APPENDIX TO SECTION S

Procedure eigen. Let ℓ be a prime and let $1 \leq \gamma < \ell$. Suppose that the goal is to decide whether γ is the eigevalue of a Frobenius endomorphism when the latter is restricted to $E[\ell]$. It is assumed that $\operatorname{char}(K)$ does not divide ℓ . Therefore $E[\ell] \cong \mathbb{Z}_{\ell} \times \mathbb{Z}_{\ell}$ is a vector space over \mathbb{Z}_{ℓ} that is of dimension two.

To decide whether there exists $P = (\alpha, \beta) \in E[\ell]^*$ such that $\varphi(P) = [\gamma]P$ rests upon the possibility to express $[\gamma]P$ as $(\alpha - c_{\gamma}(\alpha)/d_{\gamma}(\alpha), \beta r_{\gamma}(\alpha)/s_{\gamma}(\alpha))$, where c_{γ} , d_{γ} , r_{γ} and s_{γ} are polynomials in variable x.

The existence of $P \in E[\ell]^*$ for which $\varphi(P)$ and $[\gamma]P$ coincide in the first coordinate depends upon

$$\tilde{g}_{\ell} = \gcd(d_{\gamma}x^q - xd_{\gamma} + c_{\gamma}, \bar{f}_{\ell}).$$

If $\tilde{g}_{\ell} \neq 1$, then for each root α of \tilde{g}_{ℓ} there exists $P = (\alpha, \beta) \in E[\ell]^*$ such that α^q , which is the first coordinate of $\varphi(P)$, is equal to $\alpha - c_{\gamma}(\alpha)/d_{\gamma}(\alpha)$, which is the first coordinate of $[\gamma](P)$. If $\tilde{g}_{\ell} = 1$, then γ is not an eigenvalue. Assume $\tilde{g}_{\ell} \neq 1$.

To see if for any α which is a root of \tilde{g}_{ℓ} there exists β such that $P = (\alpha, \beta) \in E[\ell]$ and $\varphi(P)$ agrees with $[\gamma]P$ in the second coordinate too, the equation $\beta^q = \beta r_{\gamma}(\alpha)/s_{\gamma}(\alpha)$ has to be verified. Since $\beta^{q-1} = (\alpha^3 + a\alpha + b)^{(q-1)/2}$, the verification of γ being an eigenvalue finishes by the test of

$$\gcd((x^3 + ax + b)^{\frac{q-1}{2}}s_{\gamma}(x) - r_{\gamma}(x), \,\tilde{g}_{\ell}).$$

Degree of \tilde{g}_{ℓ} . Suppose that γ is an eigenvalue. Then the number of roots of \tilde{g}_{ℓ} is twice the number of $P \in E[\ell]^*$ such that $\varphi(P) = [\pm \gamma]P$. The characteristic polynomial $T^2 - t_{\ell}T + q_{\ell}$ may be equal to $(T - \gamma)^2$. In such a case $\tilde{g}_{\ell} = \bar{f}_{\ell}$ since every element of $E[\ell]^*$ is mapped by φ to $[\gamma]P$.

Let $T^2 - t_{\ell}T + q_{\ell} \neq (T - \gamma)^2$. Then φ possesses besides γ another eigenvalue, say λ . The existence of $P \in E[\ell]^*$ with $\varphi(P) = [-\gamma]P$ is thus equivalent to $\lambda = -\gamma$. Since $\lambda \neq \gamma$, the eigenspaces of λ and γ are of dimension one. Hence $\deg(\tilde{g}_{\ell}) = (q - 1)/2$ if $\lambda \neq -\gamma$ and $\deg(\tilde{g}_{\ell}) = q - 1$ if $\lambda = -\gamma$.

In Schoof's algorithm the situation $\lambda = -\gamma$ does not occur since in such a case the characteristic polynomial is equal to $(T - \gamma)(T + \gamma) = T - \gamma^2$, and that implies $t_{\ell} = 0$. However, the procedure **eigen** is called in Schoof's algorithm only after it has been verified that $t_{\ell} \neq 0$.

Two approaches to the procedure tyzero. The procedure is called in the situation when it is known that there exists $P = (\alpha, \beta) \in E[\ell]^*$ such that $\varphi^2(P)$ and $[q_\ell]P$ agree in the first coordinate. The equality $t_\ell = 0$ takes place if and only if $\varphi^2(P) = [-q_\ell]P$ for each $P \in E[\ell]$. However, for this to hold it suffices to find just one $P \in E[\ell]^*$ for which $\varphi^2(P) = [-q_\ell]P$.

If $\varphi^2(P)$ and $[-q_\ell]P$ always agree, then $-\beta^{q^2} = \beta r_{q_\ell}(\alpha)/s_{q_\ell}(\alpha)$ for each $P = (\alpha, \beta) \in E[\ell]^*$. The respective polynomial has to be thus divisible by \bar{f}_ℓ . If that divisibility takes place, then the second coordinate of $\varphi^2(P)$ and $[-q_\ell](P)$ agrees for all $P \in E[\ell]^*$, and thus also for an element P for which the first coordinate of $\varphi^2(P)$ and $[-q_\ell](P)$ agrees. Since the existence of such P is known, $t_\ell = 0$, and $\varphi^2(P) = [-q_\ell]P$ for every $P \in E[\ell]$. However, to make this conclusion requires that \bar{f}_ℓ divides the polynomial that expresses the agreement in the second coordinate. In this case it does not suffice to verify the existence of a nontrivial common divisor.

An alternative approach is to store $gcd(\bar{s}_{\ell}, \bar{f}_{\ell})$. Denote it by g_{ℓ} , like in the main text. If $deg(g_{\ell}) < deg(\bar{f}_{\ell})$, then $t_{\ell} \neq 0$ because roots of g_{ℓ} are those α for which there exists β such that $P = (\alpha, \beta) \in E[\ell]^*$ and $\varphi^2(P)$ agrees with $[q_{\ell}]P$ in the first coordinate. If $t_{\ell} = 0$, then the agreement is true for all $P \in E[\ell]$.

However, the test $\deg(g_{\ell}) < \deg(\bar{f}_{\ell})$ does not have to be done. The main idea of the alternative approach is that instead of testing the divisibility of the polynomial

that expresses the agreement of $\varphi^2(P)$ and $[-q_\ell](P)$ in the second coordinate, it suffices to test the existence of a common nontrivial divisor of that polynomial with g_ℓ . Indeed, for each root α of such a common divisor there exists β such that $P = (\alpha, \beta)$ is in $E[\ell]$, and $\varphi^2(P)$ agrees with $[-q_\ell](P)$ in both coordinates.

Why \tilde{g}_{ℓ} and g_{ℓ} agree. Suppose that $g_{\ell} = \gcd(\bar{s}_{\ell}, \bar{f}_{\ell}) > 1$ and $t_{\ell} \neq 0$. In such a case τ is chosen so that $\tau^2 \equiv 4q_{\ell} \mod \ell$. Set $\gamma = 2q_{\ell}/\tau$. As has been explained in Section I, either γ or $-\gamma$ is an eigenvalue of φ (relative to $E[\ell]$). At this point of Schoof's algorithm it is already known that $t_{\ell} \neq 0$. Hence only one of γ and $-\gamma$ is the eigenvalue.

Roots of \tilde{g}_{ℓ} (which is defined with respect to the eigenvalue $\pm \gamma$) are those α , for which there exists β such that $P = (\alpha, \beta) \in E[\ell]^*$ and $\varphi[P]$ agrees with $[\pm \gamma]P$ in the first coordinate. If this happens, then $\varphi^2(P) = [\gamma^2]P = [4q_{\ell}^2/\tau^2]P = [q_{\ell}]P$. Hence α is also a root of g_{ℓ} , and \tilde{g}_{ℓ} divides g_{ℓ} .

Indeed, roots of g_{ℓ} are those α for which there exists $P = (\alpha, \beta) \in E[\ell]^*$ such that $\varphi^2(P)$ and $[q_{\ell}]P$ agree in the first coordinate. This means that $\varphi^2(P) = [\pm q_{\ell}]P$. Since $t_{\ell} \neq 0$, there is no P with $\varphi^2(P) = [-q_{\ell}]P$. Hence only the case of $\varphi^2(P) = [q_{\ell}]P$ may take place. If $\varphi(P) = [\pm \gamma]P$ for every $P \in E[\ell]$, then $\varphi^2(P) = [q_{\ell}]P$ for every $P \in E[\ell]$. In such a case $\tilde{g}_{\ell} = g_{\ell} = \bar{f}_{\ell}$. For the rest we may thus assume the existence of an eigenvalue $\lambda \neq \pm \gamma$. Hence $\lambda^2 \neq \gamma^2$. Both λ^2 and $\gamma^2 = q_{\ell}$ are eigenvalues of $\varphi^2(P)$. There cannot be $\lambda^2 = -\gamma^2$ since $\varphi^2(P) = [-q_{\ell}]P$ never takes place. Therefore both q_{ℓ} and \bar{q}_{ℓ} are of degree (q-1)/2. That implies that they are equal (up to a scalar multiple).