Analytic combinatorics Lecture 12

June 2, 2021

Recall: If $A(x) \in \mathbb{C}[[x]]$ is a power series with $\left[x^{0}\right] A(x)=0$ and $\left[x^{1}\right] A(x) \neq 0$, then there is a (unique) composition inverse $B(x)=\underbrace{A^{\langle-1\rangle}(x)}$ satisfying $A(B(x))=B(A(x))=x$.

Recall: If $A(x) \in \mathbb{C}[[x]]$ is a power series with $\left[x^{0}\right] A(x)=0$ and $\left[x^{1}\right] A(x) \neq 0$, then there is a (unique) composition inverse $B(x)=A^{\langle-1\rangle}(x)$ satisfying $A(B(x))=B(A(x))=x$.

Goal: Compute the coefficients of $\underbrace{B(x)}$ from the coefficients of $A(x)$.

Recall: If $A(x) \in \mathbb{C}[[x]]$ is a power series with $\left[x^{0}\right] A(x)=0$ and $\left[x^{1}\right] A(x) \neq 0$, then there is a (unique) composition inverse $B(x)=A^{\langle-1\rangle}(x)$ satisfying $A(B(x))=B(A(x))=x$.

Goal: Compute the coefficients of $B(x)$ from the coefficients of $A(x)$.
Rephrasing the goal: We know that $\left[x^{0}\right] A(x)=0$, hence $A(x)=x C(x)$ for a series $C(x)$. Moreover, $\left[x^{0}\right] C(x)=\left[x^{1}\right] A(x) \neq 0$, hence $C(x)$ has a multiplicative inverse $F(x)=\frac{1}{C(x)}$. Hence:

$$
\begin{aligned}
A(B(x)) & =x \\
B(x) C(B(x)) & =x
\end{aligned}
$$

Recall: If $A(x) \in \mathbb{C}[[x]]$ is a power series with $\left[x^{0}\right] A(x)=0$ and $\left[x^{1}\right] A(x) \neq 0$, then there is a (unique) composition inverse $B(x)=A^{\langle-1\rangle}(x)$ satisfying $A(B(x))=B(A(x))=x$.

Goal: Compute the coefficients of $B(x)$ from the coefficients of $A(x)$.
Rephrasing the goal: We know that $\left[x^{0}\right] A(x)=0$, hence $A(x)=x C(x)$ for a series $C(x)$. Moreover, $\left[x^{0}\right] C(x)=\left[x^{1}\right] A(x) \neq 0$, hence $C(x)$ has a multiplicative inverse $F(x)=\frac{1}{C(x)}$. Hence:

$$
\begin{aligned}
A(B(x)) & =x \\
B(x) C(B(x)) & =x \\
B(x) & =\frac{x}{C(B(x))}
\end{aligned}
$$

Recall: If $A(x) \in \mathbb{C}[[x]]$ is a power series with $\left[x^{0}\right] A(x)=0$ and $\left[x^{1}\right] A(x) \neq 0$, then there is a (unique) composition inverse $B(x)=A^{\langle-1\rangle}(x)$ satisfying $A(B(x))=B(A(x))=x$.

Goal: Compute the coefficients of $B(x)$ from the coefficients of $A(x)$.
Rephrasing the goal: We know that $\left[x^{0}\right] A(x)=0$, hence $A(x)=x C(x)$ for a series $C(x)$. Moreover, $\left[x^{0}\right] C(x)=\left[x^{1}\right] A(x) \neq 0$, hence $C(x)$ has a multiplicative inverse $F(x)=\frac{1}{C(x)}$. Hence:

$$
\begin{aligned}
A(B(x)) & =x \\
(x) C(B(x)) & =x \\
B(x) & =\frac{x}{C(B(x))} \\
B(x) & =x F(B(x))
\end{aligned}
$$

Recall: If $A(x) \in \mathbb{C}[[x]]$ is a power series with $\left[x^{0}\right] A(x)=0$ and $\left[x^{1}\right] A(x) \neq 0$, then there is a (unique) composition inverse $B(x)=A^{\langle-1\rangle}(x)$ satisfying $A(B(x))=B(A(x))=x$.

Goal: Compute the coefficients of $B(x)$ from the coefficients of $A(x)$.
Rephrasing the goal: We know that $\left[x^{0}\right] A(x)=0$, hence $A(x)=x C(x)$ for a series $C(x)$. Moreover, $\left[x^{0}\right] C(x)=\left[x^{1}\right] A(x) \neq 0$, hence $C(x)$ has a multiplicative inverse $F(x)=\frac{1}{C(x)}$. Hence:

$$
\begin{aligned}
A(B(x)) & =x \\
B(x) C(B(x)) & =x \\
B(x) & =\frac{x}{C(B(x))} \\
B(x) & =x F(B(x))
\end{aligned}
$$

New goal: For a power series $F(x) \in \mathbb{C}[[x]]$ with $\left[x^{0}\right] F(x) \neq 0$, find the (unique) power series $B(x)$ satisfying $B(x)=x F(B(x))$.

Recall: If $A(x) \in \mathbb{C}[[x]]$ is a power series with $\left[x^{0}\right] A(x)=0$ and $\left[x^{1}\right] A(x) \neq 0$, then there is a (unique) composition inverse $B(x)=A^{\langle-1\rangle}(x)$ satisfying $A(B(x))=B(A(x))=x$.
Goal: Compute the coefficients of $B(x)$ from the coefficients of $A(x)$.
Rephrasing the goal: We know that $\left[x^{0}\right] A(x)=0$, hence $A(x)=x C(x)$ for a series $C(x)$. Moreover, $\left[x^{0}\right] C(x)=\left[x^{1}\right] A(x) \neq 0$, hence $C(x)$ has a multiplicative inverse $F(x)=\frac{1}{C(x)}$. Hence:

$$
\begin{aligned}
A(B(x)) & =x \\
B(x) C(B(x)) & =x \\
B(x) & =\frac{x}{C(B(x))} \\
B(x) & =x F(B(x))
\end{aligned}
$$

New goal: For a power series $F(x) \in \mathbb{C}[[x]]$ with $\left[x^{0}\right] F(x) \neq 0$, find the (unique) power series $B(x)$ satisfying $B(x)=x F(B(x))$.

Remark: If $\left[x^{0}\right] F(x)=0$ then the equation $B(x)=x F(B(x))$ has the (trivial) unique solution $B(x)=0$.

Theorem (Lagrange inversion formula)

Suppose $F(x)$ is a power series with $\left[x^{0}\right] F(x) \neq 0$. Let $B(x) \in \mathbb{C}[[x]]$ be the solution of the functional equation $B(x)=x F(B(x))$. Then the following holds:
(c) For any $n \in \mathbb{N}$,

$$
\left[x^{n}\right] B(x)=\frac{1}{n}\left[x^{n-1}\right] F(x)^{n} .
$$

(2) For any $k, n \in \mathbb{N}$,

$$
\left[x^{n}\right] B(x)^{k}=\frac{k}{n}\left[x^{n-k}\right] F(x)^{n} .
$$

(3) For any $G(x) \in \mathbb{C}[[x]]$ and $n \in \mathbb{N}$,

$$
\left[x^{n}\right] G(B(x))=\frac{1}{n}\left[x^{n-1}\right]\left(F(x)^{n} \frac{d}{d x} G(x)\right) .
$$

Lagrange inversion formulas)

Theorem (Lagrange inversion formula)
Suppose $F(x)$ is a power series with $\left[x^{0}\right] F(x) \neq 0$. Let $B(x) \in \mathbb{C}[[x]]$ be the solution of the functional equation $B(x)=x F(B(x))$. Then the following holds:
(c) For any $n \in \mathbb{N}$,

$$
\left[x^{n}\right] B(x)=\frac{1}{n}\left[x^{n-1}\right] F(x)^{n} .
$$

(3) For any $k, n \in \mathbb{N}$,

$$
\left[x^{n}\right] B(x)^{k}=\frac{k}{n}\left[x^{n-k}\right] F(x)^{n} .
$$

(3) For any $G(x) \in \mathbb{C}[[x]]$ and $n \in \mathbb{N}$,

$$
\left[x^{n}\right] G(B(x))=\frac{1}{n}\left[x^{n-1}\right]\left(F(x)^{n} \frac{d}{d x} G(x)\right) .
$$

Note: $2 \Rightarrow 1$ by taking $k=1$, and $3 \Rightarrow 2$ by taking $G(x)=x^{k}$.

$$
\frac{d}{d x} x^{k}=k x^{k-1}
$$

$$
\begin{aligned}
& d x^{x}=k x \\
& {\left[x^{n-1}\right] F^{n}(x) \cdot k x^{k-1}=k\left[x^{n-k}\right] F^{h}(x)}
\end{aligned}
$$

Theorem (Lagrange inversion formula)

Suppose $F(x)$ is a power series with $\left[x^{0}\right] F(x) \neq 0$. Let $B(x) \in \mathbb{C}[[x]]$ be the solution of the functional equation $B(x)=x F(B(x))$. Then the following holds:
(c) For any $n \in \mathbb{N}$,

$$
\left[x^{n}\right] B(x)=\frac{1}{n}\left[x^{n-1}\right] F(x)^{n} .
$$

(2) For any $k, n \in \mathbb{N}$,

$$
\left[x^{n}\right] B(x)^{k}=\frac{k}{n}\left[x^{n-k}\right] F(x)^{n} .
$$

\square
(3) For any $G(x) \in \mathbb{C}[[x]]$ and $n \in \mathbb{N}$,

$$
\left[x^{n}\right] G(B(x))=\frac{1}{n}\left[x^{n-1}\right]\left(F(x)^{n} \frac{d}{d x} G(x)\right) .
$$

Note: $2 \Rightarrow 1$ by taking $k=1$, and $3 \Rightarrow 2$ by taking $G(x)=x^{k}$.
Note: $2 \Rightarrow 3$ by linearity: for $G(x)=\sum_{k=0}^{\infty} g_{k} x^{k}$, we get

$$
\begin{aligned}
& \underbrace{\sum_{k=1}^{\infty}}_{\underbrace{\left[x^{n}\right] G(B(x))}_{k=0}=\left[x^{n}\right] g_{k}^{\infty} B(x)^{k}}=\left[x^{n}\right] \sum_{k=1}^{\infty} g_{k} B(x)^{k}=\underbrace{\sum_{k=1}^{\infty} g_{k} \frac{k}{n}\left[x^{n-k}\right] F(x)^{n}}= \\
& \sum_{k=1}^{\infty} g_{k} \frac{k}{n}\left[x^{n-1}\right] x^{k-1} F(x)^{n}=\frac{1}{n}\left[x^{n-1}\right] F(x)^{n} \sum_{k=1}^{\infty} k g_{k} x^{k-1}=\frac{1}{n}\left[x^{n-1}\right]\left(F(x)^{n} \frac{\mathrm{~d}}{\mathrm{~d} x} G(x)\right)
\end{aligned}
$$

Computations with residues

Recall: If f is a complex function meromorphic in 0 , then there is a $d \in \mathbb{Z}$ such that on a punctured neighborhood of $0, f$ is equal to a Laurent series $f(z)=\sum_{n \geq d} f_{n} z^{n}$. The coefficient f_{-1} in this series is the residue of f in 0 , denoted $\operatorname{Res}_{0}(f)$.

$$
d=-3 \quad f(z)=\frac{f-3}{z^{3}}+\frac{f-2}{z^{2}}+\frac{f-1}{z}+f_{0}+f_{1} z+\ldots
$$

Computations with residues

Recall: If f is a complex function meromorphic in 0 , then there is a $d \in \mathbb{Z}$ such that on a punctured neighborhood of $0, f$ is equal to a Laurent series $f(z)=\sum_{n \geq d} f_{n} z^{n}$. The coefficient f_{-1} in this series is the residue of f in 0 , denoted $\operatorname{Res}_{0}(f)$.

Lemma (Derivatives have no residues)
With f as above, if f has a primitive function on a punctured neighborhood of 0 , then $\operatorname{Res}_{0}(f)=0$.

Recall: If f is a complex function meromorphic in 0 , then there is a $d \in \mathbb{Z}$ such that on a punctured neighborhood of $0, f$ is equal to a Laurent series $f(z)=\sum_{n \geq d} f_{n} z^{n}$. The coefficient f_{-1} in this series is the residue of f in 0 , denoted $\operatorname{Res}_{0}(f)$.

Lemma (Derivatives have no residues)

With f as above, if f has a primitive function on a punctured neighborhood of 0 , then $\operatorname{Res}_{0}(f)=0$.

Proof.

For a circle γ around 0 of small enough radius, we have

$$
\operatorname{Res}_{0}(f)=\frac{1}{2 \pi i} \int_{\gamma} f=0
$$

where the intergal is 0 , because f has a primitive function.

Substitution for residues

Lemma (Substitution rule for residues)
With f as above, if $g(z)$ is analytic on 0 with $g(0)=0$ and $g^{\prime}(0) \neq 0$, then $\operatorname{Res}_{0}(f(z))=\operatorname{Res}_{0}\left(f(g(z)) g^{\prime}(z)\right)$.

$$
\left.\frac{1}{2 \pi i} \int_{\gamma,}^{11} \int_{\gamma}=\frac{1}{2 \pi i} \int_{-1} f(g)(z)\right) \cdot g^{\prime}(z)
$$

Lemma (Substitution rule for residues)

With f as above, if $g(z)$ is analytic on 0 with $g(0)=0$ and $g^{\prime}(0) \neq 0$, then
$\operatorname{Res}_{0}(f(z))=\operatorname{Res}_{0}\left(f(g(z)) g^{\prime}(z)\right)$.

Proof.

With $f(z)=\sum_{n \geq d} f_{n} z^{n}$ and $g(z)=\sum_{n \geq 1} g_{n} z^{n}$, we get

$$
\operatorname{Res}_{0}\left(f(g(z)) g^{\prime}(z)\right)=\operatorname{Res}_{0}\left(\sum_{n \geq d} f_{n} g(z)^{n} g^{\prime}(z)\right)
$$

Lemma (Substitution rule for residues)

With f as above, if $g(z)$ is analytic on 0 with $g(0)=0$ and $g^{\prime}(0) \neq 0$, then $\operatorname{Res}_{0}(f(z))=\operatorname{Res}_{0}\left(f(g(z)) g^{\prime}(z)\right)$.

Proof.

With $f(z)=\sum_{n \geq d} f_{n} z^{n}$ and $g(z)=\sum_{n \geq 1} g_{n} z^{n}$, we get

$$
\begin{aligned}
& \operatorname{Res}_{0}\left(f(g(z)) g^{\prime}(z)\right)=\operatorname{Res}_{0}(\sum_{0} \underbrace{}_{0} f_{n} g(z)^{n} g^{\prime}(z) \\
& n \geq d \\
&=\operatorname{Res}_{0}(\sum_{\substack{n \geq d \\
n \neq-1}} \overbrace{\left(\frac{f_{n}}{n+1} g(z)^{n+1}\right)^{\prime}}^{\prime})
\end{aligned} \underbrace{\operatorname{Res} 0\left(f_{-1} \frac{g^{\prime}(z)}{g(z)}\right)}
$$

Lemma (Substitution rule for residues)

With f as above, if $g(z)$ is analytic on 0 with $g(0)=0$ and $g^{\prime}(0) \neq 0$, then $\operatorname{Res}_{0}(f(z))=\operatorname{Res}_{0}\left(f(g(z)) g^{\prime}(z)\right)$.

Proof.

With $f(z)=\sum_{n \geq d} f_{n} z^{n}$ and $g(z)=\sum_{n \geq 1} g_{n} z^{n}$, we get

$$
\begin{aligned}
\operatorname{Res}_{0}\left(f(g(z)) g^{\prime}(z)\right) & =\operatorname{Res}_{0}\left(\sum_{n \geq d} f_{n} g(z)^{n} g^{\prime}(z)\right) \\
& =\operatorname{Res}_{0}\left(\sum_{\substack{n \geq d \\
n \neq-1}}\left(\frac{f_{n}}{n+1} g(z)^{n+1}\right)^{\prime}\right)+\operatorname{Res}_{0}\left(f_{-1} \frac{g^{\prime}(z)}{g(z)}\right) \\
& =\operatorname{Res}_{0}\left(f_{-1} \frac{g_{1}+2 g_{2} z+3 g_{3} z^{2}+\cdots}{g_{1} z+g_{2} z^{2}+g_{3} z^{3}+\cdots}\right)
\end{aligned}
$$

Lemma (Substitution rule for residues)

With f as above, if $g(z)$ is analytic on 0 with $g(0)=0$ and $g^{\prime}(0) \neq 0$, then $\operatorname{Res}_{0}(f(z))=\operatorname{Res}_{0}\left(f(g(z)) g^{\prime}(z)\right)$.

Proof.

With $f(z)=\sum_{n \geq d} f_{n} z^{n}$ and $g(z)=\sum_{n \geq 1} g_{n} z^{n}$, we get

$$
\left.\begin{array}{rl}
\operatorname{Res}_{0}\left(f(g(z)) g^{\prime}(z)\right) & =\operatorname{Res}_{0}\left(\sum_{n \geq d} f_{n} g(z)^{n} g^{\prime}(z)\right) \\
& =\operatorname{Res}_{0}\left(\sum_{\substack{n \geq d \\
n \neq-1}}\left(\frac{f_{n}}{n+1} g(z)^{n+1}\right)^{\prime}\right)+\operatorname{Res}_{0}\left(f_{-1} \frac{g^{\prime}(z)}{g(z)}\right) \\
& =\operatorname{Res}_{0}\left(f_{-1} \frac{g_{1}+2 g_{2} z+3 g_{3} z^{2}+\cdots}{g_{1} z+g_{2} z^{2}+g_{3} z^{3}+\cdots}\right) \\
& =\operatorname{Res}_{0}\left(\frac{f_{-1}}{z} \cdot \frac{g_{1}+2 g_{2} z+3 g_{3} z^{2}+\cdots}{g_{1}+g_{2} z+g_{3} z^{2}+\cdots}\right) \\
1+a_{1} z+a_{2} z^{2}+\cdots
\end{array}\right)
$$

Lemma (Substitution rule for residues)

With f as above, if $g(z)$ is analytic on 0 with $g(0)=0$ and $g^{\prime}(0) \neq 0$, then $\operatorname{Res}_{0}(f(z))=\operatorname{Res}_{0}\left(f(g(z)) g^{\prime}(z)\right)$.

Proof.

With $f(z)=\sum_{n \geq d} f_{n} z^{n}$ and $g(z)=\sum_{n \geq 1} g_{n} z^{n}$, we get

$$
\begin{aligned}
\operatorname{Res}_{0}\left(f(g(z)) g^{\prime}(z)\right) & =\operatorname{Res}_{0}\left(\sum_{n \geq d} f_{n} g(z)^{n} g^{\prime}(z)\right) \\
& =\operatorname{Res}_{0}\left(\sum_{\substack{n \geq d \\
n \neq-1}}\left(\frac{f_{n}}{n+1} g(z)^{n+1}\right)^{\prime}\right)+\operatorname{Res}_{0}\left(f_{-1} \frac{g^{\prime}(z)}{g(z)}\right) \\
& =\operatorname{Res}_{0}\left(f_{-1} \frac{g_{1}+2 g_{2} z+3 g_{3} z^{2}+\cdots}{g_{1} z+g_{2} z^{2}+g_{3} z^{3}+\cdots}\right) \\
& =\operatorname{Res}_{0}\left(\frac{f_{-1}}{z} \cdot \frac{g_{1}+2 g_{2} z+3 g_{3} z^{2}+\cdots}{g_{1}+g_{2} z+g_{3} z^{2}+\cdots}\right) \\
& =f_{-1}=\underbrace{\operatorname{Res}(f) .}
\end{aligned}
$$

Recall: LIF says that $\left[x^{n}\right] B(x)^{k}=\frac{k}{n}\left[x^{n-k}\right] F(x)^{n}$, where $B(x)$ is the solution of $B(x)=x F(B(x))$ and $F(x)$ is a given series with $\left[x^{0}\right] F(x) \neq 0$.

Recall: LIF says that $\left[x^{n}\right] B(x)^{k}=\frac{k}{n}\left[x^{n-k}\right] F(x)^{n}$, where $B(x)$ is the solution of $B(x)=x F(B(x))$ and $F(x)$ is a given series with $\left[x^{0}\right] F(x) \neq 0$.
Note: Both $\left[x^{n}\right] B(x)^{k}$ and $\left[x^{n-k}\right] F(x)^{n}$ only depend on the coefficients of F of degree at most n. Hence we may assume that F is a polynomial, and in particular an analytic function.

Recall: LIF says that $\left[x^{n}\right] B(x)^{k}=\frac{k}{n}\left[x^{n-k}\right] F(x)^{n}$, where $B(x)$ is the solution of $B(x)=x F(B(x))$ and $F(x)$ is a given series with $\left[x^{0}\right] F(x) \neq 0$.
Note: Both $\left[x^{n}\right] B(x)^{k}$ and $\left[x^{n-k}\right] F(x)^{n}$ only depend on the coefficients of F of degree at most n. Hence we may assume that F is a polynomial, and in particular an analytic function.
Since $F(0) \neq 0, \frac{x}{F(x)}$ is analytic in 0 .

Recall: LIF says that $\left[x^{n}\right] B(x)^{k}=\frac{k}{n}\left[x^{n-k}\right] F(x)^{n}$, where $B(x)$ is the solution of $B(x)=x F(B(x))$ and $F(x)$ is a given series with $\left[x^{0}\right] F(x) \neq 0$.

Note: Both $\left[x^{n}\right] B(x)^{k}$ and $\left[x^{n-k}\right] F(x)^{n}$ only depend on the coefficients of F of degree at most n. Hence we may assume that F is a polynomial, and in particular an analytic function.
Since $F(0) \neq 0, \frac{x}{F(x)}$ is analytic in 0 .
Since $B(x)$ is a composition inverse of $\frac{x}{F(x)}$, it is analytic in 0 as well.

Recall: LIF says that $\left[x^{n}\right] B(x)^{k}=\frac{k}{n}\left[x^{n-k}\right] F(x)^{n}$, where $B(x)$ is the solution of $B(x)=x F(B(x))$ and $F(x)$ is a given series with $\left[x^{0}\right] F(x) \neq 0$.
Note: Both $\left[x^{n}\right] B(x)^{k}$ and $\left[x^{n-k}\right] F(x)^{n}$ only depend on the coefficients of F of degree at most n. Hence we may assume that F is a polynomial, and in particular an analytic function.
Since $F(0) \neq 0, \frac{x}{F(x)}$ is analytic in 0 .
Since $B(x)$ is a composition inverse of $\frac{x}{F(x)}$, it is analytic in 0 as well.

Proof of LIF.

$$
\frac{k}{n}\left[x^{n-k}\right] F(x)^{n}=\frac{\left(k \int_{\operatorname{Res} 0}\right.}{\sim} \frac{F(x)^{n}}{x^{n-k+1}}=\frac{1}{n} \operatorname{Res}_{0}\left(k x^{k-1} \frac{F(x)^{n}}{x^{n}}\right)
$$

Recall: LIF says that $\left[x^{n}\right] B(x)^{k}=\frac{k}{n}\left[x^{n-k}\right] F(x)^{n}$, where $B(x)$ is the solution of $B(x)=x F(B(x))$ and $F(x)$ is a given series with $\left[x^{0}\right] F(x) \neq 0$.
Note: Both $\left[x^{n}\right] B(x)^{k}$ and $\left[x^{n-k}\right] F(x)^{n}$ only depend on the coefficients of F of degree at most n. Hence we may assume that F is a polynomial, and in particular an analytic function.
Since $F(0) \neq 0, \frac{x}{F(x)}$ is analytic in 0 .
Since $B(x)$ is a composition inverse of $\frac{x}{F(x)}$, it is analytic in 0 as well.

Proof of LIF.

$$
\begin{aligned}
\frac{k}{n}\left[x^{n-k}\right] F(x)^{n} & =\frac{k}{n} \operatorname{Res}_{0} \frac{F(x)^{n}}{x^{n-k+1}}=\frac{1}{n} \operatorname{Res}_{0}\left(k x^{k-1} \frac{F(x)^{n}}{x^{n}}\right) \\
& =\frac{1}{n} \operatorname{Res}_{0}\left(k B(x)^{k-1} \frac{F(B(x))^{n}}{B(x)^{n}} B^{\prime}(x)\right) \quad(\text { substitute } x \rightarrow B(x))
\end{aligned}
$$

Recall: LIF says that $\left[x^{n}\right] B(x)^{k}=\frac{k}{n}\left[x^{n-k}\right] F(x)^{n}$, where $B(x)$ is the solution of $B(x)=x F(B(x))$ and $F(x)$ is a given series with $\left[x^{0}\right] F(x) \neq 0$.
Note: Both $\left[x^{n}\right] B(x)^{k}$ and $\left[x^{n-k}\right] F(x)^{n}$ only depend on the coefficients of F of degree at most n. Hence we may assume that F is a polynomial, and in particular an analytic function.
Since $F(0) \neq 0, \frac{x}{F(x)}$ is analytic in 0 .
Since $B(x)$ is a composition inverse of $\frac{x}{F(x)}$, it is analytic in 0 as well.

Proof of LIF.

$$
\begin{array}{rlr}
\frac{k}{n}\left[x^{n-k}\right] F(x)^{n} & =\frac{k}{n} \operatorname{Res}_{0} \frac{F(x)^{n}}{x^{n-k+1}}=\frac{1}{n} \operatorname{Res}_{0}\left(k x^{k-1} \frac{F(x)^{n}}{x^{n}}\right) & \\
& =\frac{1}{n} \operatorname{Res}_{0}\left(k B(x)^{k-1} \frac{F(B(x))^{n}}{B(x)^{n}} B^{\prime}(x)\right) & \text { (substitute } x \rightarrow B(x) \text {) } \\
& =\frac{1}{n} \operatorname{Res}_{0}\left(k B(x)^{k-1} \frac{1}{x^{n}} B^{\prime}(x)\right) & \\
\text { (use } \frac{B(x)}{F(B(x))}=x \text {) }
\end{array}
$$

Recall: LIF says that $\left[x^{n}\right] B(x)^{k}=\frac{k}{n}\left[x^{n-k}\right] F(x)^{n}$, where $B(x)$ is the solution of $B(x)=x F(B(x))$ and $F(x)$ is a given series with $\left[x^{0}\right] F(x) \neq 0$.

Note: Both $\left[x^{n}\right] B(x)^{k}$ and $\left[x^{n-k}\right] F(x)^{n}$ only depend on the coefficients of F of degree at most n. Hence we may assume that F is a polynomial, and in particular an analytic function.
Since $F(0) \neq 0, \frac{x}{F(x)}$ is analytic in 0 .
Since $B(x)$ is a composition inverse of $\frac{x}{F(x)}$, it is analytic in 0 as well.

Proof of LIF.

$$
\begin{array}{rlr}
\frac{k}{n}\left[x^{n-k}\right] F(x)^{n} & =\frac{k}{n} \operatorname{Res}_{0} \frac{F(x)^{n}}{x^{n-k+1}}=\frac{1}{n} \operatorname{Res}_{0}\left(k x^{k-1} \frac{F(x)^{n}}{x^{n}}\right) \\
& =\frac{1}{n} \operatorname{Res}_{0}\left(k B(x)^{k-1} \frac{F(B(x))^{n}}{B(x)^{n}} B^{\prime}(x)\right) & \quad \text { (substitute } x \rightarrow B(x)) \\
& =\frac{1}{n} \operatorname{Res}_{0}\left(k B(x)^{k-1} \frac{1}{x^{n}} B^{\prime}(x)\right) & \left.\quad \text { (use } \frac{B(x)}{F(B(x))}=x\right) \\
& =\frac{1}{n}\left[x^{n-1}\right] k B(x)^{k-1} B^{\prime}(x)=\frac{1}{n}\left[x^{n-1}\right]\left(B(x)^{k}\right)^{\prime} &
\end{array}
$$

Recall: LIF says that $\left[x^{n}\right] B(x)^{k}=\frac{k}{n}\left[x^{n-k}\right] F(x)^{n}$, where $B(x)$ is the solution of $B(x)=x F(B(x))$ and $F(x)$ is a given series with $\left[x^{0}\right] F(x) \neq 0$.
Note: Both $\left[x^{n}\right] B(x)^{k}$ and $\left[x^{n-k}\right] F(x)^{n}$ only depend on the coefficients of F of degree at most n. Hence we may assume that F is a polynomial, and in particular an analytic function.
Since $F(0) \neq 0, \frac{x}{F(x)}$ is analytic in 0 .
Since $B(x)$ is a composition inverse of $\frac{x}{F(x)}$, it is analytic in 0 as well.

Proof of LIF.

$$
\begin{array}{rlr}
\frac{k}{n}\left[x^{n-k}\right] F(x)^{n} & =\frac{k}{n} \operatorname{Res}_{0} \frac{F(x)^{n}}{x^{n-k+1}}=\frac{1}{n} \operatorname{Res}_{0}\left(k x^{k-1} \frac{F(x)^{n}}{x^{n}}\right) \\
& =\frac{1}{n} \operatorname{Res}_{0}\left(k B(x)^{k-1} \frac{F(B(x))^{n}}{B(x)^{n}} B^{\prime}(x)\right) & \quad \text { (substitute } x \rightarrow B(x)) \\
& =\frac{1}{n} \operatorname{Res}_{0}\left(k B(x)^{k-1} \frac{1}{x^{n}} B^{\prime}(x)\right) & \quad\left(\text { use } \frac{B(x)}{F(B(x))}=x\right) \\
& =\frac{1}{n}\left[x^{n-1}\right] k B(x)^{k-1} B^{\prime}(x)=\frac{1}{n}\left[x^{n-1}\right]\left(B(x)^{k}\right)^{\prime} & \\
& =\left[x^{n}\right] B(x)^{k} & \square
\end{array}
$$

Catalan trees revisited

Recall from Lecture 10: A binary tree is either a single leaf node, or an internal root node together with an ordered pair of subtrees, which are both binary trees. Let t_{n} be the number of binary trees with n internal nodes. Let us deduce a formula for t_{n} using LIF.

Catalan trees revisited

Recall from Lecture 10: A binary tree is either a single leaf node, or an internal root node together with an ordered pair of subtrees, which are both binary trees. Let t_{n} be the number of binary trees with n internal nodes. Let us deduce a formula for t_{n} using LIT.
The OGF $T(z)=\sum_{n=0}^{\infty} t_{n} z^{n}$ satisfies $T(z)=1+z T^{2}(z)$.

$$
\begin{aligned}
& \begin{aligned}
& T(z)=\frac{1-\sqrt{1-4 z}}{2 z} \quad\{\text { trees }\}=\{0\} \dot{U}\left\{\frac{\lambda}{T_{1}} T_{2}\right\} \\
&\{\text { trees }\}=\{0\} \dot{b}\left\{\begin{array}{l}
\text { a }
\end{array}\right\}
\end{aligned} \\
& \{\text { trees }\}=\{0\} \dot{\cup}\left\{\begin{array}{ll}
\{r o t \\
\lambda
\end{array}\right\} \times\{\text { pres }\} \\
& x\{\text { trees }\} \\
& T(z)=1+z \cdot T(z) \cdot T(z)
\end{aligned}
$$

Recall from Lecture 10: A binary tree is either a single leaf node, or an internal root node together with an ordered pair of subtrees, which are both binary trees. Let t_{n} be the number of binary trees with n internal nodes. Let us deduce a formula for t_{n} using KIF.
The OGF $T(z)=\sum_{n=0}^{\infty} t_{n} z^{n}$ satisfies $T(z)=1+z T^{2}(z)$.

$$
T(x)=x F(B(x))
$$

Define $T^{+}(z)=T(z)-1$ to be the OGF of trees with at least one internal node. The above formula gives $T^{+}(z)=z\left(T^{+}(z)+1\right)^{2}$.

Recall from Lecture 10: A binary tree is either a single leaf node, or an internal root node together with an ordered pair of subtrees, which are both binary trees. Let t_{n} be the number of binary trees with n internal nodes. Let us deduce a formula for t_{n} using LIF.
The OGF $T(z)=\sum_{n=0}^{\infty} t_{n} z^{n}$ satisfies $T(z)=1+z T^{2}(z)$.
Define $T^{+}(z)=T(z)-1$ to be the OGF of trees with at least one internal node. The above formula gives $T^{+}(z)=z\left(T^{+}(z)+1\right)^{2}$.
In particular, $T^{+}(z)=z F\left(T^{+}(z)\right)$ for $F(z)=(z+1)^{2}$. Hence, by LIF,

$$
\begin{aligned}
h \geqslant 1 \quad t_{n}=\left[z^{n}\right] T^{+}(z) & =\frac{1}{n}\left[z^{n-1}\right](z+1)^{2 n} \\
& =\frac{1}{n}\binom{2 n}{n-1}=\underbrace{\frac{1}{n+1}\binom{2 n}{n}}=C_{n}
\end{aligned}
$$

Plane trees and plane forests

A plane tree consists of a root node together with an ordered d-tuple of subtrees, for some $d \in \mathbb{N}_{0}$. The size of a plane tree is its number of nodes (in particular, each plane tree has positive size). Let p_{n} be the number of plane trees of size n.

A plane tree consists of a root node together with an ordered d-tuple of subtrees, for some $d \in \mathbb{N}_{0}$. The size of a plane tree is its number of nodes (in particular, each plane tree has positive size). Let p_{n} be the number of plane trees of size n.

A plane forest with k components is an ordered k-tuple of plane trees. Let f_{n} be the number of plane forests with k components that have total size n (k is a fixed constant).

Plane trees and plane forests

A plane tree consists of a root node together with an ordered d-tuple of subtrees, for some $d \in \mathbb{N}_{0}$. The size of a plane tree is its number of nodes (in particular, each plane tree has positive size). Let p_{n} be the number of plane trees of size n.

A plane forest with k components is an ordered k-tuple of plane trees. Let f_{n} be the number of plane forests with k components that have total size $n(k$ is a fixed constant).

$$
(k=1)
$$

$$
\begin{aligned}
& \text { Goal: Find an explicit formula for } p_{n} \text { and } f_{n} \text {. } \\
& P(z)=\sum_{n \geq 1} P_{n} z^{n}=z+z P(z)+z P^{2}(z)+\ldots \\
& p_{n}=\left[x^{n}\right] P(x) \\
& =\frac{1}{-}\left[x^{n-1}\right] \frac{1}{(1-x)^{n}}=z\left(\sum_{k=0}^{\infty} p_{(z)}^{k}\right)=z \cdot \frac{1}{1-p(z)} \\
& =\frac{\frac{1}{n}\left[x^{n-1}\right] \frac{1}{(1-x)^{n}}+\sum_{k=0}^{-n}(-n}{(1-p(z)}=z F(P(z)) \quad F(z)=\frac{1}{1-z} \\
& \begin{array}{l}
\left.(1-x)^{-n}=\sum_{k=0}^{\infty}\binom{-n}{k}(-1)^{k} x^{k}\right)^{\downarrow} \\
C_{n-1}=\frac{1}{n}\binom{-n}{n-1}(-1)^{n-1}=\frac{1}{n}\binom{2 n-1}{n-1}=\left\{\begin{array}{c}
(-n) \cdot(-2 n+n) \\
(-1-1)!0
\end{array}\right)
\end{array}
\end{aligned}
$$

$$
\left[x^{a}\right] \frac{1}{(1-x)^{n}}=\left[x^{a}\right]\left(1+x+x^{2}+\cdots\right)^{n}=\text { number of }
$$ $a \in \mathbb{N}_{0} \quad$ possibilities to obtain a as - $\| \cdot \infty$. 10.0 a sum of n nonnegative $1+0+2+2+3$ integers $=\binom{a+n-1}{a}=\binom{a+n-1}{n-1}$ 1+0 $+2 t f_{n}, \sum_{k=0}^{\infty} f_{n} x^{n}$ in terms $P(x): P(x)$

$\{$ forests $\}=\{$

$$
f_{n}=\left[x^{n}\right] p^{k}(x)=\frac{k}{n}\left[x^{n-k}\right] \frac{1}{(1-x)^{n}}=\frac{k}{n}\binom{2 n-k-1}{n-k}
$$

Labelled trees

A rooted tree of size n is a tree on the vertex set [n] with one vertex designated as root. A rooted forest of size n is a graph on the vertex set [n] whose every component is a rooted tree. Let r_{n} be the number of rooted trees on the vertices [n], and let g_{n} be the number of rooted forests with k components on [n] (k again fixed).

$$
r_{0}=0, r_{1}=1, r_{2}=2
$$

Labelled trees

A rooted tree of size n is a tree on the vertex set [n] with one vertex designated as root. A rooted forest of size n is a graph on the vertex set [n] whose every component is a rooted tree. Let r_{n} be the number of rooted trees on the vertices [n], and let g_{n} be the number of rooted forests with k components on $[n]$ (k again fixed).

Goal: Find an explicit formula for r_{n} and g_{n}.

$$
R(x)=\sum_{n=0}^{\infty} \frac{r_{n}}{n!} x^{n}
$$

root has deg $=1: x \cdot R(x)$

$\{$ rooked trees w. root of deg 1$\}=\{$ root $\}$, \otimes rooted

$$
\begin{aligned}
& R(x)=x e^{E(x)}=x F(R(x)) \\
& r_{n}=\mathbb{i n}_{n!}\left[x^{n}\right] R(x)= \\
& =n!\left(\frac{1}{n}\left[x^{n-1}\right]\left(e^{x}\right)^{n}\right)= \\
& \text { with } F=e^{x} \\
& \text { forests with } \\
& k \text { components } \\
& \text { have } E G F \\
& \frac{R(x)^{k}}{k!} \\
& =n!\left(\frac{1}{n} \frac{n^{n-1}}{(n-1)!}\right) \\
& =n^{n-1}=n \text {. number of rooted } \\
& \text { trees } \\
& =n \cdot n^{n-2}
\end{aligned}
$$

