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Statistics – What have we learnt
I basic setup: we consider random sample X1, . . . , Xn from

distribution Fϑ — describes the measurement process, all
ways how could it go

I we measure data – particular numbers x1, . . . , xn, so
called realization of random sample, — what did we really
measure

1. point estimation: determine best possible number, estimate
for the parameter ϑ, or some function of it, g(ϑ).

2. interval estimation: determine an interval, that contains the
unknown parameter ϑ with a large probability

3. hypothesis testing
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Hypothesis testing – illustration
I We want to test, if a coin is fair.
I H0: it is fair
I H1: not fair (“Scientists discovered, that casino XY uses

loaded coin.”)
I Results: Reject H0/don’t reject H0

I Type I error: false rejection. We reject H0, even if it is true.
Embarassing.

I Type II error: false non-rejection. We don’t reject H0, even
if it is false. Unused opportunity.

I Need to find k such that we will reject H0 if |S − n/2| > k.



Hypothesis testing – general approach
I We choose an appropriate statistical model.
I We choose significance level α: prob. of false rejection

of H0. Typically α = 0.05 (medicine/psychology – much
less in high-energhy physics).

I We determine test statistics S = h(X1, . . . , Xn), that we will
determine from the measured data.

I We determine rejection region – set W .
I We measure x1, . . . , xn – so-called realizations of
X1, . . . , Xn.

I Decision rule: we reject H0 iff h(x1, . . . , xn) ∈W .
I α = P (h(X) ∈W ;H0)

I β = P (h(X) /∈W ;H1) . . . strength of the test

I often we do not choose α in advance but compute
so-called p-value: minimal α, for which we would reject H0.



Hypothesis testing – an example
I X1, . . . , Xn random sample from N(ϑ, σ2)

I σ2 known
I H0 : ϑ = 0 H1 : ϑ 6= 0



Hypothesis testing – an example
I X1, . . . , Xn1 random sample from Ber(ϑX)

I Y1, . . . , Yn2 random sample from Ber(ϑY )

I H0 : ϑX = ϑY H1 : ϑX 6= ϑY



p-hacking
I we first gain data, then look for interesting stuff
I – given enough data, there will be random coincidences
I even worse, we may test, until we get the desired outcome
I reproducibility – after exploratory analysis of the data we

make an independent measurement and a confirmatory
analysis.

I or we split the data in advance to a part for hypothesis
formation and part for verification . . . simple example of
cross validation
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χ2
k – chi-square distribution

Definition
Z1, . . . , Zk ∼ N(0, 1) i.i.d. The distribution of r.v.

Q = Z2
1 + · · ·+ Z2

k

is called chi-square(d) with k degrees of freedom (really k!),
and denoted χ2

k.
I E

(
Q
)

= k (easy)
I var(Q) = 2k (fyi, you don’t have to remember this)
I density can be written

by a reasonable formula
I Q

.
= N(k, 2k)

for large k (CLT)
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Multinomial and categorical distribution

Definition
Given p1, . . . , pk ≥ 0 so, that p1 + p2 + · · ·+ pk = 1.
we repeat n-times an experiment with k possible outcomes,
where the ith has probability pi
Xi := how many times we got the i-th outcome (X1, . . . , Xk)
has multinomial distribution with parameters n, (p1, . . . , pk).

I trivial example: Xi = number of die rolls that equaled i
I important example: Xi = number of occurences of i-th

letter,
I P (X1 = x1, . . . , Xk = xk) =

(
n

x1,...,xk

)
px1
1 . . . pxkk



Pearson χ2 statistics
I (X1, . . . , Xk) – multinomial distribution with parameters
n, (p1, . . . , pk) as above

I Ei := E
(
Xi

)
= npi

I Pearson χ2 statistics is the function

χ2 = T :=

k∑
i=1

(Xi − Ei)
2

Ei

I Theorem T
d−→ χ2

k−1



Goodness of fit test
I (X1, . . . , Xk) – multinomial distribution with parameters
n, (ϑ1, . . . , ϑk) as above

I n known, ϑ unknown
I Null hypothesis H0: ϑ = ϑ∗ for some given ϑ∗

I Ei := nϑ∗i for all i

I We use the statistics χ2 = T :=
∑k

i=1
(Xi−Ei)

2

Ei

I We reject H0 iff T > γ

I γ := F−1
Q (1− α), where Q ∼ χ2

k−1

I P (I type error) = P (T > γ;H0)→ P (Q > γ) = α



Goodness of fit test – example
I We roll a die repeatedly (600 times). The numbers 1 upto 6

came up with frequencies 92, 120, 88, 98, 95, 107.
I Is the die fair?



Extensions
I To study a distribution of an arbitrary r.v. Y we can pick

“bins” B1, . . . , Bk (a partition of R) and look how often
Y ∈ Bi (this will be measured by r.v. Xi).

I Similar test for independence of discrete random variables.
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Linear regression – the problem
I data: (xi, yi) for i = 1, . . . , n

I goal: y = ϑ0 + ϑ1x

I we measure how good fit we have by the quadratic error:

n∑
i=1

(
yi − (ϑ0 + ϑ1xi)

)2



Linear regression – solution
I To minimalize

n∑
i=1

(
yi − (ϑ0 + ϑ1xi)

)2
I the optimal parameters are

ϑ̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
, ϑ̂0 = ȳ − ϑ1x̄,

where x̄ := (x1 + · · ·+ xn)/n, ȳ := (y1 + · · ·+ yn)/n.



Linear regression – why sum of squares?
I We assume that x1, . . . , xn are fixed, yi is a realization of a

r.v.
Yi = ϑ0 + ϑ1xi +Wi

I Wi ∼ N(0, σ2) for all i; W1, . . . , Wk iid
I maximal likelihood:

L(y;ϑ) =

n∏
i=1

1

σ
√

2π
e−

(yi−ϑ0−ϑ1xi)
2

2σ2

I `(y;ϑ) = logL(y;ϑ) = a+ b
∑n

i=1(yi − ϑ0 − ϑ1xi)2



Limits of regression

(data: Francis Anscombe 1973, image: wikieditor Schutz)
I nonlinear regression
I logistic regression



Simpson’s paradox
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