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A simple estimate

We have seen examples of coefficient bounds for functions that have specific types of
singularities (poles, algebraic singularities). What about coefficients of functions that
are analytic everywhere?

Proposition

Suppose f (z) =
∑∞

n=0 anzn is a power series with non-negative coefficients and with
radius of convergence ρ ∈ (0,+∞]. Then for r ∈ (0, ρ) and n ∈ N0, the following
holds:

If r ≤ 1, then a0 + a1 + · · ·+ an ≤ f (r)
rn .

If r ≥ 1, then an + an+1 + an+2 + · · · ≤ f (r)
rn .

For any r ∈ (0, ρ), an ≤ f (r)
rn .

Note: With f , ρ and n be as above, the function f (r)
rn has a minimum in a point

satisfying rf ′(r) = nf (r).
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Some examples

Examples applying an ≤ f (r)
rn , with rf ′(r) = nf (r).

Example 1. Consider f (z) = ez , i.e., an = 1
n!
.

Example 2. Estimate
(m

n

)
, with n ≤ m/2.
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Improving the simple estimate

Recall:

Proposition (Cauchy’s integral formula)

Suppose f =
∑∞

n=0 anzn, with radius of convergence ρ ∈ (0,+∞], let γ be the circle
of radius r < ρ centered in 0, let n ∈ N0. Then

an =
1
2πi

∫
γ

f (z)

zn+1 .

Idea: find estimates for an by estimating the integral above.
First attempt (assuming all coefficients of f are nonnegative):

|an| =

∣∣∣∣ 1
2πi

∫
γ

f (z)

zn+1

∣∣∣∣
≤

1
2π

len(γ) max{|f (z)/zn+1|; z ∈ γ}

=
1
2π
· 2πr ·

f (r)

rn+1

=
f (r)

rn
.

This is identical to the bound we already know. But we can find better estimates for
the integral.
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Digression: the landscape of an analytic function

Let Ω ⊆ C be a domain, let f : Ω→ C be an analytic function which is not constant
on Ω. What can we say about the function m : Ω→ [0,+∞) defined as
m(z) = |f (z)|?
Let us say that a point z0 ∈ Ω is

generic if f (z0) 6= 0 and f ′(z0) 6= 0,

a minimum if f (z0) = 0,

a saddle point (of multiplicity k) if f (z0) 6= 0,
f ′(z0) = f ′′(z0) = · · · = f (k)(z0) = 0 and f (k+1)(z0) 6= 0.

Proposition

Let f , m and Ω be as above. Let z0 ∈ Ω be arbitrary, let ε > 0 be small enough so
that N≤ε(z0) ⊆ Ω. Let z = z0 + re iφ, with r ∈ [0, ε), φ ∈ [0, 2π).

If z0 is a generic point, then there are constants λ > 0 and τ ∈ [0, 2π) such that
m(z) = m(z0)(1 + λr cos(φ− τ) + O(r2)) as r → 0.

It z0 is a sadle point of multiplicity k ≥ 1, then there are constants λ > 0 and
τ ∈ [0, 2π) such that m(z) = m(z0)(1 + λrk+1 cos((k + 1)φ− τ) + O(rk+1)) as
r → 0.

In particular, m has no local maxima, and the only local minima satisfy m(z0) = 0.
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Proof of the proposition

Proposition

Let f , m and Ω be as above. Let z0 ∈ Ω be arbitrary, let ε > 0 be small enough so
that N≤ε(z0) ⊆ Ω. Let z = z0 + re iφ, with r ∈ [0, ε), φ ∈ [0, 2π).

If z0 is a generic point, then there are constants λ > 0 and τ ∈ [0, 2π) such that
m(z) = m(z0)(1 + λr cos(φ− τ) + O(r2)) as r → 0.

It z0 is a sadle point of multiplicity k ≥ 1, then there are constants λ > 0 and
τ ∈ [0, 2π) such that m(z) = m(z0)(1 + λrk+1 cos((k + 1)φ− τ) + O(rk+1)) as
r → 0.
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Proof continued ...



Back to coefficient estimates

Let us assume (again) that f (z) =
∑∞

n=0 anzn is a power series with nonnegative
coefficients and radius of convergence ρ ∈ (0,+∞]. Recall that

an =
1
2πi

∫
γ

f (z)

zn+1 ,

where γ is a circle or radius r < ρ centered in the origin.
Let p : [a, b]→ C be a parametrization of γ. Then

an =
1
2π

∣∣∣∣∫
γ

f (z)

zn+1

∣∣∣∣
=

1
2π

∣∣∣∣∫ b

a

f (p(t))

p(t)n+1 p′(t)dt
∣∣∣∣

≤
1
2π

∫ b

a

∣∣∣∣ f (p(t))

p(t)n+1

∣∣∣∣ · ∣∣p′(t)
∣∣ dt

Ideas:

We may choose γ so that it passes through (or near) saddle points of
∣∣∣ f (z)
zn+1

∣∣∣, so
that the maximum of the integrand is small.

Often
∣∣∣ f (z)
zn+1

∣∣∣ is only large in small neighborhoods of the saddle points and very
small elsewhere. We may distinguish “large” and “small” regions and bound them
separately.
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Often
∣∣∣ f (z)
zn+1

∣∣∣ is only large in small neighborhoods of the saddle points and very
small elsewhere. We may distinguish “large” and “small” regions and bound them
separately.
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Factorial revisited

Example: find a better lower bound for n! than
(

n
e

)n.
Let γ = γ(n) be a circle around the origin with radius n.
Parametrize γ by p : [−π, π], p(t) = ne it .
We have

1
n!

= [zn]ez =
1
2πi

∫
γ

ez

zn+1

=
1
2πi

∫ π

−π

exp(ne it)

nn+1e(n+1)it
ine itdt

≤
1
2π

∫ π

−π

∣∣∣∣ exp(ne it)

nn+1e(n+1)it
ine it

∣∣∣∣ dt
=

1
2π

∫ π

−π

exp(<(ne it))

nn
dt since | exp(w)| = exp(<(w))

=
1

2πnn

∫ π

−π
exp(n cos t)dt.

Let α = α(n) ∈ [0, π] be a value to be specified later. We will decompose the integral
into three integrals over the intervals [−π,−α], [−α, α], and [α, π]. Using trivial
bounds on each of the three intervals yields∫ −α

−π
exp(n cos t)dt =

∫ π

α
exp(n cos t)dt ≤ π · en cosα

∫ α

−α
exp(n cos t)dt ≤ 2αen.
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Finishing the factorial bound

We saw that for any α ∈ [0, π], we have the bound

1
n!
≤

1
2πnn

(2πen cosα + 2αen) =
en

2πnn

(
2πen(cos(α)−1) + 2α

)
We know that for α→ 0 we have the Taylor approximation cosα = 1− α2

2 + O(α4).

Fix α = n0.00001
√

n
. Then

1
n!
≤

en

2πnn

(
2πe(−2n0.00002+O(n−0.99996)) +

2n0.00001
√

n

)
≤ O

(
n0.00001
√

n

( e

n

)n
)
.

Hence

n! ≥ Ω

( √
n

n0.00001

(n

e

)n
)
.

Remark: Stirling approximation gives

n! =
√
2πn

(n

e

)n
(1 + O(1/n)).
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Partial matchings

A partial matching is a graph whose every component is an isolated vertex or an edge.
Let pn be the number of partial matchings on the vertex set [n]. Find a bound for pn.
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