Algebra

\rightarrow algebraic (adj.)
Algebraic expression
Algebraic structure

- set + operation(s) => set operations
- addition \rightarrow additive (adj.), e.g. additive commutativity
- multiplication \rightarrow multiplicative (adj.), e.g. multiplicative associativity
- binary operation
- with one operation
- group
- Abelian
- with two operations
- ring
- integral domain
- field
- skew f. = division algebra
- properties (conditions)
- closure \rightarrow closed under addition/multiplication/...
- commutativity \rightarrow commutative (adj.) \times noncommutative (adj.)
- associativity \rightarrow associative (adj.)
- distributivity \rightarrow distributive (adj.)
- left
- right
- identity property \rightarrow identity element
- = neutral element $=$ additive identity $=$ zero
- = unit element = multiplicative identity = unity/one
- inverse property \rightarrow inverse (n. .) = reciprocal element

Basis - plural: bases /'bessi:z/ = "beisíz"
Cramer's rule
Determinant
Dimension \rightarrow dimensional (adj.)

- finite dimensional \times infinite dimensional
- n-dimensional

Elementary row/column operations
Eigenvalue = characteristic value
Equation

- linear / quadratic / cubic / quartic / quintic / of degree n
- binomial
- system of equations

Gaussian elimination algorithm
Kernel = null space
Linear dependence \rightarrow linearly dependent ($a d j$.)
\times linear independence \rightarrow linearly independent (adj.)
Linear combination
Mapping

- bijective (adj.) m. \rightarrow bijection (n.)
- surjective m. (adj.) \rightarrow surjection (n.) = onto mapping - "maps set A onto set B"
- injective m. (adj.) = injection (n.) - "maps set A into set B"
- linear m.
- image of (an element) under a mapping

Matrix, plural: matrices

- m by n m.
- square
- rectangular
- has
- m rows and n columns
- (main) diagonal
- (i, j) entry / element
- transposed \rightarrow transpose ($v ., n$.) - "A transpose" or "the transpose of A"
- conjugate transpose $=$ adjoint m .
- inverse \rightarrow invertible m. - "A inverse" or "the inverse of A"
- invertible $=$ non-singular \times singular
- in a echelon form - row-echelon form / column-echelon form
- upper-/lower- triangular
- identity m .

Pivot
Polynomial

- in x (= the variable is x)
- with coefficients
- Monomial / Binomial / Trinomial
- of degree n
- term of a p.
- linear term = constant term
- reducible \times irreducible p.
- root of a polynomial
- solvable by radicals

Product
$-\operatorname{dot} \mathrm{p} .=$ scalar $\mathrm{p} .=$ inner p.
$-\quad$ cross $\mathrm{p} .=$ vector p .
Rank
Scalar
Span = hull
Term

- absolute $=$ constant

Variable /'veəriabl/
Vector
Vector space

- vector subspace

Mathematical Analysis - vocabulary list

analysis

- real
- complex
asymptote
- Horizontal
- Vertical
- Oblique $=$ inclined

Calculus

- Fundamental Theorem of Calculus
- Differential c.
- Integral c.
codomain
continuity (X discontinuity \rightarrow point of discontinuity; discontinuous at a point)
- at a point
- from the left
- from the right
- on an interval
$-\quad \rightarrow$ continuous (adj.)
Coordinate system \rightarrow coordinates
- Cartesian
- Polar
- x-coordinate
- y-coordinate

Derivative (n.)

- of a function
- first; second
- of higher order
- of order n
- partial (- mixed partial)
- one-sided
- left d. = left-hand
- right d. = right-hand derivative
differentiate (v.) \rightarrow differentiation (n.)
$-\quad \rightarrow$ differential (adj.)
$-\quad \rightarrow$ differentiable (adj.) \rightarrow differentiability (n.)
Domain
Function
- of more variables (= multivariate f.)
- of one variable (= univariate f.)
- inverse
- one-to-one (in Czech: 'prostá')
- real $=$ real-valued
- complex = complex-valued
- course of a f.

properties

- concavity of a f.
- concave up (also sometimes convex)
- concave down (also sometimes concave)
- odd
- even
- periodical
- (strictly) monotonic \rightarrow monotonicity (n.) (\rightarrow interval of monotony)
- (strictly) decreasing
- (strictly) increasing
- Non-decreasing
- Non-increasing
- Differentiable
- unbounded function
- Bounded from above $=f$. has an upper bound
- Bounded from below $=\mathrm{f}$. has a lower bound
- \rightarrow boundedness (n.) of a function
extremum (\rightarrow maximum / minimum) (plural: extrema, maxima, minima)
- Global
- Local
graph
image (of x under f)
integrate (v.)
$-\quad \rightarrow$ integration (n.)
- by parts
- constant of integration
- with respect to a variable (e.g. with respect to x)
$-\quad \rightarrow$ integral (n.)
- Definite
- upper limit of the i.
- lower limit of the i.
- "the integral from a to b of f of x with respect to $x(=\mathrm{d} \mathrm{x})$ "
- indefinite i. (= anti-derivative (n.) = primitive (n.))
$-\quad \rightarrow$ integral (adj.)
- Integrable (adj.)
- function
inflection (point) $=$ point of inflection (= inflexion esp. in Br.E.)
integrand
intercept
- x-intercept
- y-intercept
limit
- at a point
- proper
- improper = infinite
- left-hand $=1$. on the left
- right-hand $=1$. on the right
- "the limit of f of x as x tends to (= approaches = goes to) infinity" mapping
- one-to-one
- identity
- bijection
- injection
- surjection
neighbourhood of a point
range of values = range of a function
stationary point $=$ critical point
- inflection point
- maximum
- minimum

Number Theory, Arithmetic

absolute value
arithmetic
arithmetic mean = arithmetic average
axis - axial (adj.)

- real
- imaginary
commensurable
\rightarrow commensurability (n.)
complex conjugate
decimal
- repeating d. = recurring d.
- \times non-repeating
- terminating \times non-terminating
decimal expansion
decimal number
decimal place
decimal point
digit $=$ cipher
equality
\times inequality
- strict i.
- less than (or equal to)
- greater than (or equal to)
equivalence
- properties
- reflexive
- symmetric
- transitive
factorization (n.) - factorize (v.) - factor (v.)
- prime factorization - to factor a number into primes
- unique factorization theorem
fraction
- consists of
- Numerator
- Denominator
- "a over b"
- in its lowest terms
- compound f.
- continued f.
- proper \times improper
- \rightarrow fractional (adj.)
- fractional bar
- simplify af. = cancel a f. (into its lowest terms)
geometric mean = geometric average
harmonic mean $=$ harmonic value
imaginary unit
integer part
interval
- open
- closed
- half-open
- closed from the left
- closed from the right
number
- natural
- integral \rightarrow integer (n., also used as an $a d j$.)
- rational
- irrational
- real
- complex
- in algebraic form
- in trigonometric form
- in exponential form
- (purely) imaginary
- positive \times negative
- \rightarrow non-negative, non-zero
- odd \times even
- prime (also n.) \times composite
- algebraic \times transcendental
- cardinal
- ordinal
number line
number set
number system
- representation in a n.s.
- binary
- decimal = base 10
- hexadecimal
operation
- arithmetic
- common arithmetic operations = fundamental operations of arithmetic
- addition - add (v.) - additive (adj.)
- Summand + summand = sum
- subtraction - subtract (v.)
- minuend - subtrahend = difference
- multiplication - multiply (v.) - multiplicative (adj.)
- Factor * factor = product
- (least) common multiple
- Division - divide (v.)
- Dividend \div divisor $=$ quotient
- with remainder
- \rightarrow divisibility - divisible (adj.) \times indivisible (adj.)
- (greatest) common divisor $=$ (greatest/highest) common factor
- equivalent \times non-equivalent
- properties of o.
- associativity - associative (adj.)
- commutativity - commutative (adj.) - commute (v.)
\times noncommutative
- distributivity - distributive (adj.)
- identity element
- inverse element
place value system - positional notation
power \rightarrow raise to a power
prime = prime number
- \rightarrow primality (n.)
ratio
reciprocal value
root \rightarrow extract/take a root
sieve

Combinatorics, Probability, Statistics

Binomial theorem
Binomial coefficient

- "n choose k"

Box plot
Coin flipping = coin tossing
Combination

- with repetition

Conditional probability
Critical value (in a hypothesis test)
Cumulative Probability Distribution Function
Discrete probability
Distribution

- normal
- binomial

Distributive function
Expected value
Experiment
Event

- dependent
- independent
- certain \rightarrow certainty (n.)
- impossible \rightarrow impossibility (n.)
- disjoint events = mutually exclusive events

Factorial
Frequency
Hypothesis testing

- null hypothesis
- alternative hypothesis
- p-value
- significance level

Mean $=$ arithmetic mean (less precisely average)
Median
Mode
Outcome

- possible
- favourable
- equally likely

Outlier
Parameter
Permutation
Population
Probability distribution
Probability density function
Quartile

- upper / lower quartile
- inter-quartile range

Quantile
Random variable
r -arrangement (sometimes called 'variation')
Sample space $=$ event space
Sample (n., v.) \rightarrow sampling

- random sample

Standard deviation
Variable

- random
- continuous \times discrete
- quantitative
- ordinal
- qualitative
- dependent \times independent

Variance

Geometry

Abscissa
Adjacent \times non-adjacent
Altitude
Angle

- acute \times obtuse \times straight \times reflex \times complete $=$ full
- Interior \times exterior
- arm of an a.
- vertex of an a.
- central a.
- measure of an a.
- degree (minute, second)
- radian

Angles

- adjacent
- alternate
- corresponding
- (vertically) opposite
- complementary \rightarrow complement of an angle
- supplementary \rightarrow supplement of an angle

Apex
Arc of a Circle
Area
Axis - axes (pl.)

- of reflection/ rotation / symmetry

Base

- of a(n) (isosceles) triangle
- of a trapezoid
of a solid figure (e.g. prism, cylinder, cone) \times lateral surface/face
Bisect \rightarrow bisector (n.)
- angle bisector

Cartesian coordinates
Cartesian form
Cartesian plane
Centres of a triangle

- centroid (note: also in general = centre of gravity/mass)
- orthocentre
- circumcentre
- incentre

Cevian
Chord
Circle \rightarrow circular (adj.)
Circumcircle = circumscribed circle
\rightarrow circumscribe (v.) \rightarrow circumscribable (adj.)
Circumference
Coincident
Collinear \times Noncollinear
Concave geometric figure = non-convex

Concentric
Concurrent
Cone \rightarrow conical (adj.)

- circular c.

Congruence

- c. tests for triangles
- \rightarrow congruent (adj.)

Convex geometric figure
Coordinate plane
Coplanar
Cube
Cuboid
Cylinder \rightarrow cylindrical (adj.)

- circular c.

Degenerate
Diameter
Distance
Double Cone
Edge
Equidistant
Face
Frustum of a cone or pyramid
Geometric Figure

- plane figure
- solid figure

Geometry

- analytic
- synthetic
- plane
- solid
- Euclidean \times non-Euclidean
- Elliptic = Riemannian
- Hyperbolic
- Projective

Golden Ratio
Height
Horizontal
Hypotenuse
Ideal elements
Incident \rightarrow incidence (n.)
Incircle $=$ inscribed circle
\rightarrow inscribe (v.)
Invariant
Isometry
Isosceles Trapezoid
Kite
Law of Cosines
Law of Sines

Leg

- of an isosceles/right triangle / trapezoid

Line

- parallel lines
- skew lines

Line Segment
Locus
Magnitude
Median
Midpoint
Oblique

- o. cone, cylinder, prism, pyramid...

Octants
Ordered Pair
Ordered Triple
Ordinate
Origin
Parallel Postulate
Parallelepiped
Parallelogram
Pencil
Perimeter
Perpendicular (n.) \rightarrow perpendicular (adj.) to sth.
Plane
Platonic Solids
Point
Polygon (= n-gon)

- Regular \times irregular
- Pentagon, hexagon, ...

Polyhedron - polyhedra (pl.)

- Regular ×irregular
- Tetrahedron, hexahedron, octahedron, dodecahedron...

Prism
Pyramid
Pythagorean Identities
Pythagorean Theorem
Pythagorean Triple
Quadrants
Quadrics
Quadrilateral
Radius
Ray
Rectangle
Rectangular Coordinates
Regular

- plane figure, e.g. hexagon
- solid, e.g. polyhedra, pyramid, prism

Rhombus

Right figure (e.g. prism, cylinder, pyramid...)
Secant line
Sector of a circle
Segment of a circle
Self-Similarity
Semicircle
Similarity \rightarrow similar (adj.)

- s. tests for triangles

Slant height
Slope of a line
Sphere
Square
Surface
Symmetric
Tangent line - tangent (adj.) to
Torus
Transformations

- translation
- rotation
- reflection
- glide reflection
- dilation
- compression = contraction
- pre-image of a transformation
- image of a transformation

Transversal
Trapezium
Trapezoid
Triangle

- scalene \times isosceles \times equilateral
- obtuse \times acute \times right

Triangle Congruence Tests
Triangle Inequality
Trigonometric Functions

- Sine \times arcsine $=$ inverse sine
- Cosine \times arccosine $=$ inverse cosine
- Tangent \times arctangent $=$ inverse tangent
- Cotangent \times arccotangent $=$ inverse cotangent

Trigonometry
Truncated

- Cone or Pyramid
- Cylinder or prism

Unit Circle
Vertex - vertices (pl.)
Vertical
Volume

Graph Theory - Vocabulary List

adjacency matrix $=$ connection matrix
approximate (v., adj.)

- \rightarrow approximation (n.) (of sth.)
bridge (= graph bridge)
centre of a graph
clique
colouring (= coloring AmE)
- edge c. \rightarrow edge-coloured graph
- vertex c. \rightarrow vertex-coloured graph
- chromatic number
- achromatic number
cut
cycle
- graph c.
- Hamiltonian c.
- Eulerian/Euler $=\mathrm{E}$. circuit $=\mathrm{E}$. tour
edge $=\operatorname{arc}(=$ line $)$
- directed
- separating
- subdivision of an edge
- edge set
endpoint
forest
graph
- simple g. \times multigraph
- pseudograph
$-\quad$ directed \rightarrow directedness (n.)
\times undirected
- oriented
\times non-oriented
- labelled ($=$ labeled $A m E$)
- edge-labelled
- vertex-labelled
- connected
\times disconnected
- k-connected g.
- edge-connectivity
- vertex-connectivity
- totally disconnected = edgeless
- cyclic
\times acyclic
- k-partite graph
- e.g. bipartite gr.
$-\quad$ complete g. \rightarrow completeness (n.)
- planar
\times non-planar
- finite
x infinite
- n -regular g .
- uniform g .
- homeomorphic graphs
- homomorphic graphs
- isomorphic graphs
- Eulerian g.
- graph order = order of a graph
- size of a g.
- null g. = empty g.
graph component
- strongly connected
incident (adj.)
- an edge is incident to its endpoints
intersection
- of graphs
- graph
in-degree
loop
- simple
matching
maximal subgraph for a particular property \times minimal
maximum subgraph for a particular property
neighbour
subgraph
out-degree
path
- = Hamiltonian walk
- closed p. = cycle
- Hamiltonian path $=\mathrm{H}$. line
- Eulerian p. $=$ Euler walk $=$ Euler chain $=$ Euler trail $=$ E. line problem
- transport p .
- travelling-salesman p.
- four colour problem
simplex
spanning (adj.)
- subgraph
- tree
- minimal spanning tree
trail
- closed = circuit
tree
vertex $=$ node $(=$ point $)$
- of a graph
- adjacent vertices
- even
- odd
- \quad degree $=$ the degree of a graph vertex
- articulation v . $=$ cut-vertex $=$ cutpoint
- terminal v .
- isolated
walk
- oriented

Set theory and Logic

Axiom \rightarrow axiomatic (adj.)
Cartesian product
Cardinal numbers

- \rightarrow cardinality of a set

Completeness
Consistency
Condition

- necessary $\mathrm{c} .-\mathrm{P} \Rightarrow \mathrm{S}$ " S is a necessary condition for P "
- sufficient $c .-P \Rightarrow S$ " P is a sufficient condition for S "

Counterexample
DeMorgan's laws
Difference
Element

- $a \in S$: " a is an element of S ", " a belongs to $S ", " a$ lies in S "

Intersection

- "the intersection of A and $B ", " A$ intersect $B "$

Union

- "the union of A and $B "$, " A union B "

Complementation

- $\quad \rightarrow$ complement (of S with respect to (/in) U)

Ordinal numbers
Quantifier

- existential
- \exists ! "there exists/is one and only one" "there exists/is exactly one"
- universal

Proof

- formal p .
- direct p.
- indirect p. = by contradiction
- by cases
- by induction on n (in Czech 'indukce podle n ')

Proposition
Tautology
Theorem
Truth functional connective

- Boolean connective
- conjunction - "and"
- disjunction - "or"
- negation - "not"
- (material) conditional $=$ if ... then.. statement $=$ implication
- biconditional $=$ if and only if statement $=$ equivalence

Truth table
Truth value
Set

- null = empty
- universal $=$ universe of discourse $=$ domain of discourse
- finite /fannart/ \times infinite $/$ Infinət/

Subset

- proper
- improper

