NMAI059 Probability and statistics 1 Class 13

Robert Šámal

Statistics - What have we learnt

- ried
- **b** basic setup: we consider random sample X_1, \ldots, X_n from distribution F_{ϑ} describes the measurement process, all ways how could it go
- we measure data particular numbers x_1, \ldots, x_n , so called realization of random sample, what did we really measure
- 1. point estimation: determine best possible number, estimate for the parameter ϑ , or some function of it, $g(\vartheta)$.
- 2. interval estimation: determine an interval, that contains the unknown parameter ϑ with a large probability
- 3. hypothesis testing but fired

Overview

Hypothesis testing

Goodness of fit tes

Linear regression

Hypothesis testing – illustration

- We want to test, if a coin is fair.
- \blacktriangleright H_0 : it is fair
- H₁: not fair ("Scientists discovered, that casino XY uses loaded coin.")
- Results: Reject H₀/don't reject H₀
- ▶ Type I error: false rejection. We reject H_0 , even if it is true. Embarassing.
- ightharpoonup Type II error: false non-rejection. We don't reject H_0 , even if it is false. Unused opportunity.
- ▶ Need to find k such that we will reject H_0 if |S n/2| > k. S:= # fleads

01 2 (000) foss con a-taces S = 200 p = 0

Hypothesis testing – general approach χ_{-} χ_{-}

- We choose an appropriate statistical model.
- ▶ We choose *significance level* α : prob. of false rejection of H_0 . Typically $\alpha = 0.05$ (medicine/psychology much less in high-energly physics).
- We determine *test statistics* $\mathfrak{F} = \underline{h(X_1, \dots, X_n)}$, that we will determine from the measured data.
- ▶ We determine rejection region set W. W
- ▶ We measure $x_1, ..., x_n$ so-called realizations of $X_1, ..., X_n$.
- ▶ Decision rule: we reject H_0 iff $h(x_1, ..., x_n) \in W$.
- $\beta = P(h(X) \notin W; H_1) \text{ a. strength of the test}$
- often we do not choose α in advance but compute so-called *p-value*: minimal α , for which we would reject H_0 .

Hypothesis testing - an example

- $ightharpoonup X_1,\ldots,X_n$ random sample from $N(\vartheta,\sigma^2)$
- $ightharpoonup \sigma^2$ known

 $H_0: \vartheta = 0 \qquad H_1: \vartheta \neq 0$

 $\alpha = 0.05$

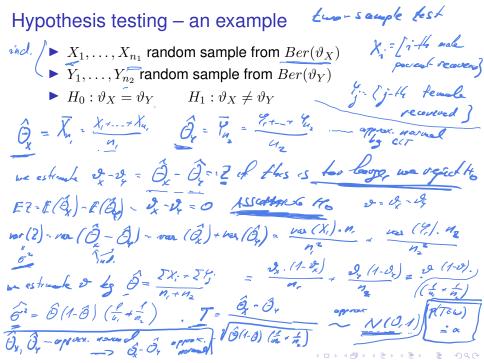
W= (-0,-24) v (24, +00)

Pad. of

$$W = (-\infty, -2\pi) \cup (2\pi)$$
 $V = (-\infty, -2\pi) \cup (2\pi)$
 $V = (-\infty, -2\pi)$
 $V = (-\infty, -2\pi)$

mense temp.

mean = true temp.

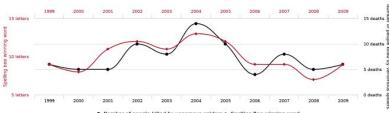


p-hacking BAI

- we first gain data, then look for interesting stuff
- given enough data, there will be random coincidences
- even worse, we may test, until we get the desired outcome
 - reproducibility after exploratory analysis of the data we make an independent measurement and a confirmatory analysis.
 - or we split the data in advance to a part for hypothesis formation and part for verification . . . simple example of cross validation

Letters in winning word of Scripps National Spelling Bee correlates with

Number of people killed by venomous spiders



Overview

Hypothesis testing

Goodness of fit test

Linear regression

$$\chi_k^2 - \text{chi-square distribution } \mathcal{F}(\mathbb{R}) - \mathcal{E}(\mathbb{R}^2) + \dots + \mathcal{E}(\mathbb{R}^2) \quad \text{(linear)}$$

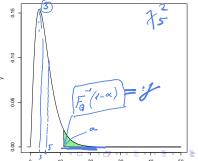
Definition

 $Z_1, \ldots, Z_k \sim N(0,1)$ i.i.d. The distribution of r.v.

$$\frac{\mathcal{E}(2) - \mathcal{O}}{\log(2) - 1 - \mathcal{E}(2)} - \left(\mathcal{E}^2\right)^2 Q = Z_1^2 + \dots + Z_k^2$$

is called chi-square(d) with k degrees of freedom (really k!), and denoted χ^2_k .

- $ightharpoonup \mathbb{E}(Q) = k$ (easy)
- $\overline{var}(Q) = 2k$ (fyi, you don't have to remember this)
- density can be written by a reasonable formula
- $Q \doteq N(k, 2k)$ for large k (CLT)



Multinomial and categorical distribution Definition Definition

Given $p_1, ..., p_k \ge 0$ so, that $p_1 + p_2 + \cdots + p_k = 1$. we repeat n-times an experiment with k possible outcomes, where the ith has probability p_i

 $X_i := \text{how many times we got the } i\text{-th outcome } (X_1, \dots, X_k)$ has multinomial distribution with parameters $n, (p_1, \ldots, p_k)$.

- ightharpoonup trivial example: X_i = number of die rolls that equaled i
- ightharpoonup important example: X_i = number of occurrences of i-th letter.

$$P(X_1 = x_1, \dots, X_k = x_k) = \binom{n}{x_1, \dots, x_k} p_1^{x_1} \dots p_k^{x_k}$$

$$y_1 = y_1 \dots y_k$$

$$y_1 = y_1 \dots y_k$$

$$y_1 = y_1 \dots y_k$$

Pearson χ^2 statistics

- (X_1,\ldots,X_k) multinomial distribution with parameters $n,(p_1,\ldots,p_k)$ as above
- $\blacktriangleright E_i := \mathbb{E}(X_i) = np_i$
- Pearson χ^2 statistics is the function

$$T_{\mu} = \left(\overline{Z_{\mu}}\right)^{2} \qquad Z_{\mu} \stackrel{\text{deficition}}{=} X(0,1)$$

$$Z_{\mu} \stackrel{\text{deficition}}{=} X(0,1)$$

▶ Theorem $T \xrightarrow{d} \chi^2_{k-1}$

Goodness of fit test

- (X_1,\ldots,X_k) multinomial distribution with parameters $n,(\vartheta_1,\ldots,\vartheta_k)$ as above
- ightharpoonup n known, ϑ unknown
- Null hypothesis H_0 : $\theta = \theta^*$ for some given θ^*
- $ightharpoonup \underline{E}_i := n \vartheta_i^* ext{ for all } i$
- We use the statistics $\chi^2=T:=\sum_{i=1}^k \frac{(X_i-E_i)^2}{E_i}$
- We reject H_0 iff $T > \gamma$
- $\qquad \qquad \gamma := F_Q^{-1}(1-\alpha) \text{ where } Q \sim \chi_{k-1}^2$
- $P(\text{I type error}) = P(T > \gamma; H_0) \rightarrow P(Q > \gamma) = \alpha$

Goodness of fit test - example

We roll a die repeatedly (600 times). The numbers 1 upto 6 came up with frequencies 92, 120, 88, 98, 95, 107.

Is the die fair? n=600 3 *·(=/ -- /=) E = nd = 100 $T = \sum_{i=0}^{6} \frac{(x_{i}-i\phi)^{2}}{E_{i}} = \sum_{i=0}^{6} \frac{(x_{i}-i\phi)^{2}}{(x_{i}-i\phi)^{2}} + \frac{20^{2}}{(x_{i}-i\phi)^{2}} + \frac{20^{2}}{(x_{i}-i\phi)^$ = 6.86 < 11.1 => do mel veged 40 Q-2-(we trast dra For (0-95)-11.1 1-For (6.86) as lever) p-value - 0-23

Extensions

- ▶ To study a distribution of an arbitrary r.v. Y we can pick "bins" B_1, \ldots, B_k (a <u>partition</u> of \mathbb{R}) and look how often $Y \in B_i$ (this will be measured by r.v. X_i).
- Similar test for independence of discrete random variables.

Overview

Hypothesis testing

Goodness of fit test

Linear regression

Ji resided.

- ightharpoonup data: (x_i, y_i) for $i = 1, \ldots, n$
- goal: $y = \vartheta_0 + \vartheta_1 x$

we measure how good fit we have by the quadratic error:

$$\sum_{i=1}^{n} (y_i - (\vartheta_0 + \vartheta_1 x_i))^2$$

Linear regression – solution

▶ To minimalize

$$\sum_{i=1}^{n} (y_i - (\vartheta_0 + \vartheta_1 x_i))^2$$
neters are

the optimal parameters are

$$\hat{\vartheta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}, \qquad \hat{\vartheta}_0 = \bar{y} - \vartheta_1 \bar{x},$$
where $\bar{x} := (x_1 + \dots + x_n)/n, \ \bar{y} := (y_1 + \dots + y_n)/n.$

Linear regression – why sum of squares?

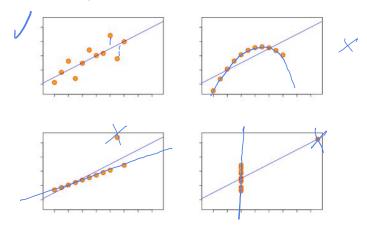
 \blacktriangleright We assume that x_1, \ldots, x_n are fixed, y_i is a realization of a r.v. $\underline{Y_i = \vartheta_0 + \vartheta_1 x_i + W_i}$ $W_i \sim N(0, \sigma^2) \text{ for all } i; W_1, \dots, W_k \text{ iid}$ maximal likelihood: 5 ps.co.

$$Y_i = \vartheta_0 + \vartheta_1 x_i + W_i$$

$$L(y; \vartheta) = \prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(y_i - \vartheta_0 - \vartheta_1 x_i)^2}{2\sigma^2}}$$

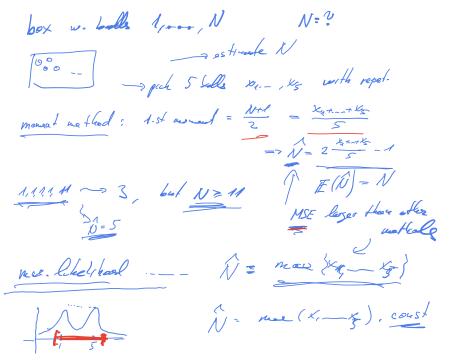
$$\ell(y; \vartheta) = \log L(y; \vartheta) = a + b \sum_{i=1}^{n} (y_i - \vartheta_0 - \vartheta_1 x_i)^2$$

Limits of regression



(data: Francis Anscombe 1973, image: wikieditor Schutz)

- nonlinear regression
- ▶ logistic regression



Simpson's paradox

Treatment Stone size	Treatment A	Treatment B
Small stones	Group 1 93% (81/87)	Group 2 87% (234/270)
Large stones	Group 3 73% (192/263)	Group 4 69% (55/80)
Both	78% (273/350)	83% (289/350)

