
Appendix to Section S

Procedure eigen. Let ` be a prime and let 1 ≤ γ < `. Suppose that the goal
is to decide whether γ is the eigevalue of a Frobenius endomorphism when the
latter is restricted to E[`]. It is assumed that char(K) does not divide `. Therefore
E[`] ∼= Z` × Z` is a vector space over Z` that is of dimension two.

To decide whether there exists P = (α, β) ∈ E[`]∗ such that ϕ(P ) = [γ]P rests
upon the possibility to express [γ]P as (α− cγ(α)/dγ(α), βrγ(α)/sγ(α)), where cγ ,
dγ , rγ and sγ are polynomials in variable x.

The existence of P ∈ E[`]∗ for which ϕ(P ) and [γ]P coincide in the first coordi-
nate depends upon

g̃` = gcd(dγx
q − xdγ + cγ , f̄`).

If g̃` 6= 1, then for each root α of g̃` there exists P = (α, β) ∈ E[`]∗ such that αq,
which is the first coordinate of ϕ(P ), is equal to α− cγ(α)/dγ(α), which is the first
coordinate of [γ](P ). If g̃` = 1, then γ is not an eigenvalue. Assume g̃` 6= 1.

To see if for any α which is a root of g̃` there exists β such that P = (α, β) ∈
E[`] and ϕ(P ) agrees with [γ]P in the second coordinate too, the equation βq =
βrγ(α)/sγ(α)) has to be verified. Since βq−1 = (α3+aα+b)(q−1)/2, the verification
of γ being an eigenvalue finishes by the test of

gcd((x3 + ax+ b)
q−1
2 sγ(x)− rγ(x), g̃`).

Degree of g̃`. Suppose that γ is an eigenvalue. Then the number of roots of g̃`
is twice the number of P ∈ E[`]∗ such that ϕ(P ) = [±γ]P . The characteristic
polynomial T 2 − t`T + q` may be equal to (T − γ)2. In such a case g̃` = f̄` since
every element of E[`]∗ is mapped by ϕ to [γ]P .

Let T 2−t`T+q` 6= (T−γ)2. Then ϕ possesses besides γ another eigenvalue, say λ.
The existence of P ∈ E[`]∗ with ϕ(P ) = [−γ]P is thus equivalent to λ = −γ. Since
λ 6= γ, the eigenspaces of λ and γ are of dimension one. Hence deg(g̃`) = (q− 1)/2
if λ 6= −γ and deg(g̃`) = q − 1 if λ = −γ.

In Schoof’s algorithm the situation λ = −γ does not occur since in such a case
the characteristic polynomial is equal to (T − γ)(T + γ) = T − γ2, and that implies
t` = 0. However, the procedure eigen is called in Schoof’s algorithm only after it
has been verified that t` 6= 0.

Two approaches to the procedure tyzero. The procedure is called in the
situation when it is known that there exists P = (α, β) ∈ E[`]∗ such that ϕ2(P )
and [q`]P agree in the first coordinate. The equality t` = 0 takes place if and only
if ϕ2(P ) = [−q`]P for each P ∈ E[`]. However, for this to hold it suffices to find
just one P ∈ E[`]∗ for which ϕ2(P ) = [−q`]P .

If ϕ2(P ) and [−q`]P always agree, then −βq2 = βrq`(α)/sq`(α) for each P =
(α, β) ∈ E[`]∗. The respective polynomial has to be thus divisible by f̄`. If that
divisibility takes place, then the second coordinate of ϕ2(P ) and [−q`](P ) agrees
for all P ∈ E[`]∗, and thus also for an element P for which the first coordinate of
ϕ2(P ) and [−q`](P ) agrees. Since the existence of such P is known, t` = 0, and
ϕ2(P ) = [−q`]P for every P ∈ E[`]. However, to make this conclusion requires that
f̄` divides the polynomial that expresses the agreement in the second coordinate.
In this case it does not suffice to verify the existence of a nontrivial common divisor.

An alternative approach is to store gcd(s̄`, f̄`). Denote it by g`, like in the main
text. If deg(g`) < deg(f̄`), then t` 6= 0 because roots of g` are those α for which
there exists β such that P = (α, β) ∈ E[`]∗ and ϕ2(P ) agrees with [q`]P in the first
coordinate. If t` = 0, then the agreement is true for all P ∈ E[`].

However, the test deg(g`) < deg(f̄`) does not have to be done. The main idea of
the alternative approach is that instead of testing the divisibility of the polynomial
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that expresses the agreement of ϕ2(P ) and [−q`](P ) in the second coordinate, it
suffices to test the existence of a common nontrivial divisor of that polynomial
with g`. Indeed, for each root α of such a common divisor there exists β such that
P = (α, β) is in E[`], and ϕ2(P ) agrees with [−q`](P ) in both coordinates.

Why g̃` and g` agree. Suppose that g` = gcd(s̄`, f̄`) > 1 and t` 6= 0. In such a
case τ is chosen so that τ2 ≡ 4q` mod `. Set γ = 2q`/τ . As has been explained in
Section I, either γ or −γ is an eigenvalue of ϕ (relative to E[`]). At this point of
Schoof’s algorithm it is already known that t` 6= 0. Hence only one of γ and −γ is
the eigenvalue.

Roots of g̃` (which is defined with respect to the eigenvalue ±γ) are those α,
for which there exists β such that P = (α, β) ∈ E[`]∗ and ϕ[P ] agrees with [±γ]P
in the first coordinate. If this happens, then ϕ2(P ) = [γ2]P = [4q2`/τ

2]P = [q`]P .
Hence α is also a root of g`, and g̃` divides g`.

Indeed, roots of g` are those α for which there exists P = (α, β) ∈ E[`]∗ such that
ϕ2(P ) and [q`]P agree in the first coordinate. This means that ϕ2(P ) = [±q`]P .
Since t` 6= 0, there is no P with ϕ2(P ) = [−q`]P . Hence only the case of ϕ2(P ) =
[q`]P may take place. If ϕ(P ) = [±γ]P for every P ∈ E[`], then ϕ2(P ) = [q`]P for
every P ∈ E[`]. In such a case g̃` = g` = f̄`. For the rest we may thus assume
the existence of an eigenvalue λ 6= ±γ. Hence λ2 6= γ2. Both λ2 and γ2 = q` are
eigenvalues of ϕ2(P ). There cannot be λ2 = −γ2 since ϕ2(P ) = [−q`]P never takes
place. Therefore both q` and q̄` are of degree (q− 1)/2. That implies that they are
equal (up to a scalar multiple).


