
Affine planes, coordinatization and cartesian groups

Definition of an affine plane. An affine plane consists of a set of points P and
a set of lines L such that each line is a subset of P and the following holds:

(A1) ∀x, y ∈ P : x 6= y ⇒ ∃!` ∈ L such that x, y ∈ `;
(A2) ∀x ∈ P, s ∈ L : x /∈ s ⇒ ∃!t ∈ L such that x ∈ t; and
(A3) ∃xi ∈ P, 1 ≤ i ≤ 3, such that {x1, x2, x3} ⊆ ` for no line `.

Property (A3) may be expressed by saying that there exist three points that are
not collinear.

Remarks:

(a) In the definition none of ∃! may be replaced by ∃. To get a counterexample
for (A1) double a point; for (A2) consider affine lines in a 3-dimensional
vector space.

(b) Suppose that r, s, t ∈ L are such that r ∩ s = ∅ = s ∩ t and r 6= t. There
has to be r ∩ t = ∅ since x ∈ r ∩ t contradicts condition (A2).

(c) Write s ‖ t if s, t ∈ L are such that either s = t or s ∩ t = ∅. From (b) it
follows immediately that ‖ is an equivalence on L.

(d) Pencil is the traditional word used for a class of the equivalence ‖ (in Czech
‘svazek’).

Following facts are immediate to establish:

(i) Each line has at least two elements;
(ii) if s, t ∈ L and s ∩ t 6= ∅, then P 6= s ∪ t;
(iii) there are at least 3 classes of parallelism (i.e., at least three pencils);
(iv) all lines are of the same size (cardinality). In finite case the number of

points upon a line is called the order of the plane.
(v) In an affine plane of finite order n there are exactly n + 1 parallel classes,

each consisting of n lines. The number of points is equal to n2.
(vi) From an affine plane a projective plane may be constructed by forming ‘a

point at infinity’ for each pencil, and ‘a line at infinity’ that connects all
points at infinity.

(vii) Removing a line from a projective plane yields an affine plane.

The equivalence ‖ satisfies this property:

(A4) For any ` ∈ L the class (pencil) [`]‖ partitions P.

Let us now suppose that upon L there is given an equivalence ‖ that satisfies (A4),
and we look for conditions under which this equivalence really is the equivalence of
the parallelism within an affine plane.

Let ‖ be an equivalence on L. If ‖ satisfies (A4), then (P,L) is an affine plane with
parallelism ‖ if and only if (A1) and (A3-A5) are satisfied.

(A5) if s, t ∈ L and s ‖ t does not hold, then ∃! x ∈ s ∩ t.

Proof. Extend the set of points by regarding each class of ‖ as a point in which the
lines of the class meet, and extend the set of lines by adding a line consisting of all
these points. Then (A1) and (A3)–(A5) imply that the extended structure fulfils
axioms of the projective plane. By removing the added line at infinity we obtain
the desired result. �

Axiomatics of projective planes immediately implies that in conditions (A1) and
(A5) one of ∃! (but not both) may be replaced by ∃.

Conditions for the finite case. Suppose that P is finite. Let ‖ be an equivalence
upon L. Consider the following condition (which may be regarded as a stronger
version of (A4)).
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(A6) If ` ∈ L, then [`]‖ partitions P into n ≥ 2 classes, each of which is of size
n, and there are n+ 1 classes (pencils) of ‖.

If (A6) is fulfilled, then (P,L) is an affine plane provided (A7) or (A8) is true.

(A7) If x, y ∈ P, x 6= y, then there exists at most one ` ∈ L such that x, y ∈ `;
(A8) if s, t ∈ L are such that s ‖ t does not hold, then s ∩ t 6= ∅.

Proof. Assume first that (A6) and (A7) hold. Any two points determine at most

one line. There are n2 points and
(
n2

2

)
pairs of points. Every line contains

(
n
2

)
pairs of points, there are n lines in a pencil, and there are n + 1 pencils. Since

(n + 1)n
(
n
2

)
=

(
n2

2

)
, any pair of points is contained in a line. Therefore any two

points occur in exactly one line. What remains is to verify (A5). Suppose that s ‖ t
does not hold. There are n lines parallel to s. None of them may share with t two
points or more. Since t has exactly n points, t intersects each of them in exactly
one point.

Let us show that (A6) and (A8) imply (A7). Proceed by contradiction, assuming
that x, y ∈ s∩ t, where x 6= y and s 6= t are lines. By this assumption s ‖ t does not
hold. Let t = t1, . . . , tn be all the lines parallel to t. Since s intersects each of them
and since s consists of n points, there has to be |s∩ ti| = 1, for every i ∈ {1, . . . , n}.
That contradicts the assumption. �

Collineations and the line at infinity. A collineation ψ of an affine plane is a
permutation of points that maps a line upon a line. This is the same as saying that
x ∈ ` if and only if ψ(x) ∈ ψ(`).

A collineation of an affine plane thus respects parallelism. Therefore it permutes
pencils. This may be also expressed by saying that it permutes points at infinity.
In this way each collineation of an affine planes extends uniquely to a collineation
of its projective completion. On the other hand, a collineation of projective plane
that fixes a line pointwise yields a collineation of the affine plane that is obtained
by removal of the line.

Denote the line at infinity by `∞. Let us characterize collineations α of the affine
plane that are induced by a perspectivity for which `∞ is the axis. What we shall
do is to take the description of perspectivity in projective plane, and explain what
it means in this special case. Note first that α maps each line upon a parallel line.

Denote by c the center of the perspectivity and choose an affine point x 6= c.
Suppose that α is nontrivial. Therefore α(x) 6= x. Denote by ` the affine line
connecting x and α(x). Thus α(`) = ` and ` passes through c. The goal is to
determine α(y), where y is another affine point, y /∈ `. The affine line connecting x
and y will be denoted by m. We know that m′ = α(m) ‖ m and α(x) ∈ m′. This
determines m′ completely.

Now, α(y) is the intersection of m′ and an affine line `′ such that y ∈ `′ and
either `′ ‖ `—if α is induced by elation—or c ∈ `′—if α is induced by homology.

Introducing binary operations. Let (X,+, 0) be a group (not necessarilly com-
mutative, despite the notation). Suppose that upon X there is also defined a
binary operation · such that 0x = x0 = 0 for all x ∈ X. Write X∗ = X \ {0}.
Put P = X × X. For a ∈ X let `a = {(x, y) ∈ P; x = a}. If a, b ∈ X, set
`a,b = {(x, y) ∈ P; y = xa + b}. Let `∞,a be an alternative notation for `a, and
set X∞ = X ∪ {∞}. Set L = {`a,b; (a, b) ∈ X∞ ×X} and assume that each ‘line’
possesses a unique name, i.e., that `a,b = `a′,b′ implies a = a′ and b = b′, whenever
a, a′ ∈ X∞ and b, b′ ∈ X.

What can be said about · if (P,L) is an affine plane? Let us first observe that
left translations La : x 7→ ax and right translations Ra : x 7→ xa have to permute X
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for each a ∈ X∗ = X \ {0}. (Note that L0 = R0 is a constant mapping that sends
each element of X to 0.)

Ra inj.: Suppose that c1a = c2a = d. Then (ci, d) ∈ `a,0 ∩ `0,d. Hence c1 = c2.
Ra surj.: For d ∈ X consider the intersection (x, y) of `0,d and `a,0. This means that

d = y = xa. Hence d ∈ Im(Ra).
La inj.: Suppose that ac1 = ac2 = d. Then both (a, d) and (0, 0) belong to both

`c1,0 and `c2,0. The lines thus agree, and hence c1 = c2.
La surj.: For d ∈ X consider the line that connects (0, 0) and (a, d). It is not of the

form `c since a 6= 0. Hence it is one of lines `c,b, c ∈ X. Since 0 = 0c + b,
there has to be b = 0. Therefore d = ca.

As a consequence:
ab = 0 ⇔ 0 ∈ {a, b}.

Translations Ra and La thus permute X∗, for every a ∈ X∗. This is the definition
of a quasigroup. The fact that (X∗, ·) is a quasigroup is thus a necessary condition
for (P,L) to be an affine plane. To get a necessary condition let us first make this
observation:

If a is fixed and α = (u, v) ∈ P, then there exists a unique line `a,b with α ∈ `a,b.
Indeed, if a =∞, then b = u. If a ∈ X, then b is uniquely determined by v = au+b.

This means that (A4) is satisfied if ‖ is an equivalence of L such that `a,b ‖
`a′,b′ ⇔ a = a′. If this is assumed, then, as we shall observe, (A1) and (A5) may
be reduced to

(C1) If u, u′, v, v′ ∈ X are such that u 6= u′, then there exists a unique x ∈ X
such that −ux+ v = −u′x+ v′; and

(C2) if u, u′, v, v′ ∈ X are such that u 6= u′, then there exists a unique x ∈ X
such that xu+ v = xu′ + v′.

Indeed, if α = (u, v) and α′ = (u′, v′) are two distinct points, then `u is the unique
line containing both α and α′ if u = u′. Assume u 6= u′. The existence of unique
(a, b) ∈ X × X with ua + b = v and u′a + b = v′ is equivalent to the existence
of unique a such that −ua + v = −u′a + v′, and that is how (A1) and (C1) are
connected.

To connect (A5) and (C2) consider a, a′, b, b′ ∈ X. Lines `a′ and `a,b intersect at
(a′, a′a + b). Assume a′ 6= a. Lines `a,b and `a′,b′ intersect at (x, y) if and only if
xa+ b = xa′ + b′.

If (Q,+, 0) is a group, then (C1) and (C2) may be simplified. The advantage
of the unsimplified form rests in the fact that (C1) and (C2) imply (A1) and (A5)
also in the case when (Q,+, 0) is a loop, i.e., a quasigroup in which 0 is the neutral
element. (In the loop case −a + b is the solution of a + x = b, while a − b is the
solution to x+ b = a.)

We have verified that if (C1) and (C2) hold, then (P,L) is an affine plane in
which `a,b ‖ `a′,b′ ⇔ a = a′.

If X is finite, then L satisfies (A6). This means that in finite case it is possible
to relax (C1) and (C2) by using (A7)/(A8) in place of (A1) and (A5). The details
will be skipped since the focus here is upon the situation when (X,+, 0) is a group.
In such a case (C1) and (C2) may be expressed, in the respective order, as follows:

(C3) If u, u′, v ∈ X, u 6= u′, then ∃! x ∈ X such that u′x = v + ux; and
(C4) if u, u′, v ∈ X, u 6= u′, then ∃! x ∈ X such that xu′ = xu+ v.

Theorem. Suppose that (X,+, 0) is a nontrivial group and that · is a binary op-
eration upon X such that (C3) and (C4) hold, and that x · 0 = 0 = 0 · x for each
x ∈ X. Then (X∗, ·) is a quasigroup, where X∗ = X \ {0}, and (P,L) is an affine
plane, where P = X × X and L = {`a, `a,b; a, b ∈ X}, `a = {(a, x); x ∈ X} and
`a,b = {(x, xa+ b), x ∈ X}.
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The mapping αc : (x, y) 7→ (x, y + c) is a collineation of (P,L) for each c ∈ X.
If ` ∈ L, then αc(`) ‖ `. If ` = `a, a ∈ X, then αc(`) = `.

Put (a) = {`a,b; b ∈ X} for each a ∈ X, and set (∞) = {`a; a ∈ X}. Consider
the projective plane obtained from (P,L) by adding the line at infinity `∞ = {(a);
a ∈ X} ∪ {(∞)}. This projective plane is ((∞), `∞)-transitive.

Proof. By the preceding claim, (P,L) is an affine plane if (X∗, ·) is a quasigroup.
To see that the latter follows from (C3) and (C4) assume that u = 0, u′ 6= 0 and
v 6= 0. Each of u′x = v and xu′ = v has exactly one solution, and this solution is
from X∗. This implies that (X∗, ·) is a quasigroup.

The mapping αc sends (a, y) to (a, y+ c). Hence it maps `a upon itself. Further-
more, (x, xa+ b) is sent upon (x, xa+ b+ c). This means that αc(`a,b) = `a,b+c.

Nothing else needs to be proved. �

A system (X,+, ·, 0, 1) is called a cartesian group if (X,+, 0) is a group, (C3)
and (C4) hold, 0 6= 1, and each x ∈ X satisfies both x0 = 0 = 0x and x1 = x = 1x.
By the theorem, each cartesian group yields a ((∞), `∞)-transitive projective plane.
Below we shall observe that if a projective plane is (c, a)-transitive, then it may
be described by a cartesian group. The assumption concerning 1 is equivalent to
saying that (X∗, ·, 1) is a loop. As we have seen, the assumption that · posseses a
unit element is not needed to get the ((∞), `∞)-transitivity. However, the fact that
it may be made makes work with the algebraic system easier. Further remarks:

(i) As follows from the comment after introducing (A5), in (C3) and (C4) one
of ∃! may be replaced by ∃.

(ii) There are definitions of cartesian groups in which (C3) and (C4) swap the
order of arguments. For example the equation u′x = v+ux may appear as
u′x = ux+ v. This may be harmonized by using the mirror operation (i.e.,
the opposite group or opposite loop).

(iii) Sometimes the system described in the theorem is called a weak cartesian
group. A weak cartesian group is thus a cartesian group without the unit.

In finite case (A7)/(A8) imply (A1) and (A5) if (A6) is fulfilled. This has several
consequences for finite weak cartesian groups:

Proposition. Assume that X is finite, (X,+, 0) is a nontrivial group, (X∗, ·) is a
quasigroup, and x · 0 = 0 = 0 ·x for all x ∈ X. Then (X,+, ·, 0) is a weak cartesian
group if and only if at least one of (C3) and (C4) holds. Furthermore, (C3) holds
if (a) is true or (b) is true. Similarly for (C4).

(a) The equation u′x = v+ux has at least one solution x whenever u, u′, v ∈ X
and u 6= u′; and

(b) the equation u′x = v+ux has at most one solution x whenever u, u′, v ∈ X
and u 6= u′.

Proof. Expressing (A7) and (A8) in terms of (C3) and (C4) shows that the only
step needed to do is to explain why (a) ⇔ (b). This is clear if u′ = 0 or u = 0 since
(X∗, ·) is quasigroup.

Put T = {(u′, u, v); u, u′ ∈ X∗, u 6= u′ and v ∈ X}. Set F = {(u′, u, v, x);
(u′, u, v) ∈ T , x ∈ X and u′x = v + ux}. We have |F | = n(n − 1)(n − 2) since for
each (u′, u, x) ∈ T there exists exactly one v ∈ X such that (u′, u, v, x) ∈ F .

Our aim now is to count |F | by different means. For u ∈ X let Lu be the left
translation x 7→ ux. If (u′, u, v) ∈ T , then u′x = v+ux if and only if x = τu′,u,v(x),

where τu′,u,v(x) = L−1u′ (v+Lu(x)). The size of F hence coincides with the aggregate
number of points fixed by permutations τα, α ∈ T . Since |T | = |F |, the average
number of points fixed by τα is equal to 1. Hence if there exists a mapping τα that
fixes no point, or fixes two or more points, then both these alternatives take place.



5

If τα fixes no point, then (a) is violated. If τα fixes more than one point, then (b)
is violated. �

Dualization. As follows from (C3) and (C4), the notion of (weak) cartesian group
is self-dual. This means that if ◦ and ⊕ are binary operations upon X such that
x◦y = yx, x⊕y = y+x, and (X,+, ·, 0) is a weak cartesian group, then (X,⊕, ◦, 0)
is a weak cartesian group as well. The aim now is to show that (X,⊕, 0, ◦) may be
used to coordinatize the dual projective plane.

Let (X,+, ·, 0) be a weak cartesian group. As proved above, the induced projec-
tive plane is ((∞), `∞)-transitive. The line `∞ seen as a dual point will be denoted

by [∞]. The point (∞) seen as a dual line will be denoted by ˜̀∞. The dual pro-

jective plane is ([∞], ˜̀∞)-transitive. The dual points at infinity are the lines that

pass through ˜̀∞ = (∞), i.e., the lines `a, a ∈ X∞. Write `a as [a] if `a is regarded
as a dual point. The dual affine points are thus all of the lines `a,b, where a, b ∈ X.
Denote `a,b as [a,−b] when regarded as a dual point. Thus [a, b] = `a,−b.

Points of the projective plane are the dual lines. Each dual line may be identified
with the set of lines (i.e., dual points) that are concurrent to the given point (i.e.,
incident to the given dual line). Let us determine for each dual line (i.e., for each
point) the dual points incident to the dual line (i.e., the lines concurrent to the
given point).

The lines passing through (∞) are the lines `a, a ∈ X∞. Hence (∞) = ˜̀∞
consists of dual points [a] = `a, a ∈ X∞.

The lines passing through (a), a ∈ X, are the lines `a,x = [a,−x], x ∈ X. The

dual affine plane thus contains lines ˜̀
a = {[a, x]; x ∈ X}.

Consider the lines passing through (u,−v), where u, v ∈ X. We have (u,−v) ∈
`a,−b = [a, b] if ua− b = −v. That is equivalent to −b = −ua− v and to v+ua = b.
This means that (u,−v) belongs to those lines that may be expressed as dual points

[x, v + ux]. Hence ˜̀
(u,v) = {[x, v + ux]; x ∈ X} is a dual affine line. We may state:

Consider an affine plane coordinatized by a weak cartesian group (X,+, ·, 0). The

dual of the induced projective plane from which the dual line ˜̀∞ = (∞) is removed
yields an affine plane that may be coordinatized by the opposite weak cartesian group.
Its points are [u, v] = `u,−v, where u, v ∈ X. The lines are ˜̀

a = (a) = {[a, x];

x ∈ X} and ˜̀
a,b = {[x, b+ ax]; x ∈ X} = (a,−b), for all a, b ∈ X.

—

The aim of coordinatization. As suggested before, a (c, a)-transitive projective
plane may always be described by a cartesian group. This will be proved within
a broader context of introducing coordinates to projective and affine planes. This
process is called coordinatization. Its aim is to express geometric notions in algebraic
terms. The first step of coordinatization is an explanation how lines `a,b, (a, b) ∈
X∞ ×X, may be introduced in the general case.

Coordinatization at a point. Consider a projective plane that contains a line `.
Let (P,L) be the affine plane that is obtained by removing the points of `. Choose
two distincts pencils L1 and L2 of (P,L). Each element of P may be uniquely
expressed as m∩n, where m ∈ L1 and n ∈ L2. By choosing a set X and bijections
µi : X → Li, i ∈ {1, 2}, we may identify P with X×X. The point at the intersection
of m and n gets coordinates (µ1(m), µ2(n)). This is called the grid coordinatization
of (P,L), with respect to L1 and L2.

In the text below it will be assumed that 0 ∈ X. The aim is to find a quasigroup
operation · upon X∗ = X \ {0}, extended by x0 = 0 = 0x, for all x ∈ X, in such
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a way that each line may be labelled naturally as `a,b, where a ∈ X∞ = X ∪ {∞}
and b ∈ X.

The pencil L1 will be identified with lines `a = `∞,a = {(a, u); u ∈ X}, and L2

with lines `0,a = {(u, a); u ∈ X}, where a runs through X.
Denote by C0 the set of lines concurrent to (0, 0). Choose a bijection µ3 : X∞ →

C0 in such a way that µ3(∞) = `∞,0 and µ3(0) = `0,0.
Define a binary operation · upon X∗ in such a way that xa = y if and only

if (x, y) ∈ µ3(a). This is a quasigroup operation, as follows from the fact that if
x, y ∈ X∗, then µ3(a) intersects both `x and `0,y in exactly one point.

The triple (µ1, µ2, µ3) is called a coordinatization of (P,L) at point (0, 0), with
respect to L1 and L2. The operation · may be considered as the multiplication
induced by this coordinatization.

Assume a ∈ X∗. The line {(x, y) ∈ P; y = xa} will be denoted by `a,0. For each
b ∈ X there exists only one line s ‖ `a,0 such that (0, b) ∈ s. Denote s by `a,b. It is
now obvious that every line of (P,L) is equal to a line `a,b, where (a, b) ∈ X∞×X
is determined uniquely.

Coordinatization by loops. The aim now is to show how a coordinatization
(µ1, µ2, µ3) may be derived from knowledge of a point P = (0, 0), pencils L1 and
L2 and a bijection ν : X → m, where m is a line, P ∈ m, m /∈ L1 ∪ L2, 0 ∈ X, and
ν(0) = P . Let us also assume that X contains a point 1 6= 0.

Define µi : X → Li, i ∈ {1, 2}, by setting µi(x) = ` if ` intersects m at ν(x).
This yields a grid coordinatization such that m consists of all (a, a), a ∈ X.

Define µ3 : X∞ → C0 in such a way that µ3(a) = `a,0 is the line that intersects
the line `1 at (1, a) for every a ∈ X. Therefore 1a = a. Furthermore, since m = `1,0,
a1 = a for all a ∈ X.

We have verified that coordinatization at a point may always be chosen in such
a way that (X∗, ·, 1) is a loop.

Transitivity of perspectivities and coordinatization. The discussion above
started from a projective plane from which line `∞ was removed, yielding thus an
affine plane (P,L).

Suppose that this projective plane is (U, `∞)-transitive, U ∈ `. Choose L1 to be
the pencil of U . Choose also another pencil L2 6= L1, and consider a coordinatiza-
tion (µ1, µ2, µ3) at (0, 0), with respect to L1 and a pencil L2 6= L1.

For a ∈ X∞ denote by (a) the pencil {`a,b; b ∈ X}. Regard (a) as a point of `∞.
Thus L1 = (∞) = U and L2 = (0).

The projective plane is assumed to be ((∞), `∞)-transitive. For each c ∈ X
there thus exists exactly one affine collineation αc that sends (0, 0) upon (0, c),
fixes lines `a, a ∈ X, and retains each pencil. All these collineations form a group
that coincides with the group of ((∞), `∞)-collineations. This group is regular upon
`0 (regular means transitive and fixed point free). Hence there exists a (unique)
group (X,+, 0) such that αc(0, d) = (0, c + d), for all c, d ∈ X. Each αc permutes
the lines of L2 = (0), which means that `0,d is sent upon `0,c+d. An affine point
(x, y), which is the intersection of `x and `0,y, is thus sent upon the intersection of
`x and `0,c+y, and that is (x, c+ y). Hence αc(x, y) = (x, c+ y) for all x, y ∈ X.

Let a and b be elements of X. The line `a,b is the (unique) line parallel to `a,0
that conntains (0, b). Since αb(0, 0) = (0, b), there has to be α(`a,0) = `a,b. Since
`a,0 = {(x, y) ∈ X × X; y = xa}, `a,b = {(x, y) ∈ X × X; y = xa + b}. We have
proved that ((∞), `∞)-transitivity implies the possibility to express lines by means
of a quasigroup operation and a group operation, for any coordinatization at point
(0, 0). This may be recorded as follows:
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Proposition. Consider a projective plane that is (U, `)-transitive, U a point upon
line `. Consider the affine plane obtained by removing the line `, and denote by
L1 the pencil of affine lines induced by U . Choose another pencil L2 and an affine
point P . Let (µ1, µ2, µ3) be a coordinatization by X at P = (0, 0), with respect to
L1 and L2. Then there exists weak cartesian group (X,+, ·, 0) such that the lines
`a,b, (a, b) ∈ X∞ ×X, are the lines induced by the cartesian group. In particular,
(∞) = L1 and (0) = L2.

Since the coordinatization may always be done by a loop, the ensuing conse-
quence is immediate.

Corollary. A projective plane may be described by a cartesian group if and only if
it is (c, a)-transitive for at least one pair (c, a), c a point upon a line a.

Coordinatization of a projective plane. Let A, B and C be three noncollinear
points of a projective plane. Denote by `∞ the line connecting A and B, by L1 the
pencil that includes the line AC and by L2 the pencil that includes the line BC.
A coordinatization at C = (0, 0) is determined by three bijective images of X, as
given by µi, 1 ≤ i ≤ 3. We have A = (∞), B = (0) and C = (0, 0). It may be thus
said that the coordinatization is determined by the (ordered) triple (A,B,C) and
by the bijections µi, 1 ≤ i ≤ 3.

Consider now four points A, B, C and D, none three of which are collinear.
Let CD be the line m that is used when coordinating the plane by a loop, and
suppose that D = (1, 1). The coordinatization is fully determined by a bijection
ν : X → m. Note that ν(1) = D. If ν′ : X ′ → m is a bijection such that ν′(1) = D,
then the coordinatization induced by ν′ differs only formally. To be exact, the line
`′a′,b′ is equal to the line `γ(a′),γ(b′), where γ = ν−1ν′. This may be interpreted by

saying that the (ordered) quadruple (A,B,C,D) induces a loop coordinatization up
to isomorphism.

Instead of specifying the bijection ν it is usual to assume that m consists of
points (x, x), x ∈ X, where 0 and 1 are two distinct points of X. Under this
assumption each line of the projective plane is equal either to `∞ or to `a,b ∪{(a)},
where (a, b) ∈ X∞ × X. Furthermore m = `1,1, `0,x passeses through (x, x) and
(0, x), while `∞,x = `x passes through (x, x) and (x, 0).

Ternary rings. Here we are mainly concerned with affine planes for which there
exist binary operations · and + such that `a,b coincides with {(x, xa+ b); x ∈ X}.
In general it is possible to introduce a ternary operation T upon X such that
T (u, v, w) = z if the line `v,w intersects the line `u at (u, z). In the case of weak
cartesian group, T (u, v, w) = z if and only if z = uv+w. To allure to this situation
T (u, v, w) is often written as u · v ◦ w. Given a ternary T it is not difficult to give
explicit conditions under which T induces an affine plane (while doing this it is
usual to assume that X contains both 0 and 1). If T satisfies these conditions, then
(X,T ) is called a ternary ring.

For our purposes the exact form of axioms describing ternary rings is not im-
portant (the subject is straigthforward and somewhat boring). However, a warning
should be issued that there are three or more ways how a ternary ring is axioma-
tized. Differences are technical and have no bearing on structural theorems. The
approach taken here is close to that of Marshall Hall jr.


