Algebra

 \rightarrow algebraic (*adj*.)

Algebraic expression

Algebraic structure

- set + operation(s) => set operations
 - addition \rightarrow additive (*adj*.), e.g. additive commutativity
 - multiplication \rightarrow multiplicative (*adj.*), e.g. multiplicative associativity
 - binary operation
- with one operation
 - group
 - Abelian
 - with two operations
 - ring
 - integral domain
 - field
- skew f. = division algebra
- properties (conditions)

- closure \rightarrow closed under addition/multiplication/...
- commutativity \rightarrow commutative (*adj*.) \times noncommutative (*adj*.)
- associativity \rightarrow associative (*adj*.)
- distributivity \rightarrow distributive (*adj*.)
 - left
 - right
- identity property \rightarrow identity element
 - encoded and a second second
 - = unit element = multiplicative identity = unity/one
 - inverse property \rightarrow inverse (*n*.) = reciprocal element

Basis – *plural*: bases /'beɪsiːz/ = "beisiz"

Cramer's rule

Determinant

Dimension \rightarrow dimensional (*adj*.)

- finite dimensional × infinite dimensional
- *n*-dimensional

Elementary row/column operations

Eigenvalue = characteristic value

Equation

- linear / quadratic / cubic / quartic / quintic / of degree *n*
- binomial
- system of equations
- Gaussian elimination algorithm

Kernel = null space

Linear dependence \rightarrow linearly dependent (*adj*.)

× linear independence \rightarrow linearly independent (*adj*.)

Linear combination

Mapping

- bijective (adj.) m. \rightarrow bijection (n.)
 - surjective m. $(adj.) \rightarrow$ surjection (n.) = onto mapping "maps set A onto set B"
 - injective m. (*adj*.) = injection (*n*.) "maps set A into set B"
- linear m.

- image of (an element) under a mapping
- Matrix, plural: matrices
 - *m* by *n* m.
 - square
 - rectangular
 - has
 - *m* rows and *n* columns
 - (main) diagonal
 - (i,j) entry / element
 - transposed \rightarrow transpose (v., n.) "A transpose" or "the transpose of A"
 - conjugate transpose = adjoint m.
 - inverse \rightarrow invertible m. "A inverse" or "the inverse of A"
 - invertible = non-singular × singular
 - in a echelon form row-echelon form / column-echelon form
 - upper-/lower- triangular
 - identity m.

Pivot

Polynomial

- in x (= the variable is x)
- with coefficients
- Monomial / Binomial / Trinomial
- of degree *n*
- term of a p.
 - linear term = constant term
- reducible × irreducible p.
- root of a polynomial
- solvable by radicals

Product

- dot p. = scalar p. = inner p.
- cross p. = vector p.

Rank

Scalar

```
Span = hull
```

Term

- absolute = constant

Variable /'veəriəbl/

Vector

Vector space

- vector subspace