Appendix to Section S

Procedure eigen. Let ℓ be a prime and let $1 \leq \gamma<\ell$. Suppose that the goal is to decide whether γ is the eigevalue of a Frobenius endomorphism when the latter is restricted to $E[\ell]$. It is assumed that $\operatorname{char}(K)$ does not divide ℓ. Therefore $E[\ell] \cong \mathbb{Z}_{\ell} \times \mathbb{Z}_{\ell}$ is a vector space over \mathbb{Z}_{ℓ} that is of dimension two.

To decide whether there exists $P=(\alpha, \beta) \in E[\ell]^{*}$ such that $\varphi(P)=[\gamma] P$ rests upon the possibility to express $[\gamma] P$ as $\left(\alpha-c_{\gamma}(\alpha) / d_{\gamma}(\alpha), \beta r_{\gamma}(\alpha) / s_{\gamma}(\alpha)\right)$, where c_{γ}, d_{γ}, r_{γ} and s_{γ} are polynomials in variable x.

The existence of $P \in E[\ell]^{*}$ for which $\varphi(P)$ and $[\gamma] P$ coincide in the first coordinate depends upon

$$
\tilde{g}_{\ell}=\operatorname{gcd}\left(d_{\gamma} x^{q}-x d_{\gamma}+c_{\gamma}, \bar{f}_{\ell}\right)
$$

If $\tilde{g}_{\ell} \neq 1$, then for each root α of \tilde{g}_{ℓ} there exists $P=(\alpha, \beta) \in E[\ell]^{*}$ such that α^{q}, which is the first coordinate of $\varphi(P)$, is equal to $\alpha-c_{\gamma}(\alpha) / d_{\gamma}(\alpha)$, which is the first coordinate of $[\gamma](P)$. If $\tilde{g}_{\ell}=1$, then γ is not an eigenvalue. Assume $\tilde{g}_{\ell} \neq 1$.

To see if for any α which is a root of \tilde{g}_{ℓ} there exists β such that $P=(\alpha, \beta) \in$ $E[\ell]$ and $\varphi(P)$ agrees with $[\gamma] P$ in the second coordinate too, the equation $\beta^{q}=$ $\left.\beta r_{\gamma}(\alpha) / s_{\gamma}(\alpha)\right)$ has to be verified. Since $\beta^{q-1}=\left(\alpha^{3}+a \alpha+b\right)^{(q-1) / 2}$, the verification of γ being an eigenvalue finishes by the test of

$$
\operatorname{gcd}\left(\left(x^{3}+a x+b\right)^{\frac{q-1}{2}} s_{\gamma}(x)-r_{\gamma}(x), \tilde{g}_{\ell}\right) .
$$

Degree of \tilde{g}_{ℓ}. Suppose that γ is an eigenvalue. Then the number of roots of \tilde{g}_{ℓ} is twice the number of $P \in E[\ell]^{*}$ such that $\varphi(P)=[\pm \gamma] P$. The characteristic polynomial $T^{2}-t_{\ell} T+q_{\ell}$ may be equal to $(T-\gamma)^{2}$. In such a case $\tilde{g}_{\ell}=\bar{f}_{\ell}$ since every element of $E[\ell]^{*}$ is mapped by φ to $[\gamma] P$.

Let $T^{2}-t_{\ell} T+q_{\ell} \neq(T-\gamma)^{2}$. Then φ possesses besides γ another eigenvalue, say λ. The existence of $P \in E[\ell]^{*}$ with $\varphi(P)=[-\gamma] P$ is thus equivalent to $\lambda=-\gamma$. Since $\lambda \neq \gamma$, the eigenspaces of λ and γ are of dimension one. Hence $\operatorname{deg}\left(\tilde{g}_{\ell}\right)=(q-1) / 2$ if $\lambda \neq-\gamma$ and $\operatorname{deg}\left(\tilde{g}_{\ell}\right)=q-1$ if $\lambda=-\gamma$.

In Schoof's algorithm the situation $\lambda=-\gamma$ does not occur since in such a case the characteristic polynomial is equal to $(T-\gamma)(T+\gamma)=T-\gamma^{2}$, and that implies $t_{\ell}=0$. However, the procedure eigen is called in Schoof's algorithm only after it has been verified that $t_{\ell} \neq 0$.

Two approaches to the procedure tyzero. The procedure is called in the situation when it is known that there exists $P=(\alpha, \beta) \in E[\ell]^{*}$ such that $\varphi^{2}(P)$ and $\left[q_{\ell}\right] P$ agree in the first coordinate. The equality $t_{\ell}=0$ takes place if and only if $\varphi^{2}(P)=\left[-q_{\ell}\right] P$ for each $P \in E[\ell]$. However, for this to hold it suffices to find just one $P \in E[\ell]^{*}$ for which $\varphi^{2}(P)=\left[-q_{\ell}\right] P$.

If $\varphi^{2}(P)$ and $\left[-q_{\ell}\right] P$ always agree, then $-\beta^{q^{2}}=\beta r_{q_{\ell}}(\alpha) / s_{q_{\ell}}(\alpha)$ for each $P=$ $(\alpha, \beta) \in E[\ell]^{*}$. The respective polynomial has to be thus divisible by \bar{f}_{ℓ}. If that divisibility takes place, then the second coordinate of $\varphi^{2}(P)$ and $\left[-q_{\ell}\right](P)$ agrees for all $P \in E[\ell]^{*}$, and thus also for an element P for which the first coordinate of $\varphi^{2}(P)$ and $\left[-q_{\ell}\right](P)$ agrees. Since the existence of such P is known, $t_{\ell}=0$, and $\varphi^{2}(P)=\left[-q_{\ell}\right] P$ for every $P \in E[\ell]$. However, to make this conclusion requires that \bar{f}_{ℓ} divides the polynomial that expresses the agreement in the second coordinate. In this case it does not suffice to verify the existence of a nontrivial common divisor.

An alternative approach is to store $\operatorname{gcd}\left(\bar{s}_{\ell}, \bar{f}_{\ell}\right)$. Denote it by g_{ℓ}, like in the main text. If $\operatorname{deg}\left(g_{\ell}\right)<\operatorname{deg}\left(\bar{f}_{\ell}\right)$, then $t_{\ell} \neq 0$ because roots of g_{ℓ} are those α for which there exists β such that $P=(\alpha, \beta) \in E[\ell]^{*}$ and $\varphi^{2}(P)$ agrees with $\left[q_{\ell}\right] P$ in the first coordinate. If $t_{\ell}=0$, then the agreement is true for all $P \in E[\ell]$.

However, the test $\operatorname{deg}\left(g_{\ell}\right)<\operatorname{deg}\left(\bar{f}_{\ell}\right)$ does not have to be done. The main idea of the alternative approach is that instead of testing the divisibility of the polynomial
that expresses the agreement of $\varphi^{2}(P)$ and $\left[-q_{\ell}\right](P)$ in the second coordinate, it suffices to test the existence of a common nontrivial divisor of that polynomial with g_{ℓ}. Indeed, for each root α of such a common divisor there exists β such that $P=(\alpha, \beta)$ is in $E[\ell]$, and $\varphi^{2}(P)$ agrees with $\left[-q_{\ell}\right](P)$ in both coordinates.

Why \tilde{g}_{ℓ} and g_{ℓ} agree. Suppose that $g_{\ell}=\operatorname{gcd}\left(\bar{s}_{\ell}, \bar{f}_{\ell}\right)>1$ and $t_{\ell} \neq 0$. In such a case τ is chosen so that $\tau^{2} \equiv 4 q_{\ell} \bmod \ell$. Set $\gamma=2 q_{\ell} / \tau$. As has been explained in Section I, either γ or $-\gamma$ is an eigenvalue of φ (relative to $E[\ell]$). At this point of Schoof's algorithm it is already known that $t_{\ell} \neq 0$. Hence only one of γ and $-\gamma$ is the eigenvalue.

Roots of \tilde{g}_{ℓ} (which is defined with respect to the eigenvalue $\pm \gamma$) are those α, for which there exists β such that $P=(\alpha, \beta) \in E[\ell]^{*}$ and $\varphi[P]$ agrees with $[\pm \gamma] P$ in the first coordinate. If this happens, then $\varphi^{2}(P)=\left[\gamma^{2}\right] P=\left[4 q_{\ell}^{2} / \tau^{2}\right] P=\left[q_{\ell}\right] P$. Hence α is also a root of g_{ℓ}, and \tilde{g}_{ℓ} divides g_{ℓ}.

Indeed, roots of g_{ℓ} are those α for which there exists $P=(\alpha, \beta) \in E[\ell]^{*}$ such that $\varphi^{2}(P)$ and $\left[q_{\ell}\right] P$ agree in the first coordinate. This means that $\varphi^{2}(P)=\left[\pm q_{\ell}\right] P$. Since $t_{\ell} \neq 0$, there is no P with $\varphi^{2}(P)=\left[-q_{\ell}\right] P$. Hence only the case of $\varphi^{2}(P)=$ $\left[q_{\ell}\right] P$ may take place. If $\varphi(P)=[\pm \gamma] P$ for every $P \in E[\ell]$, then $\varphi^{2}(P)=\left[q_{\ell}\right] P$ for every $P \in E[\ell]$. In such a case $\tilde{g}_{\ell}=g_{\ell}=\bar{f}_{\ell}$. For the rest we may thus assume the existence of an eigenvalue $\lambda \neq \pm \gamma$. Hence $\lambda^{2} \neq \gamma^{2}$. Both λ^{2} and $\gamma^{2}=q_{\ell}$ are eigenvalues of $\varphi^{2}(P)$. There cannot be $\lambda^{2}=-\gamma^{2}$ since $\varphi^{2}(P)=\left[-q_{\ell}\right] P$ never takes place. Therefore both q_{ℓ} and \bar{q}_{ℓ} are of degree $(q-1) / 2$. That implies that they are equal (up to a scalar multiple).

