Introduction to applied

bioinformatics

PETRA MATOUŠKOVÁ 2023/2024

2/10

"Protein bioinformatics I"

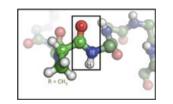
Retrieving protein sequences from databases (Uniprot: FASTA formate)

Computing amino-acids compositions, molecular weight, isoelectric point, and other parameters (SMS)

Prediction of proteases cutting (PeptideCutter)

...

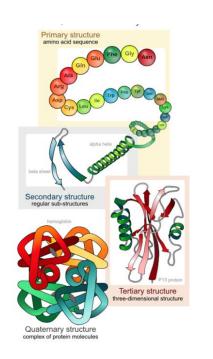
Predicting elements of protein secondary structure, domains


Predicting 3-D structure and the domain organization of proteins

Finding all proteins that share a similar sequence and Classifying proteins into families

Finding evolutionary relationships between proteins, drawing proteins' family trees

Computing the optimal alignment between two or more protein sequences

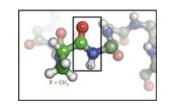

$$\begin{bmatrix} H & O & H \\ I & H & O \\ I & I & H \\ H & R_1 & H & R_2 \end{bmatrix} \begin{bmatrix} O & H & O \\ I & I & H \\ H & R_1 & H & R_2 \end{bmatrix} \begin{bmatrix} H & O \\ I & I \\ H & R_1 \end{bmatrix} \begin{bmatrix} H & O \\ I & I \\ R_3 \end{bmatrix}$$
Protein

20 Aminoacids – primary structure:

(Frederick Sanger-1958 Nobel prize for insulin sequencing)

Secondary structure Tertiary structure Quaternary structure

1-letter code	3-letter code	Amino acid	Possible codons
А	Ala	Alanine	GCA, GCC, GCG, GCT
В	Ata	Asparagine or Aspartic acid	
C C	Cys	Cysteine	TGC, TGT
D	Asp	Aspartic acid	GAC, GAT
E	Glu	Glutamic acid	GAA, GAG
F	Phe	Phenylalanine	TTC, TTT
г G	Gly	Glycine	GGA, GGC, GGG, GGT
н	His	Histidine	
	lle	Isoleucine	CAC, CAT
I			ATA, ATC, ATT
ĸ	Lys	Lysine	AAA, AAG
L	Leu	Leucine	CTA, CTC, CTG, CTT, TTA, TTG
M	Met	Methionine	ATG
N	Asn	Asparagine	AAC, AAT
Р	Pro	Proline	CCA, CCC, CCG, CCT
Q	Gln	Glutamine	CAA, CAG
R	Arg	Arginine	AGA, AGG, CGA, CGC, CGG, CGT
S	Ser	Serine	AGC, AGT, TCA, TCC, TCG, TCT
т	Thr	Threonine	ACA, ACC, ACG, ACT
v	Val	Valine	GTA, GTC, GTG, GTT
w	Trp	Tryptophan	TGG
Х	х	Stop codon	TAA, TAG, TGA
Y	Tyr	Tyrosine	TAC, TAT
z	Glx	Glutamine or Glutamic acid	CAA, CAG, GAA, GAG

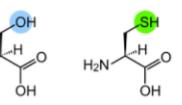

SEQUENCE ⇒ STRUCTURE ⇒ FUNCTION

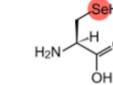
Protein sequences are the fundamental determinants of biological structure and function.

$$\begin{bmatrix} H & O & H & O \\ I & H & I & H & I \\ H & R_1 & H & R_2 \end{bmatrix} \stackrel{H}{\overset{O}{\underset{R_1}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}$$

H₂N⁴

Serine (Ser)

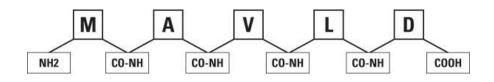

20 Aminoacids – primary structure:


ЪОН

 $\mathbf{N}H_2$

- J Xle Isoleucine/Leucine
- O Pyl Pyrrolysine
- U Sec Selenocysteine
- X Xaa Any residue

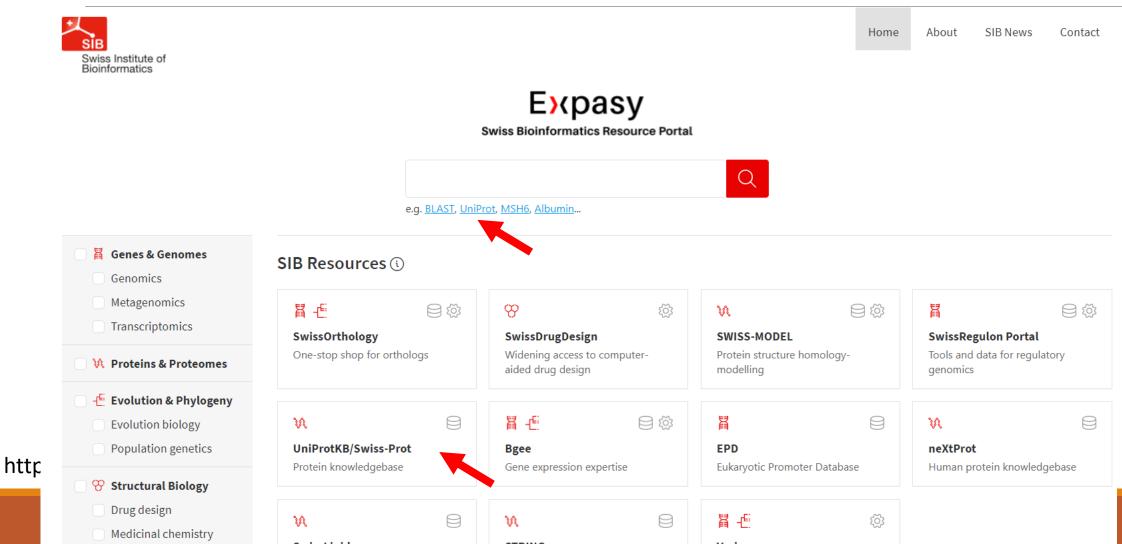
H₂Ĉ



Cysteine (Cys)

Selenocysteine (Sec)

N-terminus → C-terminus


	1-letter code	3-letter code	Amino acid	Possible codons
	А	Ala	Alanine	GCA, GCC, GCG, GCT
i	В	Asx	Asparagine or Aspartic acid	AAC, AAT, GAC, GAT
I	c	Cys	Cysteine	TGC, TGT
	D	Asp	Aspartic acid	GAC, GAT
	Е	Glu	Glutamic acid	GAA, GAG
	F	Phe	Phenylalanine	TTC, TTT
	G	Gly	Glycine	GGA, GGC, GGG, GGT
	н	His	Histidine	CAC, CAT
	1	Ile	Isoleucine	ATA, ATC, ATT
	к	Lys	Lysine	AAA, AAG
	L	Leu	Leucine	CTA, CTC, CTG, CTT, TTA, TTG
	м	Met	Methionine	ATG
	N	Asn	Asparagine	AAC, AAT
	Р	Pro	Proline	CCA, CCC, CCG, CCT
	Q	Gln	Glutamine	CAA, CAG
	R	Arg	Arginine	AGA, AGG, CGA, CGC, CGG, CGT
	s	Ser	Serine	AGC, AGT, TCA, TCC, TCG, TCT
	т	Thr	Threonine	ACA, ACC, ACG, ACT
	v	Val	Valine	GTA, GTC, GTG, GTT
	w	Trp	Tryptophan	TGG
	х	х	Stop codon	TAA, TAG, TGA
	Y	Tyr	Tyrosine	TAC, TAT
	z	Glx	Glutamine or Glutamic acid	CAA, CAG, GAA, GAG

Databases

	Primary database	Secondary database
Synonyms	Archival database	Curated database; knowledgebase
Source of data	Direct submission of experimentally- derived data from researchers	Results of analysis, literature research and interpretation, often of data in primary databases
Examples	 ENA, GenBank and DDBJ (nucleotide sequence) ArrayExpress Archive and GEO (functional genomics data) Protein Data Bank (PDB; coordinates of three-dimensional macromolecular structures) 	 InterPro (protein families, motifs and domains) UniProt Knowledgebase (sequence and functional information on proteins) Ensembl (variation, function, regulation and more layered onto whole genome sequences)

Protein database: Expasy/UniProt

UniProt BLAST Align Peptide search ID mapping SPARQL Release 2022_05 | Statistics 🎂 🏠 🖂 Help **Find your protein** UniProtKB Search Advanced | List Examples: Insulin, APP, Human, P05067, organism_id:9606 UniProt is the world's leading high-quality, comprehensive and freely accessible resource of protein sequence and functional information. Cite UniProt. We need your help to understand how data is reused by biomedical resources! We have developed 2 surveys for users of biomedical resources 🖸 and for resource providers 🗗 Please help by filling the appropriate one in by February 21

http://www.uniprot.org/

http://www.uniprot.org/

UniProt BLAST Align Peptic	le search ID mappin	g SPARQL UniProtKE	• ngo1		Advanced List Search	🗕 ᡠ 🗹 Help
Status 🖥 Reviewed (Swiss-Prot) (185)			Sults or search "nqo1" as a Gene Name or Protein Name			
Unreviewed (TrEMBL) (65,875)			Add View: Cards 🔿 Table 🖲 者 Customize columns 👒 Share 👻			1
Рорц	■ Entry ▲ ■ P15559	Entry Name ▲ NQO1_HUMAN	Protein Names ▲ NAD(P)H dehydrogenase [quinone] 1[]	Gene Names 🔺	Organism ▲ Homo sapiens (Human)	Length ▲ 274 AA
Human (29)		NQ01_RAT	NAD(P)H dehydrogenase [quinone] 1[]	Ngo1, Nmor1	Rattus norvegicus (Rat)	274 AA
Mouse (15)	Q64669	NQ01_MOUSE	NAD(P)H dehydrogenase [quinone] 1[]	Ngo1, Dia4, Nmo1, Nmor1	Mus musculus (Mouse)	274 AA
Fruit fly (8) Zebrafish (8)	□ P29913	NQ01_PARDE	NADH-quinone oxidoreductase chain 1[]	nqo1	Paracoccus denitrificans	431 AA
Bovine (5)	Q5RD31	NQ01_PONAB	NAD(P)H dehydrogenase [quinone] 1[]	NQO1	Pongo abelii (Sumatran orangutan) (Pongo pygmaeus abelii)	274 AA
Taxonomy	Q8CHK7	NQ01_CAVPO	NAD(P)H dehydrogenase [quinone] 1[]	NQO1	Cavia porcellus (Guinea pig)	275 AA
Filter by taxonomy	□ Q56222	NQO1_THET8	NADH-quinone oxidoreductase subunit 1[]	nqo1, TTHA0089	Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)	438 AA
Proteins with	D P50479	PDLI4_HUMAN	PDZ and LIM domain protein 4[]	PDLIM4, RIL	Homo sapiens (Human)	330 AA
3D structure (43)	O15350	P73_HUMAN	Tumor protein p73[]	TP73 , P73	Homo sapiens (Human)	636 AA
Active site (4)	P04637	P53_HUMAN	Cellular tumor antigen p53[]	TP53 , P53	Homo sapiens (Human)	393 AA
Activity regulation (3)	Q542Y0	Q542Y0_MOUSE	Flavodoxin_2 domain-containing protein	Nqo1	Mus musculus (Mouse)	274 AA
Alternative products (isoforms) (8)	Q9HCS4	TF7L1_HUMAN	Transcription factor 7-like 1[]	TCF7L1, TCF3	Homo sapiens (Human)	588 AA
Alternative splicing (8)	Q9UK53	ING1_HUMAN	Inhibitor of growth protein 1	ING1	Homo sapiens (Human)	422 AA
More items	□ P49821	NDUV1_HUMAN	NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial[]	NDUFV1, UQOR1	Homo sapiens (Human)	464 AA
Protein existence	P07902	GALT_HUMAN	Galactose-1-phosphate uridylyltransferase[]	GALT	Homo sapiens (Human)	379 AA
Homology (58,545) Predicted (7,257)	D P31979	NUOF_ECOLI	NADH-quinone oxidoreductase subunit F[]	nuoF, b2284, JW2279	Escherichia coli (strain K12)	445 AA
Transcript level (154)	□ Q56221	NQO2_THET8	NADH-quinone oxidoreductase subunit 2[]	nqo2, TTHA0088	Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)	181 AA
Protein level (104)	P29914	NQO2_PARDE	NADH-quinone oxidoreductase chain 2[]	nqo2	Paracoccus denitrificans	239 AA

		Peptide search ID mapping SPARQL	UniProtKB •		Advanced List Search	🚔 🔐 🗹 Help
	Function	퉒 P15559 · NQ	O1_HUMAN			ŕ
/	Names & Taxonomy	Protein ⁱ N	IAD(P)H dehydrogenase [quinone] 1	Amino acids	274	
	Subcellular Location	Gene ⁱ N	IQ01	Protein existence ⁱ	Evidence at protein level	
	Disease & Variants	Status ⁱ	UniProtKB reviewed (Swiss-Prot)	Annotation score ⁱ	5/3	
	PTM/Processing	Organism ⁱ H	łomo sapiens (Human)			
	Expression Interaction	Entry Feature viewer I	Publications External links History			
	Structure	BLAST Align 🛨 Download -	🖮 Add Add a publication Entry feedback			
	Family & Domains	Function				
	Sequence & Isoforms	Flavin-containing quinone redu	ctase that catalyzes two-electron reduction of quinones to hy	droquinones using either NADH or NADPH as electron donors. In a	ping-pong kinetic mechanism, the electrons are sequentially transferred from N	NAD(P)H to
	Similar Proteins	Regulates cellular redox state p superoxide scavenger to preven	rimarily through quinone detoxification. Reduces component nt hydroquinone oxidation and facilitate excretion (PubMed:8		in quinones, producing antioxidant hydroquinone forms. In the process may func	NAD(P)H to
			e 20S proteasome known to degrade proteins with unstructur come (PubMed:15687255, PubMed:28291250). 📕 By Similarity		TP53 and TP73 in a NADH-dependent way and inhibits their ubiquitin-indepen	dent 🚆
		Miscellaneous				
		Quinone reductase accepts ele	ctrons from both NADH and NADPH with equal efficiency.			
		Catalytic activity				

a quinone + H⁺ + NADH = a quinol + NAD⁺ 2 Publications This reaction proceeds in the forward direction. 2 Publications EC:1.6.5.2 (UniProtKB | ENZYME L² | Rhea L²) Source: Rhea 46160 L²

Hide Rhea reaction

Source: Rhea 46160

	Peptide search ID mapping SPARQI	UniProtKB •		Advanced List Search 🖴 🕁 🗹 H	lelp
Function	퉐 P15559 · N	QO1_HUMAN			Î
Names & Taxonomy	Protein ⁱ	NAD(P)H dehydrogenase [quinone] 1	Amino acids	274	
Subcellular Location	Gene ⁱ	NQ01	Protein existence ⁱ	Evidence at protein level	
Disease & Variants	Status ⁱ	UniProtKB reviewed (Swiss-Prot)	Annotation score ¹	63	
PTM/Processing	Organism ⁱ	Homo sapiens (Human)			
Expression					
Interaction	Entry Feature viewer	Publications External links History			
Structure	BLAST Align 土 Download	🗝 🏫 Add 🛛 Add a publication 🛛 Entry feedback			
Family & Domains	Function				
Sequence & Isoforms			· –	a ping-pong kinetic mechanism, the electrons are sequentially transferred from NAD(P)H to	ack
Similar Proteins			juinone and reactive oxygen species (PubMed: 8999809 , PubMed:9	9271353) (By similarity). nin quinones, producing antioxidant hydroquinone forms. In the process may function as	Feedback
		event hydroquinone oxidation and facilitate excretion (PubMed:8)		in quinones, producing and oxidant nyur oquinone forms, in the process may function as	ы
	Alternatively, can activate q	uinones and their derivatives by generating redox reactive hydro	quinones with DNA cross-linking antitumor potential (PubMed:899	99809).	
		core 20S proteasome known to degrade proteins with unstructur easome (PubMed:15687255, PubMed:28291250). 📕 By Similarity		s TP53 and TP73 in a NADH-dependent way and inhibits their ubiquitin-independent	Help
	Miscellaneous				
	Quinone reductase accepts	electrons from both NADH and NADPH with equal efficiency.			
	Catalytic activity				
	a quinone + H ⁺ + NADH = a	quinol + NAD ⁺ 🔁 2 Publications			
		e forward direction. 📕 2 Publications			
	EC:1.6.5.2 (UniProtKB EN)	ZYME 🖸 Rhea 🖸)			

UniProt BLAST Align P	Peptide search ID mapping SPARQL UniProtKB •	Advanced List Search 🚔 🏠 🎦 (
Function	Entry Feature viewer Publications Ext	ernal links History
Names & Taxonomy	Sequence & Isoforms ¹	
Subcellular Location Disease & Variants	BLAST 3 isoforms Align 3 isoforms	
PTM/Processing	This entry describes 3 isoforms ¹ produced by Alterr	ative splicing.
Expression	P15559-1	
Interaction	This isoform has been chosen as the canonical sequ	ence. All positional information in this entry refers to it. This is also the sequence that appears in the downloadable versions of the entry.
Structure	Name 1	See also sequence in UniParc or sequence clusters in UniRef
Family & Domains	Tools - 土 Download ↔ Add Highlight - Co Length 274	Last updated 1990-04-01 v1
Sequence & Isoforms	Mass (Da) 30,868	Checksum ⁱ A4010462AD00F3FE
Similar Proteins	10 ANSERTSFNY AMKEAAAAAA KKK	40 50 130 140 150 160 WEVVES DLYAMNFNPI ISRKDITGKL KDPANFQYPA ESVLAYKEGH LSPDIVAEQK KLEAADLVIF QFPLQWFGVP AILKGWFERV FIGEFAYTYA AMYDKGPFRS KKAVLSITTG GSGSMYSLQG
	IHGDMNVILW PIQSGILHFC GFQVLEPQLT YSI	>sp P15559 NQO1_HUMAN NAD(P)H dehydrogenase [quinone] 1 OS=Homo sapiens OX=9606 GN=NQO1 PE=1 SV=1 MVGRRALIVLAHSERTSFNYAMKEAAAAALKKKGWEVVESDLYAMNFNPIISRKDITGKL
	P15559-2	KDPANFQYPAESVLAYKEGHLSPDIVAEQKKLEAADLVIFQFPLQWFGVPAILKGWFERV
	Name 2 See also sequence in UniParc or sequence cluste	FIGEFAYTYAAMYDKGPFRSKKAVLSITTGGSGSMYSLQGIHGDMNVILWPIQSGILHFC
		GFQVLEPQLTYSIGHTPADARIQILEGWKKRLENIWDETPLYFAPSSLFDLNFQAGFLMK KEVQDEEKNKKFGLSVGHHLGKSIPTDNQIKARK
	Show sequence	
	P15559-3	
	Name 3 See also, sequence in UniPare or sequence cluste	Differences from canonical 102-139: 102-139: Missing IPublication
	See also sequence in UniParc or sequence cluste	S III OTIIKEI
	Show sequence	

FASTA (and RAW) format

FASTA = popular tool for sequence comparison and database searching

W.R. Pearson a D.J. Lipman 1988

fasta format:

>NQO1_homo

MVGRRALIVLAHSERTSFNYAMKEAAAAA LKKKGWEVVESDLYAMNFNPIISRKDITG KLKDPANFQYPA MVGRRALIVLAHSERTSFNYAMKEAAAAA LKKKGWEVVESDLYAMNFNPIISRKDITG KLKDPANFQYPA

- 1. "definition" line starts with > and unique identification follows.
- 2. line-a sequence (DNA/protein- single letter code).

Download		×		Advanced List	Search 🔒 ᡠ 🖄 He	lp
Dataset ⁱ Entry		Ŧ				Î
Format Text FASTA (canonical) FASTA (canonical & isoform) JSON XML RDF/XML GFF		ıd	Amino acids Protein existence ⁱ Annotation score ⁱ	Evidence at protein level		
		MVGRRA KDPANF FIGEFA GFQVLE	5559 NQO1_HUMAN NAD(P)H dehydrogenase [LIVLAHSERTSFNYAMKEAAAAALKKKGWEVVESDLYAN QYPAESVLAYKEGHLSPDIVAEQKKLEAADLVIFQFPLQ YTYAAMYDKGPFRSKKAVLSITTGGSGSMYSLQGIHGDN PQLTYSIGHTPADARIQILEGWKKRLENIWDETPLYFAF EKNKKFGLSVGHHLGKSIPTDNQIKARK	QWFGVPAILKGWFERV NNVILWPIQSGILHFC	Q01 PE=1 SV=1	eedback
	a quinone + H ⁺ + NADH = a quinol + NAD ⁺ [2Publications] This reaction proceeds in the forward direction. [2Publications] EC:1.6.5.2 (UniProtKB ENZYME 답 Rhea 답) Source: Rhea 46160 답	M F G K X M K Q T X K F F	VGRRALIVLAHSERTSFNYAMKEAAAAALKKKGWEVVESDLYAMNFNPII: DPANFQYPAESVLAYKEGHLSPDIVAEQKKLEAADLVIFQSKKAVLSITT GIHGDMNVILWPIQSGILHFCGFQVLEPQLTYSIGHTPADARIQILEGWK PLYFAPSSLFDLNFQAGFLMKKEVQDEEKNKKFGLSVGHHLGKSIPTDNQ	SRKDITGKL ILKGWFERV IQSGILHFC VFQAGFLMK ogenase [quinone] 1 OS=Homo sapiens OX=9606 GN=NQO1 SRKDITGKL GGSGSMYSL RLENINDE IKARK ogenase [quinone] 1 OS=Homo sapiens OX=9606 GN=NQO1 SRKDITGKL ILKGWFERV EGWKKRLEN	dependent	Help

UniProt BLAST Align Peptide	search ID mapping SPARQL UniProtKB •	Advanced List	Search	🚔 ᡠ 🖸
Function Names & Taxonomy	Entry Feature viewer Publications External links History			
Subcellular Location	Subcellular Location ¹			
Disease & Variants PTM/Processing	UniProt Annotation GO Annotation			
Expression Interaction	Cytoplasm, cytosol By Similarity			
Structure Family & Domains				
Sequence & Isoforms Similar Proteins				
	· · · · · · · · · · · · · · · · · · ·			
	· Elle			

Practical part with NQ01

Try Uniprot!

Find your sequnce

-what is the function of your protein?
-find subcellular location of your protein
-is it involved in any pathology?
-how many amino acids has your sequence?

🗧 NCBI 🛛 Resources 🕑 Haw To				j <u>ostovap My NCBI</u> <u>}ign Out</u>
Protein Protein				Search
	Advanced			Help
QDIVEQIRKI	FTEWAQRT	Protein		
DVGKKAEAV	ITTKREQ	The Protein database is a collection of sequences from regions in GenBank, RefSeq and TPA, as well as record the fundamental determinants of biological structure an	ds from SwissProt, PIR, PRF, and	
Using Protein		Protein Tools	Other Resources	
Quick Start Guide		BLAST	GenBank Home	
FAQ		LinkOut	RefSeq Home	
<u>Help</u>		<u>E-Utilities</u>	<u>CDD</u>	
GenBank FTP		Batch Entrez	Structure	

🕇 NCBI 🛛 Resources 🗹 How To 🗹		jostovap <u>My NCBI</u> <u>Sign C</u>
All Databases Assembly BioProject Bio Project	^	Search
ICBI Home BioSystems Books	ome to NCBI	Popular Resources
Resource List (A-Z) ClinVar	ional Center for Biotechnology Information advances science and health by providing access to	PubMed
Clone Conserved Domains	cal and genomic information.	Bookshelf
Chemicals & Bioassay	the NCBI Mission Organization Research NCBI News	PubMed Central
dbVar bata & Software EST		PubMed Health
ONA & RNA Genome		BLAST
Oomains & Structures GEO DataSets	arted	Nucleotide
GEO Profiles Genes & Expression GSS	ools: Analyze data using NCBI software	Genome
GTR	Downloads: Get NCBI data or software	SNP
Genetics & Medicine HomoloGene MedGen	<u>low-To's</u> : Learn how to accomplish specific tasks at NCBI	Gene
MeSH	Submissions: Submit data to GenBank or other NCBI databases	Protein
lomology NCBI Web Site		PubChem
Nucleotide		
Proteins OMIM PMC	3I YouTube channel	
Sequence Analysis PopSet	how to get the most out of NCBI	NCBI Announcements
axonomy Protein	and databases with video tutorials	NCBI Video: Submitting manuscripts on NIHMS

S NCBI Resources 🗹 Ho	w To 🖂	<u>jostovap My NCBI Sig</u>	<u>jn Out</u>
Protein Pr	rotein Inqo1 Secrete alert Advanced	Search	Help
Species Animals (644) Fungi (2) Protists (2) Bacteria (4,409) Customize Source databases PDB (99) RefSeq (410) UniProtKB / Swiss-Prot (10) Customize Genetic compartments Plasmid (3) Sequence length Custom range Molecular weight	Summary * 20 per page * Sort by Default order * Send to: * GENE Was this helpful? MQO1 – NAD(P)H quinone dehydrogenase 1 Homo sapiens (human) Also known as: DHQU, DIA4, DTD, NMOR1, NMORI, QR1 Gene ID: 1728 RefSeq transcripts (4) RefSeq proteins (4) RefSeqGene (1) PubMed (579) Orthologs Genome Browser BLAST Download	Filter your results: All (5062) <u>Bacteria (4409)</u> <u>Related Structures (178)</u> <u>RefSeq (410)</u> <u>Manage I</u> <u>Manage I</u> <u>Mana</u>	Filters
Custom range Release date	RefSeq Sequences +	Find related data	
Custom range Revision date Custom range	Items: 1 to 20 of 5062	Database: Select Find items	
<u>Clear all</u>	<< First < Prev Page 1 of 254 Next > Last >> Ngo1 [Mus musculus]		

S NCBI Resources	☑ How To ☑	<u>jostovap</u> <u>My NCBI</u> <u>Sign Out</u>
Protein	Protein Advanced	Search
Species Animals (4) Customize Source databases RefSeq (4) Customize Sequence length	Summary → Sort by Default order → Items: 4 NAD(P)H dehydrogenase [quinone] 1 isoform a [Homo sapiens] 1. 274 aa protein Accession: NP_000894.1 GI: 4505415	Send to: Filter your results: All (4) Bacteria (0) Related Structures (4) RefSeq (4) Manage Filters
Custom range Molecular weight Custom range Release date Custom range Revision date Custom range	BioProject Nucleotide PubMed Taxonomy GenPept Identical Proteins FASTA Graphics NAD(P)H dehydrogenase [quinone] 1 isoform b [Homo sapiens] 2. 240 aa protein Accession: NP_001020604.1 GI: 70995396 BioProject Nucleotide PubMed Taxonomy GenPept Identical Proteins FASTA Graphics	Analyze these sequences Run BLAST Align sequences with COBALT Identify Conserved Domains with CD-Search
<u>Clear all</u> Show additional filters	 NAD(P)H dehydrogenase [quinone] 1 isoform c [Homo sapiens] 236 aa protein Accession: NP_001020605.1 GI: 70995422 BioProject Nucleotide PubMed Taxonomy GenPept Identical Proteins FASTA Graphics 	Find related data Database: Select Find items
	 NAD(P)H dehydrogenase [quinone] 1 isoform d [Homo sapiens] 202 aa protein Accession: NP_001273066.1 GI: 554790420 PioProject Nucleatide PubMed Taxonomy 	Recent activity

S NCBI I	Resources 🕑 How To 🕑		j <u>ostovap</u> <u>My NCBI</u>	Sign Out
Protein	Protein Advanced		Search	Help
GenPept -		Send to: 🗸	Change region shown	
NCBI Refere	H dehydrogenase [quinone] 1 isoform a [H ence Sequence: NP_000894.1	omo sapiens]	Customize view	•
Identical Prot Go to: ⊙	accession number		Analyze this sequence Run BLAST	
LOCUS DEFINITION ACCESSION VERSION	NP_000894 274 aa NAD (F)H dehydrogenase [quinone] 1 is length sapiens]. NP_000894 NP_000894.1	R-2021	Identify Conserved Domains Highlight Sequence Features	
DBSOURCE KEYWORDS SOURCE ORGANISM	REFSEQ: accession <u>NM_000903.3</u> RefSeq; MANE Select. Homo sapiens (human)	S NCBI Resources How To Publiced.gov	Search	jostovap <u>Mv NCBI Sign Out</u> Help
REFERENCE	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleost Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae; Homo. 1 (residues 1 to 274)	CO Format: Abstract ← Biochemistry, 1991 Nov 5:30(44):10847-53. Human NAD(P)H:quinone oxidoreductase (NQO1) gene struct	Send to →	Save items Add to Favorites
AUTHORS TITLE	Yang Y, Zheng J, Wang M, Zhang J, Tian T, Wang Z, Yuan S, Liu Zhu P, Gu F, Fu S, Shan Y, Pan Z and Zhou W. NQO1 promotes an aggressive phenotype in hepatocellular carci via amplifying ERK-NRF2 signaling	J <u>aiswal AK</u> ¹. ⊕ Author information		Similar articles Human NAD(P)H:quinone oxidoreductase2. Gene structure, activity, and t [J Biol Chem. 1994]
PUBMED REMARK	Genera Sci 112 (2), 641-654 (2021) 33222332 GeneRIF: NQ01 promotes an aggressive phenotype in hepatocellu carcinoma via amplifying ERK-NRF2 signaling.	have been sequenced. The human NQO1 gene is approximately 20 kb in length a transcription was determined by primer extension analysis. The first exon is 118 by initiating methionine and one G for the first codon of the second exon. The sixth exo The sequence analysis of the sixth exon revealed the presence of four potential pc copy of human Alu repetitive sequence. The second intron is the smallest of all the	op in length and codes for two amino acids including the exon is the largest among the exons and is 1833 bp in length. Nolyadenylation signal sequences (AATAAA) and a single	Human dioxin-inducible cytosolic NAD(P) H:menadione oxidoreductase [J Biol Chem. 1988] Nucleotide and deduced amino acid sequence of a human cDNA (NQO2) corr. [Biochemistry. 1990] Review Jun and Fos regulation of NAD(P)H:
AUTHORS	2 (residues 1 to 274) Xiao FY, Jiang ZP, Yuan F, Zhou FJ, Kuang W, Zhou G, Chen XP, R, Zhou HH, Zhao XL and Cao S. Down-regulating NOO1 promotes cellular proliferation in K562	250 WORDS)		quinone oxidoreductas [Pharmacogenetics. 1994] Review NAD(P)H:quinone oxidoreductase1 (DT- diaphorase) expre [Cancer Metastasis Rev. 1993]

S NCBI Resou	urces 🕑 How To 🖂		<u>jostovap My NCBI Sign Out</u>
Protein	Protein V		Search
	Advanced		Help
GenPept -		Send to: 🗸	
Genrept		Send to. +	Change region shown
NAD(P)H o	dehydrogenase [quinone] 1 isoform a [Homo sapiens]		
NCBI Reference			Customize view
Identical Proteins	FASTA		
			Analuze this sequence
	/db_xref="taxon:9606"		The frequency of C609T polymorphism in the NQO1 gene and [Cell Mol Biol (Noisy-le-grand)]
Protein	/tissue_type="liver" 1274		
	/product="NAD(P)H:quinone oxireductase"		NQO1 rs1800566 polymorph is more prone to NOx induced lung injury: Endorsing [Gene. 2016]
Region	5212 /region name="Flavodoxin 2"		The C609T (Pro187Ser) Null Polymorphism of
	/note="Flavodoxin-like fold; pfam02525"		the NQO1 Gene [Asian Pac J Cancer Prev. 2016]
000	/db_xref="CDD: <u>280657</u> "		See all
CDS	1274 /gene="NOO1"		
	/coded_by="join(AH005427.2:19351941,		Pathways for the NQO1 gene
	AH005427.2:30593223,AH005427.2:33403470, AH005427.2:41444257,AH005427.2:47974898,		
	AH005427.2:54985803)"		Ubiquinone and other terpenoid-quinone biosynthesis
ORIGIN	grralivl ahsertsfny amkeaaaaal kkkgwevves dlyamnfnpi isrkditgkl		Regulation of ornithine decarboxylase (ODC)
-	anfqypa esvlaykegh lspdivaeqk kleaadlvif qfplqwfgvp ailkgwferv		
121 fig	efaytya amydkgpfrs kkavlsittg gsgsmyslqg ihgdmnvilw piqsgilhfc		Photodynamic therapy-induced NFE2L2 (NRF2) survival signaling
	uvlepqlt ysightpada riqilegwkk rleniwdetp lyfapsslfd lnfqagflmk vqdeeknk kfglsvghhl gksiptdngi kark		0
//	decent rigiovymii groiptundi rair		See all
	(Testudes 1 to 274) o EV Jiang 7D, Yuan E, Zhou EJ, Kuang W, Zhou G, Chon XD, Liu		
	o FY, Jiang ZP, Yuan F, Zhou FJ, Kuang W, Zhou G, Chen XP, Liu Zhou HH, Zhao XL and Cao S.		Articles about the NGO1 gene
	n-regulating NOO1 promotes cellular proliferation in K562 cells		Articles about the NQO1 gene

S NCBI Resources 🕑 How To 🖂			<u>jostovap My NCBI Sign Out</u>
Protein Protein Advanced			Search Help
FASTA -		Send to:	Change region shown
NAD(P)H dehydrogenase [quinone] 1 isoform a [l	Choose Destination		
NCBI Reference Sequence: NP_000894.1 <u>GenPept</u> Identical Proteins <u>Graphics</u>	●File ○Cli	pboard alysis Tool	Analyze this sequence
>NP_000894.1 NAD(P)H dehydrogenase [quinone] 1 isoform a [Homo sapiens]			Identify Conserved Domains
MVGRRALIVLAHSERTSFNYAMKEAAAAALKKKGWEVVESDLYAMNFNPIISRKDITGKLKDPANFQYPA ESVLAYKEGHLSPDIVAEQKKLEAADLVIFQFPLQWFGVPAILKGWFERVFIGEFAYTYAAMYDKGPFRS	Download 1 items.		Highlight Sequence Features
KKAVLSITTGGSGSMYSLQGIHGDMNVILWPIQSGILHFCGFQVLEPQLTYSIGHTPADARIQILEGWKK RLENIWDETPLYFAPSSLFDLNFQAGFLMKKEVODEEKNKKFGLSVGHHLGKSIPTDNOIKARK	Format FASTA	~	Find in this Sequence
	Show GI		Show in Genome Data Viewer
sequence (7).fasta – Poznámkový blok		-	X
Soubor Úpravy Formát Zobrazení Nápověda >NP_000894.1 NAD(P)H dehydrogenase [q MVGRRALIVLAHSERTSFNYAMKEAAAAALKKKGWEV ESVLAYKEGHLSPDIVAEQKKLEAADLVIFQFPLQWF KKAVLSITTGGSGSMYSLQGIHGDMNVILWPIQSGIL RLENIWDETPLYFAPSSLFDLNFQAGFLMKKEVQDEE	VESDLYAMNFNPIISR GVPAILKGWFERVFIG HFCGFQVLEPQLTYSI	KDITGKLKDPANFQY EFAYTYAAMYDKGPF GHTPADARIQILEGW	PA RS
	Řádek 1, Sloupec 1	100 % Unix (LF)	UTF-8

Protein database: NCBI → MyNCBI

S NCBI R	esources 🗹 How To 🖂		jostovap <u>My NCBI</u> <u>Sign Out</u>
Protein	Protein V Advanced	Search	Help
GenPept -		Send to: 🗸	Change region shown
Vour collec	tion was saved. Edit your collection.		change region shown
_	l:quinone oxireductase [Homo sapiens]		Customize view
GenBank: AA Identical Protei			Analyze this sequence
<u>Go to:</u> 🕑			Identify Conserved Domains
LOCUS	AAB60701 274 aa linear PRI 01-AUG-2016		Highlight Sequence Features
DEFINITION ACCESSION VERSION DBSOURCE	NAD(P)H:quinone oxireductase [Homo sapiens]. AAB60701 AAB60701.1 accession AH005427.2		Find in this Sequence
KEYWORDS			Protein 3D Structure
SOURCE ORGANISM REFERENCE	Homo sapiens (human) <u>Homo sapiens</u> Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae; Homo. 1 (residues 1 to 274)		Crystal Structure Of Nad(p)h Dehydrogenase, Quinone 1 Complexed With A PDB: 5EAI Source: Homo sapiens
AUTHORS TITLE	Jaiswal,A.K. Human NAD(P)H:quinone oxidoreductase (NQO1) gene structure and		Method: X-Ray Diffraction Resolution: 2.9 Å
JOURNAL PUBMED	induction by dioxin Biochemistry 30 (44), 10647-10653 (1991) <u>1657151</u>		See all 14 structures
COMMENT	Method: conceptual translation.		Articles about the NQO1 gene
FEATURES source	Location/Qualifiers 1274		The frequency of C609T polymorphism in the

S NCBI Resources 🕑 How To 🕑		<u>jostovap</u>	<u>My NCBI</u>	Sign Out
Protein Protein Advanced		Search		Help
FASTA -	Send to: 🗸	Change region shown		•
NAD(P)H dehydrogenase [quinone] 1 isoform a [Homo sapiens] NCBI Reference Sequen GenPept Identical Piecel Graphic		Analyze this sequence Run BLAST		
>NP_000894.1 NAD(P)H d		Identify Conserved Domains	3	
MVGRRALIVLAHSERTSFNYAMKEAAAAALKKKGWEVVESDLYAMNFNPIISRKDITGKLKDPANFQYPA ESVLAYKEGHLSPDIVAEQKKLEAADLVIFQFPLQWFGVPAILKGWFERVFIGEFAYTYAAMYDKGPFRS		Highlight Sequence Feature	S	
KKAVLSITTGGSGSMYSLQGIHGDMNVILWPIQSGILHFCGFQVLEPQLTYSIGHTPADARIQILEGWKK RLENIWDETPLYFAPSSLFDLNFQAGFLMKKEVQDEEKNKKFGLSVGHHLGKSIPTDNQIKARK		Find in this Sequence		
		Show in Genome Data View	/er	

S NCBI Resources 🗹 How To 🗹		j <u>ostovap My NCBI Sign</u>
Protein Protein Advanced		Search
Graphics - NAD(P)H dehydrogenase [quinone] 1 isofor NCBI Reference Sequence: NP 000894.1	m a [Homo sapiens]	Send to: - Analyze this sequence Run BLAST Identify Conserved Domains
GenPept Identical Proteins FASTA		Show in Genome Data Viewer
1 10 20 30 40 50 60 70 80	90 100 110 120 130 140 150 160 170 180 199 200 210 220	230 240 250 260 270 Protein 3D Structure
SNP_000894.1 ▼ Find: ▼ ↓	∞ Q mo ≚ ≈e µee µ1e µ2e µ3e µ4e µ5e µ6e µ7e µse µ9e 2ee 21e 22e	Tools • Tracks • Download • ? • 230 1240 1250
Protein Features region Features - CDD	idi ibi NROPH dehjdrogenese (quinone) I isoform o	Source: Holino saperis Method: X-ray Diffraction Resolution: 2.76 Å
region Features	Flovedoxin_2	L O X See all 16 structure
site Features - CDD Wanning No track data Hound in this range site Features phosphorylation Cited Variations, dbSNP b154 v2 rs609453 BE/E		Articles about the NQO1 gene NAD(P)H: quinone oxidoreductase 1 gene rs1800566 polymorphism increat the risk of cervical cancer in a Chinese Han samp [Medicine (Baltimore). 20
Clinical, dbSNP b154 v2	1555537451 0,/M r:1555537451 0,/M r:1599558 0 P/S r:199994938 0 H/M/O	rs34447156 0/H with Bladder and Prostate Cancers - a Systematic Review ar [Klin Onkol. 20
1 10 20 30 40 50 60 70 80 NP_000694.1: 1274 (274 aa)	90 100 110 120 130 140 150 160 170 150 190 200 210 220	230 240 250 250 271 Down-regulating NQO1 promotes cellular proliferation in K562 cells via elevating DNA synthesis. [Life Sci. 20
		Dehydrogenase, Quinone 1

Find your sequence

-try direct search in NCBI
-try link through Sequence databases → Refseq from Uniprot

link through Sequence databases → Refseq from Uniprot

JoiProt BLAST Align	Peptide search ID mappin	g SPARQL UniProtk	′B ∙		A	dvanced List Search	♣ ⇔ ⊠
Function	Entry Variant vi		viewer Genomic coordinates P	ublications	External links	History	
lames & Taxonomy		PTHR10204:SF1 🗗 N	AD(P)H DEHYDROGENASE				
ubcellular Location		[QUINONE] 1 1 hit					
sease & Variants							
M/Processing	Sequence	& Isoforms	Scroll further dowr	n to Se	quence dat	abases	
pression	Align 3 isoforms						
eraction	Sequence status ⁱ	Complete					
ructure	Sequence da	itabases					
mily & Domains	CCDS	CCDS10883.1 년 [P15	5559-1]	RefSeq	NP 000894.1 년 N	NM_000903.2 년 [P155	59-1]
quence & Isoforms		CCDS32471.1 년 [P15 CCDS32472.1 년 [P15	5559-3]	-		년 NM_001025433.1 년	-
milar Proteins	PIR	A41135 🖸 A30879			NP_001020605.1 3]	^년 NM_001025434.1 ^년	[P15559-
	NUCLEOTIDE	EQUENCE	PROTEIN SEQUENCE	МО	LECULE TYPE	STATUS	
	J03934 EMBL 🗗 · Genf	Bank ট · DDBJ ট	AAA59940.1 EMBL C · GenBank C · DDBJ C	mR	NA		
	M81600	Bank [2] - DDB I [2]	AAB60701.1 EMBL [3] - GenBank [3] - DDB-[13]	Ger	nomic DNA		

"Protein bioinformatics I"

Retrieving protein sequences from databases

...

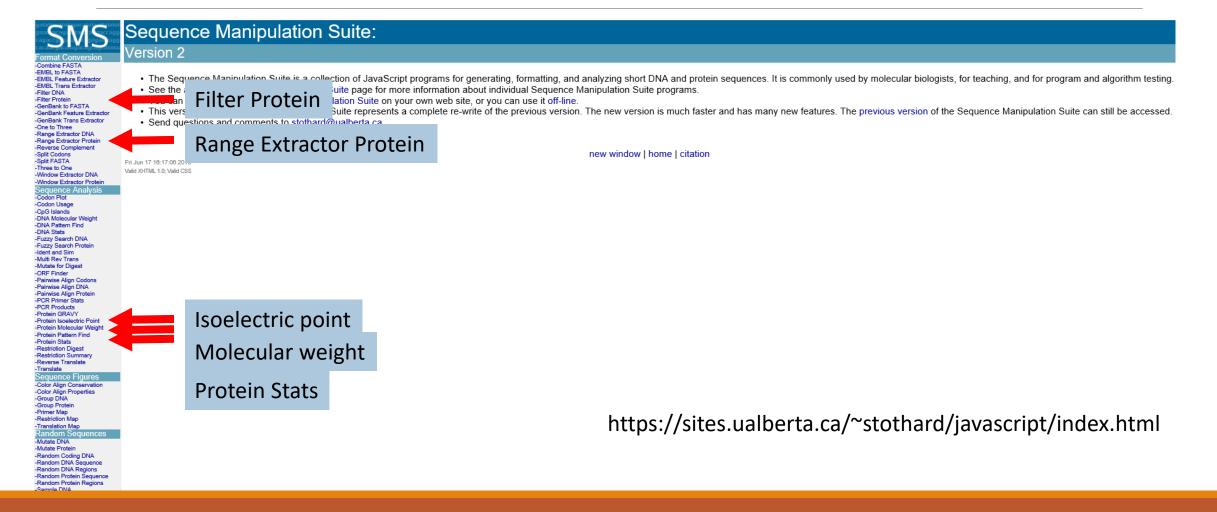
Computing amino-acids compositions, molecular weight, isoelectric point, and other parameters
Prediction of proteases cutting
Predicting elements of protein secondary structure, domains
Predicting 3-D structure and the domain organization of proteins
Finding all proteins that share a similar sequence and Classifying proteins into families
Finding evolutionary relationships between proteins, drawing proteins' family trees

Computing the optimal alignment between two or more protein sequences

Sequence Manipulation Suite:

About

The Sequence Manipulation Suite is written in JavaScript 1.5, which is a lightweight, cross-platform, object-oriented scripting language. JavaScript is now standardized by the ECMA (European Computer Manufacturers Association). The first version of the ECMA standard is documented in the ECMA-262 specification. The ECMA-262 standard is also approved by the ISO (International Organization for Standards) as ISO-16262. JavaScript 1.5 is fully compatible with ECMA-262, Edition 3.


Sequences submitted to the Sequence Manipulation Suite do not leave your computer and are instead manipulated by your web browser, which executes the JavaScript. The Sequence Manipulation Suite was written by Paul Stothard (University of Alberta, Canada). Send questions and comments to stothard@ualberta.ca.

Here are short descriptions of the programs that comprise the Sequence Manipulation Suite:

Format Conversion:

- Combine FASTA converts multiple FASTA sequence records into a single sequence. Use Combine FASTA, for example, when you wish to determine the codon usage for a collection of sequences using a program that accepts a single sequence as input.
- EMBL to FASTA accepts one or more EMBL files as input and returns the DNA sequence from each in FASTA format. Use this program when you wish to quickly remove all of the non-DNA sequence information from an EMBL file.
- EMBL Feature Extractor accepts one or more EMBL files as input and reads the sequence feature information described in the feature tables. The program extracts or highlights the relevant sequence segments and returns each sequence feature in FASTA format. EMBL Feature Extractor is particularly helpful when you wish to derive the sequence of a cDNA from a genomic sequence that contains many introns.
- EMBL Trans Extractor accepts one or more EMBL files as input and returns each of the protein translations described in the files in FASTA format. EMBL Trans Extractor can be used when you are more interested in the predicted protein translations of a DNA sequence than the DNA sequence itself.
- Filter DNA removes non-DNA characters from text. Use this program when you wish to remove digits and blank spaces from a sequence to make it suitable for other applications.
- Filter Protein removes non-protein characters from text. Use this program when you wish to remove digits and blank spaces from a sequence to make it suitable for other applications.
- GenBank to FASTA accepts one or more GenBank files as input and returns the entire DNA sequence from each in FASTA format. Use this program when you wish to quickly remove all of the non-DNA sequence information from a GenBank file.
- GenBank Feature Extractor accepts one or more GenBank files as input and reads the sequence feature information described in the feature tables, according to the rules outlined in the GenBank release notes. The program extracts or highlights the relevant sequence segments and returns each sequence feature in FASTA format. GenBank Feature Extractor is particularly helpful when you wish to derive the sequence of a cDNA from a genomic sequence that contains many introns.
- GenBank Trans Extractor accepts one or more GenBank files as input and returns each of the protein translations described in the files in FASTA format. GenBank Trans Extractor should be used when you are more interested in the predicted protein translations of a DNA sequence than the DNA sequence itself.
- One to Three converts single letter translations to three letter translations.
- Ranne Extractor DNA accents one or more DNA sequences along with a set of positions or ranges. The bases corresponding to the positions or ranges are returned, either as a single new sequence, a set of FASTA records.

Format Conversion -Combine FASTA -EMBL to FASTA -EMBL Feature Extractor -EMBL Trans Extractor -Filter DNA -Filter Protein -GenBank to FASTA -GenBank Feature Extractor -GenBank Trans Extractor -One to Three -Range Extractor DNA -Range Extractor Protein Reverse Complement -Split Codons Split FASTA -Three to One -Window Extractor DNA -Window Extractor Protein Sequence Analysis -Codon Plot -Codon Usage -CnG Islands -DNA Molecular Weight -DNA Pattern Find -DNA Stats -Fuzzy Search DNA -Fuzzy Search Protein Ident and Sim -Multi Rev Trans -Mutate for Digest -ORE Finder Pairwise Align Codons -Pairwise Align DNA Pairwise Align Protein -PCR Primer Stats -PCR Products -Protein GRAVY Protein Isoelectric Point Protein Molecular Weight -Protein Pattern Find Protein Stats -Restriction Digest -Restriction Summary -Reverse Translate -Translate

Sequence Manipulation Suite:

Filter Protein

Format Conversion -Combine FASTA -EMBL to FASTA EMBL Feature Extractor -EMBL Trans Extractor -Filter DNA -Filter Protein -GenBank to FASTA -GenBank Feature Extractor GenBank Trans Extractor -One to Three -Range Extractor DNA -Range Extractor Protein -Reverse Complement -Split Codons -Split FASTA -Three to One -Window Extractor DNA -Window Extractor Protein Sequence Analysis -Codon Plot -Codon Usage -CpG Islands -DNA Molecular Weight -DNA Pattern Find -DNA Stats -Fuzzy Search DNA -Fuzzy Search Protein -Ident and Sim -Multi Rev Trans -Mutate for Digest

Filter Protein removes non-protein characters from text. Use this program when you wish to remove digits and blank spaces from a sequence to make it suitable for other applications.

(i)

Paste the text into the text area below. Input limit is 500,000,0

1 mygrraliyl ahsertsfny amkeaaaaal kkkgweyyes dlyan isrkditgkl

61 kdpanfqypa esylaykegh lspdivaegk kleaadlvif gfplgwfgyp ailkgwfery

121 figefaytya amydkgpfrs kkavlsittg gsgsmyslgg ihgdmnvilw pigsgilhfc

Submit Clear Reset

• remove non 'ACDEFGHIKLMNPQRSTVWY' characters

replace removed characters with nothing ✓

don't change the case of remaining characters v

*This page requires JavaScript. See browser compatibility. *You can mirror this page or use it off-line.

Sun 14 Jun 00:36:59 2020 Valid XHTML 1.0; Valid CSS 🤣 Sequence Manipulation Suite – Pracovní – Microsoft Edge

about:blank

Filter Protein results

>filtered protein sequence consisting of 274 residues. mvgrralivlahsertsfnyamkeaaaaalkkkgwevvesdlyamnfnpiisrkditgkl kdpanfqypaesvlaykeghlspdivaeqkkleaadlvifqfplqwfgvpailkgwferv figefaytyaamydkgpfrskkavlsittggsgsmyslqgihgdmnvilwpiqsgilhfc gfqvlepqltysightpadariqilegwkkrleniwdetplyfapsslfdlnfqagflmk kevqdeeknkkfglsvghhlgksiptdnqikark

new w

Sequence Manipulation Suite:

Protein Stats

SMS

format Cor -Combine FASTA -EMBL to FASTA -EMBL Feature Extractor

-EMBL Trans Extractor

Protein Stats returns the number of occurrences of each residue in the sequence you enter. Percentage totals are also given for each residue, and for certain groups of residues, allowing you to quickly compare the results obtained for different sequences.

01

-EMBL Trans Extractor -Filter DNA	Paste the raw sequence or one or more FASTA sequences into the text area	a below. Input limit is 50000	00 characters.		
-Filter Protein -GenBank to FASTA	ESVLAYKEGHLSPDIVAEQKKLEAADLVIFQFPLQWFGVPAILKGWFERVFIGEFAYTYAA				
-GenBank Feature Extractor	MYDKGPFRS				
-GenBank Trans Extractor -One to Three	KKAVLSITTGGSGSMYSLQGIHGDMNVILWPIQSGILHFCGFQVLEPQLTYSIGHTPADAR	🦉 Sequence Manipulation Su	uite - Internet Expl	- 🗆	\times
-Range Extractor DNA	IQILEGWKK	about:blank			
-Range Extractor Protein	RLENIWDETPLYFAPSSLFDLNFQAGFLMKKEVQDEEKNKKFGLSVGHHLGKSIPTDNQIK	😂 about:blank			
-Reverse Complement -Split Codons	ARK	Soubor Úpravy Zobrazit	Oblíbené položky	Nástroje Nápov	,ăda
-Split FASTA	Please check the browser compatibility page before using this program.	Soubor Opravy Zobrazic	Oblibelle položky	ivastroje ivapov	eua
-Three to One	Submit Clear Reset	Drotoin State re	oulto		
-Window Extractor DNA -Window Extractor Protein		Protein Stats re	suns		-
Sequence Analysis	*This page requires JavaScript. See browser compatibility.	Results for 274 residu	le sequence "AA	B60701.1	
-Codon Plot	*You can mirror this page or use it off-line.	NAD(P)H:quinone oxi	reductase [Hom/	saniens!"	
-Codon Usage		starting "MVGRRALIV		sabicital	
-CpG Islands -DNA Molecular Weight					- I
-DNA Pattern Find	Fri Jun 17 18:17:08 2018	Pattern:	Times	Percentage	
-DNA Stats	Valid XHTML 1.0; Valid CSS	Pattern:	found:	Percentage	8
-Fuzzy Search DNA -Fuzzy Search Protein			0.5	0.40	-11
-Ident and Sim		A	25	9.12	11
-Multi Rev Trans		В	0	0.00	11
-Mutate for Digest -ORF Finder			v		-11
-Pairwise Align Codons		C	1	0.36	
-Pairwise Align DNA		D	12	4.38	11
-Pairwise Align Protein -PCR Primer Stats					-11
-PCR Products		E	17	6.20	
-Protein GRAVY		F	17	6.20	11
-Protein Isoelectric Point -Protein Molecular Weight		IF IF	17	6.20	
-Protein Pattern Find		G	21	7.66	
-Protein Stats					-11
-Restriction Digest -Restriction Summary		Н	7	2.55	
-Reverse Translate			19	6.93	71
-Translate					-11
Sequence Figures		K	24	8.76	
-Color Align Conservation -Color Align Properties		1	25	9.12	1
-Group DNA			2		-11
-Group Protein -Primer Map		M	7	2.55	
-Restriction Map		N	9	3.28	1
-Translation Map			9	3.20	-11
Random Sequences		P	13	4.74	
-Mutate DNA -Mutate Protein			12	4.38	-
-Random Coding DNA		Q	12		
-Random DNA Sequence		R	9	3.28	
-Random DNA Regions -Random Protein Sequence			47	0.00	-
-Random Protein Regions		S	17	6.20	
-Sample DNA -Sample Protein		Т	9	3.28	<u>۱</u>
-Sample Protein -Shuffle DNA			F	+	-
-Shuffle Protein				🔍 96%	-
Miscellaneous					

ormat Con -Combine FASTA

-EMBL to FASTA -EMBL Feature Extractor

-EMBL Trans Extractor -Filter DNA

Sequence Manipulation Suite:

Protein Molecular Weight

Protein Molecular Weight accepts one or more protein sequences and calculates molecular weight. You can append copies of commonly used epitopes and fusion proteins using the supplied list. Use Protein Molecular Weight when you wish to predict the location of a protein of interest on a gel in relation to a set of protein standards.

-Filter Protein -GenBank to FASTA	Paste the raw sequence or one or more FASTA sequences into the text area	below. Input limit is 200000 characters.	
-GenBank Feature Extractor -GenBank Trans Extractor	ESVLAYKEGHLSPDIVAEQKKLEAADLVIFQFPLQWFGVPAILKGWFERVFIGEFAYTYAA MYDKGPFRS	Sequence Manipulation Suite - Internet Ex 🗆 🗙	
-One to Three -Range Extractor DNA	KKAVLSITTGGSGSMYSLQGIHGDMNVILWPIQSGILHFCGFQVLEPQLTYSIGHTPADAR		
-Range Extractor Protein	IQILEGWKK	🤗 about:blank	
-Reverse Complement -Split Codons	RLENIWDETPLYFAPSSLFDLNFQAGFLMKKEVQDEEKNKKFGLSVGHHLGKSIPTDNQIK	Soubor Úpravy Zobrazit Oblíbené položky Nástroje Nápově »	
-Split FASTA	ARK	Soubor Opravy Zobrazit Oblibene położky i vastroje i vapove	
-Three to One	Please check the browser compatibility page before using this program.	Drotain Malagular Waight regults	
-Window Extractor DNA -Window Extractor Protein	Submit Clear Reset	Protein Molecular Weight results	
Sequence Analysis	Submit Clear Reset	Results for 274 residue sequence "AAB60701.1 NAD	
-Codon Plot		(P)H:quinone oxireductase [Homo sapiens]" starting	
-Codon Usage	 Add 1 ✓ copies of Nothing ✓ to the above sequence. 	"MVGRRALIVL"	
-CpG Islands			
-DNA Molecular Weight -DNA Pattern Find	*This page requires JavaScript. See browser compatibility.	30.87 kDa	
-DNA Stats			
-Fuzzy Search DNA	*You can mirror this page or use it off-line.		
-Fuzzy Search Protein -Ident and Sim			
-Multi Rev Trans		ation	
-Mutate for Digest	Fri Jun 17 18:17:08 2018		
-ORF Finder	Valid XHTML 1.0; Valid CSS	€ 96% -	
-Pairwise Align Codons -Pairwise Align DNA		- 5070 ·	
-Pairwise Align Protein			
-PCR Primer Stats			
-PCR Products -Protein GRAVY			Sequence Manipulation Suite - Internet Ex
-Protein Isoelectric Point			
-Protein Molecular Weight			🧉 about:blank
-Protein Pattern Find -Protein Stats			
-Protein Stats -Restriction Digest			Soubor Úpravy Zobrazit Oblíbené položky Nástroje Nápově 🎬
-Restriction Summary			Drotain Malagular Maight reguitte
-Reverse Translate			Protein Molecular Weight results
Sequence Figures			Results for 412 residue sequence "EAX02461.1
-Color Align Conservation			cathepsin D (lysosomal aspartyl peptidase), isoform
-Color Align Properties			CRA_a [Homo sapiens]" starting "MQPSSLLPLA"
-Group DNA			44.56 kDa
-Group Protein -Primer Map			44.00 KDa
-Restriction Map			
-Translation Map			
Random Sequences			
-Mutate DNA -Mutate Protein			
-Mutate Protein -Random Coding DNA			() aca/
-Random DNA Sequence			€ 96% ▼
Develope DMA Devices			

Format Conversion

-Combine FASTA

-EMBL to FASTA -EMBL Feature Extractor -EMBL Trans Extractor

-Filter DNA -Filter Protein -GenBank to FASTA -GenBank Trans Extractor -GenBank Trans Extractor -One to Three -Range Extractor DNA -Range Extractor Protein -Reverse Complement -Split Codons

-Split FASTA

-Three to One

-CpG Islands -DNA Molecular Weight -DNA Pattern Find

-DNA Stats -Fuzzy Search DNA -Fuzzy Search Protein

-Ident and Sim

-Multi Rev Trans -Mutate for Digest -ORF Finder

-Pairwise Align Codons -Pairwise Align DNA

-Pairwise Align Protein

-PCR Primer Stats -PCR Products -Protein GRAVY -Protein Molecular Weight -Protein Pattern Find -Protein Stats -Restriction Digest -Restriction Summary -Reverse Translate -Translate Sequence Figures

-Window Extractor DNA -Window Extractor Protein

Sequence Analysis -Codon Plot -Codon Usage

Sequence Manipulation Suite:

Range Extractor Protein

Range Extractor Protein accepts a protein sequence along with a set of positions or ranges. The residues corresponding to the positions or ranges are returned, either as a single new sequence, a set of FASTA records, as uppercase text, or as lowercase text. Use Range Extractor Protein to obtain subsequences using position information.

Paste a raw sequence or one or more FASTA sequences into the text area below. Input limit is 500,000,000 characters.

>sample sequence		
MQKSPLEKASFISKLFFSWTTPILRKGYRHHLELSDIYQAPSADSADHLSEKLEREWDREQ		
ASKKNPQLIHALRRCFFWRFLFYGILLYLGEVTKAVQPVLLGRIIASYDPENKVERSIAIY		
LGIGLCLLFIVRTLLLHPAIFGLHRIGMQMRTAMFSLIYKKTLKLSSRVLDKISIGQLVSL		
LSNNLNKFDEGLALAHFIWIAPLQVTLLMGLLWDLLQFSAFCGLGLLIILVIFQAILGKMM	V	
$\verbVKYRDQRAAKINERLVITSEIIDNIYSVKAYCWESAMEKMIENLREVELKMTRKAAYMRFF$		

Enter the residue positions or ranges to be extracted. Use ".." to represent a range, and use a comma to separate entries. The words 'start', 'end', 'center', and 'length' can be used in place of digits, to represent the beginning, end, middle, and length of the sequence. Arithmetic expressions can be included in the ranges. For example, to obtain the last three residues of a sequence, the range '(end - 2)..end' can be used. To obtain the 30 bases on either side of the center residue along with the center residue, the ranges '(center - 30)..(center - 1), center, (center + 1).. (center + 30)' can be used.

 \mathbf{v}

1, 5, 1012			
Submit	Clear	Do	~

Submit Clear Reset

Sequence segments should be returned as a new sequence

*This page requires JavaScript. See browser compatibility. *You can mirror this page or use it off-line.

new window | home | citation

Mon Nov 6 02:56:29 2017 Valid XHTML 1.0; Valid CSS

Try SMS suite

Analyze your sequence - how many cysteins are in your sequence?

HW2

3) Extract peptide from 10. - 50. amino acid.

4) Count the molecular weight of this (short) peptide.

5) How many cysteins are in your (whole) sequence?

"Protein bioinformatics II"

Retrieving protein sequences from databases

Computing amino-acids compositions, molecular weight, isoelectric point, and other parameters

Prediction of proteases cutting

...

Predicting elements of protein secondary structure, domains

Predicting 3-D structure and the domain organization of proteins

Finding all proteins that share a similar sequence and Classifying proteins into families

Finding evolutionary relationships between proteins, drawing proteins' family trees

Computing the optimal alignment between two or more protein sequences

protease = enzyme that catalyzes proteolysis (*e.g.* digestion)

Examples: **trypsin** - digestive enzyme, present in duodenum)

- cleaves sequence "behind" K(lysin) or R (arginin)

- **proteinase K** commonly used in molecular biology to digest protein and remove contamination from preparations of nucleic acid.
 - cleaves ubiquitously
- enterokinase activation of zymogens (precursors of digestive enzymes like trysinogen)
 - specific cleavage site (Asp-Asp-Asp-Asp-Lys)

PeptideCutter

ExPASy Bioinformatics Resource Portal

PeptideCutter [references / documentation] predicts potential cleavage sites cleaved by proteases or chemicals in a given protein sequence. PeptideCutter returns the query sequence with the possible cleavage sites mapped on it and /or a table of cleavage site positions.

PeptideCutter

Home | Contact

Enter a UniProtKB (Swiss-Prot or TrEMBL) protein identifier, ID (e.g. ALBU_HUMAN), or accession number, AC (e.g. P04406), or an amino acid sequence (e.g. 'SERVELAT'):

sequence (not fasta format!)

Perform the cleavage of the protein. Reset the fields.

Please, select

all available enzymes and chemicals

O only the following selection of enzymes and chemicals

Arg-C proteinase	Asp-N endopeptidase	Asp-N endopeptidase + N-terminal Glu
BNPS-Skatole	Caspase1	Caspase2
Caspase3	Caspase4	Caspase5
Caspase6	Caspase7	Caspase8
Caspase9	Caspase10	
Chymotrypsin-high specificity (C-term to [FYW], not before F) Chymotrypsin-low specificity (C-term to [FYWML], not before P)
Clostripain (Clostridiopeptidase B)	CNBr	Enterokinase
Factor Xa	Formic acid	Glutamyl endopeptidase

	PeptideCutte	er	Home Contact
PeptideCutter			
PeptideCutter [references / documentation] predicts potential cle	avage sites cleaved by proteases or chemicals in a given protein sequence. Pe	ptideCutter returns the query sequence with the possible cleavage sites mapped on it and /or a table of clea	wage site positions.
Enter a UniProtKB (Swiss-Prot or TrEMBL) protein identifier, ID (e	.g. ALBU_HUMAN), or accession number, AC (e.g. P04406), or an amino acid	sequence (e.g. 'SERVELAT'):	
 Please, select all available enzymes and chemicals only the following selection of enzymes and chemicals 	all enzymes or selectio	n of some	
□ Arg-C proteinase	□ Asp-N endopeptidase	Asp-N endopeptidase + N-terminal Glu	
□ BNPS-Skatole	□ Caspase1	□ Caspase2	
□ Caspase3	□ Caspase4	□ Caspase5	
Caspase6	□ Caspase7	□ Caspase8	
Caspase9	Caspase10		
Chymotrypsin-high specificity (C-term to [FYV	V], not before P) Chymotrypsin-low specificity (C-term to [FYW	/ML], not before P)	
Clostripain (Clostridiopeptidase B)	CNBr	Enterokinase	
Factor Xa	□ Formic acid	Glutamyl endopeptidase	
□ GranzymeB	Hydroxylamine	Iodosobenzoic acid	
□ LysC	□ LysN	NTCB (2-nitro-5-thiocyanobenzoic acid)	
Neutrophil elastase			
Pepsin (pH1.3)	Pepsin (pH>2)	Proline-endopeptidase	
Proteinase K	Staphylococcal peptidase I	Tobacco etch virus protease	
Thermolysin		Trypsin	

SIE EXPASSY Bioinformatics Resource Portal	PeptideCutter	Home	Contact

Error

Fasta format provided (only raw format processed).

sequence (not fasta format!)

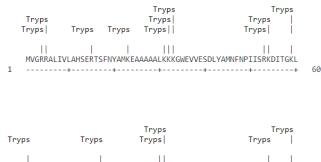
Name of enzyme	No. of cleavages	Positions of cleavage sites
Arg-C proteinase	9	4 5 15 53 119 139 201 211 273
Asp-N endopeptidase	12	40 54 61 83 95 133 163 198 216 229 244 266
Asp-N endopeptidase + N-terminal Glu	29	13 23 35 38 40 54 61 70 77 83 87 92 95 117 123 133 163 185 198 205 212 216 217 229 241 244 245 246 266
BNPS-Skatole	6	35 106 116 170 208 216
CNBr	7	1 22 45 132 155 165 239
Chymotrypsin-high specificity (C-term to [FYW], not before P)	30	18 20 35 43 47 66 76 100 106 107 116 117 121 125 127 129 133 138 156 179 182 191 208 216 222 223 229 233 237 252
Chymotrypsin-low specificity (C-term to [FYWML], not before P)	67	1 7 10 12 18 20 22 30 35 42 43 45 47 60 66 74 76 80 81 92 97 100 104 106 107 113 116 117 121 125 127 129 133 138 145 156 158 162 165 169 177 178 179 182 185 189 191 195 205 208 212 216 221 222 223 228 229 231 233 237 238 239 252 254 258 259 26 H CNZYMES
Clostripain	9	4 5 15 53 119 139 201 211 273
Enterokinase	1	248
Formic acid	12	41 55 62 84 96 134 164 199 217 230 245 267
Glutamyl endopeptidase	17	14 24 36 39 71 78 88 93 118 124 186 206 213 218 242 246 247
lodosobenzoic acid	6	35 106 116 170 208 216
LysC	24	23 31 32 33 54 59 61 77 90 91 114 135 141 142 209 210 240 241 248 250 251 262 271 274
LysN	24	22 30 31 32 53 58 60 76 89 90 113 134 140 141 208 209 239 240 247 249 250 261 270 273
NTCB (2-nitro-5-thiocyanobenzoic acid)	1	179
Pepsin (pH1.3)	59	9 10 18 29 30 41 42 46 59 60 65 66 73 74 80 91 96 97 99 100 102 103 106 107 112 113 117 120 124 125 145 157 158 168 176 177 178 179 181 182 184 189 204 205 220 222 227 228 229 230 231 232 233 236 237 238 251 254 259
Pepsin (pH>2)	82	9 10 18 19 20 29 30 41 42 43 46 59 60 65 66 68 73 74 75 76 80 91 96 97 99 100 102 103 105 106 107 112 113 115 117 120 124 125 126 127 128 129 132 133 145 155 156 157 158 168 170 176 177 178 179 181 182 184 189 190 191 204 205 207 208 215 216 220 222 227 228 229 230 231 232 233 236 237 238 251 254 259
Proteinase K	142	2 6 7 8 9 10 11 14 16 18 20 21 24 25 26 27 28 29 30 35 36 37 38 39 42 43 44 47 50 51 56 57 60 64 66 68 70 71 73 74 75 76 78 81 85 86 87 88 92 93 94 95 97 98 99 100 102 104 106 107 109 111 112 113 116 117 118 120 124 125 126 127 128 129 130 131 133 138 143 144 145 147 148 149 156 158 161 167 168 169 170 172 176 177 179 182 184 185 186 189 190 191 193 196 198 200 202 204 205 206 208 212 213 215 216 218 219 221 222 223 224 228 229 231 233 235 237 238 242 243 246 247 252 254 256 260 264 266 270 272
Staphylococcal peptidase I	16	14 24 36 39 71 78 88 93 118 124 186 206 213 218 242 246
Thermolysin	90	1 5 6 7 8 9 10 17 20 21 25 26 27 28 29 37 43 44 46 49 50 59 63 65 69 72 73 74 80 85 86 91 94 97 98 99 103 106 110 111 112 116 119 120 121 125 129 130 131 137 142 143 144 146 154 157 160 166 167 168 171 175 176 178 181 183 184 188 192 197 201 203 204 211 214 220 222 227 228 232 234 236 237 238 251 253 255 259 269 271
Trypsin	33	4 5 15 23 31 32 33 53 54 59 61 77 90 91 114 119 135 139 141 142 201 209 210 211 240 241 248 250 251 262 271 273 274
These chosen enzymes do not cut:		
Caspase1 Caspase10		

The enzyme(s) that you have chosen:

Trypsin

You have chosen to display all possible cleaving enzymes.

These enzymes cleave the sequence:


Name of enzyme No.	of cleavage	Positions of cleavage sites
Trypsin	33	4 5 15 23 31 32 33 53 54 59 61 77 90 91 114 119 135 139 141 142 201 209 210 211 240 241 248 250 251 262 271 273 274

These are the cleavage sites of the chosen enzymes and chemicals mapped onto the entered protein sequence:

You have chosen a block size of 60 for the map.

or selection of some

- Please note that the cleavage occurs at the right side (C-terminal direction) of the marked amino acid.
- You have the possibility to display the results of a single enzyme by mouseclicking on the respective enzyme name in the map.

PeptideCutter

ExPASy Right Projection Resource Portal

PeptideCutter [references / documentation] predicts potential cleavage sites cleaved by proteases or chemicals in a given protein sequence. PeptideCutter returns the query sequence with the possible cleavage sites mapped on it and /or a table of cleavage site positions.

PeptideCutter

Home | Contact

Enter a UniProtKB (Swiss-Prot or TrEMBL) protein identifier, ID (e.g. ALBU_HUMAN), or accession number, AC (e.g. P04406), or an amino acid sequence (e.g. 'SERVELAT'):

search	ing	for	spe	cifitie	s?
5641611	_В		SPC.		-0.

Perform the cleavage of the protein. Reset the fields.

Please, select

- Ill available enzymes and chemicals
- O only the following selection of enzymes and chemicals

Please indicate the way you would like the cleavage sites to be displayed

Map of cleavage sites. Please select the number of amino acid within one block: 60 Table of sites, sorted alphabetically by enzyme and chemical name
 Table of sites, sorted sequentially by amino acid number

Please indicate which enzymes to include in the display

All enzymes and chemicals
 Enzymes and chemicals cleaving exactly 1 times
 Enzymes and chemicals cleaving at least times, and at most times

[*] NOTE: Proline-endopeptidase was reported to cleave only substrates whose sequences do not exceed 30 amino acids. An unusual beta-propeller domain regulates proteolysis: see Fulop et al., 1998. You have chosen to display only those enzymes that cleave exactly 1 times. However, the following enzymes also cleave but not with the selected frequency: Staphylococcal peptidase I, Pepsin (pH1.3), Glutamyl endopeptidase, CNBr, Pepsin (pH>2), Asp-N endopeptidase, Asp-N endopeptidase + N-terminal Glu, Formic acid, Iodosobenzoic acid, Arg-C proteinase, Thermolysin, Trypsin, Clostripain, Proteinase K, Chymotrypsin-high specificity (C-term to [FYW], not before P), Chymotrypsin-low specificity (C-term to [FYWML], not before P), LysC, BNPS-Skatole, LysN,

These enzymes cleave the sequence:

Name of enzyme	No. of cleavages	Positions of cleavage sites
Enterokinase	1	248
NTCB (2-nitro-5-thiocyanobenzoic acid)	1	179

At these positions the following enzymes cleave:

• Please note that the size of the peptides are calculated as if all chosen enzymes were present during digestion. If you want to obtain the size of the peptides resulting from the cleavage of only one enzyme, please, deselect the others.

• Please be aware of the fact that the present version of the PeptideCutter program does not take into consideration any kind of **modification** neither of the protein sequence nor of modifications evoked by the cleavage. Mass computations are based on average masses of the occurring amino acid residues, and giving peptide masses as [M]. If you want to select different parameters, we recommend to use PeptideMass.

Position of cleavage site	Name of cleaving enzyme(s)	Resulting peptide sequence (see explanations)	Peptide length [aa]	Peptide mass [Da]
179	NTCB (2-nitro-5- thiocyanobenzoic acid)	MVGRRALIVLAHSERTSFNYAMKEAAAAAALKKKGWEVVESDLYAMNFNPIISRKDITGKLKDPANFQYPAESVLAYKEGHLSPDIVAEQKKLEAADLVIFQFPLQWFGVPAILKGWFERVFIGEFAYTYAAMYDKGPFRSKKAVLSITTGGSGSMYSLQGIHGDMNVILWPIQSGILHF	179	19997.201
248	Enterokinase	CGFQVLEPQLTYSIGHTPADARIQILEGWKKRLENIWDETPLYFAPSSLFDLNFQAGFL MKKEVQDEEK	69	8032.136
274	end of sequence	NKKFGLSVGHHLGKSIPTDNQIKARK	26	2874.342

These are the cleavage sites of the chosen enzymes and chemicals mapped onto the entered protein sequence:

· You have chosen a block size of 60 for the map.

· Please note that the cleavage occurs at the right side (C-terminal direction) of the marked amino acid.

· You have the possibility to display the results of a single enzyme by mouseclicking on the respective enzyme name in the map.

MVGRRALIVLAHSERTSFNYAMKEAAAAALKKKGWEVVESDLYAMNFNPIISRKDITGKL

1 -----+ 60

Expansion Expansion Resource Portal	PeptideCut	ter	Home Contact
PeptideCutter			
•	al cleavage sites cleaved by proteases or chemicals in a given protein sequence. F	PeptideCutter returns the query sequence with the possible cleavage sites mapped on it and /or a t	able of cleavage site positions.
	, ID (e.g. ALBU_HUMAN), or accession number, AC (e.g. P04406), or an amino ac		
	the longest fragment after dige	stion?	
Please, select ○ all available enzymes and chemicals ● only the following selection of enzymes and ch	iemicals		
Arg-C proteinase	Asp-N endopeptidase	□ Asp-N endopeptidase + N-terminal Glu	
	Caspase1	□ Caspase2	
BNPS-Skatole			

Please indicate the way you would like the cleavage sites to be displayed

Map of cleavage sites. Please select the number of amino acid within one block: 60 Table of sites, sorted alphabetically by enzyme and chemical name
 Table of sites, sorted sequentially by amino acid number

□ Pepsin (pH1.3)	□ Pepsin (pH>2)	Proline-endopeptidase	
Proteinase K	Staphylococcal peptidase I	Tobacco etch virus protease	
Thermolysin		🗖 Trypsin	

Name of enzyme No. of cleavages Positions of cleavage sites Trypsin 33 4 5 15 23 31 32 33 53 54 59 61 77 90 91 114 119 135 139 141 142 201 209 210 211 240 241 248 250 251 262 271 273 274

At these positions the following enzymes cleave:

• Please note that the size of the peptides are calculated as if all chosen enzymes were present during digestion. If you want to obtain the size of the peptides resulting from the cleavage of only one enzyme, please, deselect the others.

Please be aware of the fact that the present version of the PeptideCutter program does not take into consideration any kind of modification neither of the protein sequence nor of modifications evoked by the cleavage. Mass computations are based on average ma
of the occurring amino acid residues, and giving peptide masses as [M]. If you want to select different parameters, we recommend to use PeptideMass.

Position of cleavage site	Name of cleaving enzyme(s)	Resulting peptide sequence (see explanations)	Peptide length [aa]	Peptide mass [Da]
4	Trypsin	MVGR	4	461.580
5	Trypsin	R	1	174.203
15	Trypsin	ALIVLAHSER	10	1108.306
23	Trypsin	TSFNYAMK	8	961.100
31	Trypsin	EAAAAALK	8	743.858
32	Trypsin	K	1	146.189
33	Trypsin	K	1	146.189
53	Trypsin	GWEVVESDLYAMNFNPIISR	20	2340.636
54	Trypsin	K	1	146.189
59	Trypsin	DITGK	5	532.594
61	Trypsin	LK	2	259.349
77	Trypsin	DPANFQYPAESVLAYK	16	1812.997
90	Trypsin	EGHLSPDIVAEQK	13	1422.558
91	Trypsin	K	1	146.189
114	Trypsin	LEAADLVIFQFPLQWFGVPAILK	23	2616.141
119	Trypsin	GWFER	5	693.760
135	Trypsin	VFIGEFAYTYAAMYDK	16	1889.153
139	Trypsin	GPFR	4	475.548
141	Trypsin	SK	2	233.268
142	Trypsin	ĸ	1	146.189
201	Trypsin	AVLSITTGGSGSMYSLQGIHGDMNVILWPIQSGILHFCGFQVLEPQLTYS	59	6287.190
209	Trypsin	IQILEGWK	8	986.179
210	Trypsin	K	1	146.189
211	Trypsin	R	1	174.203
240	Trypsin	LENIWDETPLYFAPSSLFDLNFQAGFLMK	29	3407.885
241	Trypsin	K	1	146.189
248	Trypsin	EVQDEEK	7	875.888
050	Terresia	3.722		000.000

Try PeptideCutter

Analyze your sequence

How many times is your sequence cut by trypsin (HW3)

Is there any enzyme that cuts just once?

How long is the longest product after trypsin digest?

"Protein bioinformatics I"

Retrieving protein sequences from databases

Computing amino-acids compositions, molecular weight, isoelectric point, and other parameters

Prediction of proteases cutting

...

Predicting elements of protein secondary structure, domains

Predicting 3-D structure and the domain organization of proteins

Finding all proteins that share a similar sequence and Classifying proteins into families

Finding evolutionary relationships between proteins, drawing proteins' family trees

Computing the optimal alignment between two or more protein sequences

Homework 2

1) find both (Uniprot/NCBI) accession numbers for reference sequence (isoform 1)

- 2) download your sequence in FASTA format
- 3) Extract peptide form positions 10 to 50
- 4) Predict molecular weight of this peptide
- 5) How many cysteins are in your sequence?

Compile in "one note" (or word, or pdf)

Homework 2: examples

Vložení Kreslit Historie Revize	Zobrazení				
ámkový blok 🔻 🛛 Rychlé poznámky	paper challenge Nový oddíl 1	bioinformatika +			
NAD(P)H:quinone oxir GenBank: AAB60701.1 UniProtKB - P155 >AAB60701.1 NAD(P)H:quinone oxire MVGRRALIVLAHSERTSFNYAMKEAAAA ESVLAYKEGHLSPDIVAEQKKLEAADUVIE KKAVLSITTGGSGSMYSLQGIHGDMNVI RLENIWDETPLYFAPSSLFDLNFQAGFLW MVGRRALIVLAHSERTSFNYAMKEAAAA ESVLAYKEGHLSPDIVAEQKKLEAADUVIE KKAVLSITTGGSGSMYSLQGIHGDMNVI RLENIWDETPLYFAPSSLFDLNFQAGFLW MVGREACUVIE MUNICAL TO THE FRAME OF LIVER FOR THE AND THE AN	eductase [Homo sa 59 (NQO1_HUN ductase [Homo sapiens] VALKKGWEVVESDLYAMNFNPIIS QFPLQWFGVPAILKGWFERVFIGE LWPIQSGILHFCGFQVLEPQLTYSIG IKKEQQDEEKNKKFGLSVGHHLGKS	piens] /AN) rkditgklkdpanfqypa faytyaamydkgpfrs htpadariqilegwkk	NQ01:	AAB60701 P15559 >AAB60701.1 NAD(P)H:quinone oxireductase [Homo sapiens] MVGRRALIVLAHSERTSFNYAMKEAAAAALKKKGWEVVESDLYAMNFNPIISRKDI ESVLAYKEGHLSPDIVAEQKKLEAADLVIFQFPLQWFGVPAILKGWFERVFIGEFAYT KKAVLSITTGGSGSMYSLQGIHGDMNVILWPIQSGILHFCGFQVLEPQLTYSIGHTPA RLENIWDETPLYFAPSSLFDLNFQAGFLMKKEVQDEEKNKKFGLSVGHHLGKSIPTD FQFPLQWFGVPAILKGWFERVFIGEFAYTYAAMYDKGPFRSKKAVL Cystein:1 Your collection was saved. Edit your collection. NAD(P)H:quinone oxireductase [Homo sapiens] GenBank: AAB60701.1 Identical Proteins EASTA Graphics	YAAMYDKGPFRS ADARIQILEGWKK NQIKARK
A	25	9.12			
В	0	0.00			
5					