
Basic definitions and perspectivities

Definition of projective planes. A projective plane consists of a set of points P
and set of lines L. Each line is a subset of P. The following holds:

(1) ∀x, y ∈ P : x 6= y ⇒ ∃!` ∈ L such that x, y ∈ `;
(2) ∀`,m ∈ L : ` 6= m ⇒ ∃!x ∈ P such that x ∈ m ∩ `; and
(3) ∃xi ∈ P; 1 ≤ i ≤ 4, such that whenever 1 ≤ i < j ≤ 4, then xi 6= xj and

xk /∈ ` if ` ∈ L, {xi, xj} ⊆ ` and k ∈ {1, 2, 3, 4} \ {i, j}.
Planes incident to the same line are called collinear. Point (3) may be thus
rephrased by saying that there exist four points no three of which are collinear.

Remarks:

(a) One of ∃! may be replaced by ∃, but not both of them (to get a counterex-
ample double a point);

(b) point (3) is needed to avoid a situation when there is one long line each
point of which is incident to a 2-point line, with all of the 2-point lines
meeting in a common point that is not incident to the long line.

Facts which are easy to verify:

(i) All lines are of the same size (cardinality). In the finite case it is usual to
say that the plane is of order n if the lines consist of n+ 1 points;

(ii) in the finite case each point is incident to n+1 lines and the overall number
of both points and lines is equal to n2 + n+ 1;

(iii) the least possible order is 2. Each projective plane of order 2 is isomorphic
to the Fano plane.

(iv) Let x1, . . . , x4 be points no three of which are collinear. For 1 ≤ i < j ≤ 4
denote by `i,j the line passing through xi and xj . There are six such lines
from which there may chosen four such that no three of them meet in a
common point (e.g., `1,2, `2,3, `3,4 and `4,1.

Write xI` if x ∈ P belongs to ` ∈ L. This may be also expressed by saying that
x is incident to ` or that ` is incident to x.

Consider I as subset of P × L. Another way how to interpret I is to regard it
as a bipartite graph with partitions L and P. Axioms of projective plane may be
expressed in this form:

(1) ∀x, y ∈ P : x 6= y ⇒ ∃!` ∈ L with xI` and yI`;
(2) ∀`,m ∈ L : ` 6= m ⇒ ∃!x ∈ P with xI` and xIm;
(3) ∃x1, . . . , x4 ∈ P such that if 1 ≤ i < j ≤ 4, then xi 6= xj , and xkI` is not

true if xiI`, xjI` and k ∈ {1, 2, 3, 4} \ {i, j}.
Because of point (iv) above the following statement is clear:
If (P,L, I) fulfills (1–3), then (L,P, J) fulfills (1–3) too, with `Jx ⇔ xI`.

This defines the dual projective plane. A dual line thus consists of all lines passing
through a given point, while a dual point is a line.

Perspectivities. A collineation is an automorphism of a projective plane. In the
classical seting this is a permutation ψ of P that fulfils condition

` is a line ⇔ ψ(`) is a line.

In the setting of incidence geometry a collineation is a pair (α, β) such that α
permutes P, β permutes L and

xI` ⇔ α(x)Iβ(`).

It is easy to see that both definitions are equivalent. Note that (α, β) is com-
pletely determined by α, and that (α, β) is a collineation in the sense of incidence
geometry if and only if α is a collineation in the classical sense.
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The notion of collineation is also being used to express an isomorphism of two
distinct projective planes. Some notions defined here for automorphisms may be
straightforwardly generalized to isomorphisms. The same is true for statements
involving automorphisms.

A mapping ψ is called collinear if any set of collinear points is mapped upon a
set of collinear points. This is the same as saying that any three distinct collinear
points are mapped upon collinear points.

It is easy to see that:

– A permutation ψ is a collineation if and only if both ψ and ψ−1 are collinear;
while

– in the finite case ψ is a collineation if and only if ψ is collinear.

Let ψ be a collineation. A point x is said to be a center of ψ if ψ(`) = ` whenever
xI`. A line is said to be an axis of ψ is ψ(x) = x whenever xI`.

By these definitions, the notions of center and axis are dual. (This means that
x is a center of ψ if and only if x is an axis of ψ in the dual plane.)

This is easy:

– A collineation with two centers is trivial (i.e., the identity mapping); a
collineation with two axes is trivial.

– If ` is an axis of a collineation ψ and x /∈ ` is a point fixed by ψ, then x is
a center of ψ.

– If x is a center of a collineation ψ and ` is a line fixed by ψ such that x /∈ `,
then ` is an axis of ψ.

Proposition. A collineation posseses an axis if and only if it possesses a center.

Proof. Because of duality it suffices to prove the implication that assumes the ex-
istence of an axis. As remarked above, if ψ fixes a point not upon the axis `, then
the point is a center. Suppose that ψ moves every point that is not incident to `.
For x /∈ ` denote by px the line connecting x and ψ(x). It is clear that ψ(px) = px.
Suppose that there exist x, y /∈ ` such that px 6= py and the intersection of px and
py is not upon `. Such an intersection is fixed by ψ, and hence it is a center of ψ.
The remaining possibility is that if x, y /∈ `, then px and py meet upon `. It is clear
that in such a case all px meet at the same point of `. That point is the center of
ψ. �

A collineation with center and axis is called a perspectivity. If c is the center and
a is the axis, then the perspectivity is also called a (c, a)-collineation.

Proposition. Let c be a point and a a line. If none of points x and y is incident
to a, and both are distinct from c, then there exists at most one (c, a)-collineation
ψ such that ψ(x) = y.

Proof. Let ψ be such a collineation and let z /∈ a be a point such that z, c and x
are not collinear. Thus s 6= `, where s is the line connecting z and c, and ` is the
line connecting z and x. Denote by u the intersection of ` and a, and note that
ψ(`) is the line connecting u and y. Since ψ(s) = s, the image of z is equal to the
intersection of s and ψ(`). This gives ψ(z) for every z that is not upon the line t
that connects c and x. Considering a pair (z, ψ(z)) in the same manner provides
images for points upon t. �

A (c, a)-collineation is called an elation if c ∈ a, and a homology if c /∈ a. Each
nontrivial perspectivity is thus either an elation or a homology.

The projective plane is called (c, a)-transitive if for any x, y /∈ a ∪ {c} such that
x, y and c are collinear there exists a (c, a)-collineation ψ in which ψ(x) = y.
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Lemma. Let x and c be distinct points, and let a be a line. If for any point y
such that x, y and c are collinear, y /∈ a ∪ {x, c}, there exists a (c, a)-collineation
in which ψ(x) = y, then the projective plane is (c, a)-transitive.

Proof. Let x′, y′ and c be three distinct collinear points, with x′, y′ /∈ a. Let ψ be
the collineation that maps x upon the intersection y of `′ and s, where ` connects
x and x′, `′ connects y′ and ` ∩ a, and s connects x and c. Denote by ψ the
(c, a)-collineation with ψ(x) = y. Then ψ(`) = `′. Thus ψ(x′) = y′, since y′ is the
intersection of `′ and s′, where the latter line connects x′ and c. �

It is immediately clear that all (c, a)-collineations form a group.

Elations. The first step is to observe that elations ψi, i ∈ {1, 2}, with the same
axis a and with centers c1 6= c2 commute, and that their composition yields an
elation with axis a and a center c3 /∈ {c1, c2}.

Proof. The collineation ψ1ψ2 has to be a perspectivity since it possesses an axis.
Let c be its center. If c /∈ a, then ψ2(c) 6= c is upon the line connecting c and c2,
and ψ1ψ2(c) upon the line connecting ψ2(c) and c1. This line is distinct from the
line connecting c and c1. Hence ψ1ψ2(c) 6= c. That is a contradiction. Therefore
c ∈ a. All (c, a)-collineations form a group. Hence c /∈ {c1, c2}.

What remains is to show the commutativity. Choose x /∈ a. We shall show that
ψ2ψ1(x) = ψ1ψ2(x). Denote by si the connection of x and ci, and put xi = ψi(x).
Denote by `i the connection of ci and xj , j 6= i. Then ψi(`i) = `i = ψj(si). Since
xi is equal to the intersection of si and `j , ψj(xi) is at the intersecion of `i and `j .
Hence ψj(xi) = ψi(xj). �

All elations with an axis a thus form a group.

Theorem (Baer). Suppose that ci, i ∈ {1, 2} are distinct points upon a line a.
If the group of (ci, a)-collineations is nontrivial for both i ∈ {1, 2}, then the group
of elations of a is commutative. Furthermore, either all nontrivial elements of this
group are of infinite order, or they are of the same prime order.

Proof. Let ψ and ψ′ be two nontrivial elations with axis a. If they have distinct
centers, then they commute. Suppose that c1 is a center for both of them. Choose
nontrivial elation ψ2 with center c2. Then ψψ2 = ψ2ψ is an elation with center
c3 /∈ {c1, c2}. Hence ψ′ψψ2 = ψψ2ψ

′ = ψψ′ψ2, and thus ψ′ψ = ψψ′.
Suppose now that there exists a nontrivial elation of finite order. Then there

exists a nontrivial elation of a prime order p, say ψ1, with center c1. Let ψ2 be an
elation with center c2 6= c1. Then ψ3 = ψ1ψ2 is with center c3 /∈ {c1, c2}. Then
ψp
2 = ψp

3 is an elation, for which both c2 and c3 yield a center. This means that ψp
2

is the identity. The same argument may be then used to show that every nontrivial
elation with center c1 is of order p too. �

A line a is called a translation line if it is (c, a)-transitive for each c ∈ a. Note
that this definition may be alternatively expressed by saying that elations with axis
a are transitive on all points which are not upon a. (If they are transitive, they are
sharply transitive—in other words elations act regularly upon the set of all points
that are not incident to a.)

Theorem. Let a be a line with points c1 6= c2. If the plane is (ci, a)-transitive for
both i ∈ {1, 2}, then a is a translation line.

Proof. It suffices to mimick the proof of commutativity. Choose a point c3 on a that
is distinct from both c1 and c2. Fix a point x /∈ a, and a point y /∈ a, x 6= y, such
that x, y and c3 are collinear. Denote by si the line connecting x and ci, and by `i
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the line connecting ci and y. Furthermore, let xi be intersection of si and `j , j 6= i.
Choose a (ci, a)-collineation ψ such that ψi(x) = x. Then ψ2ψ1(x) = y = ψ1ψ2(x).
The collineation ψ = ψ1ψ2 is an elation that maps x upon y. The center of this
elation is thus equal to c3. �

A point c is said to be a translation point if the plane is (c, a)-transitive for any
line a passing through c. Notions of a translation line and a translation point are
dual. Amongs others, this means that a point c is a translation point if and only if
the perspectivities with center c are transitive on lines that do not pass through c.
Furthermore, we may state:

Dual facts. Let ai, i ∈ {1, 2}, be distinct lines passing through a point c. If the
group of (c, ai)-collineations is nontrivial for both i ∈ {1, 2}, then all elations with
center c form a group that is commutative. If the plane is (c, ai)-transitive for both
i ∈ {1, 2}, then it is c is a translation point

Let us state explicitly the following trivial observation:

Lemma. Let α be a collineation, a a line and c a point. The mapping ψ 7→ αψα−1

induces an isomorphism that maps the group of (c, a)-collineations upon the group
of (α(c), α(a))-collineations.

Corollary. Let α be a collineation, a a line and c a point. The plane is (c, a)-
transitive if and only if it is (α(c), α(a))-transitive. The line a is a translation line
if and only if it is α(a) is a translation line. The point c is translation point if and
only if α(c) is a translation point.

A projective plane in which each line is a translation line is called a Moufang
plane.

Lines which meet in a common point are called concurrent.

Proposition. A projective plane with three noncurrent translation lines is Mo-
ufang.

Proof. Choose two of these lines and consider the point c in which they meet. As
proved above (dual facts) this is a translation point. The group of perspectivities
with center c is transitive upon the lines that do not pass through c. If one of them
a translation line, all of them are translations lines. �

It may be proved that two translations lines suffice for the plane to be Moufang.
Furthermore, finite Moufang planes are desarguesian (see below). This means that
if a finite plane is not constructed from a finite field in the usual way, then the
plane possesses at most one translation line and at most one translation point.

Desarguesian planes. Triples of points (x1, x2, x3) and (y1, y2, y3) are said to be
centrally perspective if the following holds:

(1) Points x1, x2 and x3 are not collinear.
(2) Points y1, y2 and y3 are not collinear.
(3) xi 6= yi if 1 ≤ i ≤ 3.
(4) Let si be the line that connects xi and yi, 1 ≤ i ≤ 3. If j ∈ {1, 2, 3} and

j 6= i, then xj /∈ si and yj /∈ si.
(5) There exists a point c at which the lines s1, s2 and s3 meet.

Triples of points (x1, x2, x3) and (y1, y2, y3) are said to be axially perspective if
(1)–(4) are true and, in addition, the following holds:

(5’) Let mi be the line that connects xj and xk, and ni the line that connects
yj and yk, where {i, j, k} = {1, 2, 3}. Then there exists a line a such that
mi and ni meet on a for each i ∈ {1, 2, 3}.
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Triples (x1, x2, x3) and (y1, y2, y3) are often called triangles. The notation cho-
sen here emphasis that a certain correspondence between vertices of triangles is
assumed.

Let us observe the duality induced by (1)–(4). Under these assumptions it is
immediate to see that

(1*) Lines m1, m2 and m3 are not concurrent.
(2*) Lines n1, n2 and n3 are not concurrent.
(3*) mi 6= ni if 1 ≤ i ≤ 3.
(4*) Let zi be the point at which mi and ni meet, i ∈ {1, 2, 3}. If j ∈ {1, 2, 3}

and j 6= i, then zi /∈ mj and zi /∈ nj .
It is now clear that (m1,m2,m3) and (n1, n2, n3) are triples of dual points (lines)
that fulfil (1)–(4) in the dual projective plane. The dual configuration is centrally
perspective if and only if the initial configuration is axially perspective, and the
dual configuration is axially perspective if and only if the initial configuration is
centrally perspective..

Say that the plane is (c, a)-desarguesian if centrally perspective triples with
center c are axially perspective whenever a is the line that connects z2 and z2.

Proposition. Let a be a line and c a point. The plane is (c, a)-transitive if and
only if it is (c, a)-desarguesian.

Proof. Suppose first the (c, a)-transitivity. Let (x1, x2, x3) and (y1, y2, y3) be cen-
trally perspective triples with center c such that z2 and z3 is upon a. Now, z3 is
the intersection of m3, which passes through x1 and x2, and of n3, which passes
through y1 and y2. Let ψ be the (c, a)-collineation which maps x1 upon y1. Then
ψ maps x2 upon y2. Since z2 of m2, which goes through x1 and x3, and n2, which
goes through y1 and y3, there has to be ψ(x3) = y3 as well. This implies that m1 is
mapped upon n1. Since ψ fixes the intersection of m1 and a, this intersection has
to be upon n1. Therefore z1 ∈ a.

Suppose now that the plane is (c, a)-desarguesian. Choose x1 and y1 in such a
way that none of them belongs to a ∪ {c}, and that x1 6= y1. Our goal is to show
that there exists a (c, a)-collineation that sends x1 upon y1. To this end define
first partial mapping ψ1 that fixes each point of a ∪ {c} and is also defined at each
x2 /∈ s1 ∪ a, where s1 connects x1 and c. For such an x2 consider the line m3 that
connects x1 and x2, and denote by z3 the intersection of m3 and a. Denote by n3
the line connecting y1 and z3, and set ψ1(x2) = y2, where y2 is the intersection of
n3 and s2, where s2 connects x2 and c.

Suppose now that x2 /∈ s1 ∪ a is fixed. We shall define a partial mapping ψ2 in
a way which mimicks the definition of ψ1. This means that ψ2 sends x3 /∈ s2 ∪ a
upon point y3, which is the intersection of s3 and n1, where s3 connects c and x3,
and n1 connects y2 and z1, with z1 being the intersection of a and m1, which is the
line that connects x2 and x3.

The next aim is to show that ψ2(x3) = ψ1(x3) if x3 /∈ s1. This is clear if
x3 ∈ {c} ∪ a. Assume x3 /∈ {c} ∪ a. If x3 ∈ m3, then m1 = m3, z1 = z3, and thus
y3 = ψ1(x3) if x3 6= x1, and y1 = ψ2(x1). Assume x3 /∈ m3. Then (x1, x2, x3) and
(y1, y2, y3) are centrally perspective triples. Hence a carries the point z2, which is
the intersection of m2 and n2, where m2 connects x1 and x3, and n2 connects y2
and y3. This means that ψ1(x3) = y3.

Since ψ1 and ψ2 agree at all points where they are defined, their union determines
a mapping ψ that permutes points of the plane. It is clear that the definition of ψ is
independent of the choice of x2 /∈ s1∪a. It remains to show that ψ is a collineation,
i.e., that ψ(`) = ` for any line `. This is obvious if c ∈ ` or ` = a. Suppose that
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none of that is true. If x1, x2 ∈ `, x2 6= x1, then ` = m3 is mapped upon n3. If
x1 /∈ `, choose x2, x3 ∈ ` \ a, x2 6= x3. Then ` = m1 is mapped upon n1. �

Corollary. For a projective plane the following is equivalent:

(i) The plane is (c, a)-desarguesian for each point c and line a.
(ii) The plane is (c, a)-transitive for each point c and line a.

Planes which fulfil the condition of the preceding statement are called desargue-
sian.


