Basic definitions and perspectivities

Definition of projective planes. A projective plane consists of a set of points \mathcal{P} and set of lines \mathcal{L}. Each line is a subset of \mathcal{P}. The following holds:
(1) $\forall x, y \in \mathcal{P}: x \neq y \Rightarrow \exists!\ell \in \mathcal{L}$ such that $x, y \in \ell$;
(2) $\forall \ell, m \in \mathcal{L}: \ell \neq m \Rightarrow \exists$! $x \in \mathcal{P}$ such that $x \in m \cap \ell$; and
(3) $\exists x_{i} \in \mathcal{P} ; 1 \leq i \leq 4$, such that whenever $1 \leq i<j \leq 4$, then $x_{i} \neq x_{j}$ and $x_{k} \notin \ell$ if $\ell \in \mathcal{L},\left\{x_{i}, x_{j}\right\} \subseteq \ell$ and $k \in\{1,2,3,4\} \backslash\{i, j\}$.
Planes incident to the same line are called collinear. Point (3) may be thus rephrased by saying that there exist four points no three of which are collinear.

Remarks:
(a) One of \exists ! may be replaced by \exists, but not both of them (to get a counterexample double a point);
(b) point (3) is needed to avoid a situation when there is one long line each point of which is incident to a 2-point line, with all of the 2-point lines meeting in a common point that is not incident to the long line.
Facts which are easy to verify:
(i) All lines are of the same size (cardinality). In the finite case it is usual to say that the plane is of order n if the lines consist of $n+1$ points;
(ii) in the finite case each point is incident to $n+1$ lines and the overall number of both points and lines is equal to $n^{2}+n+1$;
(iii) the least possible order is 2 . Each projective plane of order 2 is isomorphic to the Fano plane.
(iv) Let x_{1}, \ldots, x_{4} be points no three of which are collinear. For $1 \leq i<j \leq 4$ denote by $\ell_{i, j}$ the line passing through x_{i} and x_{j}. There are six such lines from which there may chosen four such that no three of them meet in a common point (e.g., $\ell_{1,2}, \ell_{2,3}, \ell_{3,4}$ and $\ell_{4,1}$.
Write $x I \ell$ if $x \in \mathcal{P}$ belongs to $\ell \in \mathcal{L}$. This may be also expressed by saying that x is incident to ℓ or that ℓ is incident to x.

Consider I as subset of $\mathcal{P} \times \mathcal{L}$. Another way how to interpret I is to regard it as a bipartite graph with partitions \mathcal{L} and \mathcal{P}. Axioms of projective plane may be expressed in this form:
(1) $\forall x, y \in \mathcal{P}: x \neq y \Rightarrow \exists!\ell \in \mathcal{L}$ with $x I \ell$ and $y I \ell$;
(2) $\forall \ell, m \in \mathcal{L}: \ell \neq m \Rightarrow \exists!x \in \mathcal{P}$ with $x I \ell$ and $x I m$;
(3) $\exists x_{1}, \ldots, x_{4} \in \mathcal{P}$ such that if $1 \leq i<j \leq 4$, then $x_{i} \neq x_{j}$, and $x_{k} I \ell$ is not true if $x_{i} I \ell, x_{j} I \ell$ and $k \in\{1,2,3,4\} \backslash\{i, j\}$.
Because of point (iv) above the following statement is clear:
If $(\mathcal{P}, \mathcal{L}, I)$ fulfills (1-3), then $(\mathcal{L}, \mathcal{P}, J)$ fulfills (1-3) too, with $\ell J x \Leftrightarrow x I \ell$.
This defines the dual projective plane. A dual line thus consists of all lines passing through a given point, while a dual point is a line.

Perspectivities. A collineation is an automorphism of a projective plane. In the classical seting this is a permutation ψ of \mathcal{P} that fulfils condition

$$
\ell \text { is a line } \Leftrightarrow \psi(\ell) \text { is a line. }
$$

In the setting of incidence geometry a collineation is a pair (α, β) such that α permutes \mathcal{P}, β permutes \mathcal{L} and

$$
x I \ell \Leftrightarrow \alpha(x) I \beta(\ell)
$$

It is easy to see that both definitions are equivalent. Note that (α, β) is completely determined by α, and that (α, β) is a collineation in the sense of incidence geometry if and only if α is a collineation in the classical sense.

The notion of collineation is also being used to express an isomorphism of two distinct projective planes. Some notions defined here for automorphisms may be straightforwardly generalized to isomorphisms. The same is true for statements involving automorphisms.

A mapping ψ is called collinear if any set of collinear points is mapped upon a set of collinear points. This is the same as saying that any three distinct collinear points are mapped upon collinear points.

It is easy to see that:

- A permutation ψ is a collineation if and only if both ψ and ψ^{-1} are collinear; while
- in the finite case ψ is a collineation if and only if ψ is collinear.

Let ψ be a collineation. A point x is said to be a center of ψ if $\psi(\ell)=\ell$ whenever $x I \ell$. A line is said to be an axis of ψ is $\psi(x)=x$ whenever $x I \ell$.

By these definitions, the notions of center and axis are dual. (This means that x is a center of ψ if and only if x is an axis of ψ in the dual plane.)

This is easy:

- A collineation with two centers is trivial (i.e., the identity mapping); a collineation with two axes is trivial.
- If ℓ is an axis of a collineation ψ and $x \notin \ell$ is a point fixed by ψ, then x is a center of ψ.
- If x is a center of a collineation ψ and ℓ is a line fixed by ψ such that $x \notin \ell$, then ℓ is an axis of ψ.

Proposition. A collineation posseses an axis if and only if it possesses a center.
Proof. Because of duality it suffices to prove the implication that assumes the existence of an axis. As remarked above, if ψ fixes a point not upon the axis ℓ, then the point is a center. Suppose that ψ moves every point that is not incident to ℓ. For $x \notin \ell$ denote by p_{x} the line connecting x and $\psi(x)$. It is clear that $\psi\left(p_{x}\right)=p_{x}$. Suppose that there exist $x, y \notin \ell$ such that $p_{x} \neq p_{y}$ and the intersection of p_{x} and p_{y} is not upon ℓ. Such an intersection is fixed by ψ, and hence it is a center of ψ. The remaining possibility is that if $x, y \notin \ell$, then p_{x} and p_{y} meet upon ℓ. It is clear that in such a case all p_{x} meet at the same point of ℓ. That point is the center of ψ.

A collineation with center and axis is called a perspectivity. If c is the center and a is the axis, then the perspectivity is also called a (c, a)-collineation.

Proposition. Let c be a point and a a line. If none of points x and y is incident to a, and both are distinct from c, then there exists at most one (c, a)-collineation ψ such that $\psi(x)=y$.

Proof. Let ψ be such a collineation and let $z \notin a$ be a point such that z, c and x are not collinear. Thus $s \neq \ell$, where s is the line connecting z and c, and ℓ is the line connecting z and x. Denote by u the intersection of ℓ and a, and note that $\psi(\ell)$ is the line connecting u and y. Since $\psi(s)=s$, the image of z is equal to the intersection of s and $\psi(\ell)$. This gives $\psi(z)$ for every z that is not upon the line t that connects c and x. Considering a pair $(z, \psi(z))$ in the same manner provides images for points upon t.

A (c, a)-collineation is called an elation if $c \in a$, and a homology if $c \notin a$. Each nontrivial perspectivity is thus either an elation or a homology.

The projective plane is called (c, a)-transitive if for any $x, y \notin a \cup\{c\}$ such that x, y and c are collinear there exists a (c, a)-collineation ψ in which $\psi(x)=y$.

Lemma. Let x and c be distinct points, and let a be a line. If for any point y such that x, y and c are collinear, $y \notin a \cup\{x, c\}$, there exists $a(c, a)$-collineation in which $\psi(x)=y$, then the projective plane is (c, a)-transitive.
Proof. Let x^{\prime}, y^{\prime} and c be three distinct collinear points, with $x^{\prime}, y^{\prime} \notin a$. Let ψ be the collineation that maps x upon the intersection y of ℓ^{\prime} and s, where ℓ connects x and $x^{\prime}, \ell^{\prime}$ connects y^{\prime} and $\ell \cap a$, and s connects x and c. Denote by ψ the (c, a)-collineation with $\psi(x)=y$. Then $\psi(\ell)=\ell^{\prime}$. Thus $\psi\left(x^{\prime}\right)=y^{\prime}$, since y^{\prime} is the intersection of ℓ^{\prime} and s^{\prime}, where the latter line connects x^{\prime} and c.

It is immediately clear that all (c, a)-collineations form a group.
Elations. The first step is to observe that elations $\psi_{i}, i \in\{1,2\}$, with the same axis a and with centers $c_{1} \neq c_{2}$ commute, and that their composition yields an elation with axis a and a center $c_{3} \notin\left\{c_{1}, c_{2}\right\}$.

Proof. The collineation $\psi_{1} \psi_{2}$ has to be a perspectivity since it possesses an axis. Let c be its center. If $c \notin a$, then $\psi_{2}(c) \neq c$ is upon the line connecting c and c_{2}, and $\psi_{1} \psi_{2}(c)$ upon the line connecting $\psi_{2}(c)$ and c_{1}. This line is distinct from the line connecting c and c_{1}. Hence $\psi_{1} \psi_{2}(c) \neq c$. That is a contradiction. Therefore $c \in a$. All (c, a)-collineations form a group. Hence $c \notin\left\{c_{1}, c_{2}\right\}$.

What remains is to show the commutativity. Choose $x \notin a$. We shall show that $\psi_{2} \psi_{1}(x)=\psi_{1} \psi_{2}(x)$. Denote by s_{i} the connection of x and c_{i}, and put $x_{i}=\psi_{i}(x)$. Denote by ℓ_{i} the connection of c_{i} and $x_{j}, j \neq i$. Then $\psi_{i}\left(\ell_{i}\right)=\ell_{i}=\psi_{j}\left(s_{i}\right)$. Since x_{i} is equal to the intersection of s_{i} and $\ell_{j}, \psi_{j}\left(x_{i}\right)$ is at the intersecion of ℓ_{i} and ℓ_{j}. Hence $\psi_{j}\left(x_{i}\right)=\psi_{i}\left(x_{j}\right)$.

All elations with an axis a thus form a group.
Theorem (Baer). Suppose that $c_{i}, i \in\{1,2\}$ are distinct points upon a line a. If the group of $\left(c_{i}, a\right)$-collineations is nontrivial for both $i \in\{1,2\}$, then the group of elations of a is commutative. Furthermore, either all nontrivial elements of this group are of infinite order, or they are of the same prime order.

Proof. Let ψ and ψ^{\prime} be two nontrivial elations with axis a. If they have distinct centers, then they commute. Suppose that c_{1} is a center for both of them. Choose nontrivial elation ψ_{2} with center c_{2}. Then $\psi \psi_{2}=\psi_{2} \psi$ is an elation with center $c_{3} \notin\left\{c_{1}, c_{2}\right\}$. Hence $\psi^{\prime} \psi \psi_{2}=\psi \psi_{2} \psi^{\prime}=\psi \psi^{\prime} \psi_{2}$, and thus $\psi^{\prime} \psi=\psi \psi^{\prime}$.

Suppose now that there exists a nontrivial elation of finite order. Then there exists a nontrivial elation of a prime order p, say ψ_{1}, with center c_{1}. Let ψ_{2} be an elation with center $c_{2} \neq c_{1}$. Then $\psi_{3}=\psi_{1} \psi_{2}$ is with center $c_{3} \notin\left\{c_{1}, c_{2}\right\}$. Then $\psi_{2}^{p}=\psi_{3}^{p}$ is an elation, for which both c_{2} and c_{3} yield a center. This means that ψ_{2}^{p} is the identity. The same argument may be then used to show that every nontrivial elation with center c_{1} is of order p too.

A line a is called a translation line if it is (c, a)-transitive for each $c \in a$. Note that this definition may be alternatively expressed by saying that elations with axis a are transitive on all points which are not upon a. (If they are transitive, they are sharply transitive - in other words elations act regularly upon the set of all points that are not incident to a.)

Theorem. Let a be a line with points $c_{1} \neq c_{2}$. If the plane is $\left(c_{i}, a\right)$-transitive for both $i \in\{1,2\}$, then a is a translation line.
Proof. It suffices to mimick the proof of commutativity. Choose a point c_{3} on a that is distinct from both c_{1} and c_{2}. Fix a point $x \notin a$, and a point $y \notin a, x \neq y$, such that x, y and c_{3} are collinear. Denote by s_{i} the line connecting x and c_{i}, and by ℓ_{i}
the line connecting c_{i} and y. Furthermore, let x_{i} be intersection of s_{i} and $\ell_{j}, j \neq i$. Choose a $\left(c_{i}, a\right)$-collineation ψ such that $\psi_{i}(x)=x$. Then $\psi_{2} \psi_{1}(x)=y=\psi_{1} \psi_{2}(x)$. The collineation $\psi=\psi_{1} \psi_{2}$ is an elation that maps x upon y. The center of this elation is thus equal to c_{3}.

A point c is said to be a translation point if the plane is (c, a)-transitive for any line a passing through c. Notions of a translation line and a translation point are dual. Amongs others, this means that a point c is a translation point if and only if the perspectivities with center c are transitive on lines that do not pass through c. Furthermore, we may state:
Dual facts. Let $a_{i}, i \in\{1,2\}$, be distinct lines passing through a point c. If the group of $\left(c, a_{i}\right)$-collineations is nontrivial for both $i \in\{1,2\}$, then all elations with center c form a group that is commutative. If the plane is $\left(c, a_{i}\right)$-transitive for both $i \in\{1,2\}$, then it is c is a translation point

Let us state explicitly the following trivial observation:
Lemma. Let α be a collineation, a a line and c a point. The mapping $\psi \mapsto \alpha \psi \alpha^{-1}$ induces an isomorphism that maps the group of (c, a)-collineations upon the group of $(\alpha(c), \alpha(a))$-collineations.

Corollary. Let α be a collineation, a a line and c a point. The plane is (c, a) transitive if and only if it is $(\alpha(c), \alpha(a))$-transitive. The line a is a translation line if and only if it is $\alpha(a)$ is a translation line. The point c is translation point if and only if $\alpha(c)$ is a translation point.

A projective plane in which each line is a translation line is called a Moufang plane.

Lines which meet in a common point are called concurrent.
Proposition. A projective plane with three noncurrent translation lines is Moufang.

Proof. Choose two of these lines and consider the point c in which they meet. As proved above (dual facts) this is a translation point. The group of perspectivities with center c is transitive upon the lines that do not pass through c. If one of them a translation line, all of them are translations lines.

It may be proved that two translations lines suffice for the plane to be Moufang. Furthermore, finite Moufang planes are desarguesian (see below). This means that if a finite plane is not constructed from a finite field in the usual way, then the plane possesses at most one translation line and at most one translation point.

Desarguesian planes. Triples of points $\left(x_{1}, x_{2}, x_{3}\right)$ and $\left(y_{1}, y_{2}, y_{3}\right)$ are said to be centrally perspective if the following holds:
(1) Points x_{1}, x_{2} and x_{3} are not collinear.
(2) Points y_{1}, y_{2} and y_{3} are not collinear.
(3) $x_{i} \neq y_{i}$ if $1 \leq i \leq 3$.
(4) Let s_{i} be the line that connects x_{i} and $y_{i}, 1 \leq i \leq 3$. If $j \in\{1,2,3\}$ and $j \neq i$, then $x_{j} \notin s_{i}$ and $y_{j} \notin s_{i}$.
(5) There exists a point c at which the lines s_{1}, s_{2} and s_{3} meet.

Triples of points $\left(x_{1}, x_{2}, x_{3}\right)$ and $\left(y_{1}, y_{2}, y_{3}\right)$ are said to be axially perspective if (1)-(4) are true and, in addition, the following holds:
(5') Let m_{i} be the line that connects x_{j} and x_{k}, and n_{i} the line that connects y_{j} and y_{k}, where $\{i, j, k\}=\{1,2,3\}$. Then there exists a line a such that m_{i} and n_{i} meet on a for each $i \in\{1,2,3\}$.

Triples $\left(x_{1}, x_{2}, x_{3}\right)$ and $\left(y_{1}, y_{2}, y_{3}\right)$ are often called triangles. The notation chosen here emphasis that a certain correspondence between vertices of triangles is assumed.

Let us observe the duality induced by (1)-(4). Under these assumptions it is immediate to see that
$\left(1^{*}\right)$ Lines m_{1}, m_{2} and m_{3} are not concurrent.
(2*) Lines n_{1}, n_{2} and n_{3} are not concurrent.
(3*) $m_{i} \neq n_{i}$ if $1 \leq i \leq 3$.
$\left(4^{*}\right)$ Let z_{i} be the point at which m_{i} and n_{i} meet, $i \in\{1,2,3\}$. If $j \in\{1,2,3\}$ and $j \neq i$, then $z_{i} \notin m_{j}$ and $z_{i} \notin n_{j}$.
It is now clear that $\left(m_{1}, m_{2}, m_{3}\right)$ and (n_{1}, n_{2}, n_{3}) are triples of dual points (lines) that fulfil (1)-(4) in the dual projective plane. The dual configuration is centrally perspective if and only if the initial configuration is axially perspective, and the dual configuration is axially perspective if and only if the initial configuration is centrally perspective..

Say that the plane is (c, a)-desarguesian if centrally perspective triples with center c are axially perspective whenever a is the line that connects z_{2} and z_{2}.

Proposition. Let a be a line and c a point. The plane is (c, a)-transitive if and only if it is (c, a)-desarguesian.

Proof. Suppose first the (c, a)-transitivity. Let $\left(x_{1}, x_{2}, x_{3}\right)$ and $\left(y_{1}, y_{2}, y_{3}\right)$ be centrally perspective triples with center c such that z_{2} and z_{3} is upon a. Now, z_{3} is the intersection of m_{3}, which passes through x_{1} and x_{2}, and of n_{3}, which passes through y_{1} and y_{2}. Let ψ be the (c, a)-collineation which maps x_{1} upon y_{1}. Then ψ maps x_{2} upon y_{2}. Since z_{2} of m_{2}, which goes through x_{1} and x_{3}, and n_{2}, which goes through y_{1} and y_{3}, there has to be $\psi\left(x_{3}\right)=y_{3}$ as well. This implies that m_{1} is mapped upon n_{1}. Since ψ fixes the intersection of m_{1} and a, this intersection has to be upon n_{1}. Therefore $z_{1} \in a$.

Suppose now that the plane is (c, a)-desarguesian. Choose x_{1} and y_{1} in such a way that none of them belongs to $a \cup\{c\}$, and that $x_{1} \neq y_{1}$. Our goal is to show that there exists a (c, a)-collineation that sends x_{1} upon y_{1}. To this end define first partial mapping ψ_{1} that fixes each point of $a \cup\{c\}$ and is also defined at each $x_{2} \notin s_{1} \cup a$, where s_{1} connects x_{1} and c. For such an x_{2} consider the line m_{3} that connects x_{1} and x_{2}, and denote by z_{3} the intersection of m_{3} and a. Denote by n_{3} the line connecting y_{1} and z_{3}, and set $\psi_{1}\left(x_{2}\right)=y_{2}$, where y_{2} is the intersection of n_{3} and s_{2}, where s_{2} connects x_{2} and c.

Suppose now that $x_{2} \notin s_{1} \cup a$ is fixed. We shall define a partial mapping ψ_{2} in a way which mimicks the definition of ψ_{1}. This means that ψ_{2} sends $x_{3} \notin s_{2} \cup a$ upon point y_{3}, which is the intersection of s_{3} and n_{1}, where s_{3} connects c and x_{3}, and n_{1} connects y_{2} and z_{1}, with z_{1} being the intersection of a and m_{1}, which is the line that connects x_{2} and x_{3}.

The next aim is to show that $\psi_{2}\left(x_{3}\right)=\psi_{1}\left(x_{3}\right)$ if $x_{3} \notin s_{1}$. This is clear if $x_{3} \in\{c\} \cup a$. Assume $x_{3} \notin\{c\} \cup a$. If $x_{3} \in m_{3}$, then $m_{1}=m_{3}, z_{1}=z_{3}$, and thus $y_{3}=\psi_{1}\left(x_{3}\right)$ if $x_{3} \neq x_{1}$, and $y_{1}=\psi_{2}\left(x_{1}\right)$. Assume $x_{3} \notin m_{3}$. Then $\left(x_{1}, x_{2}, x_{3}\right)$ and $\left(y_{1}, y_{2}, y_{3}\right)$ are centrally perspective triples. Hence a carries the point z_{2}, which is the intersection of m_{2} and n_{2}, where m_{2} connects x_{1} and x_{3}, and n_{2} connects y_{2} and y_{3}. This means that $\psi_{1}\left(x_{3}\right)=y_{3}$.

Since ψ_{1} and ψ_{2} agree at all points where they are defined, their union determines a mapping ψ that permutes points of the plane. It is clear that the definition of ψ is independent of the choice of $x_{2} \notin s_{1} \cup a$. It remains to show that ψ is a collineation, i.e., that $\psi(\ell)=\ell$ for any line ℓ. This is obvious if $c \in \ell$ or $\ell=a$. Suppose that
none of that is true. If $x_{1}, x_{2} \in \ell, x_{2} \neq x_{1}$, then $\ell=m_{3}$ is mapped upon n_{3}. If $x_{1} \notin \ell$, choose $x_{2}, x_{3} \in \ell \backslash a, x_{2} \neq x_{3}$. Then $\ell=m_{1}$ is mapped upon n_{1}.
Corollary. For a projective plane the following is equivalent:
(i) The plane is (c, a)-desarguesian for each point c and line a.
(ii) The plane is (c, a)-transitive for each point c and line a.

Planes which fulfil the condition of the preceding statement are called desarguesian.

