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Situation
I We have two collections of pairwise independent r.v.’s

(random samples):
I X1, . . . , Xn ∼ FX a Y1, . . . , Ym ∼ FY

I We want to decide between H0 : FX = FY and
H1 : FX 6= FY .

I Examples: running time of an algorithm before/after
modification, cholesterol level in people who do/don’t eat
Miraculous SuperfoodTM, frequency of short words in text
by authors X and Y.

I We do not assume anything about FX , FY (in particular
they may not be normal).



Method
I We choose an appropriate statistics, e.g.

T (X1, . . . , Xn, Y1, . . . , Ym) = |X̄n − Ȳm|

I tobs := T (X1, . . . , Xn, Y1, . . . , Ym)

I Assuming H0, „all permutations of the data are the same“:
Xi i Yj were generated from the same distribution.

I We randomly permute the given m+ n numbers and for
each permutation we calculate T – we get numbers
T1, T2, . . . , T(m+n)! (each equally likely).

I As p-value we take the probability that T > tobs, or

p =
1

(m+ n)!

∑
j

I(Tj > tobs).

I This is the probability of Type I error. We reject H0

whenever p < α (for our choice of α, e.g. α = 0.05).



Improvement
I Enumerating all permutations can be too expensive.

Instead, we take just an appropriate number B of
independently generated permutations and calculate just
B values T1, . . . , TB.

I As p-value we take the estimate of the probability that
T > tobs, or

1

B

B∑
j=1

I(Tj > tobs).

I For sufficiently large m, n this gives similar results as tests
based on CLT. So it is useful especially for medium sized
samples.
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Empirical CDF – a reminder
I X1, . . . , Xn ∼ F i.i.d., F is their CDF
I Definition: Empirical CDF is defined by

F̂n(x) =

∑n
i=1 I(Xi ≤ x)

n
,

where I(Xi ≤ x) = 1 if Xi ≤ x and 0 otherwise.
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Boostrap – basic idea
I from the measured data X1 = x1, . . . , Xn = xn ∼ F we

create F̂n

I other data can be sampled from F̂n

I to do this we select a uniformly random i ∈ {1, . . . , n} and
outputing xi



Bootstrap – basic usage
I Tn = g(X1, . . . , Xn) some statistics (function of the data)
I we want to estimate var(Tn)

I sample X∗1 , . . . , X
∗
n ∼ F̂n (see last slide)

I calculate T ∗n = g(X∗1 , . . . , g
∗
n)

I repeat B times to get T ∗n,1, . . . , T
∗
n,B

I the variance estimate:

1

B

B∑
b=1

(
T ∗n,b −

1

B

B∑
k=1

T ∗n,k

)2
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Two approaches to statistics
Frequentists’/classical approach
I Probability is a long-term frequency (out of 6000 rolls of

the dice, a six was rolled 1026 times). It is an objective
property of the real world.

I Parameters are fixed, unknown constants. We can’t make
meaningful probabilistic statements about them.

I We design statistical procedures to have desirable
long-run properties. E.g. 95 % of our interval estimates will
cover the unknown parameter.

Bayesian approach
I Probability describes how much we believe in a

phenomenon, how much we are willing to bet. (Prob. that
T. Bayes had a cup of tea on December 18, 1760 is 90 %.)
(Prob. that COVID-19 virus did leak from a lab is ?50? %.)

I We can make probabilistic statements about parameters
(even though they are fixed constants).

I We compute the distribution of ϑ and form point and
interval estimates from it, etc.



Bayesian method – basic description
I The unknown parameter is treated as a random variable Θ

I We choose prior distribution, the pmf pΘ(ϑ) or the pdf
fΘ(ϑ) independent of the data.

I We choose a statistical model fX|Θ(x|ϑ) that describes
what we measure (and with what probability), depending
on the value of the parameter.

I After we observe X = x, we compute the posterior
distribution fΘ|X(ϑ|x)

I and then derive what we need e.g. find a, b so that∫ b
a fΘ|X(ϑ|x)dϑ ≥ 1− α

I ϑ = θ lower-case theta, Θ is upper-case theta



Bayes theorem

Theorem (Bayes theorem for discrete r.v.’s)
X, Θ are discrete r.v.’s

pΘ|X(ϑ|x) =
pX|Θ(x|ϑ)pΘ(ϑ)∑

ϑ′∈ImΘ pX|Θ(x|ϑ′)pΘ(ϑ′)
.

(terms with pΘ(ϑ′) = 0 are considered to be 0).

Theorem (Bayes theorem for continuous r.v.’s)
X, Θ are continuous r.v.’s with pdf’s fX , fΘ and joint pdf fX,Θ

fΘ|X(ϑ|x) =
fX|Θ(x|ϑ)fΘ(ϑ)∫

ϑ′∈R fX|Θ(x|ϑ′)fΘ(ϑ′)dϑ′
.

(terms with fΘ(ϑ′) = 0 with fΘ(ϑ′) = 0 are considered 0).

I Two more variants omitted.



Bayesian point estimates – MAP and LMS
MAP – Maximum A-Posteriori We choose ϑ̂ to maximize
I pΘ|X(ϑ|x) in the discrete case
I fΘ|X(ϑ|x) in the continuous case
I Similar to the ML method in the classical approach if we

choose a „flat prior“ – Θ is supposed to be
uniform/discrete uniform.

LMS – Least Mean Square Also the conditional mean
method.
I We choose ϑ̂ = E

(
Θ | X = x

)
.

I Unbiased point estimate, takes the smallest possible LMS
value.



Example 1
Bayesian spam classifier:
I create a list of suspicious words (money, win, pharmacy,

. . . )
I R.v. Xi describes whether the email contains the

suspicious word wi.
I R.v. Θ describes whether the email is spam Θ = 1 or not

Θ = 0.
I From the previous emails, we get estimates of pX|Θ and pΘ

I We use Bayes’ theorem to calculate pΘ|X



Example 2
Romeo and Juliet are to meet at noon sharp. But Juliet is late
by the time described by the random variable X ∼ U(0, ϑ). We
model the parameter ϑ by the random variable Θ ∼ U(0, 1).
What do we infer about ϑ from the measured value of X = x?



Example 3
Observing random variables X = (X1, . . . , Xn), assume
Xi ∼ N(ϑ, σ2

i ) and ϑ is the value of the random variable
Θ ∼ N(x0, σ0). What can we conclude about ϑ from the
measured values X = x = (x1, . . . , xn)?



Example 4
We flip a coin, the probability of getting heads is ϑ. Out of n
flips, the coin comes up heads in X = k cases. If our a priori
distribution was U(0, 1), what would be the distribution of the
posterior distribution?
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Basic method – inverse transformation method

Theorem
Let F be a function “of CDF-type”: nondecreasing
right-continuous function with limx→−∞ F (x) = 0 a
limx→+∞ F (x) = 1.
Let Q be the corresponding quantile function.
Let U ∼ U(0, 1) and X = Q(U). Then X has CDF F .

I It works well if we can quantify Q, for example for
exponential or geometric distributions.

I The gamma distribution is the sum of several exponential
distributions – so we generate it that way.



Variant of the basic method for discrete variables
I We want a r.v. X that takes values x1, x2, . . . with

probabilities p1, p2, . . . . (
∑

i pi = 1).
I We generate U ∼ U(0, 1).
I Find i such that p1 + · · ·+ pi−1 < U < p1 + · · ·+ pi.
I We set X := xi.

I Works nicely when we have a formula for p1 + · · ·+ pi (e.g.
geometric distribution).

I The binomial distribution is better simulated as the sum of
n independent Bernoulli variables.

I There are special tricks for other ones (Poisson).



Rejection sampling
I We want to generate a r.v. with density f .
I We can generate a r.v. with density g (which is „similar“),

namely
I f(y)

g(y) ≤ c for some constant c.
I The method:

1. Generate Y with density g, and U ∼ U(0, 1).
2. If U ≤ f(Y )

cg(Y ) , then X := Y .
3. Otherwise, reject the value of Y , U and repeat from point 1.

I Rationale: generating a random value of X with density f
is the same as generating a random point under the graph
of the function f whose horizontal (x) coordinate is X (and
whose vertical coordinate is uniformly random between 0
and X).



Follow-up classes
I Probability and Statistics 2 – NMAI073
I Introduction to Approximation and Randomized Algorithms

– NDMI084
I Introduction to Machine Learning in Python|R –

NPFL129|NPFL054
I and many master-level lectures
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