-12) are related by force balance. Neglecting plasma heating
(KT = KT. + KT, = constant), prove the relation

= 2)/9
n=nge «o(E?M2n KT o noe

—a(r)

The quantity «(0) is a measure of the relative importance of ponderomotive
pressure to plasma pressure.

PARAMETRIC INSTABILITIES

The most thoroughly investigated of the nonlinear wave-wave interac-
tions are the “parametric instabilities,” so called because of an analogy
with parametric amplifiers, well-known devices in electrical engineering.
A reason for the relatively advanced state of understanding of this subject
is that the theory is basically a linear one, but linear about an oscillating
equilibrium.

Coupled Oscillators

Consider the mechanical model of Fig. 8-13, in which two oscillators M,
and M, are coupled to a bar resting on a pivot. The pivot P is made to
slide back and forth at a frequency wo, while the natural frequencies of
the oscillators are w, and wo,. It is clear that, in the absence of friction,
the pivot encounters no resistance as long as M; and My are not moving.
Furthermore, if P is not moving and M is put into motion, M, will
move; but as long as s is not the natural frequency of M), the amplitude
will be small. Suppose now that both P and M, are set into motion. The
displacement of M, is proportional to the product of the displacement
of M, and the length of the lever arm and, hence, will vary in time as

COs wot COS wot = 3 cos [(wg + wo)t] + $ cos [(we — wo)t] [8-47]

If w, is equal to either we + wo Or ws — wo, M, will be resonantly excited
and will grow to large amplitude. Once M, starts oscillating, M, will also
gain energy, because one of the beat frequencies of w, with wy is just

8.5
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wso. Thus, once either oscillator is started, each will be excited by the
other, and the system is unstable. The energy, of course, comes from
the “pump” P, which encounters resistance once the rod is slanted. If the
pump is strong enough, its oscillation amplitude is unaffected by M, and
May; the instability can then be treated by a linear theory. In a plasma,

the oscillators P, M, and My may be different types of waves.

Frequency Matching
The equation of motion for a simple harmonic oscillator x; is

d2x1 2
?-Fw,xl =0 [8-48]
where w) is its resonant frequency. If it is driven by a time-dependent
force which is proportional to the product of the amplitude E, of the
driver, or pump, and the amplitude x, of a second oscillator, the equation
of motion becomes
d2x1
dt*

+ w3x; = c1x2E, [8-49]

where ¢, is a constant indicating the strength of the coupling. A similar
equation holds for xo:
dQXQ

2
-dt—g + wasxe = cox1Ey [8-50]

Let x; = £, coswt, xg = %cosw't, and Eo = Eqcoswol. Equation [8-50]
becomes

2 9\ - = _
(ws — @' )Xo cos w't = caE X1 COS wol COS wi

coEo% 3{cos [(wo + w)t] +cos [(wo —w)t]}  [8-51]
The driving terms on the right can excite oscillators xg with frequencies
' =w tw [8-52]

In the absence of nonlinear interactions, xg can only have the frequency
w3, sO we must have w’' = ws. However, the driving terms can cause a
frequency shift so that w’ is only approximately equal to wo. Furthermore,
o' can be complex, since there is damping (which has been neglected so
far for simplicity), or there can be growth (if there is an instability). In
either case, x, is an oscillator with finite Q and can respond to a range



of frequencies about wy. If w is small, one can see from Eq. [8-52] that
both choices for w’ may lie within the bandwidth of x,, and one must
allow for the existence of two oscillators, xg(w, + @) and xe(wy — w).

Now let x; = X, cosw"”t and xg9 = Xy cos [(wo £ w)t] and insert into
Eq. [8-49]:

n2

2 _
(w7 —w")x, cosw”t

= ¢, E%5 (cos {[wo + (wo £ @)t} + cos {[wo — (wo = w)]t})
= ¢, Eo%s 3{cos [(Qwo £ w)t] + cos wt} (8-53]

The driving terms can excite not only the original oscillation x,(w), but
also new frequencies w” = 2w, + w. We shall consider the case | w,| »
[wi], so that 2w + w lies outside the range of frequencies to which x,
can respond, and x,(2w, + w) can be neglected. We therefore have three
oscillators, xj(w), xeo(wy — w), and x2(wg + w), which are coupled by Egs.
[8-49] and [8-50]:

(w? = wz)xl(w) — 1Eo(wo)[x2(wo — @) + xo(wo + w)] = 0
(w3 — (o — ) Jxa(wo — @) — coEo(wo)x1(@) =0 [8-54]
(w3 — (wo+ ®) xa(wo + ) — c2Eo(wo)x1 (@) = 0

The dispersion relation is given by setting the determinant of the
coeflicients equal to zero:

w2—w? a1 Ey aEy
2Ey (0o — )’ — wj 0 =0 [8-55]
C2E0 0 ((1)0+ w)Q—wg

A solution with Im(w) > 0 would indicate an instability.

For small frequency shifts and small damping or growth rates, we
can set w and w' approximately equal to the undisturbed frequencies w,
and ws. Equation [8-52] then gives a frequency matching condition:

wozwgiw, [8-56]
When the oscillators are waves in a plasma, w¢ must be replaced by
wt — k - r. There is then also a wavelength matching condition

ko=kox k [8-57]

describing spatial beats; that is, the periodicity of points of constructive
and destructive interference in space. The two conditions [8-56]
and [8-57] are easily understood by analogy with quantum mechanics.
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Multiplying the former by Planck’s constant #, we have
ha)() = ha)g 53 ﬁ(l)] [8-58]

E, and x» may, for instance, be electromagnetic waves, so that hwy and
hwo are the photon energies. The oscillator x; may be a Langmuir
wave, or plasmon, with energy fw,. Equation [8-54] simply states the
conservation of energy. Similarly, Eq. [8-53] states the conservation of
momentum hk.

(D)

FIGURE 8-14 Parallelogram constructions showing the w- and &-matching conditions for

three parametric instabilities: (A) electron decay instability, (B) parametric
decay instability, (C) stimulated Brillouin backscattering instability, and (D)
two-plasmon decay instability. In each case, w, is the incident wave, and w,
and w, the decay waves. The straight lines are the dispersion relation for ion
waves; the narrow parabolas, that for light waves; and the wide parabolas, that
for electron waves.



For plasma waves, the simultaneous satisfaction of Egs. [8-52] and
[8-53] in one-dimensional problems is possible only for certain combina-
tions of waves. The required relationships are best seen on an w-k
diagram (Fig. 8-14). Figure 8-14(A) shows the dispersion curves of an
electron plasma wave (Bohm-Gross wave) and an ion acoustic wave (cf.
Fig. 4-13). A large-amplitude electron wave (wo, ko) can decay into a
backward moving electron wave (ws, ko) and an ion wave (w1, k;). The
parallelogram construction ensures that wo = w; + wo and ko = k; + ks.
The positions of (wg, ko) and (w2, ko) on the electron curve must be
adjusted so that the difference vector lies on the ion curve. Note that an
electron wave cannot decay into two other electron waves, because there
is no way to make the difference vector lie on the electron curve.

Figure 8-14(B) shows the parallelogram construction for the “para-
metric decay” instability. Here, (wo, ko) is an incident electromagnetic
wave of large phase velocity (wo/ko = ¢). It excites an electron wave and
an ion wave moving in opposite directions. Since |ko| is small, we have
|ki| = —|ke| and wo = w; + w, for this instability.

Figure 8-14(C) shows the w—k diagram for the “parametric backscat-
tering” instability, in which a light wave excites an ion wave and another
light wave moving in the opposite direction. This can also happen when
the ion wave is replaced by a plasma wave. By analogy with similar
phenomena in solid state physics, these processes are called, respectively,
“stimulated Brillouin scattering” and “stimulated Raman scattering.”

Figure 8-14(D) represents the two-plasmon decay instability of an
electromagnetic wave. Note that the two decay waves are both electron
plasma waves, so that frequency matching can occur only if wo = 2w,.
Expressed in terms of density, this condition is equivalent to n ==n./4,
when n. is the critical density (Eq. [4-88]) associated with wo. This
instability can therefore be expected to occur only near the “quarter-
critical” layer of an inhomogeneous plasma.

Instability Threshold

Parametric instabilities will occur at any amplitude if there is no damping,
but in practice even a small amount of either collisional or Landau
damping will prevent the instability unless the pump wave is rather
strong. To calculate the threshold, one must introduce the damping
rates I'; and T'e of the oscillators x; and x5. Equation [8-48] then becomes

d’x z dx
dT;+wfx1 + 2T, d—tl= [8-59]

8.5.3
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PROBLEMS

For instance, if x; is the displacement of a spring damped by friction,
the last term represents a force proportional to the velocity. If x; is the
electron density in a plasma wave damped by electron-neutral collisions,
T is ve/2 (cf. Problem 4-5). Examination of Egs. [8-49], [8-50], and [8-54]
will show that it is all right to use exponential notation and let d/dt » ~iw
for x; and x9, as long as we keep E, real and allow ¥, and x2 to be
complex. Equations [8-49] and [8-50] become

(@3 —w?=2iwl)x)(w) = c1x2E0
( (8-60]
[(I)g % (a) = wo)z - 21(w o wo)FQ]XQ(O) = (JJ()) = 62x1E0

We further restrict ourselves to the simple case of two waves—that is,
when w = w, and wo— w = ws but wo + w is far enough from ws to be
nonresonant—in which case the third row and column of Eq. [8-55] can
be ignored. If we now express x1, x9, and Ej in terms of their peak values,
as in Eq. [8-53], a factor of 1/2 appears on the right-hand sides of Eq.
[8-60]. Discarding the nonresonant terms and eliminating X; and %,
from Eq. [8-60], we obtain

2

(a)2 —wi+ 21wl ) [(wo —w)” — wg —2i(wo —w)L] = iclcgE_ﬁ [8-61]

At threshold, we may set Im(w) = 0. The lowest threshold will occur at
exact frequency matching; ie., w = w,, wo —w = wy. Then Eq. [8-61]
gives

169(E g)thresh = 16w 109l Ty [8-62]

The threshold goes to zero with the damping of either wave.

8-8. Prove that stimulated Raman scattering cannot occur at densities above n./4.

8-9. Stimulated Brillouin scattering is observed when a Nd-glass laser beam
(A = 1.06 wm) irradiates a solid D, target (Z = 1, M = 2M},). The backscattered
light is red-shifted by 21.9 A. From x-ray spectra, it is determined that KT, =
1 keV. Assuming that the scattering occurs in the region where 0} « »®, and
using Eq. [4-41] with v; = 3, make an estimate of the ion temperature.

8-10. For stimulated Brillouin scattering (SBS), we may let x, in Eq. [8-60] stand
for the ion wave density fluctuation n,, and x, for the reflected wave electric
field Es. The coupling coefhicients are then given by

2 2
= Eokle/wow2M

_ 2
€2 = Wywa/Nowo



and threshold pump intensity in a homogeneous plasma is given by Eq. [8-62]. 3%
This is commonly expressed in terms of (v7), the rms electron oscillation velocity Nonlinear
caused by the pump wave (cf. Eq. [8-37]): Effects

Uose = eEo/mag
The damping rate I';, can be found from Problem [4-37b] for v/w « |.
(a) Show that, for T, « T, and v% = KT,/m, the SBS threshold is given by

v2 w Wy
where w, = k,v, and T, is the ion l.andau damping rate given by Eq. [7-133].

(b) Calculate the threshold laser intensity I, in W/cin? for SBS of CO, (10.6 wm)

light in a uniform hydrogen plasma with T, = 100eV, T, = 10eV. and no =
10 m™3, (Hint: Use the Spitzer resistivity to evaluate v»,,.)

8-11. The growth rate of stimulated Brillouin scattering in a homogeneous
plasma far above threshold can be computed from Eq. [8-61] by neglecting the
damping terms. Let @ = w, + iy and assume ¥’ € w? and n « n,.. Show that
- 1/2
Uose (Wo
Y= —(_) -Qp

2¢ \w,

where v, is the peak oscillating velocity of the electrons.

Physical Mechanism 8.5.4

The parametric excitation of waves can be understood very simply in
termsof the ponderomotive force (Section 8.4). Asanillustration, consider
the case of an electromagnetic wave (wo, ko) driving an electron plasma
wave (w3, k9) and a low-frequency ion wave (w}, k) [Fig. 8-14(B)]. Since
w, is small, wo must be close to w,. However, the behavior is quite different
for wo < w, and for wo > w,. The former case gives rise to the “oscillating
two-stream” instability (which will be treated in detail), and the latter to
the “parametric decay” instability.

Suppose there is a density perturbation in the plasma of the form
7 cos kix ; this perturbation can occur spontaneously as one component
of the thermal noise. Let the pump wave have an electric field Eq cos wgt
in the x direction, as shown in Fig. 8-15. In the absence of a dc field By,
the pump wave follows the relation wd = wz +¢2k3, so that ko= 0 for
wo = w,. We may therefore regard E, as spatially uniform. If wg is less
than w,, which is the resonant frequency of the cold electron fluid, the
electrons will move in the direction opposite to Ey, while the ions do not
move on the time scale of w,. The density ripple then causes a charge
separation, as shown in Fig. 8-15. The electrostatic charges create a field
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FIGURE 8-15

Physical mechanism of the oscillating two-stream instability.

E,, which oscillates at the frequency w,. The pondermotive force due

to the total field is given by Eq. [8-44]:

2 + 2
By =~ “by (Bt EDY

8-63]
w? 9 €0 [

Since Ey is uniform and much larger than E,, only the cross term is
important:

wy 3 (2EoE))

FNL:_w% ox 2

€0 [8-64)

This force does not average to zero, since E; changes sign with Ey. As



seen in Fig. 8-15, Fy is zero at the peaks and troughs of n; but is large
where Vn, is large. This spatial distribution causes Fy1_ to push electrons
from regions of low density to regions of high density. The resulting dc
electric field drags the ions along also, and the density perturbation
grows. The threshold value of Fy is the value just sufficient to overcome
the pressure Vn; (KT; + KT,), which tends to smooth the density. The
density ripple does not propagate, so that Re(w;) = 0. This is called the
oscillating two-stream instability because the sloshing electrons have a
time-averaged distribution function which is double-peaked, as in the
two-stream instability (Section 6.6).

If wy is larger than w,, this physical mechanism does not work,
because an oscillator driven faster than its resonant frequency moves
opposite to the direction of the applied force (this will be explained more
clearly in the next section). The directions of v,, E;, and Fx, are then
reversed on Fig. 8-15, and the ponderomotive force moves ions from
dense regions to less dense regions. If the density perturbation did not
move, it would decay. However, if it were a traveling ion acoustic wave,
the inertial delay between the application of the force Fy; and the change
of ion positions causes the density maxima to move into the regions into
which Fyp is pushing the ions. This can happen, of course, only if the
phase velocity of the ion wave has just the right value. That this value
is v, can be seen from the fact that the phase of the force Fy in Fig.
8-15 (with the arrows reversed now) is exactly the same as the phase of
the electrostatic restoring force in an ion wave, where the potential is
maximum at the density maximum and vice versa. Consequently, Fnp
adds to the restoring force and augments the ion wave. The electrons,
meanwhile, oscillate with large amplitude if the pump field is near the
natural frequency of the electron fluid; namely, w3 = w§+§k2v[2h. The
pump cannot have exactly the frequency ws because the beat between
wo and wy must be at the ion wave frequency w; = kv,, so that the
expression for Fyp in Eq. [8-64]) can have the right frequency to excite
ion waves. If this frequency matching is satisfied, viz., w; = wo — w9, both
an ion waveand an electron wave are excited at the expense of the pump
wave. This is the mechanism of the parametric decay instability.

The Oscillating Two-Stream Instability

We shall now actually derive this simplest example of a parametric
instability with the help of the physical picture given in the last section.
For simplicity, let the temperatures T; and T, and the collision rates »;

8.5.5
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and v, all vanish. The ion fluid then obeys the low-frequency equations

dv;
MnO a;l = enoE =) F.\JL [8-65]
6712 n a‘U“ _ 0
a e g

Since the equilibrium is assumed to be spatially homogeneous, we
may Fourier-analyze in space and replace 3/dx by ik. The last two
equations then give

6271“ k

at(z +—A7FNL= O [8-67]

with Fxp given by Eq. [8-64]. To find E;, we must consider the motion
of the electrons, given by

av, a
m(—+v,_,a—v,_,) = —¢(Eo+ E)) [8-68]
x

where E, is related to the density n,; by Poisson’s equation
theoE 1 = —en, [8-69]

We must realize at this point that the quantities E,, v,, and n.; each have
two parts: a high-frequency part, in which the electrons move indepen-
dently of the ions, and a low-frequency part, in which they move along
with the ions in a quasineutral manner. To lowest order, the motion is
a high-frequency one in response to the spatially uniform field Eo:

dV.0 e e A
=——FEy= — —Eycos wyt [8-70)
ot m m

Linearizing about this oscillating equilibrium, we have

a.Uel
ot

. e e

+ tkvover = ——E = — —(Ei, + Ev) (8-71]
m m

where the subscripts 4 and [ denote the high- and low-frequency parts.

The first term consists mostly of the high-frequency velocity v, given by

avh e nhe2

e el

— = ——F,,=— 8-72
at m = ikeom [ ]

where we have used Eq. [8-69]. The low-frequency part of Eq. [8-71] is

. e
thv,oven, = — — Ejy
m



The right-hand side is just the ponderomotive term used in Eq. [8-65]

to drive the ion waves. It results from the low-frequency beat between

v,0 and v.. The left-hand side can be recognized as related to the

electrostatic part of the ponderomotive force expression in Eq. [8-42].
The electron continuity equation is

anel
at

o5 ikveonel st noikv” =0 [8-73]

We are interested in the high-frequency part of this equation. In the
middlie term, only the low-frequency density n,; can beat with v, to give
a high-frequency term, if we reject phenomena near 2wy and higher
harmonics. But ny4 = n;; by quasineutrality so we have

an,h
ot

+ iknov,h + ikveoni, =0 [8-74]

Taking the time derivative, neglecting dn;;/d¢, and using Egs. [8-70] and
[8-72], we obtain

*n tke
FYE it wineh - ;nnEo [8-75]

Let n,, vary as exp (—iwt):

the

2 2
(Wp —@ ) = ZnnEo [8-76]

Equations [8-69] and [8-76] then give the high-frequency field:

e n“E() e nilEo
Elh:_——r_Qz—_—T._Q [8-77]
€N Wy — @ €M Wy wo

In setting w = wo we have assumed that the growth rate of n;; is very
small compared with the frequency of E,. The ponderomotive force
follows from Eq. [8-64]:

wj e’ ikng 5

Fao~—5 — 5(Eo) [8-78]

Wo M Wy —Wo
Note that both E;, and Fni change sign with w§ — 5. This is the reason
the oscillating two-stream instability mechanism does not work for w3 >
wi. The maximum response will occur for wj = wﬁ, and we may neglect
the factor (w3/w35). Equation [8-67] can then be written

6271“ P €2k2 EASn“ 8 79
3 2Mm w: —a) .
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Since the low-frequency perturbation does not propagate in this instabil-
ity, we can let n;; = 1;; exp yt, where vy is the growth rate. Thus
. ek* Ej
e B 8-80
i 2Mm wi — &6 (8-80]
and vy is real if w§ < w}. The actual value of y will depend on how small
the denominator in Eq. [8-77] can be made without the approximation
w? = wd. 1f damping is finite, w% —w? will have an imaginary part
proportional to 2Iw,, where I'; is the damping rate of the electron
oscillations. Then we have

y o€ Eo/Ty? (8-81]

Far above threshold, the imaginary part of w will be dominated by the
growth rate vy rather than by I',. One then has

B .
y? o 7“ y o (Eo)*? (8-82)

This behavior of y with Ej is typical of all parametric instabilities. An

exact calculation of y and of the threshold value of E, requires a more

careful treatment of the frequency shift w, — wo than we can present here.
To solve the problem exactly, one solves for n;; in Eq. [8-76] and

substitutes into Eq. [8-79]:

d ni 1ke

L, B 8-83
3 M"n 0 [ ]

Equations [8-75] and [8-83] then constitute a pair of equations of the
form of Egs. [8-49] and [8-50], and the solution of Eq. [8-55] can be
used. The frequency w, vanishes in that case because the ion wave has
w; = 0 in the zero-temperature limit.

The Parametric Decay Instability

The derivation for we > w, follows the same lines as above and leads to
the excitation of a plasma wave and an ion wave. We shall omit the
algebra, which is somewhat lengthier than for the oscillating two-stream
instability, but shall instead describe some experimental observations.
The parametric decay instability is well documented, having been
observed both in the ionosphere and in the laboratory. The oscillating
two-stream instability is not often seen, partly because Re (w) = 0 and
partly because wo < w, means that the incident wave is evanscent. Figure
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Schematic of an experiment in which the parametric decay instability was
verified. [From A. Y. Wong et al., Plasma Physics and Controlled Nuclear Fusion
Research, 1971,1, 335 (International Atomic Energy Agency, Vienna, 1971).]

8-16 shows the apparatus of Stenzel and Wong, consisting of a plasma
source similar to that of Fig. 8-10, a pair of grids between which the
field Eq is generated by an oscillator, and a probe connected to two
frequency spectrum analyzers. Figure 8-17 shows spectra of the signals
detected in the plasma. Below threshold, the high-frequency spectrum
shows only the pump wave at 400 MHz, while the low-frequency spec-
trum shows only a small amount of noise. When the pump wave ampli-
tude is increased slightly, an ion wave at 300 kHz appears in the low-
frequency spectrum; and at the same time, a sideband at 399.7 MHz
appears in the high-frequency spectrum. The latter is an electron plasma
wave at the difference frequency. The ion wave then can be observed
to beat with the pump wave to give a small signal at the sum frequency,
400.3 MHz.

This instability has also been observed in ionospheric experiments.
Figure 8-18 shows the geometry of an ionospheric modification experi-
ment performed with the large radio telescope at Platteville, Colorado.

FIGURE 8-16
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A 2-MW radiofrequency beam at 7 MHz is launched from the antenna

g’a}f’;" into the ionosphere. At the layer where wo = w,, electron and ion waves
& are generated, and the ionospheric electrons are heated. In another
experiment with the large dish antenna at Arecibo, Puerto Rico, the w
and k of the electron waves were measured by probing with a 430-MHz
radar beam and observing the scattering from the grating formed by
the electron density perturbations.
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FIGURE 8-17 Oscillograms showing the frequency spectra of oscillations observed in the

device of Fig. 8-16. When the driving power is just below threshold, only
noise is seen in the low-frequency spectrum and only the driver (pump) signal
in the high-frequency spectrum. A slight increase in power brings the system
above threshold, and the frequencies of a plasma wave and an ion wave
simultaneously appear. [Courtesy of R. Stenzel, UCLA.]
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Geometry of an ionospheric modification experiment in which radiofrequency FIGURE 8-18
waves were absorbed by parametric decay. [From W. F. Utlaut and R. Cohen,
Science 174, 245 (1971).]

8-12. In laser fusion, a pelletcontaining thermonuclear fuel is heated by intense PROBLEMS
laser beams. The parametric decay instability can enhance the heating efficiency

by converting laser energy into plasma wave energy, which is then transferrred

to electrons by Landau damping. If an iodine laser with 1.3-um wavelength is

used, at what plasma density does parametric decay take place?

8-13. (a) Derive the following dispersion relation for an ion acoustic wave in
the presence of an externally applied ponderomotive force Fy;:

(w?+2iTw — k%w?)n, = ikFy /M

where T' is the damping rate of the undriven wave (when Fx. = 0). (Hint:
introduce a “collision frequency” v in the ion equation of motion, evaluate I in
terms of », and eventually replace v by its I'-equivalent.)

(b) Evaluate Fy; for the case of stimulated Brillouin scattering in terms of the
amplitudes E, and E, of the pump and the backscattered wave, respectively,
thus recovering the constant ¢, of Problem [8-10]. (Hint: cf. Eq. [8-64].)



324 8-14. In Fig. [8-17] it is seen that the upper sideband at wo+ w; is missing.

Chapter Indeed, in most parametric processes the upper sideband is observed to be

Light smaller than the lower sideband. Using simple energy arguments, perhaps with
a quantum mechanical analogy, explain why this should be so.

8.6 PLASMA ECHOES

Since Landau damping does not involve collisions or dissipation, it is a
reversible process. That thisistrueis vividly demonstrated by the remark-
able phenomenon of plasma echoes. Figure 8-19 shows a schematic of
the experimental arrangement. A plasma wave with frequency w, and
wavelength A, is generated at the first grid and propagated to the right.
The wave is Landau-damped to below the threshold of detectability. A
second wave of wg and A is generated by a second grid a distance { from
the first one. The second wave also damps away. If a third grid connected
to a receiver tuned to w = wy — w; is moved along the plasma column,
it will find an echo at a distance ' = (wo/(ws — w ;). What happens is that
the resonant particles causing the first wave to damp out retains informa-
tion about the wave in their distribution function. If the second grid is
made to reverse the change in the resonant particle distribution, a wave
can be made to reappear. Clearly, this process can occur only in a very
nearly collisionless plasma. In fact, the echo amplitude has been used as
a sensitive measure of the collision rate. Figure 8-20 gives a physical

l

“1 “2 RECEIVER
(4)2 o (4)1

EXCITER

GRIDS v

FIGURE 8-19 Schematic of a plasma echo experiment. [From A. Y. Wong and D. R. Baker,
Phys. Rev. 188, 326 (1969).]
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Space-time trajectories of gated particles showing the bunching that causes FIGURE 8-20

echoes. The density at various distances is shown at the right. [From D. R.
Baker, N. R. Ahern,and A. Y. Wong, Phys. Rev. Lett. 20, 318 (1968).]
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picture of why echoes occur. The same basic mechanism lies behind
observations of echoes with electron plasma waves or cyclotron waves.
Figure 8-20 is a plot of distance vs. time, so that the trajectory of a
particle with a given velocity is a straight line. Atx = 0, a grid periodically
allows bunches of particles with a spread in velocity to pass through.
Because of the velocity spread, the bunches mix together, and after a
distance [, the density, shown at the right of the diagram, becomes
constant in time. A second grid at x = [ alternately blocks and passes
particles at a higher frequency. This selection of particle trajectories in
space-time then causes a bunching of particles to reoccur at x = {'.

The relation between !’ and [ can be obtained from this simplified
picture, which neglects the influence of the wave electric field on the
particle trajectories. If fi(v) is the distribution function at the first grid
and it is modulated by cos w;t, the distribution at x > 0 will be given by

f(x,v,t) = f1(v) cos (wlt —gl—x> [8-84]
v

The second grid at x = will further modulate this distribution by a
factor containing ws and the distance x — {:

flx,v,t) =f12(v) cos (wlt = (ﬂx) cos [wgt - aﬁ(x —l)] [8-85]
v v

wo(x — 1)+ wlx]
v

=f12(v)%{cos [(w2 +w))t —

+ cos [(w2 —w))t — M]}

[8-86]
The echo comes from the second term, which oscillates at @ = ws — w,
and has an argument independent of v if

wo(x — 1) =wx
or
X = (l)2[/((l)2 = (l)]) =/ [8-87]

The spread in velocities, therefore, does not affect the second term at
x ={', and the phase mixing has been undone. When integrated over
velocity, this term gives a density fluctuation at = wo — w;. The first
term is undetectable because phase mixing has smoothed the density
perturbations. It is clear that [’ is positive only if s > @,. The physical
reason is that the second grid has less distance in which to unravel the
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Measurements of echo amplitude profiles for various separa-
tions [ between the driver grids. The solid circles correspond
to the case w, < w;, for which no echo is expected. [From Baker,
Ahern, and Wong, loc. cit.]

perturbations imparted by the first grid, and hence must operate at a

higher frequency.

Figure 8-21 shows the measurements of Baker, Ahern, and Wong
on ion wave echoes. The distance !’ varies with { in accord with Eq.
[8-87]. The solid dots, corresponding to the case ws < w;, show the
absence of an echo, as expected. The echo amplitude decreases
with distance because collisions destroy the coherence of the velocity

modulations.

FIGURE 8-21
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FIGURE 8-22
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Measurement of the amplitude profile of a nonlinear electron
wave showing nonmonotonic decay. [From R. N. Franklin,
S. M. Hamberger, H. Ikezi, G. Lampis, and G. J. Smith, Phys.
Rev. Lett. 28, 1114 (1972).]

NONLINEAR LANDAU DAMPING

When the amplitude of an electron or ion wave excited, say, by a grid
is followed in space, it is often found that the decay is not exponential,
as predicted by linear theory, if the amplitude is large. Instead, one
typically finds that the amplitude decays, grows again, and then oscillates
before settling down to a steady value. Such behavior for an electron
wave at 38 MHz is shown in Fig. 8-22. Although other effects may also
be operative, these oscillations in amplitude are exactly what would be
expected from the nonlinear effect of particle trapping discussed in
Section 7.5. Trapping of a particle of velocity v occurs when its energy
in the wave frame is smaller than the wave potential; that is, when

led| > sm (v — v4)?
Small waves will trap only these particles moving at high speeds near
vg. Totrapalarge number of particlesin the main part of the distribution

(near v = 0) would require

lgp| = smuv = sm(w/k)’ 8-88]



0 X

A trapped particle bouncing in the potential well of a wave.

When the wave is this large, its linear behavior can be expected to be
greatly modified. Since |¢| = | E/k|, the condition [8-88] is equivalent to

® = g, where wy =|qkE/m| (8-89]

The quantity wg is called the bounce frequency because it is the frequency
of oscillation of a particle trapped at the bottom of a sinusoidal potential
well (Fig. 8-27). The potential is given by

¢ = doll — coshx) = o3k x* +- - ) [8-90]
The equation of motion is
md ? = —mw’x = qE = —qd—d) = —qko sin kx [8-91]
dt” dx

The frequency w is not constant unless x is small, sin kx = kx, and ¢ is
approximately parabolic. Then w takes the value wg defined in Eq. [8-89].
When the resonant particles are reflected by the potential, they give
kinetic energy back to the wave, and the amplitude increases. When the
particles bounce again from the other side, the energy goes back into
the particles, and the wave is damped. Thus, one would expect oscillations
in amplitude at the frequency wg in the wave frame. In the laboratory
frame, the frequency would be w’ = wg + kvg; and the amplitude oscilla-
tions would have wave number &' = w'/vy = k[ + (wp/w)].

The condition wg = w turns out to define the breakdown of linear
theory even when other processes besides particle trapping are respon-
sible. Another type of nonlinear Landau damping involves the beating
of two waves. Suppose there are two high-frequency electron waves
(w1, k) and (w9, ko). These would beat to form an amplitude envelope
traveling at a velocity (w2 — 1)/ (k2 — k1) = dw/dk = v,. This velocity may
be low enough to lie within the ion distribution function. There can then
be an energy exchange with the resonant ions. The potential the ions

FIGURE 8-23
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8.8

FIGURE 8-24

see is the effective potential due to the ponderomotive force (Fig. 8-24),
and Landau damping or growth can occur. Damping provides an
effective way to heat ions with high-frequency waves, which do not
ordinarily interact with ions. If the ion distribution is double-humped,
it can excite the electron waves. Such an instability is called a modulational
instability.

8-15. Make a graph to show clearly the degree of agreement between the echo
data of Fig. 8-21 and Eq. [8-87].

8-16. Calculate the bounce frequency of a deeply trapped electron in a plasma
wave with 10-V rms amplitude and 1-cm wavelength.

EQUATIONS OF NONLINEAR PLASMA PHYSICS

There are two nonlinear equations that have been treated extensively
in connection with nonlinear plasma waves: The Korteweg~de Vries
equation and the nonlinear Schrodinger equation. Each concerns a
different type of nonlinearity. When an ion acoustic wave gains large
amplitude, the main nonlinear effect is wave steepening, whose physical
explanation was given in Section 8.3.3. This effect arises from the v - Vv
term in the ion equation of motion and is handled mathematically by
the Korteweg—de Vries equation. The wave-train and soliton solutions
of Figs. 8-5 and 8-7 are also predicted by this equation.

When an electron plasma wave goes nonlinear, the dominant new
effect is that the ponderomotive force of the plasma waves causes the

The ponderomotive force caused by the envelop of a modulated wave can trap
particles and cause wave-particle resonances at-the group velocity.



background plasma to move away, causing a local depression in density
called a caviton. Plasma waves trapped in this cavity then form an isolated
structure called an envelope soliton or envelope solitary wave. Such solutions
are described by the nonlinear Schrodinger equation. Considering the
difference in both the physical model and the mathematical form of the
governing equations, it is surprising that solitons and envelope solitons
have almost the same shape.

The Korteweg—de Vries Equation

This equation occurs in many physical situations including that of a
weakly nonlinear ion wave:
3
iJ+U£]+li{=0 [8-92]
ar 9 2 3
where U is amplitude, and 7 and ¢ are timelike and spacelike variables,
respectively. Although several transformations of variables will be
necessary before this form is obtained, two physical features can already
be seen. The second term in Eq. [8-92] is easily recognized as the
convective term v - Vv leading to wave steepening. The third term arises
from wave dispersion; that is, the # dependence of the phase velocity.
For T; = 0, ion waves obey the relation (Eq. [4-48])

2= k%21 +k2)7! [8-93]

Thedispersive term kA3 arises from the deviation from exact neutrality.
By Taylor-series expansion, one finds

o = ke, —3k%c,A 3 [8-94]

showing that the dispersive term is proportional to k”. This is the reason
for the third derivative term in Eq. [8-92]. Dispersion must be kept in
the theory to prevent very steep wavefronts (corresponding to very large
k) from spuriously dominating the nonlinear behavior.

The Korteweg-de Vries equation admits of a solution in the form
of a soliton; thatis, a single pulse which retains its shape as it propagates
with some velocity ¢ (not the velocity of light!). This means that U
depends only on the variable ¢ — ¢r rather than £ or r separately. Defining
{=¢& —cr,sothatd/dr = —cd/d{ and 9/9¢ = d/d{, we can write Eq. [8-92]
as

_dU AU LU, 8-95
i T a e ar [8-951

8.8.1
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This can be integrated:

“dU lr’dU? ) 1j°° d (dQU
- —dl'+- | —d - | —
c J; d{, ( 2 . d{’ { 2 c d{, dg«/?

) dl'=0  [8-96)

!’ being a dummy variable. If U({) and its derivatives vanish at large
distances from the soliton (] ¢} - o) the result is

1, 14d°U
CU—'Q—U_—§d—§2=0 [8-97)

Multiplying each term by dU/d{, we can integrate once more, obtaining

| P l(dU)Q
— i =) = -9
QcU 6U A\ 0 [8-98]
or
(d—q>2 = gU"’(Eic -U) [8-99
i) "3 =1

This equation is satisfied by the soliton solution
U(¢) = 3¢ sech® [(c/2)"%¢] (8-100]

as one can verify by direct substitution, making use of the identities

d
T (sech x) = —sech x tanh x [8-101)

and

sech?x + tanh?x = 1 [8-102]

Equation [8-100] describes a structure that looks like Fig. 8-7, reach-
ing a peak at { =0 and vanishing at { - +00. The soliton has speed ¢,
amplitude 3¢, and half-width (2/c)"2. All are related, so that ¢ specifies
the energy of the soliton. The larger the energy, the larger the speed
and amplitude, and the narrower the width. The occurrence of solitons
depends on the initial conditions. If the initial disturbance has enough
energy and the phases are right, a soliton can be generated; otherwise,
a large-amplitude wave will appear. If the initial disturbance has the
energy of several solitons and the phases are right, an N-soliton solution
can be generated. Since the speed of the solitons increases with their
size, after a time the solitons will disperse themselves into an ordered
array, as shown in Fig. 8-25.



A train of solitons, generated at the left, arrayed according to the relation
among speed, height, and width.

We next wish to show that the Korteweg—-de Vries equation describes
large-amplitude ion waves. Consider the simple case of one-dimensional
waves with cold ions. The fluid equations of motion and continuity are

dv; Av; e 3d

+ =" = — 8-103
at v dax m ox [ ]
a—nf+i( )=0 [8-104]
o ax

Assume Boltzmann electrons (Eq. [3-73]); Poisson’s equation is then

ERS
pwl =e(noe

ed/KT, _

() n;) [8-105]

The following dimensionless variables will make all the coefficients unity:

x'=x/Ap = x(ng eQ/GOKT,)l/2
t'=Q,t = t(noe®/eoM)"®

x = ed/KT,
v' =vfv, = v(M/KT,)"?

(8-106]
n' =n;/ng
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Our set of equations becomes

6U'+ ,0v’ dx
v — T —
o Py P [8-107]
an,+ i( 7 I) — 0
at’  ox’ = (8-108]
6‘2
)f;=e" ~n' [8-109]
0x

If we were to transform to a frame moving with velocity v’ = /4, we
would recover Eq. [8-27]. As shown following Eq. [8-27], this set of
equations admits of soliton solutions for a range of Mach numbers ..

8-17. Reduce Egs. [8-107]-[8-109] to Eq. [8-27] by assuming that x, n’, and v’
depend only on the variable ¢’ = x’ — #{t'. Integrate twice as in Eqs. [8-96])-[8-98]
to obtain

Ydx/de)? = e — 1 + .M[(M2 - 2%)'"* — 4]

Show that soliton solutions can exist only for 1 <.#f < 1.6 and 0 < x,,,.. < 1.3.

To recover the K —dV equation, we must expand in the wave
amplitude and keep one order higher than in the linear theory. Since
for solitons the amplitude and speed are related, we can choose the
expansion parameter to be the Mach number excess 8, defined to be

s=u—1 [8-110)

We thus write

n'= l+5n1+52n2+--‘
X =68x1+8xa+ - [8-111

v' = 6v,+ 89+ -

We must also transform to the scaled variables*

E=68"°0'-t) r=58%% 8-112]

* It is not necessary to explain why; the end will justify the means.



so that

at’ or 13
[8-113]
d ¢
- 61/2_
0x ¢

Substituting [8-111] and [8-113] into [8-109], we find that the lowest-
order terms are proportional to §, and these give

X1=ny [8-114]

Doing the same in Eqgs. [8-107] and [8-108], we find that the lowest-order
terms are proportional to 8°/2 and these give

o0 _ o _om

sdinll SFES 8-115
3 OF OF B=1L5]

Since all vanish as £ -> ©©, integration gives
nm=x1=nuL=U [8-116]

Thus our normalization is such that all the linear perturbations are equal
and can be called U. We next collect the terms proportional to §° in Eq.
[8-109] and to §*'2 in Egs. [8-107] and [8-108]. This yields the set

2

8,\/1 l 9
= Xa TNt = 8-117

362 X2 2 2,\’1 [ ]
d d d X
orT o€ & &
an, 6n2+ d g & ) [8119]
— ——+ —(vo + nv -
or ot oac !

Solving for ny in [8-117] and for dvy/d¢ in [8-113], we substitute into
[8-119]:

an,  x1 dx2 1dxi 9 dui 3
Dt e A T+ L ) =0 [8-120]
ar 9> 9t 209  or 9 of ok

Fortunately, x2 cancels out, and replacing all first-order quantities by U
results in

3
U, ;U 18U _

— =0 8-121
or o 298 [ ]
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PROBLEM

8.8.2

which is the same as Eq. [8-92). Thus, ion waves of amplitude one order
higher than linear are described by the Korteweg-de Vries equation.

8-18. A soliton with peak amplitude 12 V is excited in a hydrogen plasma with
KT.=10eV and no =10"® m™. Assuming that the Korteweg-de Vries equation
describes the soliton, calculate its velocity (in m/sec) and its full width at half
maximum (in mm). (Hint: First show that the soliton velocity ¢ is equal to unity
in the normalized units used to derive the K-dV equation.)

The Nonlinear Schrodinger Equation

This equation has the standard dimensionless form

N5
—+
lal Paxz

+qlyl*y =0 (8-122]

where ¢ is the wave amplitude, ;i = (—1)"/2, and p and q are coefficients
whose physical significance will be explained shortly. Equation [8-122]
differs from the usual Schrodinger equation
2 .o
ih%ﬁ + 2% (;T‘é' -V, )y =0

in that the potential V(x,¢) depends on ¢ itself, making the last term
nonlinear. Note, however, that V depends only on the magnitude ||*
and not on the phase of . This is to be expected, as far as electron
plasma waves are concerned, because the nonlinearity comes from the
ponderomotive force, which depends on the gradient of the wave
intensity.

Plane wave solutions of Eq. [8-122] are modulationally unstable if
pq > 0; that is, a ripple on the envelope of the wave will tend to grow.
The picture is the same as that of Fig. 8-24 even though we are consider-
ing here fluid, rather than discrete particle, effects. For plasma waves,
it is easy to see how the ponderomotive force can cause a modulational
instability. Figure 8-26 shows a plasma wave with a rippled envelope.
The gradient in wave intensity causes a ponderomotive force which
moves both electrons and ions toward the intensity minima, forming a
ripple in the plasma density. Plasma waves are trapped in regions of low
density because their dispersion relation

w’ = wz + 38202 (4-30]



The ponderomotive force of a plasma wave with nonuniform
intensity causes ions to flow toward the intensity minima. The result-
ing density ripple traps waves in its troughs, thus enhancing the
modulation of the envelope.

permits waves of large k to exist only in regions of small w,. The trapping
of part of the £ spectrum further enhances the wave intensity in the
regions where it was already high, thus causing the envelop to develop
a growing ripple.

The reason the sign of pg matters is that p and ¢q for plasma waves
turn out to be proportional, respectively, to the group dispersion dv,/dk
and the nonlinear frequency shift w  dw/d| | . We shall show later that

_ldv, B dw

{7—58—1{— q——WOC—&D [8-123)
Modulational instability occurs when pg > 0; that is, when dw and dv,/dk
have opposite sign. Figure 8-27 illustrates why this is so. In Fig. 8-27A,
a ripple in the wave envelope has developed as a result of random
fluctuations. Suppose 8w is negative. Then the phase velocity w/k, whch
is proportional to w, becomes somewhat smaller in the region of high
intensity. This causes the wave crests to pile up on the left of Fig. 8-27B
and to spread out on the right. The local value of £ is therefore large
on the left and small on the right. If dv./dk is positive, the group velocity
will be larger on the left than the right, so the wave energy will pile up
into a smaller space. Thus, the ripple in the envelope will become
narrower and larger, as in Fig. 8-27C. If w and dv,/dk were of the same
sign, this modulational instability would not happen.

FIGURE 8-26
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FIGURE 8-27

(A)

Vo
(B)
(C)

Modulational instability occurs when the nonlinear
frequency shift and the group velocity dispersion have
opposite signs.

Although plane wave solutions to Eq. [8-123] are modulationally
unstable when pq > 0, there can be solitary structures called envelope
solitons which are stable. These are generated from the basic solution

1/2 1/2
A .
w(x, t) = (27‘4) sech [(;) x] e [8-124]

where A is an arbitrary constant which ties together the amplitude,
width, and frequency of the packet. At any given time, the disturbance
resembles a simple soliton (Eq. [8-100]) (though the hyperbolic secant
is not squared here), but the exponential factor makes w(x, t) oscillate
between positive and negative values. An envelope soliton moving with
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An envelope soliton. FIGURE 8-28
a velocity V has the more general form (Fig. 8-28)
9.4\ /2 A\ 172
Ux, t) = (—) sech [(—) (x —x0— Vt)]
q p
'(At + A Vzt +6 )] [8-125]
X o -
exp ¢ % 1 0
where xo and 6y are the initial position and phase. It is seen that the
magnitude of V also controls the number of wavelengths inside the
envelope at any given time.
8.19. Show by direct substitution that Eq. [8-124] is a solution of Eq. [8-122]. PROBLEMS

8-20. VerifyEq. [8-125] by showing that if w(x, ¢) is a solution of Eq. [8-122], then

AV V2
Y =wx—xo— Vi, t)exp [z(gx —El 34 00)]

is also a solution.

We next wish to show that the nonlinear Schrédinger equation
describes large-amplitude electron plasma waves. The procedure is to
solve self-consistently for the density cavity that the waves dig by means
of their ponderomotive force and for the behavior of the waves in such
a cavity. The high-frequency motion of the electrons is governed by
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equations [4-18], [4-19], and [4-28], which we rewrite as
du e 3KT, on

ot m mngy Ox [8-126}
on N ou 0
) NnNo— = "
5 T o (8-127)
oF -1,
=g n .
o €0 [8-128)

where ng is the uniform unperturbed density; and E, n, and u are,
respectively, the perturbations in electric field, electron density, and fluid
velocity. These equations are linearized, so that nonlinearities due to the
u - Vu and V- (nu) terms are not considered. Taking the time derivative
of Eq. [8-127] and the x derivative of Eq. [8-126], we can eliminate u
and E with the help of [8-128] to obtain

62_71_3KT862n+n032
at> m 9x> meo

n=20 [8-129)

We now replace ng by no+ én to describe the density cavity; this is the
only nonlinear effect considered. Equation [8-129] is of course followed
by any of the linear variables. It will be convenient to write it in terms
of u and use the definition of w,; thus

o°u  3KT, du

5 on
- 5+ 2( + —) =0 8-130
at’ m  0x" @y 1 no N [ ]

The velocity u consists of a high-frequency part oscillating at wg (essen-

tially the plasma frequency) and a low-frequency part u; describing the

quasineutral motion of electrons following the ions as they move to form

the density cavity. Both fast and slow spatial variations are included in u,.
Let

w(x, t) = wy(x, £) e (8-131]

Differentiating twice in time, we obtain

)
" u . . . 2 —iwgt
GT = (i — 2iwotl; — wolt) e °

where the dot stands for a time derivative on the slow time scale. We
ve . . 2
may therefore neglect #%, which is much smaller than wou;:
0%u

Com —(@ou + wotiy) e [8-132]



Substituting into Eq. [8-130] gives

3KT, 9" i
[inou',+——u2'+(w3 -w; —wf,a—n) u(] e =0 [8-133)
ax no

We now transform to the natural units

t' = wpt 0 =w/w, x'=x/Ap
e [8-134]
u =u(KT,/m)” on' =dén/ng
obtaining
L our 33%ui 1 ] e
iwy— + = —g +—(wy — 1 = 8n’ Wit = 0
[w" o Taa? talwo i e
Defining the frequency shift A
A= (wo—wp)/wy =wpy — 1 [8-135]

and assuming A « 1, we have @y’ — 1 = 2A. We may now drop the primes
(these being understood), convert back to u(x,t) via Eq. [8-131], and
approximate wo by 1 in the first term to obtain

Lou 3 d%u (
—+

+(A 16) 0 [8-136
e —Zonju = &
Zaz 2 ax” ]

2
Here it is understood that 3/d¢ is the time derivative on the slow time
scale, although u contains both the exp (—iwgt) factor and the slowly
varying coefficient u;,, We have essentially derived the nonlinear
Schrédinger equation [8-122], but it remains to evaluate én in terms
of | u(l 2.

The low-frequency equation of motion for the electrons is obtained
by neglecting the inertia term in Eq. [4-28] and adding a ponderomotive
force term from Eq. [8-44]

8-137
0x (wo dx 2 [ /

Here we have set v, =1 since the low-frequency motion should be
isothermal rather than adiabatic. We may set
2 9
m wo
3

(E?y = (u® [8-138]

by solving the high-frequency equation [8-126] without the thermal
correction. With E = =V¢ and xy = ¢¢/KT,, Eq. [8-137] becomes

a 1 m 9,
—(v — 1 - = — =0 8-1
(04 nn) 9 KT, ox (u®) [8-139]
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Integrating, setting n = ny + én, and using the natural units [8-134], we
have

su”y=3ul®’=x-In(1+6n)=yx —én (8-140]

We must now eliminate y by solving the cold-ion equations [8-103]
and [8-104]. Since we are now using the electron variables (8-134], and
since (), = €w,, v, = e(KT,/m)”Q, wheree = (m/NI)”Q, the dimensionless
form of the ion equations is

1ow 0w %

i + = O =
€ ot “ ox  0x [8-141]

1 aani
at

d
+ —[(1+dn)u] =0 [8-142]
0x

Here we have set n; = (ny+68n;)/no =1+ 6n; and have dropped the
prime. If the soliton is stationary in a frame moving with velocity V, the
perturbations depend on x and ¢ only through the combination ¢ =
x —xo— Vt. Thus

and we obtain after linearization

Vau,- a_X_

€
—_———t+==0 i == 8-143
€ 0f 3¢ X (81431
_Vaem ouw_ o sn = 8-144]
€ 9t  o¢ 4

From this and the condition of quasineutrality for the slow motions, we

obtain

2
€

én, =6n; = —5 8-145
n n VQX [ ]

Substituting for xy in Eq. [8-140], where én is really &n,, we find

1 V? -1
én, = Z|u|2(—2— 1) [8-146]
€

Upon inserting this into Eq. [8-136], we finally have

ou 3 d°u [ 1/v? R
2 g A——(——l) ] =0 [8-147]
"ot T2 ox? 8\ e? il



Comparing with Eq. [8-122], we see that this is the nonlinear
Schrodinger equation if A can be neglected and
3 1 ( m/M )

== =—= 8-148
p 1=\t [8-148]

Finally, it remains to show that p and g are related to the group
dispersion and nonlinear frequency shift as stated in Eq. [8-123]. This
is true for V* « m/M. In dimensionless units, the Bohm-Gross dispersion
relation [4-30] reads

w?=1+6n"+3k"7 [8-149]

where &' = kAp, and we have normalized w to wpo, the value outside the
density cavity. The group velocity is

, do' 3k’
vg= = [8-150]
so that
dv,
@ wi =
and
ldv, 3
P a2 (151
For V? « €°, Eq. [8-146] gives
sn’ = =i
so that Eq. [8-144] can be written
w?=1—%|u'|*+3k" [8-152]
Then
2w'dw’ = —3d|u'|?
aw’och,,Qz L [8-153]
d|u’| 8

From Eq. [8-148], we have, for V?« e’
L1 do”
1787 Tdlu?

as previously stated.
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If the condition V2« €” is not satisfied, the ion dynamics must be
treated more carefully; one has coupled electron and ion solitons which
evolve together in time. This 1s the situation normally encountered in
experiment and has been treated theoretically.

In summary, a Langmuir-wave soliton is described by Eq. [8-125],
with p =3 and ¢ = § and with ¢(x, t) signifying the low-frequency part
of u(x,t), where u, x, and ¢ are all in dimensionless units. Inserting the
exp (—iwot) factor and letting x, and 4, be zero, we can write Eq. [8-125]
as follows:

1/2

u(x,t) =44 72 sech [(2?/1) (x — Vt)]

2

. |4 |74
Xexp{—z[(a)0+—6——A)t —gx]} [8-154)

The envelope of the soliton propagates with a velocity V/, which is so far
unspecified. To find it accurately involves simultaneously solving a
Korteweg-de Vries equation describing the motion of the density cavity,
but the underlying physics can be explained much more simply. The
electron plasma waves have a group velocity, and V' must be near this
velocity if the wave energy is to move along with the envelope. In
dimensionless units, this velocity is, from Eq. (8-150],
3k’

V=y,=— =3k [8-155]
w

The term i(V/3)x in the exponent of Eq. [8-154] is therefore just the
thx factor indicating propagation of the waves inside the envelope.
Similarly, the factor —1(V?/6)t is just —i(3)k"%t', which can be recognized
from Eq. [8-149] as the Bohm-Gross frequency for §n’ = 0, the factor
3 coming from expansion of the square root. Since wo = w,, the terms
wo + (V?/6) represent the Bohm-Gross frequency, and A is therefore
the frequency shift (in units of w,) due to the cavity in én'. The soliton
amplitude and width are given in Eq. [8-154] in terms of the shift A,
and the high-frequency electric field can be found from Eq. [8-138].
Cavitons have been observed in devices similar to that of Fig. 8-16.
Figures 8-29 and 8-30 show two experiments in which structures like
the envelope solitons discussed above have been generated by injecting
high-power rf into a quiescent plasma. These experiments initiated the
interpretation of laser-fusion data in terms of “profile modification,” or
the change in density profile caused by the ponderomotive force of laser
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A density cavity, or ‘“caviton,” dug by the
ponderomotive force of an rf field near the
critical layer. The high-frequency oscillations
(not shown) were probed with an electron beam.
[From H. C. Kim, R. L. Stenzel, and A. Y. Wong,
Phys. Rev. Lett. 33, 886 (1974).]

FIGURE 8-29
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FIGURE 8-30

PROBLEMS

Coupled electron and ion wave solitons. In (A) the low-frequency density
cavities are seen to propagate to the left. In (B) the high-frequency electric
field, as measured by wire probes, is found to be large at the local density
minima. [From H. Ikezi, K. Nishikawa, H. Hojo, and K. Mima, Plasma Physics and
Controlled Nuclear Fusion Research, 1974, II, 609, International Atomic Energy
Agency, Vienna, 1975.]

radiation near the critical layer, where w, = wy, wo being the laser

frequency.

8-21. Check that the relation between the frequency shift A and the soliton
amplitude in Eq. [8-154] is reasonable by calculating the average density
depression in the soliton and the corresponding average change in w,. (Hint:
Use Eq. [8-146] and assume that the sech® factor has an average value of =3
over the soliton width.)

8-22. A Langmuir-wave soliton with an envelope amplitude of 3.2 V peak-to-
peak is excited in a 2-eV plasma with 7, = 10> m™, If the electron waves have
kAp = 0.3, find (a) the full width at half maximum of the envelope (in mm), (b)
the number of wavelengths within this width, and (c) the frequency shift (in
MHz) away from the linear-theory Bohm-Gross frequency.

8-23. A densitycavityin the shape of asquare wellis created in a one-dimensional
plasma with K7, = 3 eV. The density outside the cavity is n, = 10'° m™%, and that
inside isn; = 0.4 X 10'®* m™ If the cavity is long enough that boundary resonances
can be ignored, what is the wavelength of the shortest electron plasma wave that
can be trapped in the cavity?
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Appendix A

UNITS,
CONSTANTS

AND FORMULAS,
VECTOR
RELATIONS

UNITS A.1l

The formulas in this book are written in the mks units of the International
System (SI). In much of the research literature, however, the cgs-
Gaussian system is still used. The following table compares the vacuum
Maxwell equations, the fluid equation of motion,and the idealized Ohm’s
law in the two systems:

mks-SI cgs-Gaussian

V:-D=¢(n; —n,) V - E = 4me(n; — n.)
VXE=-B ¢cVXE=-B
V-B=0 V:-B=0
VxH=j+D cVxB=4mrj+E
D = eoE B = uoH e=un=1

av av 1
mnz=qn(E+va)—Vp mn$=qn(E+;va)—Vp
E+vxB=0 E+%vXB=0

The equation of continuity is the same in both systems. 349
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A2

In the Gaussian system, all electrical quantities are in electrostatic
units (esu) except B, which is in gauss (emu); the factors of ¢ are written
explicitly to accommodate this exception. In the mks system, B is
measured in tesla (Wb/mg), each of which is worth 10* gauss. Electric
fields E are in esu/cm in cgs and V/m in mks. Since one esu of potential
is 300 V, one esu/cm is the same as 3 X 10* V/m. The ratio of E to B is
dimensionless in the Gaussian system, so that vg = c¢E/B. In the mks
system, £/ B has the dimensions of a velocity, so that vg = £/B. This fact
is useful to keep in mind when checking the dimensions of various terms
in an equation in looking for algebraic errors.

The current density j = nev has the same form in both systems. In
cgs, n and v are in cm™® and cm/sec, and ¢ has the value ¢ =
4.8 x 10" "% esu; then j comes out in esu/cm®, where 1 esu of current
equals ¢} emu or 10/c = 1/(3 x 10°) A. In mks, n and varein m > and
m/sec, and e has the value ¢ = 1.6 X 1079 C; then j comes out in A/m?.

Most cgs formulas can be converted to mks by replacing B/c by B
and 47 by e, ', where 1/4meo = 9 x 10°. For instance, electric field energy
density is £2/87 in cgs and €,E?/2 in mks, and magnetic field energy
density is B%/87 in cgs and BQ/Q[J,O in mks. Here we have used the fact
that (eomo)” "% = ¢ = 3 x10° m/sec.

The energy KT is usually given in electron volts. In cgs, one must
convert Ty to ergs by multiplying by 1.6 x 107'? erg/eV. In mks, one
converts T,y to joules by multiplying by 1.6 x 107'° J/eV. This last
number is, of course, just the charge ¢ in mks, since that is how the
electron volt is defined.

USEFUL CONSTANTS AND FORMULAS

Constants

mks cgs
c velocity of light 3 x 10° m/sec 3 x 10" cm/sec
e electron charge 1.6x107"°C 4.8 x 10 "% esu
m  electron mass 0.91x10*°kg 091x10%¢g
M  proton mass 1.67x10 % kg 1.67 x 107** g

M/m 1837 1837



1/2
(M/m)
K Boltzmann’s constant
eV electron volt

1 eV of temperature KT

€9  permittivity of
free space

o permeability of
free space

2 .
ma; cross section of H atom
density of neutral atoms at

room temperature and
I mTorr pressure

Constants 351
mks cgs Units, Constants
and Formulas,

43 43 Vector Relations
1.38x 1072 J/°K  1.38 x 10 ®erg/°K

1.6x107'7] 1.6 x 10 " erg

11,600°K 11,600°K

8.854 x 1072 F/m

47 X 1077 H/m

2

0.88x1072°m?  0.88x10'°cm?

3.8 % 10" m™ 3.3x10%cm™

Formulas
cgs- Handy formula
mks Gaussian (n in cm ™)
2, 1/2 2, 1/2
4 =
@, plasma frequency (ne ) (ﬂ> fo = 9000 Vnsec™!
€om m
B B
w, electron cyclotron il S f. =2.8 GHz/kG
m mc
frequency
eKT\'"? ( KT,\'?
Ap Debye length ( = ) ( 2) 740(Tey/n)""? cm
ne 4mne
14727
r..  Larmor radius % % B—Y:(, mm (H)
B 2 w27 S

2.2x%x10

va  Alfvén speed

®)®  (4mp)"” Vn sec

(H)
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Us

VE

Up

Uthe

v osc

Formulas
cgs- Handy formula
mks “Gaussian (n incm™)
KTy KT\'?
acoustic speed (—4—4—> (-—w—> 10° T2 scec (H)
(T: = 0) ‘ ‘
. '3 cE s E(V/cm) cm
E % B drift speed B B 10 B(G) e
. . KTn cKTn' g Tev 1 cm
diamagnetic — 107 r—=——
. eB n eB n B R sec
drift speed
ticfpl nKT nKT
magnetic/ plasma
gneterp B%/2mo  B'[8w
pressure
KTN\'? (2KT\'?
electron thermal (2——> (——) 5.9 x 107 TH? L
m m sec
speed
eZn,InA _
electron-ion ~ 2 ~2x107° —-37n§— sec”!
o0 ND TeV
collision frequency
B nlnA
electron—electron =5x10" FQ_SCC
collision frequency
. . o m\'P TN
ion-ion collision 4 (X{— (—) Vee
frequency
.. 13 Tﬁv
collision mean ~A, =Ai =3.4x10 - ——cm(H)
free path
E E s
peak electron £20 ) = > = 7.3119/\i
mwo mwo c

quiver velocity

Uosc 113'\
U¢ - 3 7 TeV
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1o 1 o
V- A=—-—(A)+~-—Ag+—A,
r ar ra

VxA=(

USEFUL VECTOR RELATIONS 353

Units, Constants
and Formulas,

A-(BXxC)=B-(CxA)=C-(AxB)=(ABC) Vector Relations
AX(BXC)=B(A-C)—C(A"B)
(AXB)-(CxD)=(A-C)B-D)—(A-D)B"-C)

(A X B) X (C X D) = (ABD)C ~ (ABC)D = (ACD)B — (BCD)A
V- (¢pA)=A-Vop +06V:-A

VX (pA)=Vdp XA+ VXA
AX(VxB)=V(A-B)—(A-V)B-(B-V)A—B x (VxA)
(A-V)A=VEA®) — A X (VXA)

V- (AxB)=B:-(VxA)-—A: - (VXB)
Vx(AXxB)=A(V-B)—BV-A+(B-V)A—(A-V)B

V x[(A-V)A]=(A - V)(VxA)+(V-A)(VxA)-[(VxA)-V])A

VxVxA=V(V-A)—(V-V)A

VXxXVep=0
V- (VXA)=0
Cylindrical Coordinates (7, 0, z)
18/ 3¢\ 13¢ ¢
= —( _) ts st =
r ar \ Or " 46 z

d
[’ 0z

1 0A, 0Ag\. 0A, 0A.\A 19 1 0A4,].
Lo, oo, (24 _0dyg Js

- ——(rAg) — —
r 96 0z 0z ar r or r 96
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, o1 !
VA = (V- V)A = [v-A, - (A, +9 ﬁf‘—")]r

l a T a a
+ [v"’Ag - r—2(A9 —9 af; >]e + V24,3

1B, _ 4B, 1
08 4,198 1 A, —;Ang)

<A'“B=f@“sr ;30 52

R B B B
+9<A,—aa "+Agl—a By g, S0
r

1
Lo —AgB,>
r 960 0z r

9B, 1 9B, aB.>
+# A, —+A,— —+A,—
Z(A ar °r 96 0z
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THEORY OF
WAVES IN A
COLD UNIFORM
PLASMA

Aslongas T, = T; = 0, the waves described in Chapter 4 can easily be
generalized to an arbitrary number of charged particle species and an
arbitrary angle of propagation @ relative to the magnetic field. Waves
that depend on finite T, such as ion acoustic waves, are not included in
this treatment.

First, we define the dielectric tensor of a plasma as follows. The

fourth Maxwell equation is
VX B = po(j + €oE) [B-1]

where j is the plasma current due to the motion of the various charged
particle species s, with density n,, charge g,, and velocity v;:

i=Xnaq.v, [B-2]

Considering the plasma to be a dielectric with internal currents j, we
may write Eq. [B-1] as

VxB=uD (B-3]
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where
D E + s
= E —
0 w J [B-4]

Here we have assumed an exp (—iwt) dependence for all plasma motions.
Let the current j be proportional to E but not necessarily in the same
direction (because of the magnetic field Boz); we may then define a
conductivity tensor @ by the relation

j=oE [B-5]
Eq. [B-4] becomes
D=eo(l+——£—0')'E=E-E [B-6]
€ow
Thus the effective dielectric constant of the plasma is the tensor
€ =€eo(l+io/eqw) [B-7]

where [ is the unit tensor.
To evaluate @, we use the linearized fluid equation of motion for
species s, neglecting the collision and pressure terms:

Vs

ot

m, = q;(E + v; X Bg) [B-8]

Defining the cyclotron and plasma frequencies for each species as

2
noq
ap T—— [B-9]
€M

— qu 0
ms

Wes

we can separate Eq. [B-8] into x, y, and z components and solve for v,
obtaining

g [E # i(we/)E)

a msw IS (wcs/w )2

(B-10a]

iqs [Ey &+ i(wcs/w)Ex]
= B-10b
P me 1 (0de) (100

v = 2 F, [B-10c]
mw

where =+ stands for the sign of q,. The plasma current is

i =2 noqsvs [B-11]
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Theory of Waves
; ; .9 . in a Cold
+
- e Wos s E % i(ws/w )QEy Uniform Plasma
€0w sE0w mw 1 — (we/w)

2 .
wps B, £ l(wcs/w)E
=y -—5 S (oo) 2 [B-12]

Using the identities

1 1[ ® ® ]
—_——s = +
I —(w/w) 2low Fws oo,

[B-13]
o/ 1[ o ]
1= (wcs/w )2 2 ke Wes o E wg
we can write Eq. [B-12] as follows:
1 1wy
g e, e,
€ow 25 w W F Wes 0t wes
) ® .
+ ( - )zEy] [B-14]
W F ;s @,
Similarly, the y and z components are
- beais: [( w o >
= == 5 = E,
eow]y QZ:w' 0lo oFw
1) 1)
+ ( + )Ey] [B-15]
0w Fw; ©Lws
Z W
—j.=-2,—%FE, [B-16]
€Epw s W

Use of Eq. [B-14] in Eq. [B-4] gives

1 lwis w w
] e e 2

0 s (O] w q:a)cs w:twcs

+wps( w w )E] .
- i B-
0’ \0 Fo, o*o, e
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We define the convenient abbreviations

-3

s W \w £ wg
w*z
L=1-3%(—2)
Zs'cu2 w F wg
[B-18
S=3R+L) D=3R-L)* ]
w?
PEI—Z;%

Using these in Eq. [B-17] and proceeding similarly with the y and :z
components, we obtain

€o'D, = SE, — iDE,

€5'D, = iDE, + SE, [B-19]
€o'D. = PE,
Comparing with Eq. [B-6], we see that
'S —iD 0
€ = €y|iD S 0| = eoer [B-20]
|0 0 P,

We next derive the wave equation by taking the curl of the equation
V X E = —B and substituting VX B = e - E, obtaining

. 1 .
VXVXE=_[.L0€0(€R 'E)=—C_2€R -E [B-21]
Assuming an exp (ik - r) spatial dependence of E and defining a vector

index of refraction

n=—k [B-22]

w
we can write Eq. [B-21] as
LX(uXE)+ter E=0 [B-23)

The uniform plasma is isotropic in the x-y plane, so we may choose the
y axis so that &, = 0, without loss of generality. If 6 is the angle between
k and By, we then have

Ky = siné ®, = 1 cos @ @y, =0 [B-24)

* Note that D here stands for “difference.” It is not the displacement vector D.



The next step is to separate Eq. [B-23] into components, using the
elements of eg given in Eq. [B-20]. This procedure readily yields

S—un%cos®’d —iD p®sin@ cos 6\ (E.
iD S—u? 0 E,| =0 [B-25]
w?sin 6 cos @ 0 P—u?sin® 9] |E,

o o]
o)
il

From this it is clear that the E., E, components are coupled to E, only
if one deviates from the principal angles 8 = 0, 90°.

Eq. [B-25] is a set of three simultaneous, homogeneous equations;
the condition for the existence of a solution is that the determinant of
R vanish: ||R|| = 0. Expanding in minors of the second column, we then
obtain

(GD)(P —u2sin? 8) + (S — u?)
X[(S—p?cos’ )P —pn’sin®0) — u? sin® 6 cos’ #1=0 [B-26]
By replacing cos® 6 by 1 —sin® 6, we can solve for sin’ 6, obtaining

—P(un*—25u?+ RL)

in®g = - B-27
SO %S ~ P)+ n2(PS — RL) Lo
We have used the identity $* — D® = RL. Similarly,
o Su*—(PS+RL)u?+ PRL
cos @ = b ( e [B-28]

w*(S ~P)+u’(PS —RL)
Dividing the last two equations, we obtain

P(u*—25u” + RL)
Su*— (PS +RL)u®+ PRL

2
tan” 6§ =

Since 25 = R + L, the numerator and denominator can be factored to
give the cold-plasma dispersion relation

_P@-R)p’-L)
(Su®—RL)(u® - P)

tan’g = [B-29]

The principal modes of Chapter 4 can be recovered by setting § = 0°
and 90°. When 6 = 0°, there are three roots: P = 0 (Langmuir wave),
;LQ = R (R wave), and y.g =L (L wave). When 8 = 90° there are two
roots: 2 = RL/S (extraordinary wave) and u® = P (ordinary wave). By
inserting the definitions of Eq. [B-18], one can verify that these are

359
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identical to the dispersion relations given in Chapter 4, with the addition
of corrections due to ion motions.
The resonances can be found by letting . go to 0. We then have

tan® @,es = —P/S [B-30]

This shows that the resonance frequencies depend on angle 6. If 6 = (°,
the possible solutions are P = 0 and § = ©. The former is the plasma
resonance o = wy, while the latter occurs when either R = o (electron
cyclotron resonance) or L = @ (ion cyclotron resonance). If § = 90°, the
possible solutions are P = 00 or § = 0. The former cannot occur for finite
w, and w, and the latter yields the upper and lower hybrid frequencies,
as well as the two-ion hybrid frequency when there is more than one
ion species.

The cutoffs can be found by setting # = 0in Eq. [B-26]. Again using
S?— D? = RL, we find that the condition for cutoff is independent of 4:

PRI =0 [B-31]

The conditions R = 0 and L. = 0 yield the wg and w; cutoff frequencies
of Chapter 4, with the addition of ion corrections. The condition P = 0
1s seen to correspond to cutoff as well as to resonance. This degeneracy
is due to our neglect of thermal motions. Actually, P = 0 (or w = w,) is
a resonance for longitudinal waves and a cutofl for transverse waves.

The information contained in Eq. [B-29] is summarized in the
Clemmow-Mullaly-Allis diagram. One further result, not in the diagram,
can be obtained easily from this formulation. The middle line of Eq.
[B-25] reads

iDE, + (S —pn®E, =0 (B-32)
Thus the polarization in the plane perpendicular to By is given by
E, _u’-S
e B [B-33]
E, D

From this it is easily seen that waves are linearly polarized at resonance
(u? = o) and circularly polarized at cutoff (#®> =0, R = 0 or L = 0; thus
S = +D).
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SAMPLE
THREE-HOUR

FINAL EXAM

PART A (ONE HOUR, CLOSED BOOK)
. The number of electrons in a Debye sphere forn = 10" m™ % KT, =
10 eV is approximately

(A) 135

(B) 0.14

(C) 74 x 10°

(D) 1.7 % 10°

(E) 3.5x 10"

. The electron plasma frequency in a plasma of density n = 10°°m™>
is

(A) 90 MHz

(B) 900 MHz

(C) 9GHz

(D) 90 GHz

(E) None of the above to within 10% 361
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(&3

A doubly charged helium nucleus of energy 3.5 MeV in a magnetic
field of 8 T has a maximum Larmor radius of approximately

(A) 2 mm

(B) 2cm

(C) 20cm

(D) 2m

(E) 2ft

A laboratory plasma withn = 10'°m™, KT, =2eV, KT; = 0.1eV,

and B = 0.3 T has a beta (plasma pressure/magnetic field pressure)
of approximately

(A) 1077
(B) 107°
() 107*
(D) 1077
(E) 107!

The grad-B drift vyp is

(A) always in the same direction as vg

(B) always opposite to vg

(C) sometimes parallel to B

(D) always opposite to the curvature drift vg

(E) sometimes parallel to the diamagnetic drift vp

. In the toroidal plasma shown, the diamagnetic current lows mainly

in the direction

(A) +d .
(B) —& =5
2 O
(D) -0 Po

(E) +z



7.

10.

In the torus shown on p. 362, torsional Alfvén waves can propagate
in the directions

(A) +f
(B) +6
©) +d
(D) +9 only
(E) -6 only

. Plasma A is ten times denser than plasma B but has the same

temperature and composition. The resistivity of A relative to that
of B is

(A) 100 times smaller

(B) 10 times smaller

(C) approximately the same
(D) 10 times larger

(E) 100 times larger

The average electron velocity m in a 10-keV Maxwellian plasma is
(A) 7 x 10% m/sec
(B) 7 x 10* m/sec
(C) 7 x 10° m/sec
(D) 7 x 10° m/sec
(E) 7 x 10" m/sec

Which of the following waves cannot propagate when By = 0?
(A) electron plasma wave

(B) the ordinary wave

(C) Alfvén wave

(D) ion acoustic wave

(E) Bohm-Gross wave

363
Sample Three-Hour
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364 11. A “backward wave” is one which has
Appendix C

(A) k opposite to By

(B) w/k<0

(C) dw/dk <0

(D) Vi = —V,

(E) ve opposite to v,

12. “Cutoff” and “resonance,” respectively, refer to conditions when the
dielectric constant is

(A) 0and c©
(B) ©and 0
(C) Oand 1
(D) 1and O
(E) not calculable from the plasma approximation
13. The lower and upper hybrid frequencies are, respectively,
(A) (©,9.)" and (0y0,)""
(B) (25 +0)'?and (w}; + w?)?
(©) (@) and (0; + @)’
(D) (@, —w)"/* and (w; +w?)""*

(E) (wrwr)'’? and (wpw,)"?

14. In a fully ionized plasma, diffusion across B is mainly due to
(A) ion-ion collisions
(B) electron-electron collisions
(C) electron-ion collisions
(D) three-body collisions
(E) plasmadiamagnetism

15. An exponential density decay with time is characteristic of
(A) fully ionized plasmas under classical diffusion

(B) fully ionized plasmas under recombination



16.

17.

18.

19.

(C) weakly ionized plasmas under recombination 365
Sample Three-Hour
(D) weakly ionized plasmas under classical diffusion Final Exam

(E) fully ionized plasmas with both diffusion and recombination

The whistler mode has a circular polarization which is
(A) clockwise looking in the +Bg direction

(B) clockwise looking in the —Bj direction

(C) counterclockwise lookingin the +4 direction

(D) counterclockwise looking in the —£ direction

(E) both, since the wave is plane polarized

The phase velocity of electromagnetic waves in a plasma
(A) 1salways >c¢

(B) is never >c¢

(C) is sometimes >c¢

(D) 1s always <c

(E) isnever <c

The following is not a possible way to heat a plasma:
(A) Cyclotron resonance heating

(B) Adiabatic compression

(C) Ohmic heating

(D) Transit time magnetic pumping

(E) Neoclassical transport

The following is not a plasma confinement device:
(A) Baseball coil

(B) Diamagnetic loop

(C) Figure-8 stellarator

(D) Levitated octopole

(E) Theta pinch
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20. Landau damping

(A) is caused by “resonant” particles

(B) always occurs in a collisionless plasma

(C) never occurs in a collisionless plasma

(D) is a mathematical result which does not occur in experiment

(E) 1s the residue of imaginary singularities lying on a semicircle

PART B (TWO HOURS, OPEN BOOK; DO 4 OUT OF 5)

1. Consider a cold plasma composed of no hydrogen ions, 31, doubly

ionized He ions, and 2n, electrons. Show that there are two lower-
hybrid frequencies and give an approximate expression for each.
[Hint: You may use the plasma approximation, the assumption
m/M « 1, and the formulas for v, given in the text. (You need not
solve the equations of motion again; just use the known solution.)]

. Intelligent beings on a distant planet try to communicate with the

earth by sending powerful radio waves swept in frequency from 10
to 50 MHz every minute. The linearly polarized emissions must pass
through a radiation belt plasma in such a way that E and k are
perpendicular to Bg. It is found that during solar flares (on their
sun), frequencies between 24.25 and 28 MHz do not get through
their radiation belt. From this deduce the plasmadensity and magnetic
field there. (Hint: Do not round off numbers too early.)

. When B is larger than m/M, there is a possibility of coupling between

a drift wave and an Alfvén wave to produce an instability. A necessary
condition for this to happen is that there be synchronism between
the parallel wave velocities of the two waves (along By).

(a) Show that the condition B > m/M is equivalent to vy < vyp.

(b) IfKT, =10eV,B =02T,k = 1cm ',andn = 10°' m ™~ find the
required value of k. for this interaction in a hydrogen plasma.
You may assume no/no = 1cm™", where nj = dno/dr.

. When anomalous diffusion is caused by unstable oscillations, Fick’s

law of diffusion does not necessarily hold. For instance, the growth



rate of drift waves depends on Vn/n, so that the diffusion coefficient
D, can itself depend on Vn. Taking a general form for D, in cylin-
drical geometry, namely,
a q
D, =Ar'n "(—")
ar

show that the time behavior of a plasma decaying under diffusion
follows the equation

an b+a+1

—=f(r

o f(rn

Show also that the behavior of weakly and fully ionized plasmas is

recovered in the proper limits.

. In some semiconductors such as gallium arsenide, the current-voltage
relation looks like this:

4

There is a region of negative resistance or mobility. Suppose you had
a substance with negative mobility for all values of current. Using the
equation of motion for weakly ionized plasmas with KT =B =0,
plusthe electron continuity equation and Poisson’s equation, perform
the usual linearized wave analysis to show that there is instability for
u, <0.
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Appendix D

ANSWERS TO
SOME

PROBLEMS

1-1. (a) Atstandard temperature and pressure, a mole of an ideal gas contains
6.022 X 10® molecules (Avogadro’s number) and occupies 22.4 liters. Hence,
the number per m® is 6.022 X 10%*/2.24 x 1072 = 2.66 X 10** m™>.

(b) Since PV = NRT,n = N/V = P/RT. Hence n,/n, = P, To/P,T,. Taking n,
to be the density in part (a) and n, to be that in part (b), we have

107 273
760 (273 + 20)

n, = (2.69 X 10*) =3.30% 10" m™®

Note that a diatomic gas such as Ho will have twice as many afoms per torr as,
say, He.

1-2. Consider the integral

125.[ e_‘zdxj e_’Edy=JI e dy dy

in a two-dimensional space. Transforming to cylindrical coordinates, we have

IP= JJ‘ e Crdrdg = 27TJ‘ e rdr

0
= 'n'J. e Tde)=—me ¥ =7

Hence,

! :J e dx = 369
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and
© KT 1/2 po0 ) 172
= [ fwa=a(E5) [ dulggr) ]
% m e 2KT
KT\ '?
- Az(—-—)
m
o A= (m/2wKT)"?
1-4.
p=n(KT,+KT,)=102"(4 x 10*)(1.6 X 10™'9)
=6.4x 10°N/m?
1 atm = 10° N/m?® p = 64 atm
1 atm = 14.7 Ib/in% = (14.7)(144)/(2000)
= 1.06 tons/ft?
p = 68tons/ft?
1-5.
Q _ e(ni - n,) - inme(eﬂélx"r.- _ e¢¢/KT,)
X €p €p
- L«»L’( g m & )
€o \KT; KT,
1 nee’ [ 1 1
= =]
é =ddoe **  where vl . (_KTe + —_Kﬂ)
T, <« T, Ap= (KT €o/ne’)"’*
If T, « T.’ /\r)Z (KT,eo/nmeQ)”?
1-6. (a)
d’¢ _ ng
(ZS dxg €p
Let¢ = Ax*+ Bx + C; ¢’ = 2Ax + B; " = 2A.
Atx=0,¢’' =0bysymmetry .. B =0.Atx =
+d, ¢ =0; therefore, 0 =Ad?>+ C and C =
—Ad?. Since
dreoa=- se-lg
€9 260
d -d and

1 2 2
¢ = Ax? — Ad? =2—€—nq(d‘ -x°)
0



(b) Energy to move a charge q from x, to x, is change in potential energy
Aqp) = q(ds— ¢1). Let &, = 0 at x = +d and ¢, = (1/2e4)nqgd® at x = 0. Then

1
((g = e ?d?
250 .
Letd = Ap; then
1 cKTe, 1
= — = = =—KT=E, s
€ QEan i 2 N

for a one-dimensional Maxwellian distribution. Hence, if d > Ap, &> E,,. If
the velocities are distributed in three dimensions, we have E..=3KT and
& > 5E . The factor 3 is not important here. The point is that a thermal particle
would not have enough energy to go very far in a plasma (d » Ap) if the charge
of one species is not neutralized by another species.

1.7. (@) Ap =7400(2/10'%)"? =10™* m, Np = 4.8 X 10*.

(b) Ap = 7400(0.1/10'%)"2 =23 x 10 m, Np = 5.4 x 10",

(€) Ap = 7400(800/10%*)"* = 6.6 X 107" m, Np = 1.2 X 10°.

2-1. E =imv? - v, =(QE/m)"? r. = mv,/eB.

(a)
(2)(10%)(1.6 x 1071972 _
tu=[ ST <10 } =5.93 x 10" m/sec
(9.11 x 107*')(5.93 x 107) )
L= e —— =6.75m
(1.6 X 107'%)(0.5x 107"
(b)
v, = (300)(1000) = 3 x 10°> m/sec
(167 x107%7)(3 X 10°) _ s _
T = (1.6 X 1075 x 10°7) 6.26 X 10° m = 626 km
(c)
_[@10%(1.6 x 10“9)]”“’ B .
*_[ @167 x 1077y | = 219x107m/sec
4)(1.67 x 10727)(2. i
rL:( ) 19 ’)(219><}20)=0.183m
(1.6 X 107'%)(5.00 X 107%)
(d)

_2ME _ [2)(4)(1.67 x 107*")(3.5 x 10°)(1.6 x 10~ "*)1""
qB (2)(1.6 X 107 "%)(8)

=338%x107%m

143
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@ 2-4. Letinitial energy be &,, and Larmor radii r, and

r2, as shown. Energy at D is &€, = &, + ¢Ery; energy

at @is €, = &, — eErs. (It would be acceptable to say:

©) €12 =%y x ¢Ef, here.) Also v3,5 = 2%:2/M. We are
@) asked to make the approximation

Tie =

Mu, o _ ﬂ (251.2> Ve
eB e B\ M

1 Qg 1/2 EE 1/2
5. Gr) (1+gns)
Qc .‘[ g()
For small E, expand the square root in a Taylor series:
JRCE TR 1 (2%\ "2/ 1 eE
e
ne Q,(M b8,

1 (28, '? 1 eE 1 (28?7
) e 2

Q\M 28, Q. \ M

L(L&)"“’[l s LeE L(ﬁ_%’u)'”]
Q\M 2& Q. \M

:£L<230)_ 2eE
€, 02

%
Il

It

Thus

M

r —Te

T MQ?2

independent of &,. The guiding center moves a distance 2(r, — r,) in a time 27/,
SO

5 B

B B

deE _L
MQ, 27

VUge = 2(7’| - r2)(Qc/277) =

-2
m

Thus the guiding center drift is independent of the ion energy &,. The factor
2/ would be 1 if we did not make the crude approximation.

2.5. (a)
n=nee? T . ¢ =(KT./e)In(n/n,)
9 . KT,19n, KT.,
=—-__r=- ——r=—T
ar e n or eA
(b)
Vg = —-éé = KTeé
“ B eBA

Consider electrons:




Now, r, = muv,/eB, so for a distribution of velocities we must find an average r,.

Since v, contains two degrees of freedom, we have
%mvi = 2 x ‘.l’KTe
The most convenient average is

(VL )eme = (2KT./m)"® = vy,

Using thisfor v, in r;, we have

} | Lovgwv, 1 vary
vpl = 2 2=
2 A w0 2 A
so that |vug| = v,, implies r, = 2A.
(c) If we take ions instead of electrons, we have vy, = QKT/ M) * =v ;. 1 =

v,/ we, and

, | I (2KT,)<M) I Todpuas 17T,

v = e el T as . o Uil
EToA\ M /\eB) AT, w; 2T W
If |vE| = Up,i, 1t is still true that r,; = 2A provided that T; = T,.

2-6. (a)

—#27a2 KT,
n =nyexp (e T2 1) = mige KT

B ok i g R

KT
] o KT.2r 4.
L L B
or ar e a°
dE, 2KT, 2 i 21
L Ty s D)
dr ea a a 2
mx:KTei_e_,m:(0.2)(1,6x(lo‘”’) Voo =N
ea V2 (1.6 X 107')(.01) C
=1700 V/m
E; . Emax _ 17 _
vE=—B~B VE max = B —(T2—8500m/sec

(b) Compare the force Mg with the force eE for an ion. (mg for an
electron would be 1836 times smaller) g =9.80m/sec’. Mg =
(39)(1.67 x 107%")(9.80) = 6.38 X 10" N. eE ma = (1.6 X 107'9(17) = 2.75 X
107" N = 4 x 10° Mg. Hence gravitational drift 4 million times smaller.
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Appendix D
" r _ Moy _ 1072
LT eB m
(2)(0.2)(1.6 x 1071972
- QKT/M W:[ h ]
v = (2KT/M) (39)(1.67 x 18°7)
= 9.9 x 10 m/sec
1.67 x 10727)(9.9 x 102
— 2o - X SX 1) _400x 1072 T
(107°)(1.6 x 107
2-8.
— ¢ 03x10™"
- B x VB B=o=s—m=T
Q (West) r (r/R)
\‘_—’/
1 |BXVB| | V_Bl
Uyvg QULrL B2 —QUrL B
(a)
3 . VB 3
vB=28¢-3fp=2pp l—‘ =2
ar r B r
1 193 12KT/m KT

§vlr"—§w‘_2 eB/m eB

_ (16X 107")(KT)ev 1 _ (KT)ev
1.6 x 107" B B

03x 107

B(r=5R)=——7 —=24X 107 T

5R = (5)(4000 mile)(1.6 km/mile)(10* m/km) = 3.2 X 10" m

(KT)ev
24x 1077
Ions: KT =1eV vz = 0.39m/sec

Electrons: KT =3 x 10%eV ves = 1.17 X 10* m/sec

(b) Ions: westward; electrons: eastward.

= 0.39(KT).v m/sec

Uyg = 108

(c) 277 = (6.28)(3.2 x 107) = 2.0 X 10®* m

27r (2.0 x 10%) "
=—=——=17% =48h
von  (LI7X10%) 1.7 x 10" sec r

@
j =nevyg  neglect ions

= (107)(1.6 X 107'9)(1.17 x 10*) = 1.87 X 10"® A/m?



2-9. (a) vg = 0, since the electron gains no
energy in the parallel (8) direction. Since the |
electron starts at rest with no thermal energy,

it will come back to rest after one cycle. l
Hence, the orbit has sharp cusps instead of

loops. It is clear that the vy drift must domi- ExB T
nate, since the electron starts to the left, and
the Lorentz force makes it move upwards. BxVB! -— VB

(b) In cylindrical geometry, ¢ = A Inr + B.

Since B

$(107%) =460V  and  ¢(0.1m) =0, Q ) )
\Y

460 = A In (107 + B Viai

0=AIn(0.1)+B B =-A1In(0.1)

460 = A In (107%)— A In (0.1)
=AIn(0.01) A =460/in (0.01)

_ 480 0.1y = 460010
In (0.01)

i) In 100

_—ap _ —460 (L)(““) _460/r V
" or  In100\0.1 2 /7 In100 m

460
(4.6)(1)

T

4 e
= 104; atr =102 m

_I(A)107* 500 x 107
5r (5)(1)

B =001T

10* V/cm

— 106
SBI'T 10° m/sec

lve| = |[E/B| = 10®

To estimate the VB drift, we must find v, in the frame moving with the guiding
center. Remember that in deriving vvs, v, was taken as the velocity in the
undisturbed circular orbit. Here, the latter is moving with velocity vg, so that it
does not look circular in the lab frame. Nonetheless, it can still be decomposed
into a circular motion with velocity v, plus an E X B drift of the guiding center.
Consider the z component of velocity (along the wire). At point (D on the orbit,
v, = vg + v cos wt = 0, where cos w.t = —1, its maximum negative value; hence,
ve = v,. The same result can be obtained by considering that at point @
v, = vg + v, (cos wt = 1). The energy there, 3(mv?), must equal the energy gained
in falling a distance 27, in an electric field. Thus

muv,
e

1 E
5 m(ve +v,)?2reE = 2¢E B 2mu, B = 2mv ,vg

vi+2u,vp +v? =4v,vg (ve—v,)*=0 Vg = U,
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Now we can calculate vyg:

2
_lU_L

T2,

V_Bl _eB (16X 107'%(1079)
B e T T T (911 x107°

Uvg

=1.76x%x 10%sec”!

dB_I(-1)I0"* B ‘VB{_ —
& 7 |- om

1vi 1 10'°

T e I e— X B
Uvg Y. 218x10° 2.8 X 10" m/sec

This amounts to a slowing down of the vg drift due to a distortion of the orbit
into a hairpin shape & because of the change in Larmor radius. The undisturbed
orbit is the path taken by the valve on a bicycle wheel as it rolls along:

O Ow™

Finally, we note that the finite Larmor radius correction to vg is negligible:

_(9.11x107°h(10% _, -
T ex 10 00n T

o 1ri
r=10"m .. —-5=0.08%
4r-

2.12. Let all velocities refer to the midplane, and let subscripts ¢ and f refer to
initial and final states (before and after acceleration).

(a) Given: R, =5, v,; = v); since p is conserved, v,; = v,;, and only v will
increase. It will increase until the pitch angle  reaches the loss cone:

'Uif 1 _L_

1
vig+vi; l+uj/vii R. 5

+ 2
sin” 6,, =

Hence vi/v3, = 4, vyy = 2v,;. Energy is
E = M@jy +v2) =M@+ 1)v2; = imo?,
E. = M@ii +v) =M1 + 1)l = Mo?,

. E,=25E; =(2.5)(1)=2.5keV



(b) (1) Let particle have vy, >0 and hit pis- Vo _ Vm
ton moving at velocity v, < 0. In the frame of
the piston, the particle bounces elastically and D
comes off with its initial velocity, but in the
opposite direction. Let " refer to the frame
of the piston. Initial and final velocities in
this frame are
Vi=Uo—Un  V;= (Vo= Um)

(Note: v, is negative.) Transforming back to lab frame,
UV =vf+ Uy = —Vo+ 2u,

Since v,, is negative, the change in velocity is 2|v.,|. QED

(2) At each bounce, the change in momentum is Ap; = 2m|v,|. If N is the

number of bounces, py = py; + NAp. Thus

bir —bw_ v vk _ 2vii~ v vy

V = =
! Ap U 2u,, 2 vm

E.=Mv3, =1keV=(10°)(1.6 x107"%)=1.6x107"°]

1.6X 10—16 /2 .
vy = (—1.67 ” 10_27) = 3.1 x 10° m/sec

v = 10* m/sec
1(8x10°
~ N =§(_—ﬁ‘—_2= 15 bounces

(3) Average vy is
7 = a(vp + viy) = 2(vae + 20.0)
=3v,;, =46x10°

L=10"m
NL  (15)(10'%) .
== 39x]
3 46x10° 3.2 0% sec
(=10y)

However, L changes during this time by a distance

AL = 2u,t = (2)(10*(3.2 X 10°) = 6.4 X 10 m

so that actual time is more like 2.5 x 10® sec. Since only factor-of-two accuracy
is required, it is not necessary to sum the series—the above answerof 3.2 x 10° sec

will do.
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2-13. (a) Jvyds =y L = constant .. HL + v"L =0
(b)

Uj L . Ay gy
=== Y ===

-L
vy L T i ( )

T~M_L__ 2 —vy; L 2 10
o —L  32u.i+v.)2u. 32x10°

= 3.3 x 10® sec

2.14. As B increases, Maxwell’s equation V X E = —B predicts an E-field. This
induced E-field has a component along v and accelerates the particle. If B
increases slowly and adiabatically, E will be small; but the integrated effect over
many Larmor periods will be finite. The invariance of p allows us to calculate
the energy increases without doing this integration.

3-1. 90/8t +V - j =0, where j = j» = (o/B*)E. Hence, ¢ = =V - [(o/B*E]. The
time derivative of Poisson’s equation is V' E = g/,

: 1 P\ P N
-.v-E=—(—)v-(—)1«: v-<1+ )Ezo
€5 B? €B?
Assuming the dielectric constant € to be constant in time, we have V-D =
V- (¢E) = 0. By comparison, € = | +p/eoB>.

3-2.

2 2 2
nM  Q, ne M nM

6032_03—6073232 _6032

€=1+
Trueif e » 1.
3-3. Take divergence of Egs. [3-56] and [3-58]:
V- (VXE)=-V-B=0 .. %(V~B)=O

V- E

62

V- (VXB)=0=pulaV (niv;) +q.V - (n.v.)] +

from Eq. [3-60), V - (n;v;) = —1i;, V - (n.v.) = —1i,

V- E
7 =0
[

Lo po(—gqim; —gen.) +

o

1
V-E—-—— .;;+ ee]=0
at[ e(nq_ R

0

If [ ] =0initially, V- E = (1/eo)(nig; +n4.). This is Eq. [3-55].



3-4.
BxVn KT ne
i ST R e e
jo = (KT + KT.)=p3 e BL

Since KT < e¢p and E < —¢p/L, KT /el x E .. jp, < neE/B < nev,since E/B = vg.

3.-5. Let jp be constant in the box of width L. An = n'L, |fp| = |Anev,| = |n'Lev,|:
from the difference between the currents on the two walls. This current [, is
over a box of width L, so the equivalent current density is

liol = /ol/L = |nev,|

Equation [3-69] gives |jp| =~ |KTVn/B| = |KTn'/B|; hence, once v, is chosen so
the two formulas agree for one value of L, they agree for all L, since L cancels
out.

3-6. (a)
yKT,zXVn
Vo = — "5
eB n
Isothermal means y = 1.
ax a

®)

No
f QB vDe
0 \I + r x
(€) vp. = (2)/(0.2)A
= Tl_' _ (2”0/02)(0/2) _ L/004_ .
A= al " no(l —a%/4a®)  3/4 =33.3m

. vp, = (10)(33.3) = 333 m/sec

—_yr2 2
3-7. n =npe /T = nge ™/ T
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Vpe =

BxVp KT, on/or N i(l )
enB? eB n B oar "
~KT, 8 (-1 ~ KT, 2r
AT iy g a3t
eB or eB 1§

—~VE QED

.2
To
(b) From (a), the rotation frequency is constant whether we take vg, vp., vp;, or
any combination thereof, since @ = vy/r and v, C 1.

(c) Inlab frame,

v=v, +vg = 0.5vp, +(—Vp.)

_ 1
= —2VD.

3-8. (a)
noKT, +KT,)) 2r _..e
jo = ne(Vpi — Up.) = —0@(—3——)-—2e D
ro
(b)
(10"%)(0.5)(1.6 x 107'%)
= =0.147 A/m?
o= 0 4(r3/2r)(2.718) 7A/m
or:
ip = ne(lvDel + IvDil)
lvpel = ool = KRy 2z = (0c2B)ar =1.25 %m/sec

B rs 0.4r3 o
Usinge = 1.6 x 107'°C, e = 2.718,

re”!

A
o = (10"%)(1.6 X 107'°)(2)(1.25) =0.147 —

7



(c) Since v, = vg + vp, = v¢ —vg =0 in the lab frame, the current is carried
entirely by ions.

3.9,
V xB = woip 2.8
f(VXB)-dS=pofjp-dS
§B'dL=lJ-oij'ds

N A
Choose a loop with one leg along the axis B, dL
(B = By) and one leg far away, where B =
Bw. Since jp is in the —0 direction, we can
choose the direction of integration dL as lD(L) ©d3
shown, so that jp - dS is positive. There is no
B, .. o

{10

éB +dL = (Bs— Bo)L

§ KT+ KT,) 2r

2
B %5

KT, + KT,) (*[° _..2
Jju-ds="——°( - )J‘ j e 9 dr dz
0]

]
Baro 0

o=~

_ Lno(KT: + KTe)[_e_,e,,u]”" _ 2LnoKT
B Boo 0 BED

where T, = T.. In this integral, we have approximated B(r) by B, since B is
not greatly changed by such a small jp. Thus,

2noKT
B

AB =Boxs—Bo=po

_ 24w x 1077)(10'%)(0.25)(1.6 x 107')
0.4

=925 % 107°T

4.1. (a) Solve for ¢,:

KT,n, w+1a ><a)"‘—ia
e nyw*+ia

¢1=

w* —ia

_ KT, wo*+a’+ia(w* —w) n,

2
e w*+a o
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If n,y is real,

Im(p,) a(w*—-w) 5

= =tan

Re(d)) wow*+a?

Hence,
6 =tan"! [—a(w* —w)]
ww* +a?

(b) n, =7, ¢ ™ ", while ¢, = An, ¢'® “*® where A is a positive censtant. For

w <w*, we have § > 0. Let the phase of n, be 0 at (xo, to): kxo— wto = 0. If @
and k are positive and x, is fixed, then the phase of ¢, is 0 at kxo—wt +8 =0
or t > t,. Hence ¢, lags n, in time. If ¢, is fixed, kx —wt; + 6 = 0 atx < x,, s0 ¢,
lags n, in space also (since w/k > 0 and the wave moves to the right, the leading
wave is at larger x). If £k <0 and w > 0, the phase of ¢, would be 0 at x > x;
but since the wave now moves to the left, ¢, still lags n;.

4-2.

1
hE, = —e(niy — 1)
€y

—iwmv,, = —eE, (electrons)

—ilwMv;, = eE, (ions)

—ilwn,, = —ikngv,, (electrons)
—iwn;, = —iknov;, (ions)
k —ie k e
n, = —no|—|E, n, = —no| —— | E
w mw w Mo

1k defl 1 133
ikE1=——noz(—+;)E,=l = (Q3 +w})

5
€o W w \M w

0’ = (; +05)
4-3. Find ¢,, E,, and v, in terms of n;:

Eq.[4-22): v, =28
k ng

Eq. [4-23): E\ = ——n,
Eok

But E, = —ik¢,,

Hence, E; is 90° out of phase with n;; @, is 180° out of phase; and v, is either
in phase or 180° out of phase, depending on the sign of w/k. In (a), E, is found



from the slope of the ¢, curve, since E, = —3¢,/dx. In (b), E,/n, < 1 X sgn (k) 383

~8==x27/2. fw/k >0, Answers to

Some Problems
E o expi(kx £ |w|t £ 7/2)

the £ standing for the sign of k. Hence, E, leads n, by 90°. Opposite if w/k <O0.
(a) (b) (c)

N N yd ™ e > yd

]
X
]

%
|

v
X — t— t —
4-4.
1 1 k 1 k (—ie
hE, = ——en,=——eny,—v, =~ —eno— |\— ) E,
0 €p w €p mw
el 2
ik(l— - 2)E,=0 or V‘(l—(ig)E,=O
€EogMw w
w?
=1—==
€ e
4-6. (a)
mny(—iw)v, = —enoE,—mnyvv,
w 1eF,
v1<1 +_) =
w mew
kE, = — —en, n) = —nyv, (continuity)
€0 w
1 & 1 i\ !
kE, = ———e—nOKE—l(l +1_y)
€ W mw w

w )
w2(1+—)=w,2, w’+ivw = w,
5 e os s 2P
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(b) Letw = x + iy. Then the dispersion relation is x> — y* + 2ixy + ivx — vy = w;.

We need the imaginary part: 2xy +vx =0, y =(=1/2v .. Im(w)=—v/2.
Since x = Re (w), v > 0, and
El xe—iwr - e~iw!e)'t — e_ix£e7<l/2)v'

the oscillation is damped in time.

4.7. mny(—iw)v, = enoE, — eny(v, X By). Take By in the Z direction and E, and k
in the x direction. Then the y-component is
. v, o)
—twmv, = ev.Bo e o
v, .
Since @ = wy, > w,, |v./v,| > 1; and the orbit is elongated in the % direction, which
is the direction of k.

4-8. (a)
1 A R
V El—__eTH k—k,x+kz E,=k,=0
€o
. 1
t(kE, +kRE)=——en,
€o
We need n;:
an, . . _
a—ﬁ-%mﬁ-vl =0 —iwn, + not (k. + kv,) =0
We need v, v.:
Mno(—iw)v, = —enoE; — eno(v, X By)
1e 1w,
x-component: v, =——E, ——u,
mw
y-component: v, =0+ ‘v,
ie : —ie A
b= ——E +2£y, = —Ex(l —“’—2)
mw w” mw w
ie
z-component: v, = ——F,
me
. 9 —1
o no (—ie E
Continuity: n, = — (——)[kxE,(l = a)_?) + sz;]
© \mw 1)
eng (—ie o™
kE. +kE, =i— (—) [k,Ex(l = —;) + klE,]
eow \Mow 1)
k. =ksiné k, =k cos @
w? w? el
- E,sin®0 + kE, cos’ = —5 [le; sin® 0(1 - w—;) +kE, cos® 0]
1)



2 2, -1
w . w, 2
lz—g[sanO(l—'—z‘ + cos 0]

w w
w: w?
< 2
1__;=——;[1—c0520+(1——2>c05 0]
) w
2 2
Ww:
a)2—-wf—w2=— 5 COS [
[3)

0l w?—wl)+wiw’cos’d =0 QED

(b)
0w -win?+ miw? cos’8 =0
2w?=w} t (i —4dwiw? cos®9)"?
For § - 0, cos’8 - 1,
2wi=w; + [(w§ +w?)? - 4w3wf]”2
=w§ +w? i(wz - w?)
' 2 4
0 =0, 0,

Thew = w, rootis the usual Langmuiroscillation. Thew = w, rootisspurious
because at § > 0, B, does not enter the problem. For 6 - 7/2, cos’8 - 0,
2w®=w}i twi w =0, wy. The @ = w, root is the usual upper hybrid oscillation.
The w =0 root has no physical meaning, since on oscillating perturbation
was assumed.

(c)
0w —wiw?+io: =to) - wiwf cos® 8
(@° — 303) + (@, c0s §)° = (3w5)°

2

(y—1)2+%=1 QED

(d)
w/o.  a=Ho/o,+w,/w.)
1 1
2 5/4
e 0] o)
YA
00 Y= 20)2/‘”%
2 fommme——y :
2"1\ wp/we or we/wp
14 1 '
I
|
At o |
1 2 X = COSs @
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386 (e)

A endixD 9 o
i 0’ =3w; +w?)x (02 +w?) —dwiw? cos’ §]'?

Lower root: Take (—) sign; w is maximum when cos® 8 is maximum (=1). Thus

2 1
ol <gl(@; + o)~ |o; - wll]
=w? if w, > w,

— 2 L]
=w, if w, > w,

. . . 2 °
Upper root: Take (+) sign; w is maximum when cos’6 = 0, ®° = w,. Thus
w2 < w?. This root is minimum when cos®> @ = 1; thus

0} > (@) + i) +lo; @]
=w§ if w, > w,
=w! if w, > w,

4-10. Use V., N. for proton velocity and density
V_, N_ for antiprotons
v_, n_ for electrons
vs, n. for positrons

(a)

. E . E
VXE=-B VXB=puej+— VxVsz—(uoﬂ'c—?)
G

—(kxkXE)= —[;.Lonoe("u, —v)- -‘C‘i E]
= K°E — k(k /E)

1
(@2 = c%k%E = —nge (Ve — V)
€o

. e

mnyv. = enyE v:=*—E

m

: o 1 e .

w’—c*h*=—nee—(1+1)=2w;
€0 m

2
o _ o€
w, =

w®= 2w} + %’
€om = i —_—

(Or the 2 can be incorporated into the definition of w,.)



(b) V-E,=(l/eo)(Ns — N_+n,—n_),, where n, =nge K",

noe® ¥ Let T, =T_=T, n;. = F noedd/ KT,. Note: No. = nox = ny.

» k k
s/ +1’V0iV‘Vi=0 N1¢=N01—Vx:n0—vi
ot w w
M(—iw)V. = teE, = iked (M, =M_=M)
k ed k* noed
S == Nyz=—
u w M ; 0w M
e (k7 k*\ need e ed
v = k? =—<—+——) +— (—no— no) o>
E] k ¢ € a)2 a)2 M 60( No n()) KT,
noe’ 2k? noe? ( 5 k2 1 )
= > = 2 =2 Q =g oy
ecM w” ¢ kT, ¢ ¢ Yo A5
. 2k? 2k*® . kT,
kQ}\QD+2=;§Q§A%=:§U? vs =g
w? Qv;" 'U;z szfu e
7 T 2,2 2, 2 )‘DE(—)
k 2+ k°AD 1+ (1/2)k%A% nee”
4-11.
. k , ) Qk? 2
i== w®=0; +c%® 5 = -w—;—e
I3) @ ®
i =e
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4-12. In V X B = poj, j, is the current carried by electrons only, since Cl™ ions
are too heavy to move appreciably in response to a signal at microwave frequen-

cies. Hence,

71 = —neev, = —(1 — k)nyev,,

If w, is defined with n, (i.e., wj = ne’/egn), the dispersion relation becomes

2k2 2
o =1-(-k)22
w

Cutoff occurs for f = (1 — k)"%f, = (0.4)%(9)(n,)"?, where

c 3x10%
=_= =10'°
f Y 5 0
Thus
1010 ]2
= | — =3 18 -3
ny [(0.63)(9) 1 X10°m



388 4-13. (a) Method 1: Let N = No. of wavelengthsin length L = 0.08 m, Ny, = No.

Appendix D of wavelengths in absence of plasma.
L L 2T ck w\'"?
== N,=— == == -2
X No Ao A P N (] w‘-’)
o 172
AN = N, — =1‘__£/i__1‘__£2< __5)
Ao 2™ Ay 2w ¢ w”

2\ 1/2
2= AN=—[1—(1——;’) ]-01
2mc Ay o w

L 0.08
==
Ao 0.008

2, 1/2 2
J ( ‘w*§> =1-107"° l—f—,,=1—(2><10‘?)
w f

2
fr=fx2x 10—?:(,\1) 2x107*=28x10"

[

2.8 x 10'° .
=22 =35%10"m™
9)

Method 2: Let &, = free-space k. The phase shift is
L
Ap = I Akdx = (ko — k)L = (0.1)27
0

This leads to the same answer.
(b) From above, AN is small if w}/w? is small; hence expand square root:
L 1 w? L1w?
A’Vz—[l—(l———"ﬂ:———ﬁoc ED
0 2] T h2et s 2

4.14. From Eq. [4-101a], we have for the X-wave

2
.aJ wc
(W—w}E, +i——E =0
w

At resonance,  =w;, .. E, =0, E=E.% Since k = £,%, E| k, and the wave is
longitudinal and electrostatic.
4.15. Since w; = w? + w}, clearly w, < w,. Further,
wr = 3[—w + (02 + 40;)"?]
<H-w. + (0 + dow, + 40;)'?)

= %’[_wc + (wc + 2"'!#)] Wy, . owp < Wy
Also,
wg = o + (0?2 + 403)"? > o,



and

4.17. (a) Multiply Eq. [4-112b] by ¢ and add to Eq. [4-112a]:

0r —wgw, —wi =0 (Eq.[4-107))

o - S 2 2 2 8
. WR =R, T W, P 0, tw, = w;j

o 22 . De s =
(w*—c*k®— a)(E, +1E,)+aw (E.+1iE))=0

Now subtract from Eq. [4-112a]:

Thus,

Since

(@ — %2~ a)(E, — iE,) — a = (E, — iE,) = 0
w

Flw)=w?-c*’—a(l +w/w)

Gw)=w’—c*k*—a(l —w/w)

2
@y

(1-wl/w?

a

wilw? c2k?
Flw) =w‘"(1 L - 2)

l-w/ow o

2

Gw) = (1 . Czk?)

—l+w(/w 13}

From Egs. [4-116] and [4-117],

F(w) = 0 for the R wave and
G(w) = 0for the L wave

(b) E,=—iE, . E, =iE,. LetE, = f(z)e " Then

E\r — f(z)ie-iw( =f(Z) e—iw(+i(w/2) =f(Z) e—i[ml—(‘lr/Q)]

/ je = —©eV,
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390 E, lags E, by 90°. Hence E rotates counterclockwise on this diagram. This is the
Appendix D same way electrons gyrate in order to create a clockwise current and generate
a B-field opposite to B,. For the L wave, E, = —iF, so that
E, =f(z) e "“""™? and E, leads E, by 90°.

(c) Foran R-wave, E, = iE,. ThespacedependenceisE, = f(t) ¢™ E, = f(t)i ™ =
f(t) e'™*™? For k >0, E, leads E, (has the same phase at smaller z). For k <0,
E, lags E, (has the same phase at larger z).

4-19.
c*k? =71 _osle” fug’ =1 I
w? l —w/w 1 - w/w
5 . dv !
-2 = 0 Q0w —w) =0
dw (0° — ww,)
2w —w, =0 © = 3w,
Atw = jw,,
2 2 de?
el =141
v Wi — W w?



4-20. 391

- 0 s ) Answers to
BE 1 N (2p2 = )2 = 2 Some Problems
w?® l-w/w W — W,
ok dk = 20 dw -2 TL) "2 24,
(0 —w,)
ww;
= [20 + 2224
[ ¢ ((l) _wc)2 ™
dw ke? ke? o
— = = = = 11w W,
db w+ow/2e-0) o+w/w.
But
2 1/2 2\ 1/2
Ck:(a)z—%) z(a)2+*a:u&) if w K w,
- w/w .
) @)_ e (0 + wwi/w)'? s 1+ 0/ ow)"?
" dk 0+ 0k 20, 1+ 0/ 200,

To prove the required result, one must also assume v3 « ¢2, as is true for
whistlers, so that w;/ww, « 1 (from line 1). Hence

d_w = 2 (ww‘)llgx 1/2
dk “\GE @

Wy

1
(@* = kB = —iwj,  (Eq. [4-81)
[V

jr = nge(v, ~v,) (v, is the positron velocity)

From the equation of motion,

+5 . 2, -1
b= (E ""‘E,)(l -%)
. -

mw w
+ie lw, o\
e 22 (g i) (1)

m w

1 . 2\ -1
L= eHE = (- T io)one)(25)a + DE(1 - %)

€o mw w
2 2

= _.Q{J_P__QEX

l-—w!/w
the E, term canceling out. Similarly,
2w§

(a.)2 _C‘ZkQ)E) _

1l —w?/w?™



392 the E, term cancelling out. Both equations give
Appendix D
4 ] c’k? 2w,

CIRRE N TR

W —w;

The R and L waves are degenerate and have the same phase velocities—hence,
no Faraday rotation.

4-22. Since the phase difference between the R and L waves is twice the angle
of rotation,

L
J (ky —kr)dz ==

wg/wQ )1/2

Rone = & (1—
R.L o 1o/

To get a simple expression for &, — kg, we wish to expand the square root. Let
us assume we can, and then check later for consistency:

1 w)/w®
N R
rL i 21 tw/w
1 w; 1 1
ki~ ke = Sk —5( = )
TR TR0, l-w/ow l+ow/w

1 w; 2w/o

ey el
2wl —w?w?

2
.
m= Lk —hg) =kl 2= ko= =
w W —w, €
o _ TC o o -z_i.f—ff
Wy sz (w wc) fP 2L f(
f. =2.8%10'°(0.1) Hz
8
fot 30 55100 He
Ao 8x10
f2=(3><108)(1.41><102'—7.8><10’8)
@ 2.8 x 10°

=7.5%10""=9n
n=93x10"m™
To justify expansion, note that f, « f, so that

2 2 23 - 9
wy/w zf_;= 7'.9X10.02=0-05<<1
ltw/ow f° (3.75%x10°)

4-24. 12.7°.



4-25. (a) The X-wave cutoff frequencies are given by Eq. (4-107). Thus, 393

Answers to
9 Some Problems
4arne

W =wwtw)=

mw
2
41re

Nex = (0 +w,.)

We choose the (+) sign, corresponding to the L cutoff, because that gives the
higher density.

®)

The left branch is the one that has a cutoff at @ = w,. One might worry that
this branch is inaccessible if the wave is sentin from outside the plasma. However,
if  is kept less than w,, the stopband between w;, and wg is avoided completely.

4.28. (a)

f, = 9Vn = (9)(10'%)/2 = 2.85 x 10° Hz
f. =28 GHz/T = (2.8 x10") x (1073 = 2.8 x 10® Hz
f=16x10°Hz .. w,/w > 1 wjw>1
wp = 3-w, £ (@ +402)"*] = (-0, + Vb0,)
= 0.62w, forw. = w,

fo =(0.62)(2.8x10% =173 X 10°>f



394 Also, f> all ion frequencies.
Appendix D

®

I

here, on low-frequency side of L
cutoff and cyclotron resonance
1

IE
NIEEN

g

(b) The R-wave (whistler mode) is the only wave that propagates here.

4-29. (a)
B 1
(onM) [(1.26 X 107%)(10")(1.67 x 107%")}"/2
= 6.9 x 10° m/sec
_eB_(l.6><10_'9)(l)_ _ .
v (1.67 % 1077 =958 x 10’ rad/sec
w=0.10, = 9.58 x 10°rad/sec
w = k'UA = QTFUA//\
IfA = 2L,

7vs (6.9 X 10°
L=2 00" l_99
©  958x10° bira
(b)

L Cus/w Cua/Q, o< B(nM) 2B™'M o< (M/n)"?

133 1/2 Iol 1/2
oL =(226 (—) ( 9) =
(2263 10" 2

This is why Alfvén waves cannot be studied in Q-machines, regardless of B.



4-30.
(a) 0’ =wl+c%k? Q2w dw = c*2k dk
. =dw/dk = c*k/w

1
ck ( wﬁ) £
P T e
w w

2\ 1/2 1 2
LU= (I—S-;) zc(l—§§§) forw?®>» w;

vt =x =x/v,

ﬁ_f( _l“’_§>_2<_ﬂ) _xo;
do ¢ 2 w? w? cw®
o __<f

dt x f2

(b)

o gff(_ d_f)" _3x 1098 x 107
tT 2\ dt) (932 % 10°)(5 x 105

= (1.9 % 10")(3 x 10'%)~! = 63 parsec

=19x%x10%m

4-31. (@) Let ny’ = (1 —€)no, nP =eny, n, =ngep/kT,

. . p 1
Poisson: {kE, = k’¢ = :e(nﬁ” +n® —n,)
(1]

(Assume z, 2 = 1, since the ion charge is not explicitly specified.)

k
Continuity: n{" = (1 - e)nozv‘l”, i = enoa—)-v‘f’
. - k Qi
Equation of motion: v{’ = Mi ;cb(l - 2’) (Eq. [4-68])
i

€o

<#= 0oz (1-02)

kzvf, k2U2

€ 2
cl [ 058

&

(b) There are two roots, one near @ = {)., and one near w = {),,., If € = 0, the

root near {., approaches ), to keep the last term finite. The usual root, near
., is shifted by the presence of the MM, species:

2 Qi’
2 2 _ g2 2 2 o W T 1
w’—Q; =kv;, —e[k"vf] —k? °—°]

_UIQ 2 2
w —QZ
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396 In the last term, we may approximate w? by Q7, + k%v?,. Thus,
Appendix D

o k*v?,
w?= 0% + k%v2 +€[T—§—— l]kQU,Q.
cl _QCQ

(c)

l kgvfo l k2U;T

2w’ -wlh 20°-Q4

v =KT./Mp = (10)(1.6 x 107'9)/(2)(1.67 X 1072") = 4.79 x 10"
v =%% =3.19x 10"

Q. =eB/Mp = (1.6 X 107'9)(5)/(2)(1.67 x 107?7) = 2.40 x 10®

=

Q= -i-ﬂco =160x10° k=100m™

(@ = Q) w® - Q%) = % [vip(w® - QiD) + vir(@® - Q)]
w* = w?[Q%+ Qir + k(v + viT)]
+ Q200+ k(v Qi+ vir Qi) = 0
' - w?’[8.32 X 10'°+3.99x 10'°] +1.47 x 10* +1.53 x 102 =0
w* =872 x 10"w? +1.63 x 10** =0
w® = §[8.72 X 10'° £ (7.60 x 10%® — 6.52 x 10%)"/2]
=6.0x10"  272x10'®
w =245 165%10°sec’  f=39and 26.3 MHz

4-32.
1 e
& = n0<§mv, v,=—F

e

o i) = (E?)

5
TTL_CL)2

Butw?=w} .. € =3e(E>.

4-33.
g=n0(%Mv?) U zEl/Bo
o € = Mny(E3)/By. ButVXE, = —B, . (E3) = (w?/k?)}(B?)

Mn, w?

&= o
2B k*

(BY).
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4-34. (a) With the L-wave, the cutoff occurs at w = w;, so that one requires
wi < ew?. Since w; < w, if nois fixed (Problem 4-13), one can go to higher values
of no (for constant ew?) with the L-wave than with the O-wave.

(b) For the L-cutoff,

—2=1+—-.‘ =

2 2
[ w, €omw ( w()
w @ e

Thus, to double the usual cutoff density of egmw?/e?, one must have f, = f

3 x 108

(4
=—=————=89x 10"
S =T 33rxi0e 29X 10 He
. 8.9 10"
ﬁ=28><10 HZ/T BO:W-Z:&I'ST

This would be unreasonably expensive.

(c¢) The plasma has a density maximum at the center, so it behaves like a convex
lens. Such a lens focuses if 7 > 1 and defocuses if 7 < 1. The whistler wave
always travels withv, < ¢ (Problem4-19),son = ¢/v, > 1,and the plasma focuses
this wave.

(d) The question is one of accessibility. If w < w, everywhere, the whistler wave
will propagate regardless of n,. However, if ® > w,, the wave will be cut off in
regions of low density. From (b) above, we see that a field of 31.8 T is required;
this seems too large for the scheme to be practical.

4-35. The answer should come out the same as for cold plasma.

4-36. The linearized equation of motion for either species is
—twmngvy = qno(E + v, X Bg) — vATkn,
Thus
—twmnok * v, = qno(k * E+ k- v, X Bg) — ykT:k%n,.

Butk - E = Ofortransverse wave, and k * (v; X Bg) = —v, * (k X Bg) = Obyassump-
tion. The linearized equation of continuity is

—iwn, + ngitk-v; =0
Substituting for k- v,, we have
s 9 . 2
iw mn, = iykTk*n,

Thus n, is arbitrary, and we may take it to be 0. Then the Vp term vanishes for
both ions and electrons.
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4-44. For a given density, the highest cutoff frequency is wg. Thus the lowest
bound for n is given by w = wrg.
o (1.6 x107"%)(36 x 107%)

=1 - =0.
P (0.91 x 107%9(27)(1.2 x 10%) 016

n=£/q"=(0.16)(12x 10%%?=28x 10" m™

N

=1

8'8
Nio o

o P

4-46. Let w = wg atr,, where n = n,, w, = w,;; and w = w, at ro, where n = n,,
w, = wye. Then

Wi =w'—w? [4-105}
w,z,, =w2—ww‘ [4-107]
Thus
W2 ~wp1 = W (@ — ) = (ny ~ ny)e?/egm
But
ne—ny =d|an/dr| = n,d/ro = (eom/e*)(w)(w — w.)d/T0)
So

d = (wc/w)ro

4-47. (a) The accessible resonance is on the far side, past the density maximum.

We
w
WR
N
w
S\ N
wC
) 0 1 2y 2
0 r (Dp/(l)

(b) Let w.o be w, at the left boundary, and w, be the value at the resonance layer,
where w = w,. Then we require

Weo > w, where w® = w? + w;
Thus
2 2 2
w,0>w,+w§ wfo—w:>w§
((1)50 + wc)(wc() - a)c) = chAa)c > Cl)g
2
Aw, _ AB, S @y

2
w, B, 2w




4-48. These are the upper and lower hybrid frequencies and right- and left-hand 399

cutoff frequencies with ion motions included. Note that w;/w, = Q2/Q.. Answers to
Some Problems

Resonance:
o' — (@ +ol + B+ Q)+ 0+ 0l +0l02=0
0l =wr + Q1 —wl/w}) (upper hybrid)
: 202/ wi ! : + 1 (1 hybrid)
0wl = i or —a= == = ower ri
WeSarls 0’ 0Q, Q) 4
Cutoff:

@ = (1 ¢&)(1 ¢&> (Rcutoff)
w w w L

This is more easily obtained, without approximation, from the form given in
Problem 4-50.

N

wl

5-1. (a) D, = KT./mv
o = (6m)(0.53 X 10792 =529 x 107 m*

Y (g)"‘-’ _ [(2)(2)(1,6 x 10“9)]
m (9.11 x 107*")

= 8.39 X 10°> m/sec

From Problem 1-1b,
no = (3.3 x10")(10% = 3.3 X 10> m™3
v = nyov = ngov = (3.3 x 10*%)(5.29 x 1072°)(8.39 x 10°)
=1.46 x10°sec”’

(2)(1.6 x 107'9)

= =9.4x10°m>
(9.11 x 10-°")(1.46 x 10%) LR e

(b) j = pneE
1n-19 o
i, =i = LB XA )EAX 1)
(2)(1.6 x 107"
=1.2x10°m®/V sec
j 2)( 103 )
" pne = 1. 1
E pne (12 X 102)(1016)(16X 10719) 04 X 10 V/m
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5.2.
a—nzDVQn —an?
ot
DV = Dg;—)z = —Dn(,(%)? cos% = - (i—)gn = —an?

5-4. (a) From Problem 5-1la, »,, = 1.46 x 10° sec”'. We need to find whether
.. /u;, 1s large or small:

(75 1‘/111,',1 —
_—= — V. = n,guv; oC .q:m.l

in nOU; Uthj i
i Mmv.,

/2

since o is approximately the same for ion-neutral and electron—-neutral collisions.
Thus

&_=~(¥

i T \m
eB (1.6 x107'9)(0.2)

w, == A s fem e
m 9.11 x 10
$.52 x 10'°

50X U 1wl =
O = T aex10° < 2t 1 wTa =580

1/2
) =(4x1,836)"2=857

=352x10"

ﬁ)(‘;—’)m = (24)(85.7)"' = 0.28

Beo _ 1 1+Q%5 1.08

= (85.7) === 0.16« 1
min  m 1+l (85 7)580 L1€ &

Qerin = wcfm(

1Dy + pooD;
LY
Rig+ ey m;,

= De.l_ + 0. 16D,’_L

i DaJ.

But

D=—un
e

Dy _pa T 1 01
"D, p.T. 016 '

. Dg, = D, ,[1+(0.16)(0.3)] = 1.05D,, =D, ,




(b)

5-5.

5.7.

a a\? 1
W =24 . 1= (ﬁ) D..
1 1
T T 24x109°D,,

_2.4x10°
58

D,, = 0.4140 (from Problem 5-1)

T =42 pusec

I'=—-Ddn/dx n =ny(l —x/L)
I' = Dny/L (x >0)
Q=2I'=2Dny/L .. ny=QL/2D

Asi = ViheTei = Uine/ Vei

But v, o T2 and »,, o T7%/2

5-8.

5-9. (a)

LA X T TR o T

sIn A
m=52x10"" ,;3/2 Q-m (assume Z = 1)
(5.2 x 107%)(10) _
=—————=465%x10"%Q-
(500" "

j=1I/A =(2x10%/(7.5x 107%) = 2.67 x 10’ A/m?
E=qy;=(465x 107267 x10)=1.2V/m

KT, =20keV KT,=10keV n=10"m™
2(KT: + KT.)

B

InA _ (107%)(10)

T3/2 - (104)5/2

B =5T D,

7. =(2.0)5.2 X 107

=1.0x10°Q-m

(1.0 x 107%)(10%")(3 x 10%)(1.6 x 107'9)
D, = 52

=3.0x 107* m?/sec
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Appendix D s
enaix
— =%arLT, T,=-p, 2
d or
L =0.50 L =100
ar 01 reRoum -oem
T (27)(0.50)(10%)(2.0 x 107*)(102'/0.10) = 6 x 10** sec™"
(c)
o N _ nmril , =055
—d[V/d[ —d}V/dl effective .00 m
102! 55)%(10°
r = QOO0 Ly o
6 x 102
5-13.
_ sInA . 10
m=52x10 Wf)-m =(5.2x10 )W

=1.6x107Q-m
77 = (1.6 X 107°)(10°)% = 1.6 X 10° W/m*

= 1.6 x 10° J/(m®-sec)
= (1.6 x10°)/(1.6 x 107"?) = 10* eV/m®-sec

_dE;
dt
E _ § KT . dEeu _§ dev
T e Ty T a
dT,, 2 1 = 5 o =
T = 3 10,91024 =0.67 x10”eV/sec= 0.067 eV /usec
5-15. (a)
0 A0
en (4; —v.B) - Y/elh —e"n"n(vie — o) = 0
0 0
—en(l'je - v,.B) - Y/;th +e*n"1 (vig — ves) = O
add:

—-v,B+v,B=0 . v,=uvy

er

(This shows ambipolar diffusion.)



(b)

aﬁi 2. 92 v
en(E, +v,~gB)—a——e n (Y, —v.,)=0
r
ape 2. 2 —
—en(E, +v,¢B) — 3 +en (v, —ve) =0
r
Er 1 apl +
1 I ¥ N U T
vie B enB or T
E_ 1 op_ .
=—=—-— = vg + Up,
Ve B enB or £
(c) From the first equation in (a),
2 2
e‘n’n
Vir = — en—B(vw — U.p)
enn 1 (ap; 3{%) m dp
L [/ A =-—=—=uq,
B enB\dor or B* or
(This shows the absence of cross-field mobility.)
5-17. (a)
v, .
pog‘—‘hXBu (1
E, +v; X By = nj 2)

VXEI=—BX V X B, = pojs
VXVXE,=-VXB, = —j:

0
—k(}x/E) +k%E, = tope], (3)

k-E=0 (transverse wave)
Solve for v; in (2):
E, XB,+ (vi XBy) X By =1nj, X B,

l—l_l

"VlJ.Bg
E, XB, mjiXBy
Uip = ° -

B3 B}

Substitute in (1), which has no parallel component anyway:

X j1 X
El QB()_T’]l 2B0)=leBO
Bs Bo

“ino(

Since, by Eq. (3), E and j, are in the same direction, take them both to be in the
x-direction. Then the y-component is

E, By 7\.
== ( +_)Jx
B, wpo By
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404 Equation (3) becomes
Appendix D

° . Ei(iBy  m\ "
KE = poio (=2 + )
ke Bo\wpo Bo

32 ) =i}
= ;Lowz(—o - mw) E,
p

0

(b)

_ w(uop9> "2(1 B iwnpo) -
B3 B}

1/2 2
©npo (Koo w'n 1
Im (k) = . (— ) —
m (k) “9BZ \ B2

But for small i, = kv,, where £ = Re (%)

k‘l
6-4. (a)

iXB=Vp=KTVn (KT = KT, + KT, here)
(jxB)xB=KTVnxB=B(j B)—jB*
The parallel component is 0 = jiB* — j,B? .. j; is arbitrary. The perpendicular
component is
KT KT on .

j.=—BXxVn=——4¢
1o = pe "TB ar

(b)

J.VXB-dS=y.0J‘j-a'S

§B-dL=uojj-dS=p.oLJ’ jodr
0

since j and dS are both in the 6 direction, and L is the width of the loop in the
Z direction. By symmetry, there can be no B,, so only the two z-legs of the loop
contribute to the line integral. Substituting for 7,, we have

®on/for
(Bax = BoL = uOLKTJ llr
o B(r)
(c) on/or = —n, 8(r — a), since 3n/dr is a function that is zero everywhere except

atr =a, is — there, and has an integral equal to —n,. Thus

©

8(r—a)
B,. — By = KTJ —ng————d
o) T B

r



Since all the diamagnetic current is concentrated at r = a, B takes a jump from
a constant value B,, inside the plasma to another constant value B, outside.
(Remember that the field inside an infinite solenoid is uniform.) Upon integrating
across the jump, one obtains the average value of B on the two sides, 1.e.,
B(a) = 3(Bax + By). Thus

B.. — By uoKTnom

B2 — B2 = —9uonoKT
Bzx 2,“"’077-01{7-.
| - === —=8=1. =0
B? B? B

6-5. (a) By Faraday's law, V = —d®/dt
. I Vdt = —NJ@dt =-NAD
di
Since A® is the flux change due to the diamagnetic decrease in B,

—NA®=—NI(B—B0)-dS

The sign depends on which side of V" is considered positive. In practice, this is
of no consequence because the oscilloscope trace can easily be inverted by using
the polarity switch.

(b) In Problem 6-4b, we can draw the loop so that its inner leg lies at an arbitrary
radius r rather than on the axis. We then have

ao a a ’
dr' = p.OKTJ. %dr'

r 0

ST KTJ"”an/ar
(r) 0= Mo B

where again KT is short for 3 KT

GLOg no(—_QT) o727
2
or o
woKTnog (7 _ o2
T -3 P /r()2r/drl
0 To Jo

_ I-Lo"oKT[e—r"l/rﬁ]co _ ~“0"0KTe—12/r5
By i Bo

This is the diamagnetic change in B at any r. To get the loop signal, we must
integrate over the plasma cross section.

B(r)—By,=

J’ Vdt = —NI (B—-By):dS= —NII [B(r) — Bolrdr de

where both B and dS are in the z direction. Substituting for B(r) — B, and
assuming the coil lies well outside the plasma, we have

KT "
J'de N I e~ 0 dr

[.LUTI,OKT 1 2/.1.07101(7')

2r —r2/rd
e =

= Nm
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406 (c) The quantity in parentheses is 8 by definition; hence,
Appendix D

1
J Vdt = §N7Tr¢2)BBo

Both sides of this equation have units of flux.

6-6. (a) For each stream, we have

ad
m(%+ Vo Vv,) = —¢E, = (~iw +kvo)v,

= —ieE;
! m(w — kvg)
)
%+no(v- V) + (v V)n, =0
k'U1

(—iw + tkvgn, + thngv;, =0 n, =ng——
w — kv,

—ikE.e

My = Ng————————
! "m(w — kvo;)*

Poisson: ikE, = (e/€o)(1s + 1 15), where stream a has vo, = voX, 70a = 3Mo; stream
2 1
b has vy = —voX, Ny = 3Mo. Thus

. e\ [—ikeE, %7"0 %"lo
R O Gay e ]
iE, € m (@ — kvo)? (@ + kuo)?

Tl082 1 [ 1 1 ]
Do +
eom 2L(w — kvo)? (0 +hvud)

1 S 2[ : + ! ]
20)’ (@ — kug)®  (w + kvg)?
(b)
s w?+ k%
1= o pmzy
0= (w2 + 2%k v + k2 (k22 — wﬁ) =0
0? = §(w}; + 2k%0})  H(w} + 8wik?v3)'/?
Let
_ k%2 2 _ 2&2
Tey 7T w3
Then

yi=l+x=(1+4x)"



y can be complex only if the (—) sign is taken. Then y is pure imaginary, and 407
we can lety = iy: Answers to

y2=(14+4x)""2~ (1 +x) Some Problems
d o _ -1/2 _ 7 — =§
E(Y)—2(1+4x) 1=0 x=7
Thus
yi=(1+3)"*-3=}
1 V2Im () w,
Y=35° w, Im (w)= 5372
6-8. (a)

Y I
add P (@ — ku)?
where w} = noe’/e,m.

(b) This equation is the same as Eq. [6-30] except that m/M is replaced by 6,
which is also small, and that the rest frame has changed to one moving with
velocity u. The maximum growth rate does not depend on frame, as can be seen
from Fig. 6-11 by imagining v to be plotted in the z direction vs. x and y; a shift
in the origin of x will not affect the geak. Analogy with Eq. [6-35] then gives

__ s1/3
‘Ymax i 6 wb

(The exact constant that should appear here is 3'/?°27** = 0.69. The derivation
of ¥max, which is difficult because the dispersion relation is cubic, and the proof
that it is independent of frame for real £ are left as exercises for the advanced
student.)

6-9. (a) Since only the y component of v; and E are involved, the given relation
is easily found from Egs. [4-98(b)] and [6-23], plus continuity and Poisson’s
equation. Note that ), is defined with no, not (1/2)n,.

(b) Leta =303(l +w;/w?) ', B = k’vi. Then the dispersion relation reduces to
@' —2a+B)w +B—2aB8 =0
The dispersion w (k) is given by
w’=a+p =t (a’+4aB)”?

Instability occurs if (a? + 4aB)"?

>a+B,orB <2aq,ie.,
k2 <(Q3/vé)(1 + wi/wl)™
Wher his is satisfied, the growth rate is given by

v =[a®+4aB)? — (a + B)]"?
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Appendix D

7-3. (a)

(b)

(c)

(d)

ny —y2/a?

fb(v) 1/2

e -v)2/b?
folv) = 1/2 :

Ny 2(U - V) —(V—V)?/b

fb(v)— 1/0 b_
= - 3 2/62
y(v) = .2?;[1—2(”[)2‘/)](‘”“” =0

v=V=£b/N2 v, =V -b/V2
/ _(2 R T
fo(ve) = (77) =€

b?

= P b —(V—b/v2)2/a2
fo(U¢) pu l/z<a2)<v "Qﬁ)" (V—b/v2)?/

2n,V o

» _v2/g?

- ]/ e ' /ﬂ "»b
atm'/?

™

172
(2) ﬁe_l/z 2"9 —v2/q2
b2 a 1/2
2
n b =020 b
— = (28)”2—S Ve Ve T
n, a a Ty,
;
b _ g ey T8 YV _vese
=(2¢%) e
T, a

7-8. From Eq. [7-127], we obtain Y &;Z'({;) = 2T/ T., where a; = ny;/no., {; =
w/kvy,;. Assume at first that ay is small, so that a4 = 1, @y = «; furthermore,
small @ means that v, will be nearly unchanged from v, of argon. Then doubling

the Landay damping rate means ImZ'({y) = Im Z'({4), where ImZ'({;) =
—21\/17{8 & Thus

lae™ I3 alue* 13 o Qe—wi-z{f)
{n
g_A _ (%)ll? = (40)1/28—;‘:{(1—1/40)
{u  \My
I =KT,+3KT,-_ M, =_5
! M,  2KT, 2

o = \/Ee—es(o.ws) =1.12x102=1%



Thus «a is so small that our initial assumptions are justified.

7-9. (a)

2k*? l —«a
=Z'({)+

ks 6.

Z'@)+ fzm)
h

(b)

Z'(0)~-2-2iVmLe™®
Since {h « £, « 1,

[Im Z'(¢)l < |[1m Z'(¢,)|

(c) Since Z'(£,) = Z'(L,) = —2), the ¢, term in (a) is negligible compared with the
L term if 8, » 4, and @ < 1/2. Now the dispersion relation is
2k* 2(1 —a) 2T;

() =+ —— —(17a+
Wt e T T

Ttle)
Tiki)i

The last term is =£°A}, and is negligible when quasineutraility holds. Thus the
ion wave dispersion relation is the same as usual, except that T;/T, has been
replaced by (I —a)T;/T,. Since small T;/T, means less Landau damping, the
hot electrons have decreased ion Landau damping.

8-3. Refer to Fig. 8-4. Take a number of ions with v = u, and split them into
two groups, one with v = 4, + A and one with v = u, — A. After acceleration in
a potential ¢, the faster half will have less fractional energy gain (because it
started with more energy) and, hence, will have less fractional density decrease.
The opposite is true for the slower half, and to first order the total density
decrease is the same as if all ions had v = u,. However, there is a second-order
effect which makes the slower group dominate. This can be seen by making A
so large that v = 0 for the slower half, which clearly must then suffer a huge
density decrease. To compensate for this, u, must be increased to higher than
the Bohm value.

8-4, The maximum current occurs when the space charge of decelerated ions
near grid 3 decreases the electric field to zero. Thus we can apply the Child-
Langmuir law to the region between grids 2 and 3.

_4[((1.6x107") ] 72(8.85 x 107'2)(100)**
9L(4)(1.67 x 107%7) (107%)2

A
= 27.2—0
m2

T

A= 4(4>< 10732 =1.26 X 107> m?
I=JA=0.34mA

8-6. (a) Atw, = w,
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410 Soper = 3elE?).  But  Io=cefE? =P/A, where P=10" and A =

Appendix D (m/4)(30 X 10™%)2 = 1.96 X 107° m?
___P___ 10" —8'OXIO"£
At SErh @B % 109(1.96x107°) o~ m?

'- 11 . l
_(8.50x10')(0.2248) _ | oo 108%
in.

(39.37)°
(b)
F =pA P/2c =10'2/(2)(3 X 10%) = 1667 N
F=Mg M = F/g = 1667/9.8 = 170 kg = 0.17 tonnes
(c)
InKT = per
5% 10" .
n=—52X10 966107 m™
(2)(10°%)(1.6 x 107°7°)
8-7.
ad n 3 [efE?)
=Vp - 2Ty = - ()
Fa p ar (nKT) n, or 2
1 on €& 9, ., eo{E?)
SMECM - So.. O )= WA
nor 2nKT ar(E ) s 2n KT 0
n = noe“fu(E"’)/?n(KT
Atr =0,
Mmin = Mo e—eoaz?)mx/Qn‘KT = n, e
= EO(Eg)max
2n KT
8-9.

ko=2m/Ao = 27/1.06 x 1075 =593 x 10°m™"
k=~ 2ky=1.19%x10"m™"

KT, +8KT\"? [(103)(1.6><10"‘9)]”2 N2
oon (B2 (] (143)

M 2)(1.67 % 107%) 9

1/2
w; = Aw = kv, = (1.19 X 107)(2.19 x 105)(1 +%>

1/2
=261 x 10'2(1 +§)

B0, of =ty e 2Ty

Wy Ao ' /\E) 0



(27)(8 x 10%) we 411
(106 % 10_6)2(21'9 *1079 Answers to
Some Problems

=367 x 10"

3 3.67X10”)“’ T, 1
P - A1 =it 3 . T =-LeV
) <2.61 x 10" =T Ti=gke

8-10. (a)
5 1 -, 8w,w Ty
E‘ = —E" =
( ()> CICQ
CiCa = GOk?w: FQ_E)‘;K
° newiM w3 2
oy 4o Twir ngM  4o.ToivMm
<Eo> = 2 5 3 o
w2kl €W, (1)2k1€
(w3) = eXED) _ 4w TiwM
¢ miw) wokim
g2 @i _ oM _wiuiM  (vi) 4l
' y? T KT, m 2 _w1w2
(b)

<U(2)) _ 4T,

2
Ue w Wy

since we = w, when n < n_.

C9m (@m)E3 X 10%
o=, T 106x10°

=1.78 x 10" sec™’

KT, (10%(1.6 x 107'%) m?
2 3
= = 1= 176 x 10"
R (0.91 x 107 eI
T, (w)”? o sy T,
_— == 03+01/_> - (3+8)/2 6=—’=1
o \3 ( ) Te T, 0
=3.40x 1072
_ SInA (5.2x107%)(10) =
n=52x%x10 o ———(W—=a.2x 1077 Q-m
2 23 —19\2 —2
_nefn_ (107)(1.6 X 1079%(5.2x 107) o
Uy = —m = 0901 x 109 =1.46 x 107 sec
o (4)(3.4x 1073)(1.46 x 10° m?
wiy =N A J(1.76 x 10™) = 1.96 x 1072

1.78 x 10" P



412 From Problem 8-6(a):
Appendix D 2

2
, m3w
I = ceolE?) = ceo— 2(v3)

Ly = (3 X 10°(8.854 X 10_.2)(0.91 x 107392(1.78 x 10')%(1.96 x 107)
[\ -

(1.6 % 107'9)?
w
=534x10""— =534 x 10°—
m cm
8-11. (@? + 2iyw, — w})(w, + iy — wo)? — 3] = c1c.EL.

If 0! = 0}, (0, — wo)° = w3, and y/w, « 1, then
(2iyw;,)[2ty(w, — we)} = 110ER = 4y 0,0,
From Problem 8-10,

2 2 2
eok,w,, 1w pe
€162 = oy -
noweM  wimM
2 2-2
_Y? _ k ICUPEQEO _ k 1@W UM (2/20) ngo
16w, wew amM 16w,w21\/f 16w ow,
2n2-2 - /2
_woll,ug Tofwo\ "’
St L Y S Q,
4c wow, 2 \w;

8-13. (a)
v
1Wn05 =en E —vKT;Vn — Mnovv + Fao

Mno(—iw + v)v =eno(—thd) — y;KTitkn, + FnL
with e¢p/ KT, = n,/n,, this becomes

ny  iFNL
+ =kl + 2L
(w + )y = kv,no Mna
Continuity:
. . . n iF,
—iwn, + thnov = —iwn, + thny(w + )~ [/z R NL] =0
ng A/!no
(0®+ive — k2, = ihFn /M
When FNL ol 0,
1 [
w2(1 + ii) =h%? o zkvs(l ——i3> = kv, —~v
) 2 w 2

Hence ~Imw =T = »/2. So (w?+ 2iTw — k2v?)n, = ikFy /M
(b)

2

2
w w
Fano=——"-VeoEoEs) = — —L
@ W2 oW 2

ikfo(EoE2>



Thus, 413

. Answers to
’ _ 2 2 2
thFy 1 ié( @e ; 50) w, ke Some Problems

= T

M (E.Es) M

WoW2

8-14. The upper sideband has #w,; = hw, + fiw,, so that the outgoing photon has
more energy than the original photon fw,. The lower sideband would be expected
to be more favorable energetically, since it is an exothermic reaction, with

two = hwo — hw .

8-18. U(§ e cf) =3¢ sech2 [(6/2)”2(§ o CT)], where f — 61/2(xr _ tl)y = 63/~zt"
x"=x/Ap, t' = Ot, 6 =M — 1

x — vyt v
£=§—ct=6‘/2<—‘—6 —’t)
Ao iAp

since ApQQ, = v,
1/2

= K[x = (14 &c)v.t]

The soliton has a peak at { = 0. The velocity of the peak is dx/dt = (1 + 8¢c)v,.
By definition,

j—':=./ﬂU, = (1 + 8)v,

ne=1 S Umax=3c=3
From Eq. [8-111],

P max
X max = KT, == 6xlmax - 6Umax
e (bmax 12 1
§=—x—"2=—"-=04
KT, Unax 103

Uge = (1 +8)v, = 1.4v,

_ (K_T,)'”_ [(10)(1.6 x107%)
ST \Unr 1.67x 107

vs =4.33x10* m/sec

At half maximum, sech’a =3% .. a = 0.8814 = \/ég s 0=1.25=68"%/Ap at
t =0, say.

]=3.10x 10*

8172 = 0.4 = 0.632

€K T\ "2 )
Ap = 2 =235%10"*"m=0.235mm

[ X4

_1.254,
* T 0632

= 0.46 mm FWHM =2x = 0.93 mm



414 8-21.
Appendix D
P |u] =4A4"2|sechx| . |u|®= 164]sechx|?

V2
6n=-|u| ( S ~——| [? = —4A|sech x|?
€’

Sn = —4A|sech x|* =~ —24

od, 1@___(2,1)_—

w, 2 n
. A is frequency shifted due to §n.

8-22. In real units,

1/2 v 1 V‘z
u == =44"2sech [<2A> ( ‘—wpt)] exp{ [(w°+ —A)wpt
Ap w, 6 v,

U, 3 v,
% x}
31], /\D
1/2 2\ 1/2 ad
v, = (KTQ) =593x10°m/sec @, = (ﬂ) = 178 x 10°=—
m €om sec
0.3
/\D=&=3.33X10""m lz=(k/\D)=—~ 9.02x 10°m™"
w, Ap D
L, =447 —iwmy = —¢E = —e(—ikd) .. ¢ = — n:(:v
Gpp = %9414 12, = (w? + 3k%2)2 = 2.01 x 10°
e
A2 = kedy—p = _k_ by-p i{L l = ﬂ e—(ﬁ""‘
dmowv, 4o KT, m v. 4w KT,
kv, 3.2
= — =0.106
0 2
A=113x107"

(a)
] 1/2
sech X = — X=1.315=<2—A> —
2 3 Ap

B (_3_)”2(1.315)(3.33 X107 5.04 x 10-°
2 0.106 o

FWHM =2x =1.01 x1072=10.1 mm

(b)
yoLoixio®
e o2m/k S



(c)
Sw = Aw, = (1.13 x 1072)(1.78 x 10°) = 2 X 10" rad/sec
8f = 6w/2m =3.2x 10°= 3.2 MHz
8-23.
(3)(3)(1.6 x 107") . .
3v? = 0ol X To - 198X 10'? m®/sec
. B (10")(1.6 x 10792 3 il lolgmd’-’
@5 (0U) = X 107091 x 10°%9) sec?
w3 (in) = 0.4w; (out)
2 —wi(i 3.18 x 10"
I (Gl L (A —(1-0.4)
3v? 1.58 x 10'2
=121%x10"m™
2w -
Amin = =181x107m= 1.8l mm

k max
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Accessibility, 153, 398
Acoustic speed, 352
Adiabatic compression, 42, 19
Adiabatic invariants, 43
Alfvén velocity, 138, 351
Alfvén wave, 136
energy density of, 149
dampingof, 197, 404
shear, 140
torsional, 140
Ambipolar diffusion, 159, 172
Annihilation of magnetic field, 206
Anomalous resistivity, 288
Antimatter, 120
Appleton-Hartree dispersion relation, 150
Arecibo, 322
Aurora borealis, |
Avogadro’s number, 369

Banana diffusion, 194
Banana orbit, 194
Beam-plasma instability, 264, 266, 407
Bernstein waves, 278
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Magnetosonic waves, 142
Magnetosphere, 14
Malmberg-Wharton experiment, 262
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Maxwell’s equations, 54
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Ionospheric modification, 321
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kinetic dispersion relation, 270
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Nonlinear frequency shift, 337
Nonlinear Schrédinger equation, 336
Non-Maxwellian distribution, 226

Ohmic heating, 182, 195, 196
Ohm'’s law, generalized, 186
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Ordinary wave, 122
damping of, 150
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Physical constants, 350
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Quiver velocity, 352

Radio communication, 120
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R wave, 129
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Saha equation, |
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Sheath criterion, 292
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coupled, 344
Sound waves, 94
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Stress tensor, 61, 239
Super-Alfvénic, 152
Supersonic, 152
Susceptibility
electric, 56
magnetic, 56



Temperature, 4

Thermal velocity, 228

Thermonuclear fusion, 13

Theta pinch, 196

Transverse, definition of, 101

Trapped electrons, 235

Trapping, 288

Trivelpiece-Gould waves, 106-109
picture of, 86

Turning point, 46

Turbulence, 288, 289

Two-plasmon decay instability, 313

Two-stream 1nstabifity, 211

Universal instability, 210
Upper hybrid frequency, 104

Van Allen belts, 1, 14, 34
Van Kampen mode, 261

I-lwo1-2: 7
1-3101-7: 13
1-8to1-11: 17

2-1t02-7: 25-26
2-8t02-12: 34-36
2-13 10 2-21:  49-51

3-1103-2: 58
3-3103-9: 74-75

4-1: 81
4-2t04-4: 87
4-51t04-6: 94

Vector relations, 352
Velocity analyzer, 296
Velocity average, Maxwellian, 228

Velocity space diagram, 236, 237, 255

Viscosity, 64, 65
collisionless, 64
magnetic, 64, 65

Viscosity tensor, 178

Vlasov equation, 233

Wavebreaking, 288
Wave-particle interactions, 288
Waves in a cold plasma, 355
Wave steepening, 302
Wave-wave interactions, 288
Weakly ionized gases, 155
Weibel instability, 223
Whistler waves, 131, 135

Z-function, 268

INDEX TO PROBLEMS

4-7104-8: 107-109
4-9104-13: 120-121
4-14 104-25: 135-136
4-26 10 4-51:  148-154

5-1105-6: 175-176
5-7t05-18: 195-197

421
Index

8-6 to 8-7: 308-309
8-8 10 8-11: 314-315
8-12 1o 8-14: 323-324
8-15 10 8-16: 330
8-17: 334

8-18: 336

8-19 to 8-20: 339
8-21 10 8-23: 346



L




i \—:},}

.




A




	01-Introduction
	02-Single-Particle Motions
	03-Plasma as Fluids
	04-Waves in Plasmas
	ORC_04-1
	ORC_04-2
	ORC_04-3
	ORC_04-4

	05-Diffusion and Resistivity
	ORC_05-1
	ORC_05-2

	06-Equilibrium and Stability
	07-Kinetic Theory
	07-1
	07-2

	08-Nonlinear Effects
	08
	CCI13062557
	CCI13062557_0001
	CCI13062557_0002
	CCI13062557_0003
	CCI13062557_0004
	CCI13062557_0005
	CCI13062557_0006
	CCI13062557_0007
	CCI13062557_0008
	CCI13062557_0009
	CCI13062557_0010
	CCI13062557_0011
	CCI13062557_0012
	CCI13062557_0013

	08-315

	Appendix
	APP_A
	APP_D_379




