Analytic combinatorics Lecture 11

May 26, 2021

A simple estimate

We have seen examples of coefficient bounds for functions that have specific types of singularities (poles, algebraic singularities). What about coefficients of functions that are analytic everywhere?

A simple estimate

We have seen examples of coefficient bounds for functions that have specific types of singularities (poles, algebraic singularities). What about coefficients of functions that are analytic everywhere?

Proposition

Suppose $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is a power series with non-negative coefficients and with radius of convergence $\rho \in (0, +\infty]$. Then for $r \in (0, \rho)$ and $n \in \mathbb{N}_0$, the following holds:

• If
$$r \leq 1$$
, then $a_0 + a_1 + \cdots + a_n \leq \frac{f(r)}{r^n}$.

• If
$$r \ge 1$$
, then $a_n + a_{n+1} + a_{n+2} + \cdots \le \frac{f(r)}{r^n}$

• For any
$$r \in (0, \rho)$$
, $a_n \leq \frac{f(r)}{r^n}$.

Proof:
$$\frac{f(r)}{r^{n}} = \frac{a_{0}}{r^{n}} + \frac{a_{1}}{r^{n-1}} + \frac{a_{n}}{a_{n}} + \frac{a_{n}}{a_{n+1}} + \frac{a_{n+1}}{a_{n+1}} + \frac{a_{n+1}}{a_{n+1}} + \frac{a_{n+1}}{a_{n+1}} = \frac{a_{n}}{a_{n+1}}$$

$$r \ge 1 \quad -11 - \ge a_{n} + a_{n+1} + a_{n+2} + \frac{a_{n+2}}{a_{n+2}} \ge a_{n}$$

$$\Box$$

A simple estimate

We have seen examples of coefficient bounds for functions that have specific types of singularities (poles, algebraic singularities). What about coefficients of functions that are analytic everywhere?

Proposition

Suppose $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is a power series with non-negative coefficients and with radius of convergence $\rho \in (0, +\infty]$. Then for $r \in (0, \rho)$ and $n \in \mathbb{N}_0$, the following holds:

• If
$$r \leq 1$$
, then $a_0 + a_1 + \cdots + a_n \oint \frac{f(r)}{r^n}$.

• If
$$r \ge 1$$
, then $a_n + a_{n+1} + a_{n+2} + \cdots \le \frac{f(r)}{r^n}$

• For any
$$r \in (0, \rho)$$
, $a_n \leq \frac{f(r)}{r^n}$.

Note: With f, ρ and n be as above, the function $\frac{f(r)}{r^n}$ has a minimum in a point satisfying rf'(r) = nf(r).

$$\left(\frac{f(r)}{r^{n}}\right)' = \frac{f(r) \cdot r^{n} - f(r) \cdot h \cdot r^{n-1}}{r^{2n}}$$

Some examples

Examples applying $a_n \leq \frac{f(r)}{r^n}$, with rf'(r) = nf(r). Example 1. Consider $f(z) = e^z$, i.e., $a_n = \frac{1}{n!}$. $\int (z) = \sum_{h=0}^{\infty} \frac{z^h}{h!} \int z^h = +\infty, \quad \forall r : \frac{1}{h!} \leq \frac{e^r}{r^n}$

$$r \cdot (e^{r})' = n \cdot e^{r} \Rightarrow r = n$$

 $\frac{1}{h!} \le \frac{e^{h}}{n} = \left(\frac{e}{n}\right)^{n}$, hence $n! \ge \left(\frac{n}{e}\right)^{n}$

Some examples

Examples applying
$$a_n \leq \frac{f(r)}{r^n}$$
, with $rf'(r) = nf(r)$.
Example 1. Consider $f(z) = e^z$, i.e., $a_n = \frac{1}{n!}$.
Example 2. Estimate $\binom{m}{n}$, with $n \leq m/2$.
 $f_n(z) = (\Lambda + 2)^m = \sum_{h=0}^{\infty} \binom{h}{n} 2^n$, $p = t \ll$
 $\binom{m}{n} \leq \frac{(\Lambda + r)^m}{r^n}$, $r(m(\Lambda + r)^{m-n}) = h(\Lambda + r)^m$
 $\Rightarrow r \cdot m = h(\Lambda + r) \Rightarrow r = \frac{h}{m-n} \leq 1$
 $\binom{m}{n} \leq \frac{(\Lambda + \frac{h}{m-n})^m}{r^n} = \frac{m^m}{m(m-n)^m} = t$
 $\binom{m}{n} + \binom{h}{n} + \frac{m}{r^n} \int r(m(\Lambda + r)^m) = m^m (m-n)^m$
 $\approx \frac{m^m}{n} \Rightarrow \frac{m}{r^n} \leq \frac{(m(n-n)^m)^m}{r^n((m-n)^m)} = \frac{m^m}{r^n((m-n)^m)}$

Improving the simple estimate

Recall:

Proposition (Cauchy's integral formula)

Suppose $f = \sum_{n=0}^{\infty} a_n z^n$, with radius of convergence $\rho \in (0, +\infty]$, let γ be the circle of radius $r < \rho$ centered in 0, let $n \in \mathbb{N}_0$. Then

$$a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z^{n+1}}$$

Improving the simple estimate

Recall:

Proposition (Cauchy's integral formula)

Suppose $f = \sum_{n=0}^{\infty} a_n z^n$, with radius of convergence $\rho \in (0, +\infty]$, let γ be the circle of radius $r < \rho$ centered in 0, let $n \in \mathbb{N}_0$. Then

$$a_n = rac{1}{2\pi i} \int_{\gamma} rac{f(z)}{z^{n+1}}$$

Idea: find estimates for a_n by estimating the integral above.

Improving the simple estimate

Recall:

Proposition (Cauchy's integral formula)

Suppose $f = \sum_{n=0}^{\infty} a_n z^n$, with radius of convergence $\rho \in (0, +\infty]$, let γ be the circle of radius $r < \rho$ centered in 0, let $n \in \mathbb{N}_0$. Then

$$a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z^{n+1}}$$

Idea: find estimates for a_n by estimating the integral above. First attempt (assuming all coefficients of f are nonnegative):

$$A_{n} = \left| \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z^{n+1}} \right|$$

Recall:

Proposition (Cauchy's integral formula)

Suppose $f = \sum_{n=0}^{\infty} a_n z^n$, with radius of convergence $\rho \in (0, +\infty]$, let γ be the circle of radius $r < \rho$ centered in 0, let $n \in \mathbb{N}_0$. Then

$$a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z^{n+1}}$$

Idea: find estimates for a_n by estimating the integral above. First attempt (assuming all coefficients of f are nonnegative):

$$\begin{aligned} |a_n| &= \left| \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z^{n+1}} \right| \\ &\leq \frac{1}{2\pi} \operatorname{len}(\gamma) \max\{|f(z)/z^{n+1}|; \ z \in \gamma\} \\ &|\mathcal{Z}| \leq r \end{aligned}$$

Recall:

Proposition (Cauchy's integral formula)

Suppose $f = \sum_{n=0}^{\infty} a_n z^n$, with radius of convergence $\rho \in (0, +\infty]$, let γ be the circle of radius $r < \rho$ centered in 0, let $n \in \mathbb{N}_0$. Then

$$a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z^{n+1}}$$

Idea: find estimates for a_n by estimating the integral above. First attempt (assuming all coefficients of f are nonnegative):

$$|a_{n}| = \left|\frac{1}{2\pi i}\int_{\gamma}\frac{f(z)}{z^{n+1}}\right|$$

$$\leq \frac{1}{2\pi}\operatorname{len}(\gamma)\max\{|f(z)/z^{n+1}|; z \in \gamma\}$$

$$= \frac{1}{2\pi} \cdot 2\pi r \cdot \frac{f(r)}{r^{n+1}}$$

$$|\sum_{z^{n+1}} \left|z = \left(2\pi i \sum_{m \geq 0} \frac{\Delta_{m}}{z^{n+1}}\right) + \sum_{m \geq 0} \frac{\Delta_{m}}{z^{n+1}} + \sum_{m \geq 0} \frac{\Delta_{m}}{z^{n$$

Recall:

Proposition (Cauchy's integral formula)

Suppose $f = \sum_{n=0}^{\infty} a_n z^n$, with radius of convergence $\rho \in (0, +\infty]$, let γ be the circle of radius $r < \rho$ centered in 0, let $n \in \mathbb{N}_0$. Then

$$a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z^{n+1}}$$

Idea: find estimates for a_n by estimating the integral above. First attempt (assuming all coefficients of f are nonnegative):

$$\begin{aligned} |a_n| &= \left| \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z^{n+1}} \right| \\ &\leq \frac{1}{2\pi} \operatorname{len}(\gamma) \max\{|f(z)/z^{n+1}|; \ z \in \gamma\} \\ &= \frac{1}{2\pi} \cdot 2\pi r \cdot \frac{f(r)}{r^{n+1}} \\ &= \frac{f(r)}{r^n}. \end{aligned}$$

This is identical to the bound we already know. But we can find better estimates for the integral.

Let $\Omega \subseteq \mathbb{C}$ be a domain, let $f : \Omega \to \mathbb{C}$ be an analytic function which is not constant on Ω . What can we say about the function $m \colon \Omega \to [0, +\infty)$ defined as m(z) = |f(z)|?

Let $\Omega \subseteq \mathbb{C}$ be a domain, let $f : \Omega \to \mathbb{C}$ be an analytic function which is not constant on Ω . What can we say about the function $m : \Omega \to [0, +\infty)$ defined as m(z) = |f(z)|?

Let us say that a point $z_0 \in \Omega$ is

• generic if $f(z_0) \neq 0$ and $f'(z_0) \neq 0$,

Let $\Omega \subseteq \mathbb{C}$ be a domain, let $f : \Omega \to \mathbb{C}$ be an analytic function which is not constant on Ω . What can we say about the function $m : \Omega \to [0, +\infty)$ defined as m(z) = |f(z)|?

Let us say that a point $z_0 \in \Omega$ is

- generic if $f(z_0) \neq 0$ and $f'(z_0) \neq 0$,
- a minimum if $f(z_0) = 0$, $(m(z_0) = D)$

Let $\Omega \subseteq \mathbb{C}$ be a domain, let $f : \Omega \to \mathbb{C}$ be an analytic function which is not constant on Ω . What can we say about the function $m : \Omega \to [0, +\infty)$ defined as m(z) = |f(z)|?

Let us say that a point $z_0 \in \Omega$ is

- generic if $f(z_0) \neq 0$ and $f'(z_0) \neq 0$,
- a minimum if $f(z_0) = 0$,
- a saddle point (of multiplicity k) if $f(z_0) \neq 0$, $f'(z_0) = f''(z_0) = \cdots = f^{(k)}(z_0) = 0$ and $f^{(k+1)}(z_0) \neq 0$.

Let $\Omega \subseteq \mathbb{C}$ be a domain, let $f : \Omega \to \mathbb{C}$ be an analytic function which is not constant on Ω . What can we say about the function $m : \Omega \to [0, +\infty)$ defined as m(z) = |f(z)|?

Let us say that a point $z_0 \in \Omega$ is

- generic if $f(z_0) \neq 0$ and $f'(z_0) \neq 0$,
- a minimum if $f(z_0) = 0$,
- a saddle point (of multiplicity k) if $f(z_0) \neq 0$, $f'(z_0) = f''(z_0) = \cdots = f^{(k)}(z_0) = 0$ and $f^{(k+1)}(z_0) \neq 0$.

Let $\Omega \subseteq \mathbb{C}$ be a domain, let $f : \Omega \to \mathbb{C}$ be an analytic function which is not constant on Ω . What can we say about the function $m \colon \Omega \to [0, +\infty)$ defined as m(z) = |f(z)|?

Let us say that a point $z_0 \in \Omega$ is

- generic if $f(z_0) \neq 0$ and $f'(z_0) \neq 0$,
- a minimum if $f(z_0) = 0$,
- a saddle point (of multiplicity k) if $f(z_0) \neq 0$, $f'(z_0) = f''(z_0) = \cdots = f^{(k)}(z_0) = 0$ and $f^{(k+1)}(z_0) \neq 0$.

Proposition

Let f, m and Ω be as above. Let $z_0 \in \Omega$ be arbitrary, let $\varepsilon > 0$ be small enough so that $\mathbb{N}_{\leq \varepsilon}(z_0) \subseteq \Omega$. Let $z = z_0 + re^{i\phi}$, with $r \in [0, \varepsilon)$, $\phi \in [0, 2\pi)$.

- If z_0 is a generic point, then there are constants $\lambda > 0$ and $\tau \in [0, 2\pi)$ such that $m(z) = m(z_0)(1 + \lambda r \cos(\phi \tau) + O(r^2))$ as $r \to 0$.
- It z_0 is a sadle point of multiplicity $k \ge 1$, then there are constants $\lambda > 0$ and $\tau \in [0, 2\pi)$ such that $m(z) = m(z_0)(1 + \lambda r^{k+1} \cos((k+1)\phi \tau) + O(r^{k+1}))$ as $r \to 0$.

Let $\Omega \subseteq \mathbb{C}$ be a domain, let $f : \Omega \to \mathbb{C}$ be an analytic function which is not constant on Ω . What can we say about the function $m : \Omega \to [0, +\infty)$ defined as m(z) = |f(z)|?

Let us say that a point $z_0 \in \Omega$ is

- generic if $f(z_0) \neq 0$ and $f'(z_0) \neq 0$,
- a minimum if $f(z_0) = 0$,
- a saddle point (of multiplicity k) if $f(z_0) \neq 0$, $f'(z_0) = f''(z_0) = \cdots = f^{(k)}(z_0) = 0$ and $f^{(k+1)}(z_0) \neq 0$.

Proposition

Let f, m and Ω be as above. Let $z_0 \in \Omega$ be arbitrary, let $\varepsilon > 0$ be small enough so that $\mathbb{N}_{\leq \varepsilon}(z_0) \subseteq \Omega$. Let $z = z_0 + re^{i\phi}$, with $r \in [0, \varepsilon)$, $\phi \in [0, 2\pi)$.

- If z_0 is a generic point, then there are constants $\lambda > 0$ and $\tau \in [0, 2\pi)$ such that $m(z) = m(z_0)(1 + \lambda r \cos(\phi \tau) + O(r^2))$ as $r \to 0$.
- It z_0 is a sadle point of multiplicity $k \ge 1$, then there are constants $\lambda > 0$ and $\tau \in [0, 2\pi)$ such that $m(z) = m(z_0)(1 + \lambda r^{k+1}\cos((k+1)\phi \tau) + O(r^{k+1}))$ as $r \to 0$.

In particular, m has no local maxima, and the only local minima satisfy $m(z_0) = 0$.

Proof of the proposition

$$\sqrt{1+\varepsilon} = 1 + \binom{1/2}{2} + \binom{1/2}{2} = 1 + \frac{\varepsilon}{2} + O(\varepsilon)$$

Proposition

Let f, m and Ω be as above. Let $z_0 \in \Omega$ be arbitrary, let $\varepsilon > 0$ be small enough so that $\mathbb{N}_{<\varepsilon}(z_0) \subseteq \Omega$. Let $z = z_0 + re^{i\phi}$, with $r \in [0, \varepsilon)$, $\phi \in [0, 2\pi)$.

• If z_0 is a generic point, then there are constants $\lambda > 0$ and $\tau \in [0, 2\pi)$ such that $m(z) = m(z_0)(1 + \lambda r \cos(\phi - \tau) + O(r^2))$ as $r \to 0$.

• It z_0 is a sadle point of multiplicity $k \ge 1$, then there are constants $\lambda > 0$ and $\tau \in [0, 2\pi)$ such that $m(z) = m(z_0)(1 + \lambda r^{k+1}\cos((k+1)\phi - \tau) + O(r^{k+1}))$ as $r \to 0$.

$$\begin{split} \int (2) &= \int (2_0) + \int (2_0) (2-2_0) + \int (2_0) (2-2_0)^2 + \dots \\ &= \int (2_0) + \int (2_0) r e^{i\phi} + \int (2_0) r^2 e^{i2\phi} \\ &+ \int (2_0) r^2 e^{i\phi} + \int (2_0) r^2 e^{i\phi} \\ &+ \int (2_0) r^2 e^{i\phi} \\ &= m(2_0) \cdot \left| 1 + \lambda e^{i\tau} r e^{i\phi} \right| + p(r^2) \\ &= m(2_0) \left| 1 + \lambda r \cos(\phi - \tau) + i\lambda r \sin(\phi - \tau) \right| + O(r^2) \\ &= m(2_0) \sqrt{1 + 2\lambda r \cos(\phi - \tau) + \lambda^2 r^2} = m(2_0) (n^4) r \cos(\phi - \tau) \\ &= m(2_0) \left| 1 + 2\lambda r \cos(\phi - \tau) + \lambda^2 r^2 \\ &= m(2_0) (n^4) r \cos(\phi - \tau) \\ &= m(2_$$

Let us assume (again) that $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is a power series with nonnegative coefficients and radius of convergence $\rho \in (0, +\infty]$. Recall that

$$a_n=\frac{1}{2\pi i}\int_{\gamma}\frac{f(z)}{z^{n+1}},$$

where γ is a circle or radius $r < \rho$ centered in the origin.

Let us assume (again) that $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is a power series with nonnegative coefficients and radius of convergence $\rho \in (0, +\infty]$. Recall that

$$a_n=\frac{1}{2\pi i}\int_{\gamma}\frac{f(z)}{z^{n+1}},$$

where γ is a circle or radius $r < \rho$ centered in the origin. Let $p: [a, b] \to \mathbb{C}$ be a parametrization of γ . Then

$$\begin{aligned} a_n &= \frac{1}{2\pi} \left| \int_{\gamma} \frac{f(z)}{z^{n+1}} \right| \\ &= \frac{1}{2\pi} \left| \int_{a}^{b} \frac{f(p(t))}{p(t)^{n+1}} p'(t) dt \right| \\ &\leq \frac{1}{2\pi} \int_{a}^{b} \left| \frac{f(p(t))}{p(t)^{n+1}} \right| \cdot \left| p'(t) \right| dt \end{aligned}$$

Let us assume (again) that $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is a power series with nonnegative coefficients and radius of convergence $\rho \in (0, +\infty]$. Recall that

$$a_n=\frac{1}{2\pi i}\int_{\gamma}\frac{f(z)}{z^{n+1}},$$

where γ is a circle or radius $r < \rho$ centered in the origin. Let $p: [a, b] \to \mathbb{C}$ be a parametrization of γ . Then

Let us assume (again) that $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is a power series with nonnegative coefficients and radius of convergence $\rho \in (0, +\infty]$. Recall that

$$a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z^{n+1}},$$

where γ is a circle or radius $r < \rho$ centered in the origin. Let $p: [a, b] \to \mathbb{C}$ be a parametrization of γ . Then

$$egin{aligned} &a_n = rac{1}{2\pi} \left| \int_\gamma rac{f(z)}{z^{n+1}}
ight| \ &= rac{1}{2\pi} \left| \int_a^b rac{f(p(t))}{p(t)^{n+1}} p'(t) \mathrm{d}t
ight| \ &\leq rac{1}{2\pi} \int_a^b \left| rac{f(p(t))}{p(t)^{n+1}}
ight| \cdot \left| p'(t)
ight| \mathrm{d}t \end{aligned}$$

Ideas:

- We may choose γ so that it passes through (or near) saddle points of $\left|\frac{f(z)}{z^{n+1}}\right|$, so that the maximum of the integrand is small.
- Often $\left|\frac{f(z)}{z^{n+1}}\right|$ is only large in small neighborhoods of the saddle points and very small elsewhere. We may distinguish "large" and "small" regions and bound them separately.

Example: find a better lower bound for n! than $\left(\frac{n}{e}\right)^n$.

$$\frac{1}{n!} = [z^n]e^z = \frac{1}{2\pi i}\int_{\gamma}\frac{e^z}{z^{n+1}}$$

$$\frac{1}{h!} \leq \left(\frac{e}{h}\right)^{h}$$

$$\frac{1}{n!} = [z^n]e^z = \frac{1}{2\pi i} \int_{\gamma} \frac{e^z}{z^{n+1}} \\ = \frac{1}{2\pi i} \int_{-\pi}^{\pi} \frac{\exp(ne^{it})}{n^{n+1}e^{(n+1)it}} ine^{it} dt$$

$$\begin{aligned} \frac{1}{n!} &= [z^n]e^z = \frac{1}{2\pi i} \int_{\gamma} \frac{e^z}{z^{n+1}} \\ &= \frac{1}{2\pi i} \int_{-\pi}^{\pi} \frac{\exp(ne^{it})}{n^{n+1}e^{(n+1)it}} ine^{it} dt \\ &\leq \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \frac{\exp(ne^{it})}{n^{n+1}e^{(n+1)it}} ine^{it} \right| dt \end{aligned}$$

Example: find a better lower bound for n! than $\left(\frac{n}{e}\right)^n$. Let $\gamma = \gamma(n)$ be a circle around the origin with radius n. Parametrize γ by $p: [-\pi, \pi]$, $p(t) = ne^{it}$. We have

$$\begin{aligned} \frac{1}{n!} &= [z^n] e^z = \frac{1}{2\pi i} \int_{\gamma} \frac{e^z}{z^{n+1}} \\ &= \frac{1}{2\pi i} \int_{-\pi}^{\pi} \frac{\exp(ne^{it})}{n^{n+1} e^{(n+1)it}} ine^{it} dt \\ &\leq \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \frac{\exp(ne^{it})}{n^{n+1} e^{(n+1)it}} ine^{it} \right| dt \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\exp(\Re(ne^{it}))}{n^n} dt \end{aligned}$$

since $|\exp(w)| = \exp(\Re(w))$

$$\frac{1}{n!} = [z^n] e^z = \frac{1}{2\pi i} \int_{\gamma} \frac{e^z}{z^{n+1}}$$

$$= \frac{1}{2\pi i} \int_{-\pi}^{\pi} \frac{\exp(ne^{it})}{n^{n+1}e^{(n+1)it}} ine^{it} dt$$

$$\leq \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \frac{\exp(ne^{it})}{n^{n+1}e^{(n+1)it}} ine^{it} \right| dt$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\exp(\Re(ne^{it}))}{n^n} dt \qquad \text{since } |\exp(w)| = \exp(\Re(w))$$

$$= \frac{1}{2\pi n^n} \int_{-\pi}^{\pi} \exp(n \cos t) dt.$$

Example: find a better lower bound for n! than $\left(\frac{n}{e}\right)^n$. Let $\gamma = \gamma(n)$ be a circle around the origin with radius n. Parametrize γ by $p: [-\pi, \pi]$, $p(t) = ne^{it}$. We have

$$\begin{aligned} \frac{1}{n!} &= [z^n]e^z = \frac{1}{2\pi i} \int_{\gamma} \frac{e^z}{z^{n+1}} \\ &= \frac{1}{2\pi i} \int_{-\pi}^{\pi} \frac{\exp(ne^{it})}{n^{n+1}e^{(n+1)it}} ine^{it} dt \\ &\leq \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \frac{\exp(ne^{it})}{n^{n+1}e^{(n+1)it}} ine^{it} \right| dt \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\exp(\Re(ne^{it}))}{n^n} dt \qquad \text{since } |\exp(w)| = \exp(\Re(w)) \\ &= \frac{1}{2\pi n^n} \int_{-\pi}^{\pi} \exp(n\cos t) dt. \end{aligned}$$

Let $\alpha = \alpha(n) \in [0, \pi]$ be a value to be specified later. We will decompose the integral into three integrals over the intervals $[-\pi, -\alpha]$, $[-\alpha, \alpha]$, and $[\alpha, \pi]$. Using trivial bounds on each of the three intervals yields

$$\int_{-\pi}^{-\alpha} \exp(n\cos t) dt = \int_{\alpha}^{\pi} \exp(n\cos t) dt \le \pi \cdot e^{n\cos\alpha}$$
$$\int_{-\alpha}^{\alpha} \exp(n\cos t) dt \le 2\alpha e^{n}.$$

We saw that for any $\alpha \in [0,\pi],$ we have the bound

$$\frac{1}{n!} \leq \frac{1}{2\pi n^n} \left(2\pi e^{n \cos \alpha} + 2\alpha e^n \right) = \frac{e^n}{2\pi n^n} \underbrace{\left(2\pi e^{n(\cos(\alpha)-1)} + 2\alpha \right)}_{\text{constant}}$$

 $\left(\frac{\rho}{h}\right)^{h}$

2-20

We saw that for any $\alpha \in [0, \pi]$, we have the bound

$$\frac{1}{n!} \leq \frac{1}{2\pi n^n} \left(2\pi e^{n\cos\alpha} + 2\alpha e^n \right) = \frac{e^n}{2\pi n^n} \left(2\pi e^{n(\cos(\alpha)-1)} + 2\alpha \right)$$

We know that for $\alpha \to 0$ we have the Taylor approximation $\cos \alpha = 1 - \frac{\alpha^2}{2} + O(\alpha^4)$.

$$x e^{h(-\frac{\alpha^2}{2})} \rightarrow 0 \iff h\alpha^2 \rightarrow \phi \Rightarrow \alpha \gg \frac{1}{V_h}$$

We saw that for any $\alpha \in [0, \pi]$, we have the bound

$$\frac{1}{n!} \leq \frac{1}{2\pi n^n} \left(2\pi e^{n\cos\alpha} + 2\alpha e^n \right) = \frac{e^n}{2\pi n^n} \left(2\pi e^{n(\cos(\alpha)-1)} + 2\alpha \right)$$

We know that for $\alpha \to 0$ we have the Taylor approximation $\cos \alpha = 1 - \frac{\alpha^2}{2} + O(\alpha^4)$. Fix $\alpha = \frac{n^{0.0001}}{\sqrt{n}}$. Then

$$\frac{1}{n!} \le \frac{e^n}{2\pi n^n} \left(\frac{2\pi e^{\left(-2n^{0.0002} + O(n^{-0.9996})\right)}}{\sqrt{n}} + \frac{2n^{0.0001}}{\sqrt{n}} \right)$$
$$\le O\left(\frac{n^{0.0001}}{\sqrt{n}} \left(\frac{e}{n}\right)^n\right).$$

We saw that for any $\alpha \in [0, \pi]$, we have the bound

$$\frac{1}{n!} \leq \frac{1}{2\pi n^n} \left(2\pi e^{n\cos\alpha} + 2\alpha e^n \right) = \frac{e^n}{2\pi n^n} \left(2\pi e^{n(\cos(\alpha)-1)} + 2\alpha \right)$$

We know that for $\alpha \to 0$ we have the Taylor approximation $\cos \alpha = 1 - \frac{\alpha^2}{2} + O(\alpha^4)$. Fix $\alpha = \frac{n^{0.0001}}{\sqrt{n}}$. Then

$$\frac{1}{n!} \leq \frac{e^n}{2\pi n^n} \left(2\pi e^{\left(-2n^{0.0002} + O(n^{-0.99996})\right)} + \frac{2n^{0.00001}}{\sqrt{n}} \right)$$
$$\leq O\left(\frac{n^{0.00001}}{\sqrt{n}} \left(\frac{e}{n}\right)^n\right).$$

Hence

$$n! \geq \Omega\left(\frac{\sqrt{n}}{n^{0.00001}} \left(\frac{n}{e}\right)^n\right).$$

We saw that for any $\alpha \in [0, \pi]$, we have the bound

$$\frac{1}{n!} \leq \frac{1}{2\pi n^n} \left(2\pi e^{n\cos\alpha} + 2\alpha e^n \right) = \frac{e^n}{2\pi n^n} \left(2\pi e^{n(\cos(\alpha)-1)} + 2\alpha \right)$$

We know that for $\alpha \to 0$ we have the Taylor approximation $\cos \alpha = 1 - \frac{\alpha^2}{2} + O(\alpha^4)$. Fix $\alpha = \frac{n^{0.0001}}{\sqrt{n}}$. Then

$$\frac{1}{n!} \leq \frac{e^n}{2\pi n^n} \left(2\pi e^{\left(-2n^{0.00002} + O(n^{-0.99996})\right)} + \frac{2n^{0.00001}}{\sqrt{n}} \right)$$
$$\leq O\left(\frac{n^{0.00001}}{\sqrt{n}} \left(\frac{e}{n}\right)^n\right).$$

Hence

$$n! \geq \Omega\left(\frac{\sqrt{n}}{n^{0.00001}} \left(\frac{n}{e}\right)^n\right)$$

Remark: Stirling approximation gives

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + O(1/n)\right).$$

Partial matchings

A partial matching is a graph whose every component is an isolated vertex or an edge. Let p_n be the number of partial matchings on the vertex set [n]. Find a bound for p_n .

