Algebra

\rightarrow algebraic (adj.)
Algebraic expression
Algebraic structure

- set + operation(s) => set operations
- addition \rightarrow additive (adj.), e.g. additive commutativity
- multiplication \rightarrow multiplicative (adj.), e.g. multiplicative associativity
- binary operation
- with one operation
- group
- Abelian
- with two operations
- ring
- integral domain
- field
- skew f. = division algebra
- properties (conditions)
- closure \rightarrow closed under addition/multiplication/...
- commutativity \rightarrow commutative (adj.) \times noncommutative (adj.)
- associativity \rightarrow associative (adj.)
- distributivity \rightarrow distributive (adj.)
- left
- right
- identity property \rightarrow identity element
- = neutral element $=$ additive identity $=$ zero
- = unit element = multiplicative identity = unity/one
- inverse property \rightarrow inverse (n. .) = reciprocal element

Basis - plural: bases /'bessi:z/ = "beisíz"
Cramer's rule
Determinant
Dimension \rightarrow dimensional (adj.)

- finite dimensional \times infinite dimensional
- n-dimensional

Elementary row/column operations
Eigenvalue = characteristic value
Equation

- linear / quadratic / cubic / quartic / quintic / of degree n
- binomial
- system of equations

Gaussian elimination algorithm
Kernel = null space
Linear dependence \rightarrow linearly dependent ($a d j$.)
\times linear independence \rightarrow linearly independent (adj.)
Linear combination
Mapping

- bijective (adj.) m. \rightarrow bijection (n.)
- surjective m. (adj.) \rightarrow surjection (n.) = onto mapping - "maps set A onto set B"
- injective m. (adj.) = injection (n.) - "maps set A into set B"
- linear m.
- image of (an element) under a mapping

Matrix, plural: matrices

- m by n m.
- square
- rectangular
- has
- m rows and n columns
- (main) diagonal
- (i, j) entry / element
- transposed \rightarrow transpose ($v ., n$.) - "A transpose" or "the transpose of A"
- conjugate transpose $=$ adjoint m .
- inverse \rightarrow invertible m. - "A inverse" or "the inverse of A"
- invertible $=$ non-singular \times singular
- in a echelon form - row-echelon form / column-echelon form
- upper-/lower- triangular
- identity m .

Pivot
Polynomial

- in x (= the variable is x)
- with coefficients
- Monomial / Binomial / Trinomial
- of degree n
- term of a p.
- linear term = constant term
- reducible \times irreducible p.
- root of a polynomial
- solvable by radicals

Product
$-\operatorname{dot} \mathrm{p} .=$ scalar $\mathrm{p} .=$ inner p.
$-\quad$ cross $\mathrm{p} .=$ vector p .
Rank
Scalar
Span = hull
Term

- absolute $=$ constant

Variable /'veəriabl/
Vector
Vector space

- vector subspace

