NMAI059 Probability and statistics 1 Class 14

Robert Šámal

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Simpson's paradox

Treatment Stone size	Treatment A	Treatment B
Small stones	Group 1 93% (81/87)	Group 2 87% (234/270)
Large stones	Group 3 73% (192/263)	Group 4 69% (55/80)
Both	78% (273/350)	83% (289/350)

◆ロ▶★舂▶★≧▶★≧▶ 差 のなぐ

Overview

Permutation test

Bootstrap

Bayesian statistics

Sampling random variables

Situation

- We have two collections of pairwise independent r.v.'s (random samples):
- $\blacktriangleright X_1, \ldots, X_n \sim F_X \text{ a } Y_1, \ldots, Y_m \sim F_Y$
- We want to decide between $H_0: F_X = F_Y$ and $H_1: F_X \neq F_Y$.
- Examples: running time of an algorithm before/after modification, cholesterol level in people who do/don't eat Miraculous SuperfoodTM, frequency of short words in text by authors X and Y.
- We do not assume anything about F_X , F_Y (in particular they may not be normal).

(日) (日) (日) (日) (日) (日) (日)

Method

• We choose an appropriate statistics, e.g.

$$T(X_1,\ldots,X_n,Y_1,\ldots,Y_m) = |\bar{X}_n - \bar{Y}_m|$$

 $\blacktriangleright t_{\text{obs}} := T(X_1, \dots, X_n, Y_1, \dots, Y_m)$

- Assuming H₀, "all permutations of the data are the same": X_i i Y_j were generated from the same distribution.
- ► We randomly permute the given m + n numbers and for each permutation we calculate T - we get numbers T₁, T₂,..., T_(m+n)! (each equally likely).
- As *p*-value we take the probability that $T > t_{obs}$, or

$$p = \frac{1}{(m+n)!} \sum_{j} I(T_j > t_{\text{obs}}).$$

► This is the probability of Type I error. We reject H_0 whenever $p < \alpha$ (for our choice of α , e.g. $\alpha = 0.05$).

Improvement

- Enumerating all permutations can be too expensive. Instead, we take just an appropriate number B of independently generated permutations and calculate just B values T₁,...,T_B.
- As *p*-value we take the estimate of the probability that *T* > t_{obs}, or

$$\frac{1}{B}\sum_{j=1}^{B}I(T_j > t_{\text{obs}}).$$

(ロ) (同) (三) (三) (三) (○) (○)

For sufficiently large m, n this gives similar results as tests based on CLT. So it is useful especially for medium sized samples.

Overview

Permutation test

Bootstrap

Bayesian statistics

Sampling random variables

Empirical CDF – a reminder

• $X_1, \ldots, X_n \sim F$ i.i.d., F is their CDF

Definition: Empirical CDF is defined by

$$\widehat{F}_n(x) = \frac{\sum_{i=1}^n I(X_i \le x)}{n},$$

イロン 不得 とくほ とくほ とうほ

where $I(X_i \le x) = 1$ if $X_i \le x$ and 0 otherwise.

Boostrap – basic idea

- For the measured data $X_1 = x_1, \ldots, X_n = x_n \sim F$ we create \widehat{F}_n
- other data can be sampled from \widehat{F}_n
- ► to do this we select a uniformly random $i \in \{1, ..., n\}$ and outputing x_i

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Bootstrap – basic usage

- ► $T_n = g(X_1, ..., X_n)$ some statistics (function of the data)
- we want to estimate $var(T_n)$
- sample $X_1^*, \ldots, X_n^* \sim \widehat{F}_n$ (see last slide)
- calculate $T_n^* = g(X_1^*, \dots, g_n^*)$
- repeat *B* times to get $T_{n,1}^*, \ldots, T_{n,B}^*$
- the variance estimate:

$$\frac{1}{B}\sum_{b=1}^{B} \left(T_{n,b}^* - \frac{1}{B}\sum_{k=1}^{B}T_{n,k}^*\right)^2$$

Overview

Permutation test

Bootstrap

Bayesian statistics

Sampling random variables

Two approaches to statistics

Frequentists'/classical approach

- Probability is a long-term frequency (out of 6000 rolls of the dice, a six was rolled 1026 times). It is an objective property of the real world.
- Parameters are fixed, unknown constants. We can't make meaningful probabilistic statements about them.
- We design statistical procedures to have desirable long-run properties. E.g. 95 % of our interval estimates will cover the unknown parameter.

Bayesian approach

- Probability describes how much we believe in a phenomenon, how much we are willing to bet. (Prob. that T. Bayes had a cup of tea on December 18, 1760 is 90 %.) (Prob. that COVID-19 virus did leak from a lab is ?50? %.)
- We can make probabilistic statements about parameters (even though they are fixed constants).
- ► We compute the distribution of ϑ and form point and interval estimates from it, etc.

Bayesian method – basic description

- \blacktriangleright The unknown parameter is treated as a random variable Θ
- We choose *prior distribution*, the pmf p_⊖(ϑ) or the pdf f_⊖(ϑ) independent of the data.
- We choose a statistical model $f_{X|\Theta}(x|\vartheta)$ that describes what we measure (and with what probability), depending on the value of the parameter.

- ► After we observe X = x, we compute the posterior distribution f_{Θ|X}(ϑ|x)
- ► and then derive what we need e.g. find *a*, *b* so that $\int_a^b f_{\Theta|X}(\vartheta|x) d\vartheta \ge 1 \alpha$

• $\vartheta = \theta$ lower-case theta, Θ is upper-case theta

Bayes theorem

Theorem (Bayes theorem for discrete r.v.'s) X, Θ are discrete r.v.'s

$$p_{\Theta|X}(\vartheta|x) = \frac{p_{X|\Theta}(x|\vartheta)p_{\Theta}(\vartheta)}{\sum_{\vartheta' \in Im\Theta} p_{X|\Theta}(x|\vartheta')p_{\Theta}(\vartheta')}.$$

(terms with $p_{\Theta}(\vartheta') = 0$ are considered to be 0).

Theorem (Bayes theorem for continuous r.v.'s) *X*, Θ are continuous r.v.'s with pdf's f_X , f_{Θ} and joint pdf $f_{X,\Theta}$

$$f_{\Theta|X}(\vartheta|x) = \frac{f_{X|\Theta}(x|\vartheta)f_{\Theta}(\vartheta)}{\int_{\vartheta' \in \mathbb{R}} f_{X|\Theta}(x|\vartheta')f_{\Theta}(\vartheta')d\vartheta'}$$

(terms with $f_{\Theta}(\vartheta') = 0$ with $f_{\Theta}(\vartheta') = 0$ are considered 0).

Two more variants omitted.

Bayesian point estimates – MAP and LMS

MAP – Maximum A-Posteriori We choose $\hat{\vartheta}$ to maximize

- $p_{\Theta|X}(\vartheta|x)$ in the discrete case
- $f_{\Theta|X}(\vartheta|x)$ in the continuous case
- Similar to the ML method in the classical approach if we choose a "flat prior" ⊖ is supposed to be uniform/discrete uniform.

LMS – Least Mean Square Also the conditional mean method.

- We choose $\hat{\vartheta} = \mathbb{E}(\Theta \mid X = x)$.
- Unbiased point estimate, takes the smallest possible LMS value.

Bayesian spam classifier:

- create a list of suspicious words (money, win, pharmacy, ...)
- R.v. X_i describes whether the email contains the suspicious word w_i.
- ▶ R.v. Θ describes whether the email is spam $\Theta = 1$ or not $\Theta = 0$.
- From the previous emails, we get estimates of $p_{X|\Theta}$ and p_{Θ}

(ロ) (同) (三) (三) (三) (○) (○)

• We use Bayes' theorem to calculate $p_{\Theta|X}$

Romeo and Juliet are to meet at noon sharp. But Juliet is late by the time described by the random variable $X \sim U(0, \vartheta)$. We model the parameter ϑ by the random variable $\Theta \sim U(0, 1)$. What do we infer about ϑ from the measured value of X = x?

(ロ) (同) (三) (三) (三) (○) (○)

Observing random variables $X = (X_1, \ldots, X_n)$, assume $X_i \sim N(\vartheta, \sigma_i^2)$ and ϑ is the value of the random variable $\Theta \sim N(x_0, \sigma_0)$. What can we conclude about ϑ from the measured values $X = x = (x_1, \ldots, x_n)$?

(日) (日) (日) (日) (日) (日) (日)

We flip a coin, the probability of getting heads is ϑ . Out of n flips, the coin comes up heads in X = k cases. If our a priori distribution was U(0, 1), what would be the distribution of the posterior distribution?

(ロ) (同) (三) (三) (三) (○) (○)

Overview

Permutation test

Bootstrap

Bayesian statistics

Sampling random variables

Basic method – inverse transformation method

Theorem

Let *F* be a function "of CDF-type": nondecreasing right-continuous function with $\lim_{x\to-\infty} F(x) = 0$ a $\lim_{x\to+\infty} F(x) = 1$. Let *Q* be the corresponding quantile function. Let $U \sim U(0, 1)$ and X = Q(U). Then *X* has CDF *F*.

It works well if we can quantify Q, for example for

- exponential or geometric distributions.
- The gamma distribution is the sum of several exponential distributions – so we generate it that way.

(日) (日) (日) (日) (日) (日) (日)

Variant of the basic method for discrete variables

- We want a r.v. X that takes values x_1, x_2, \ldots with probabilities $p_1, p_2, \ldots, (\sum_i p_i = 1)$.
- We generate $U \sim U(0, 1)$.
- Find *i* such that $p_1 + \cdots + p_{i-1} < U < p_1 + \cdots + p_i$.

• We set
$$X := x_i$$
.

- Works nicely when we have a formula for p₁ + · · · + p_i (e.g. geometric distribution).
- The binomial distribution is better simulated as the sum of n independent Bernoulli variables.
- ► There are special tricks for other ones (Poisson).

Rejection sampling

- ▶ We want to generate a r.v. with density *f*.
- We can generate a r.v. with density g (which is "similar"), namely
- $\frac{f(y)}{g(y)} \leq c$ for some constant c.
- The method:
 - 1. Generate *Y* with density *g*, and $U \sim U(0, 1)$.
 - 2. If $U \leq \frac{f(Y)}{ca(Y)}$, then X := Y.
 - 3. Otherwise, reject the value of Y, U and repeat from point 1.
- Rationale: generating a random value of X with density f is the same as generating a random point under the graph of the function f whose horizontal (x) coordinate is X (and whose vertical coordinate is uniformly random between 0 and X).

Follow-up classes

- Probability and Statistics 2 NMAI073
- Introduction to Approximation and Randomized Algorithms – NDMI084

(ロ) (同) (三) (三) (三) (○) (○)

- Introduction to Machine Learning in Python|R NPFL129|NPFL054
- and many master-level lectures