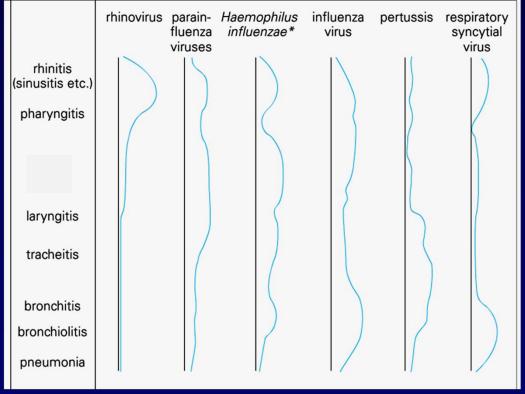
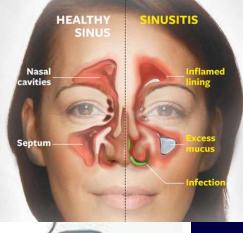
Respiratory infections

Pavel Drevinek Department of Medical Microbiology

2nd Faculty of Medicine, Charles University Motol University Hospital


Layout

- Introduction
- Material for investigation, examination methods
- Major pathogens
- Upper airway infections
- Lower airway infections
 - community acquired pneumonia
 - typical agents
 - atypical agents (bacterial, viral)
 - hospital acquired pneumonia
 - Other: chronic infections, immunocompromised


- most common infections worldwide
- often epidemic outbreaks: droplet transmission; direct contact seasonal pattern

- acute or chronic

- community acquired or nosocomial
- bacterial or viral (with the risk of bacterial superinfection) ... or fungal
 - the same microorganism can cause different diseases
 - from mild to life threatening

Respiratory tract: anatomy

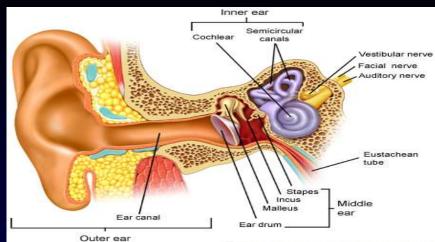
Conductive zone:

Respiratory zone:

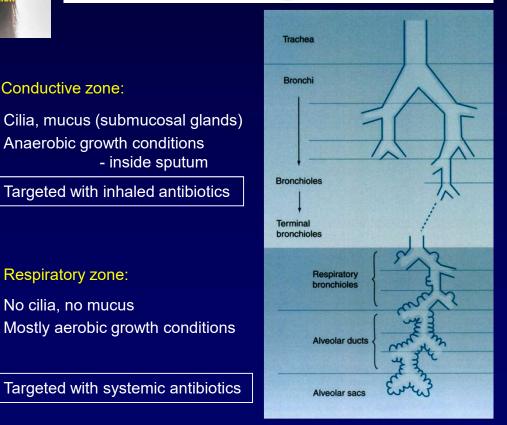
No cilia, no mucus

Upper respiratory tract Nasal cavity

Pharynx


Larynx

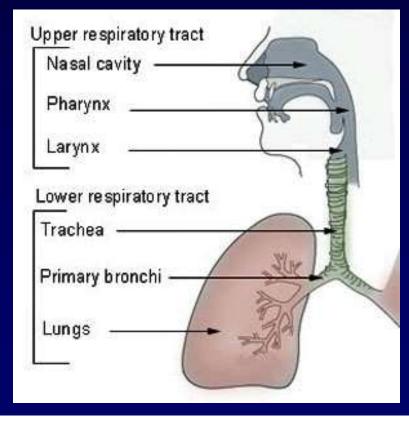
Lower respiratory tract


Trachea

Lungs

Primary bronchi

virtualmedicalcentre.com®


Respiratory tract: one of important ports of entry

- some infections remain there
- some spread further
 - per continuitatem (S. pneumoniae)
 - via blood (S. pneumoniae, TB, measles)
 - systemic effect of toxin (scarlet fever, diptheria, pertussis)

Respiratory tract: naturally colonized

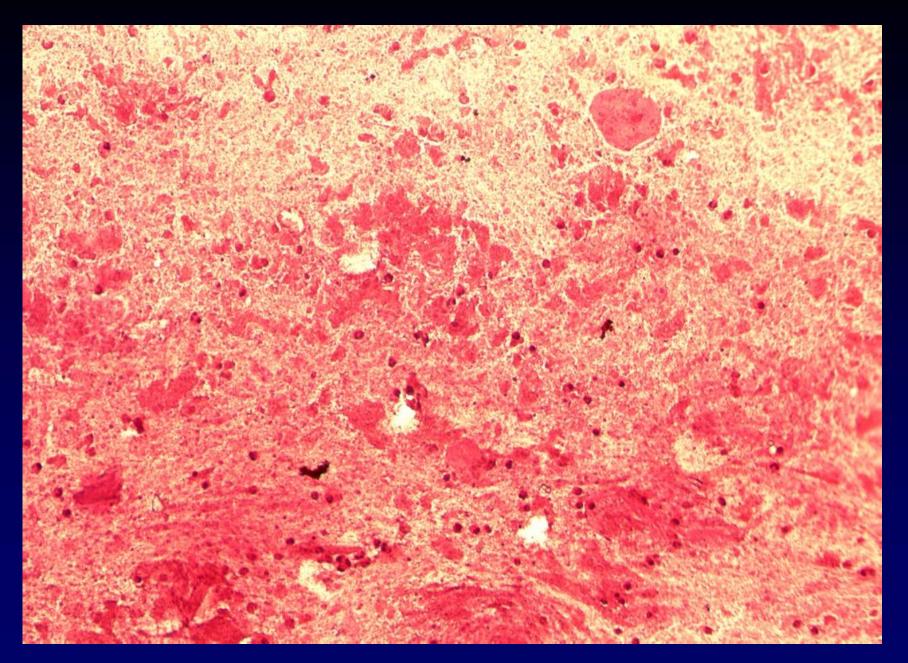
- not every bug means infection (microbiota)

.

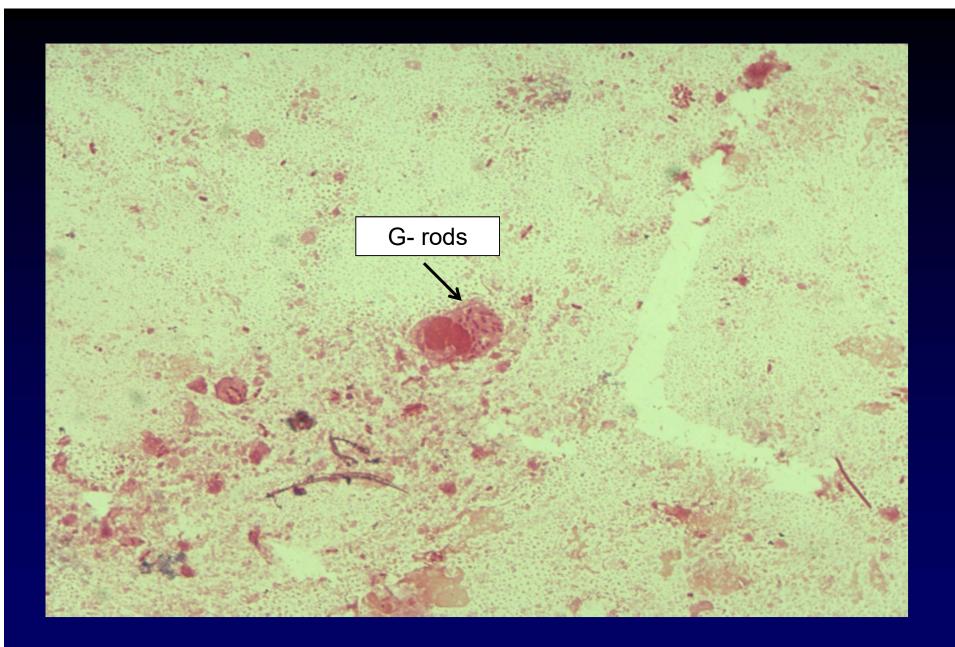
- staphylococci, diphteroids, *S. aureus*
- *H. influenzae*, *S. pneumoniae* (over 50% of children), viridans streptococci, neisseria, meningococci, enterobacteria, candida

• Lung microbiome: streptococci, haemophilus, anaerobes, pseudomonads

Layout


- Introduction
- Material for investigation, examination methods
- Major pathogens
- Upper airway infections
- Lower airway infections
- - community acquired pneumonia
 - typical agents
 - atypical agents (bacterial, viral)
 - hospital acquired pneumonia
 - Other: chronic infections, immunocompromised

Suitable material for investigation

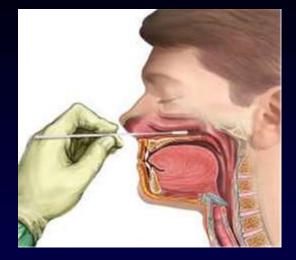


• SPUTUM

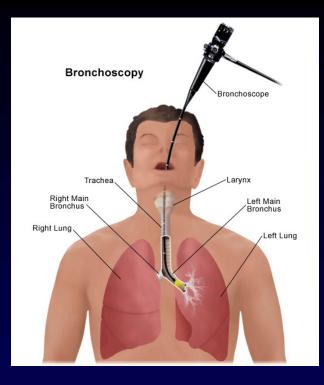
- microscopy (to validate sputum)

zoom 10x10

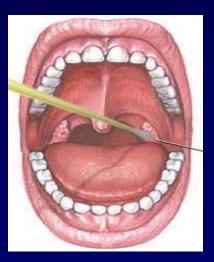
zoom 10x100


Suitable material for investigation

• SPUTUM


- microscopy (to validate sputum)
- culture (incl. quantification)
- molecular genetics

Induced sputum



nasopharyngeal swab
viral dg. (PCR, Ag)
pertussis, atypical pathogens

- bronchoalveolar lavage (BAL)
 - microscopy, culture, PCR
 - Ag of molds

- throat/cough swab
 - culture
 - Ag (Strep test)

• urine

- pneumococcal Ag (in children low PPV)
- legionella Ag

• serum

- mold Ag (glucan; galactomannan ~ aspergillus)
- antibodies (chlamydia, mycoplasma, pertussis, flu)

blood cultures

pleural fluid

Layout

- Introduction
- Material for investigation, examination methods
- Major pathogens
- Upper airway infections
- Lower airway infections
 - community acquired pneumonia
 - typical agents
 - atypical agents (bacterial, viral)
 - hospital acquired pneumonia
 - Other: chronic infections, immunocompromised

Key players

Viruses, called respiratory viruses:

orthomyxoviruses: influenza A, B

paramyxoviruses: parainfluenza PIV 1 to 4, RSV, metapneumovirus hMPV, measles

picornaviruses: rhinovirus HRV; coxsackie and echovirus (= enteroviruses!)

adenoviruses

coronaviruses HCoV

Key players

Bacteria:

S. pneumoniae H. influenzae C. pneumoniae M. pneumoniae S. aureus L. pneumophila M. tuberculosis, NTM *B. pertussis, B. parapertussis C. diphteriae*

Nosocomial infections: *P. aeruginosa* other G- non-fermenters enterobacteria

Fungi: Aspergillus spp., Pneumocystis jiroveci

Layout

- Introduction
- Material for investigation, examination methods
- Major pathogens
- Upper airway infections
- Lower airway infections
 - community acquired pneumonia
 - typical agents
 - atypical agents (bacterial, viral)
 - hospital acquired pneumonia
 - Other: chronic infections, immunocompromised

Rhinitis

 rhinoviruses (also others – e.g. coronaviruses, coxsackie) mucoid secretion is not a sign of bacterial infection

	clear	white	green or yellow	red or pink	brown or orange	black
"normal" or healthy	~					
allergic sinusitis	~					
common cold		4	1			
fungal infection						~
injury or irritation				~	V.	
nonallergic or pregnancy rhinitis	~			~		
sinusitis		~				
smoking/drug use						J

What do the different snot colors mean?

Sinusitis, otitis media

• viruses

• *S. pneumoniae*, *H. influenzae*, *M. pneumoniae*, *M. catarrhalis*, anaerobes

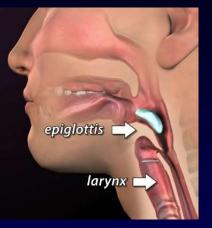
otitis in young children complications - mastoiditis, risk of meningitis

Th: amoxicillin

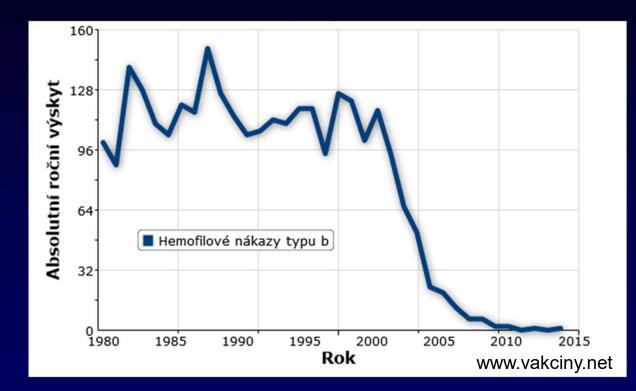
Tonsillopharyngitis (sore throat)

- adenoviruses (often accompanied with conjuctivitis)
- EBV (part of inf mononucleosis)
- S. pyogenes (5-15 yrs of age)
- streptococci groups C, G
- Arcanobacterium heamolyticum
- N. gonorrhoeae

complications in GAS


scarlet fever (when exotoxin is produced) rheumatic fever (alteration of mitral valve, arthritis, chorea minor, erythema) glomerulonephritis peritonsillar abscessus

Th: GAS: PNC V for 10 days Arcanobacterium: macrolides


epiglottitis versus laryngitis (subglotic laryngitis, laryngotracheitis)

Epiglottitis	Croup, pseudocroup
<i>H. influenzae</i> type b	viruses (parainfluenza)
rapid onset	upper airway infection
no cough	barking cough
fever above 38 deg. C	temp below 38 deg. C
no swallowing	
anxiety	
blood cultures	
swab from epiglottis questionnable	
ATB th! aminoPNC, cephalosporins II., III. gen.	

Invasive *H. influenzae* type b in CR

1999: 54x meningitis, 36x epiglottitis, 6x sepsis, 5x pneumonia

BUT: other serotypes of *H. influenzae* still out there *H. influenzae* non-typeable, types e, f

Layout

- Introduction
- Material for investigation, examination methods
- Major pathogens
- Upper airway infections
- Lower airway infections
 - community acquired pneumonia
 - typical agents
 - atypical agents (bacterial, viral)
 - hospital acquired pneumonia
 - Other: chronic infections, immunocompromised

Diphteria

Corynebacterium diphteriae (and other corynebacteria) with production of the toxin (the evidence by PCR)

- tonsillitis, pharyngitis
- laryngitis (true croup) with production of pseudomembranes
- myocard alteration
- neurological problems

Tonsillitis

Pertussis

Bordetella pertussis, B. parapertussis

Disease stages:

- catarrhal (common cold)
- paroxysmal (paroxysmal cough, dyspnoe, vomiting)
- convalescent (risk of secondary infections, encephalopathy)
- today more likely atypical course (persistent cough in adults)
- in infants (non-vaccinated) a risk of malignant pertussis:
 - respiratory failure
 - leukocytosis and right-sided heart failure
 - encephalopathy

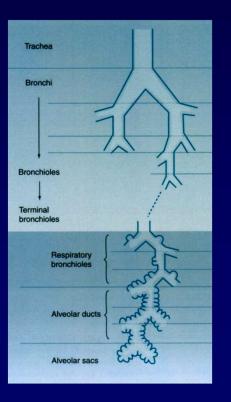
Dg: culture, PCR, serology

The structure of the respiratory epithelium at different sites within the respiratory tract

non-invasive disease affecting ciliated epithelium

 \rightarrow nasopharyngeal swab, aspirate

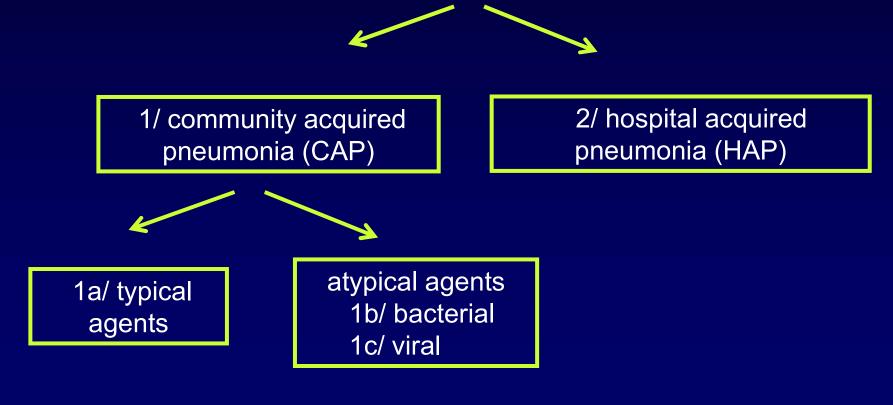
Bronchiolitis (obliterans)


respiratory syncytial virus RSV-A, RSV-B

- in children below 2 years of age (high risk in preterm babies by 6 mo of age)
- serious condition

Th: ribavirin

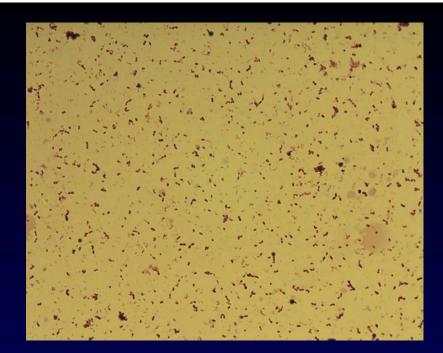
+ passive immunization (Ab against F protein)


= also as prevention for infants at risk in winter months

Pneumonia

• infectious condition with corresponding respiratory symptomatology (cough, tachypnoe, dyspnoe, ...) and the fresh radiological finding on lungs

• inflammation affecting alveoli, respiratory bronchioli (bronchopneumonia), or also interstitium



1a/ CAP with typical pathogens

- S. pneumoniae (most common)
- H. influenzae
- Moraxella catarrhalis
- S. aureus (secondary pneumonia; production of PVL)
- K. pneumoniae, E.coli

Diagnostics: direct methods

- sputum
 - microscopy, culture
 - PCR occasionally
- detection of pneumococcal antigen in urine
- blood cultures

1b/ CAP with atypical pathogens

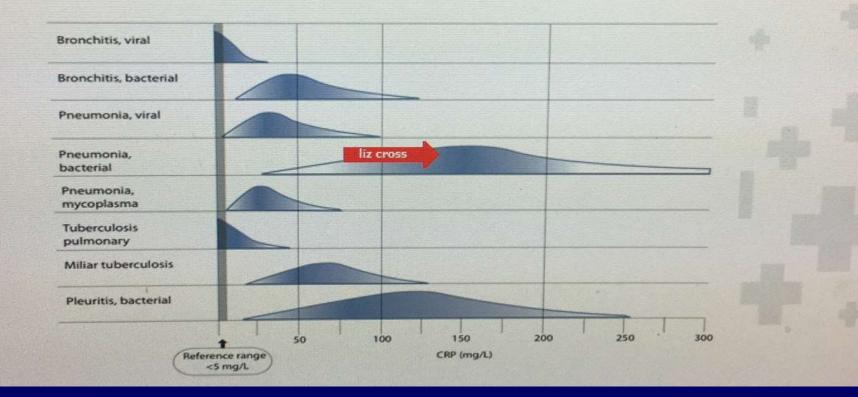
sometimes termed atypical pneumonia, walking pneumonia, several weeks cough

- Mycoplasma pneumoniae: former primary atypical pneumonia
- Chlamydophila pneumoniae
- Chlamydophila psittaci: psittacosis
- Coxiella burnetii: Q fever

Diagnostics: indirect methods

- serology; careful interpretation (up to 80% prevalence in healthy)

direct method - PCR


24-year-old lady

5 days fever 40 °C, vomiting 3 days cough, with sputum, dyspnoea

X ray: small infiltrates on the bottom right WBC 8.2x10⁹ /I CRP 153 mg/I

CRP LEVELS IN LOWER RESPIRATORY TRACT INFECTION

Typically higher values in bacterial infections than in viral infections

24-year-old lady

Microbiology:

urine:

antigen *S. pneumoniae* neg. antigen *L. pneumophila* neg.

nasopharyngeal swab:

M. pneumoniae	****
C. pneumoniae	neg
C. psittaci	neg
L. pneumophila	neg
P. jiroveci	neg

7 days since the start of therapy with fluorochinolons: mild cough, no temperature CRP 12.3 mg/l X ray: substantial regression of the infiltrates

1b/ CAP with atypical pathogens

- Legionella pneumophila

- pontiac fever (mild infection, not pneumonia)
- Legionnaire's disease

Legionella pneumophila

Diagnostics:

- detection of legionella antigen in urine
- culture
- PCR
- serology

Avoiding Legionnaires' this spring

Spring is a great time to be out in the garden, but it's also important to take care of yourself when handling potting mix and compost to prevent Legionnaires' disease. Here are five easy things you can do:

Open potting mix or compost bags carefully with scissors.

Wear a well-fitting disposable face mask and gloves.

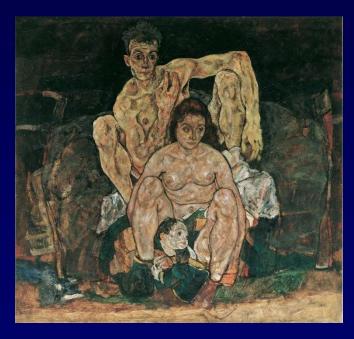
Reduce dust by dampening down potting mix or compost.

4 Work with potting mix or compost in a wellventilated area outside.

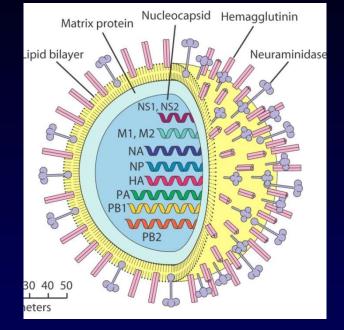
5 Wash your hands after handling potting mix or compost and before removing your mask.

Legionella longbeachae

ATB therapy of CAP


Pneumococcal pneumonia:

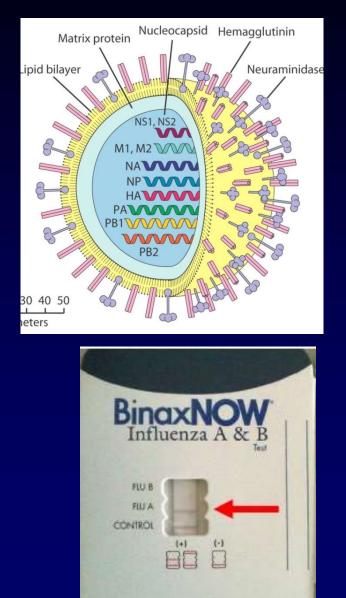
non complicated - amoxicillin (not hospitalized) hospitalization - PNC G or cephalosp. III. gen.


Atypical agents: macrolides tetracyclines respiratory fluoroquinolons (moxifloxacin)

Influenzavirus type A, B, C subtypes HxNx (H1N1, H3N2)

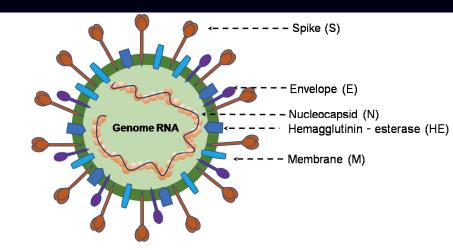
Spanish flu 1918 - 1919 20 - 50 mil. deaths

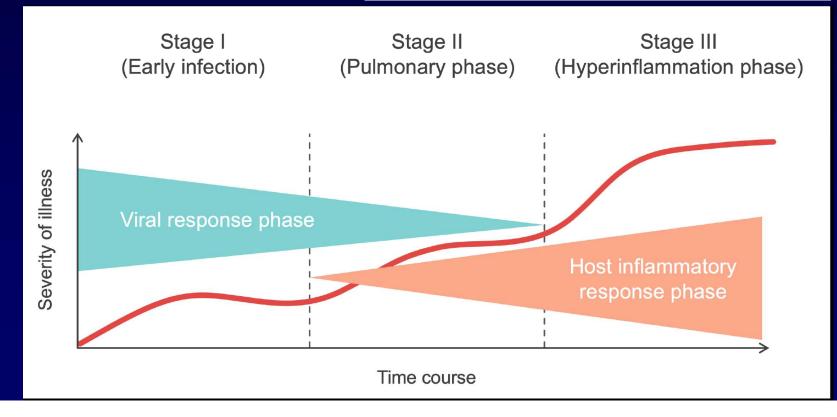
The Family, 1918 Egon Schiele



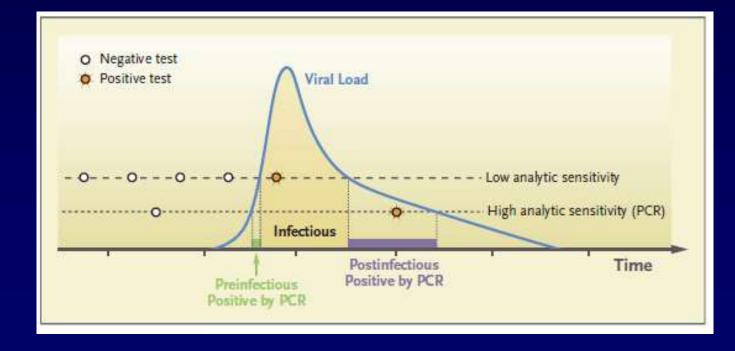
Influenzavirus type A, B, C subtypes HxNx (H1N1, H3N2)

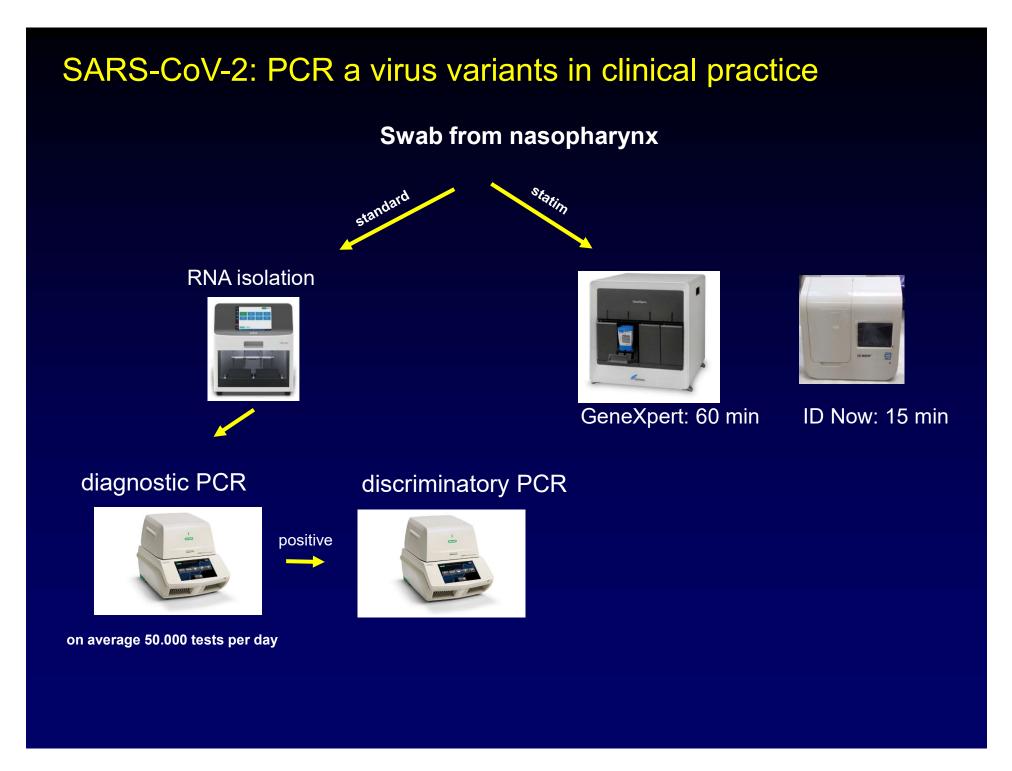
- tracheobronchitis
- pneumonia
 - primary viral
 - secondary bacterial


Diagnostics:


- antigen detection (low sensitivity)
- PCR
- serology

SARS-CoV-2


- asymptomatic course
- pneumonia



SARS-CoV-2

 Direct detection antigen RNA Indirect detection
 IgM, IgA, IgG

2/ HAP; hospital acquired pneumonia

develops min. 48 hours post admission and in association with hospitalization typically of bacterial origin

Ventilator associated pneumonia (VAP)

Early onset (by day 5)

- S. aureus
- S. pneumoniae
- *H. influenzae*
- K. pneumoniae, E. coli

Late onset

- K. pneumoniae, E. coli ...
- P. aeruginosa
- MRSA
- A. baumannii

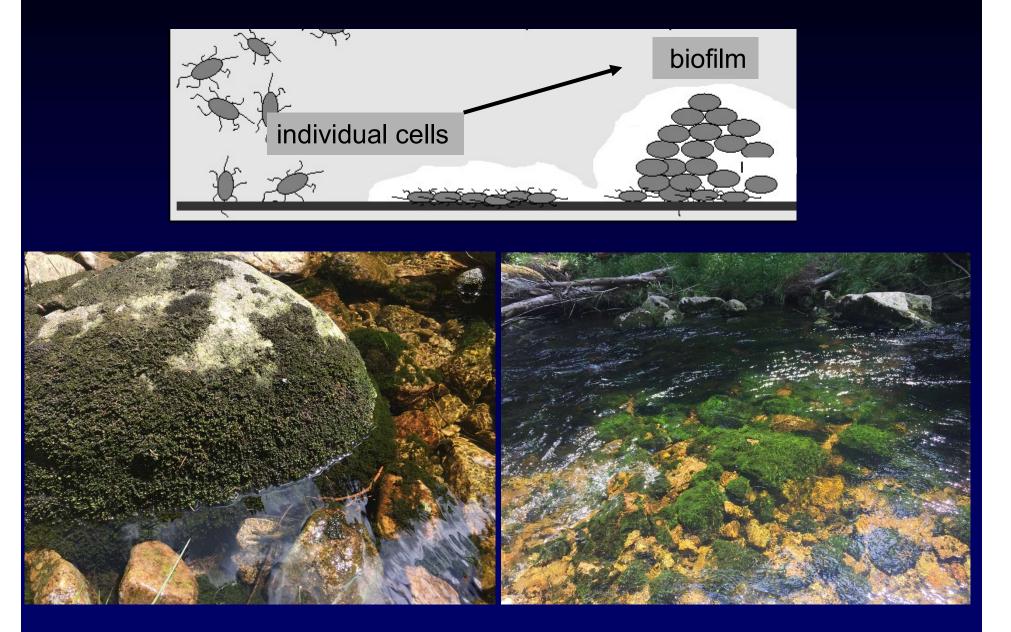
Diagnostics: endotracheal aspirate

Layout

- Introduction
- Material for investigation, examination methods
- Major pathogens
- Upper airway infections
- Lower airway infections
 - community acquired pneumonia
 - typical agents
 - atypical agents (bacterial, viral)
 - hospital acquired pneumonia
 - Other: chronic infections, immunocompromised

Newborn pneumonia

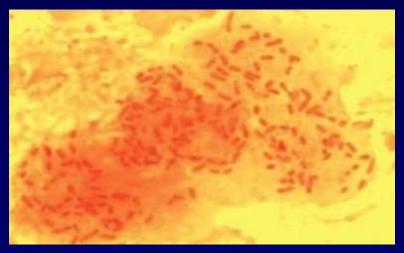
- S. agalactiae GBS
- Chlamydia trachomatis
- K. pneumoniae, E. coli

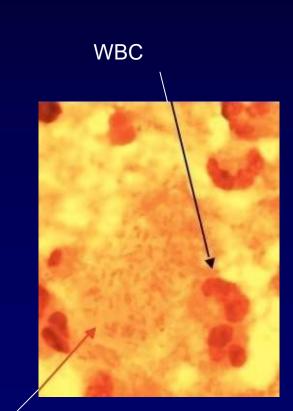

Chronic respiratory diseases and chronic infections

- chronic obstructive pulmonary disease (COPN)
- chronic bronchiectasis
- cystic fibrosis (mucoviscidosis)

- S. aureus

- enterobacteria (K. pneumoniae)
- G- nonfermenters
 - P. aeruginosa
 - complex Burkholderia cepacia
 - Stenotrophomonas maltophilia
 - Achromobacter xylosoxidans


Infection course


Biofilm

• Aggregate of bacteria embedded in matrix which they produce themeselves (polysaccharides, proteins, DNA)

• Protection against phagocytosis, ATB

Courtesy: Prof. N. Hoiby, Copenhagen

P. aeruginosa biofilm

Immunocompromised and respiratory infections

- haematological malignancies
- AIDS
- after solid or bone marrow transplantation

Oportunistic pathogens of both endogenous and exogenous origin

- CMV
- TB, NTM
- *Pneumocystis jiroveci*; microscopy, PCR
- fungi

2-month old girl

10 days cough, increased mucus, temperature max. 37.5 °C x ray: difuse gentle infiltrates

Microbiology: culture aspirate from upper airways: S. aureus; K. oxytoca

PCR nasopharyngeal swab:

respiratory viruses all neg.

M. pneumoniae neg *C. pneumoniae* neg *L. pneumophila* neg *P. jiroveci* **

Therapy: Ampicillin/sulbactam --> cotrimoxazol

<u>BAL</u>:

M. pneumoniae neg *C. pneumoniae* neg *L. pneumophila* neg *P. jiroveci* ****