Tutorial 1

Date: September 29, 2021
TA: Denys Bulavka

Problem 1. List as many ways as possible to specify a line in space. Discuss the assumptions and limitations of individual approaches.

Problem 2. Find a linear equation defining the plane given by the point $[3,2,1]$ and the slopes $(1,1,1),(2,-1,0)$.

Problem 3. Find a parametric description of the plane defined by the linear equation $2 x_{1}+3 x_{2}+$ $x_{3}=4$.

Problem 4. Find a parametric description of the line given by the two equations:

$$
x_{1}+3 x_{2}+x_{3}=2, \quad 2 x_{1}+5 x_{2}+x_{3}=3 .
$$

Problem 5. Find two equations defining the line $[3,2,1]+t(1,-1,1)$, where $t \in \mathbb{R}$.
Problem 6. Determine all possible mutual positions of two lines in the space \mathbb{R}^{3}. Next, describe how the positions can be determined if both lines are defined parametrically or by equations.

Problem 7. Determine the relative position of the two lines given by a point and a slope

$$
p:[1,5,3],(1,-2,-2), \quad q:[3,1,-1],(-1,2,2) .
$$

Problem 8. Interpolate a quadratic function through the points $[1,1],[2,2],[3,7]$.

