6. Let $Y = \{Y(x) : x \in \mathbb{R}^d\}$ be a weakly stationary Gaussian random field with the mean value μ and the autocovariance function $C(x, y) = \sigma^2 r(x - y)$, where σ^2 denotes the variance and r is the autocorrelation function of the random field Y. Consider the random measure

$$\Psi(B) = \int_B e^{Y(x)} dx, \quad B \in \mathcal{B}^d.$$

The Cox point process Φ with the driving measure Ψ is called a *log-Gaussian Cox process*. Show that the distribution of Φ is determined by its intensity and its pair-correlation function.

$$recall: 2 \sim N(\alpha, \sigma^{2}) = \sum \mathbb{E}_{2} \mathbb{E}_{2} \operatorname{subs}(0, + \frac{\sigma^{2}}{2})$$

$$= 24\lambda (\alpha, -\frac{1}{2})$$

$$= 24\lambda (\alpha, -\frac$$

$$F(||x-y||)$$

$$F(|$$

model fitting? assume
$$\hat{g}(x,y)$$
 is available (kernel current under stationarity $g(x,y)=g(x-y)$
+ isotropy: $g(x,y)=g(1x-y) - g(x-y)$
=) same for $\hat{g}(x,y) - \frac{\hat{g}(R)}{2} - \frac{\hat{g}(R)}$

Minimum Contrast estimation