
5 Numerical solution of the radial
Schrödinger equation

In the last lecture we computed analytically phase shifts for several trivial examples
of short-range interaction potentials. However, in most realistic situations an analytic
solution is not available. Therefore we have to use numerical techniques to solve the
radial equation

�
d2

dr2
− l(l + 1)

r2
+ k2 − U(r)

�
ul(kr) = 0, (5.1)

U(r) = 2m/�2V (r), (5.2)

with the boundary condition at origin

ul(0) = 0. (5.3)

We are assuming that the potential U(r) is short-range, i.e. it satisfies the condi-
tions (4.15). This allows us to preform the matching at a finite radius, r > r0, where
U(r) << l(l+1)

r2
and the particle can be considered free. For scattering calculations we

only need the phase shift δl(k) which can be used to compute all observables. This quan-
tity is obtained by matching the numerically determined solution ul(kr) to the free form
valid for r > r0

ul(kr) = N [cos(δl(k))ĵl(kr) + sin(δl(k))n̂l(kr)]. (5.4)

Asymptotically, this solution behaves as

ul(kr) ∼ sin(kr − lπ/2 + δl(k)), r → ∞. (5.5)

5.1 Numerov method

This is a simple, yet for our purposes a sufficiently efficient method for computation of
scattering and bound solutions of (5.1). In fact the method can be used to solve even
inhomogeneous forms of (5.1) and applied to solve e.g. Poisson equation or to find the
regular solution, see Chapter 8. We will derive the working equations of the method for
the inhomogeneous case and then specialize it for solution of (5.1). We start by rewriting
the equation using a simplified notation:

d2

dr2
Ψ(r) + k2(r)Ψ(r) = S(r), (5.6)

k2(r) = k2 − l(l + 1)

r2
− U(r). (5.7)
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5 Numerical solution of the radial Schrödinger equation

Figure 5.1: In the Numerov method the selected interval [A,B] is discretized with a
constant step of size h. The wavefunction is then represented as a set of
numbers representing its values in this interval.

Here k(r) can be thought of as the instantaneous momentum of the particle and S(r) is
the source term.

To solve this equation numerically requires requires replacing the derivative d2

dr2
Ψ(r)

with a suitable approximation. We start by discretizing space with equal step h, see
Fig. 5.1. Thus the function Ψ(r) becomes a set of values Ψi = Ψ(ri), i = 1, . . . , n,
representing the values of the function on the grid. Derivative of a function can be
approximated with the help of Taylor expansion

Ψn+1 = Ψn +

hΨ
�
n +

h2

2
Ψ

��
n +

h3

3!
Ψ

���
n +

h4

4!
Ψ

����
n +

h5

5!
Ψv

n +O(h6), (5.8)

Ψn−1 = Ψn−1 −

hΨ
�
n−1 +

h2
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Ψ
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h3
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���
n−1 +

h4

4!
Ψ

����
n−1 −

h5

5!
Ψv

n−1 +O(h6). (5.9)

The contributions of odd powers of h are eliminated by taking the following linear com-
bination of the preceding two equations

Ψn+1 − 2Ψn +Ψn−1 = h2Ψ
��
n +

h4

12
Ψ

����
n +O(h6). (5.10)

The last equation is probably a familiar expression for you. If we neglected the term
proportional to Ψ

����
n we could approximate the second derivative of a function to order

O(h2):

Ψn+1 − 2Ψn +Ψn−1

h2
= Ψ

��
n +O(h2). (5.11)

However, we can do much better utilizing Eq (5.6) to approximate also the fourth deriva-
tive in Eq (5.10):

Ψ
����
n =

d2

dr2
�
S(r)− k2(r)Ψ(r)

� ����
r=rn

=
d2

dr2
[t(r)]

����
r=rn

, (5.12)

where we have defined t(r) = S(r) − k2(r)Ψ(r). We can now approximate the last
expression and obtain

d2

dr2
[t(r)]

����
r=rn

=
1

h2
[tn+1 − 2tn + tn−1] +O(h2). (5.13)
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5.1 Numerov method

Note that we’ve not written out the higher order term proportional to t
����
n since we don’t

need it: when Eq (5.13) is inserted into Eq (5.10) we find that to order O(h6) we have

Ψn+1 − 2Ψn +Ψn−1 = h2Ψ
��
n +

h2

12
[tn+1 − 2tn + tn−1] +O(h6), (5.14)

since h4O(h2) = O(h6). Clearly, this is two orders of magnitude better approximation
than the one we would have had obtained in the lowest order approximation Eq (5.11).
Therefore our approximation for the second derivative from Eq (5.6) is

d2

dr2
Ψ(r)

����
r=rn

=
1

h2
[Ψn+1 − 2Ψn +Ψn−1]−

1

12
[tn+1 − 2tn + tn−1] +O(h4). (5.15)

We now insert this result back into Eq (5.6), substitute for t(r) = S(r)− k2(r)Ψ(r) and
simplify with the goal to isolate the terms multiplying Ψn+1, Ψn and Ψn−1:

1

h2
[Ψn+1 − 2Ψn +Ψn−1]−

1

12
[tn+1 − 2tn + tn−1] = tn, (5.16)

1

h2
[Ψn+1 − 2Ψn +Ψn−1]−

1

12
[tn+1 + 10tn + tn−1] = 0, (5.17)

1

h2
[Ψn+1 − 2Ψn +Ψn−1]−

1

12

�
Sn+1 − k2n+1Ψn+1 + 10Sn − 10k2nΨn + Sn−1 − k2n−1Ψn−1

�
= 0, (5.18)

Ψn+1(1 +
h2

12
k2n+1)− 2Ψn(1−

5h2

12
k2n) +Ψn−1(1 +

h2

12
k2n−1)−

h2

12
(Sn+1 + 10Sn + Sn−1) = 0. (5.19)

The last equation could be used to solve the inhomogeneous Schrödinger equation. How-
ever, here we specialize to the homogeneous case and finally obtain

Ψn+1(1 +
h2

12
k2n+1)− 2Ψn(1−

5h2

12
k2n) +Ψn−1(1 +

h2

12
k2n−1) = 0. (5.20)

Application of the method is straightforward. To propagate towards larger r express
Ψn+1 in terms of the function values at the two previous points Ψn and Ψn−1. To
propagate towards smaller r express Ψn−1 in terms of Ψn and Ψn+1. This way the
solution can be obtained given two neighbouring values of the wavefunction.

How do we obtain the starting values? For scattering problems we make use of the
boundary condition at r = 0 and set

Ψ0 = 0, (5.21)
Ψ1 = A, (5.22)

where A is an arbitrary constant. It is OK to leave the constant A arbitrary because
we have not fixed normalization of the wavefunction: the Schrödinger equation is linear
so a solution multiplied by an arbitrary constant also solves the equation. For bound
solutions the principle is similar and will be explained below.
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5 Numerical solution of the radial Schrödinger equation

5.1.1 Phase shifts

In scattering problems energy is fixed and the task is to find the phase shift. To do
that we need to use Eq (5.20) to propagate from r = 0 all the way to the potential-free
region r > r0. Let r1 and r2 > r1 be two points (not necessarily close) in this region, see
Fig. 5.2a. Then the solution at those two points is given by Eq (5.4)

Ψ(r1) = N [cos(δl(k))ĵl(kr1) + sin(δl(k))n̂l(kr1)], (5.23)
Ψ(r2) = N [cos(δl(k))ĵl(kr2) + sin(δl(k))n̂l(kr2)], (5.24)

where N is an arbitrary normalization of the wavefunction. We want to match our
numerical solution (the left hand sides) to this form. The two equations above constitute
a set of two equations for two unknowns. However, since we only need the phase shift
we take the ratio of the two equations to dispense with the normalization

Ψ(r1)

Ψ(r2)
= G =

cos(δl(k))ĵl(kr1) + sin(δl(k))n̂l(kr1)

cos(δl(k))ĵl(kr2) + sin(δl(k))n̂l(kr2)
. (5.25)

Eliminating the cos(δl(k)) term we obtain after trivial manipulations

tan δl(k) =
ĵl(kr1)−Gĵl(kr2)

Gn̂l(kr2)− n̂l(kr1)
, (5.26)

where G is the value obtained from numerical intergation. From this equation the phase
shift can be calculated to within an arbitrary multiple of π.

5.1.2 Bound states

When we search for bound states the task is reversed: the boundary conditions are fixed
and we look for the eigenenergy E. One method of obtaining bound states is the shooting
method which propagates from r = 0 and looks for energies which result in wavefunctions
decaying to zero at r >> r0. This way all eigenenergies can be in principle determined.
However, it turns out that this approach may become numerically unstable on account
of admixture of an exponentially increasing solution (this is the second independent
and unphysical, solution of the radial Schrödinger equation in the classically forbidden
region), see below. A numerically stable approach is obtained propagating from both
sides: from zero and from a large (asymptotic) radius. Energy of the bound state is then
found by smoothly matching the two solutions at some fixed matching radius rM , see
Fig. 5.2b.

To perform the matching we first need to normalize one strand of the solution so
that Ψ<(rM ) = Ψ>(rM ). Then we are ready to test matching of the derivatives. Let
dΨ<

dr and dΨ>

dr be the derivatives of the propagated wavefunction at r = rM obtained by
propagating inwards and outwards, respectively

dΨ<

dr
≈ Ψ<(rM )−Ψ<(rM−1)

h
, (5.27)

dΨ>

dr
≈ Ψ>(rM )−Ψ>(rM−1)

h
. (5.28)
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5.1 Numerov method

Then the condition for their equality is written as:

dΨ<

dr
− dΨ>

dr
≈ Ψ<(rM )−Ψ<(rM−1)−Ψ>(rM ) +Ψ>(rM−1)

h
= (5.29)

Ψ>(rM−1)−Ψ<(rM−1)

h
= 0. (5.30)

A reasonable choice for the position of the matching point is close to the point where the
wavefunction has it is first local maximum, i.e. Ψ>(rn+1)/Ψ>(rn), see Fig. 5.2b.

Why do we use a different method for the bound and the scattering states? The reason
is that if we propagate a bound solution outwards from the first to the second classically
forbidden (asymptotic) region we could encounter a numerical instability in the form of
divergence of the numerical solution. Why? This is because in the classically forbidden
region (E < V (r)) there are two solutions of the Schrödinger equation

u
0,(+)
l (κr) ∼ exp[−κr], (5.31)

u
0,(−)
l (κr) ∼ exp[+κr]. (5.32)

We’re interested only in the physical one which behaves like u
0,(+)
l (κr). Nevertheless,

any numerical inaccuracy introduced in the course of the forward propagation up to the
entrance point into the second classically allowed region is equivalent to introducing an
admixture (however small) of the unwanted exponentially diverging solution:

ul,Numerov(kr) = ul(kr) + �u
0,(+)
l (kr), E < V (r), (5.33)

where ul(kr) is the exact solution. There will always be some inaccuracy in a numerical
propagation. Eventually, the exponentially growing contamination completely takes over
in magnitude and obscures the physically relevant solution. The same problem would
occur, of course, if we propagated inwards from the asymptotic region since then in
the first (i.e. closest to r = 0) classically forbidden region the solution would again
pick up the unwanted exponentially increasing solution ∼ exp[−κr]. The cure for this
problem is precisely the method described above: propagate inwards and outwards from
both asymptotic regions without entering the classically forbidden region twice. This
is ensured by matching the two pieces of the wavefunction inside the classically allowed
region, e.g. at the well-defined point rM .

It is clear now why we didn’t have to employ this approach for the scattering states
(i.e. k > 0): either there is no classically forbidden region (usually for l = 0) or there is
typically only one such region close to the origin (in case of l > 0), where the angular
momentum barrier dominates. Perhaps there can be one or more classically forbidden
sections for larger r if there are “tunneling" regions in the effective potential. However,
these regions tend to be fairly short and the barrier small so typically the pure outwards
propagation works well.

Nevertheless we note that we could obtain the phase shifts using the same approach
as for the bound states: propagate for the given energy (momentum), inwards from
the potential-free region Eq (5.4) starting with some guess for δl(k) and an arbitrary
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5 Numerical solution of the radial Schrödinger equation

normalization N and propagate outwards from r = 0 as described above. The correct
phase shift for momentum k is the one for which the two pieces of the wavefunction join
smoothly at r = rM .
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