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Statistics — What have we learnt

» basic setup: we consider random sample X, ..., X,, from
distribution Fy — describes the measurement process, all
ways how could it go

» we measure data — particular numbers z1, ..., z,, SO
called realization of random sample, — what did we really
measure

1. point estimation: determine best possible number, estimate
for the parameter ¥, or some function of it, g(¢9).

2. interval estimation: determine an interval, that contains the
unknown parameter ¥ with a large probability

3. hypothesis testing



Overview

Hypothesis testing



Hypothesis testing — illustration

>
>
>

We want to test, if a coin is fair.

Hy: it is fair

H;: not fair (“Scientists discovered, that casino XY uses
loaded coin.”)

Results: Reject Hy/don't reject Hy

Type | error: false rejection. We reject Hy, even if it is true.
Embarassing.

Type Il error: false non-rejection. We don'’t reject Hy, even
if it is false. Unused opportunity.

Need to find & such that we will reject Hy if |S — n/2| > k.



Hypothesis testing — general approach

>
>

We choose an appropriate statistical model.

We choose significance level o prob. of false rejection

of Hy. Typically oo = 0.05 (medicine/psychology — much
less in high-energhy physics).

We determine test statistics S = h(X, ..., X,), that we will
determine from the measured data.

We determine rejection region — set W.

We measure z1, ..., z, — so-called realizations of
X1,..., X

Decision rule: we reject H iff h(z1q,...,z,) € W.
a = P(h(X) e W, Hy)
B =P(h(X)¢& W;Hy) ... strength of the test

often we do not choose « in advance but compute
so-called p-value: minimal «, for which we would reject Hy.



Hypothesis testing — an example

> Xi,...,X, random sample from N (¢, o?)
> o2 known
>H0219:0 Hlﬁ#o



Hypothesis testing — an example

» Xi,...,X,, random sample from Ber(vx)
> Yi,...,Y,, random sample from Ber(dy)
>H0:19X:19y H1219X?é19y



p-hacking

» we first gain data, then look for interesting stuff

» — given enough data, there will be random coincidences

> even worse, we may test, until we get the desired outcome

» reproducibility — after exploratory analysis of the data we
make an independent measurement and a confirmatory
analysis.

> or we split the data in advance to a part for hypothesis
formation and part for verification ... simple example of
cross validation

Letters in winning word of Scripps National Spelling Bee
correlates with

Number of people killed by venomous spiders

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
15 letters 15 deaths

10 deaths

10 letters

5 deaths

Spelling bee winning word

5 letters, 0 deaths
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

siapids snowouaA Aq paiip 31doad 4o JBqunN

- Number of people Killed by venomous spiders<- Spelling Bee winning word



Overview

Goodness of fit test



X2 — chi-square distribution
Definition
Zi,...,Z, ~ N(0,1) i.i.d. The distribution of r.v.
Q=Z{+ -+ 7}

is called chi-square(d) with k degrees of freedom (really k!),
and denoted 3.

> E(Q) = k (easy)
> var(Q) = 2k (fyi, you don’t have to remember this)

» density can be written
by a reasonable formula
> Q= N(k,2k)
for large k (CLT)

3
s
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0.00




Multinomial and categorical distribution

Definition

Givenpy,...,pr > 080, thatp; +ps+ -+ pr = 1.

we repeat n-times an experiment with k possible outcomes,
where the ith has probability p;

X, := how many times we got the i-th outcome (X1, ..., X)
has multinomial distribution with parameters n, (p1, ..., px)-

» trivial example: X; = number of die rolls that equaled i

» important example: X; = number of occurences of i-th
letter,

> P(Xy=a1,..., Xp=a1)=(,. " )pi" ... D

L1y Tk



Pearson y? statistics

» (X1,..., X)) — multinomial distribution with parameters
n, (p1,...,pr) as above

> Ez = E(XZ) = np;
> Pearson x> statistics is the function

X2 =T := Z 7()(1 — B’

> Theorem T % y2_,



Goodness of fit test

» (X1,..., X)) —multinomial distribution with parameters
n, (¥1,...,9) as above

n known, 9 unknown
Null hypothesis Hy: ¢ = 9¥* for some given ¢*
E; :=n9; for all i

ot ko (Xi—Ei)?
We use the statistics y2 = T := >, z; )

We reject Hy iff T' > ~
v = Fél(l —a), where Q ~ x3_,
P(ltype error) = P(T > v; Hy) — P(Q > ) = «

vVvVvYvyVvYy VYVYY



Goodness of fit test — example

» We roll a die repeatedly (600 times). The numbers 1 upto 6
came up with frequencies 92, 120, 88, 98, 95, 107.

» |s the die fair?



Extensions

» To study a distribution of an arbitrary r.v. Y we can pick
“bins” B, ..., By (a partition of R) and look how often
Y € B; (this will be measured by r.v. X;).

» Similar test for independence of discrete random variables.



Overview

Linear regression



Linear regression — the problem

» data: (z;,y;) fori=1,...,n
> goal:y =Yy + o

> we measure how good fit we have by the quadratic error:

n

> (i — o+ 0127))”

=1



Linear regression — solution

» To minimalize

Z(yz — (Yo + 19193i))2

=1
» the optimal parameters are

= Zim(®i —2)(yi —§)
Yii(@i—z)2

where Z := (z1 + -+ x,)/n, §:= (y1 + - + yn) /1.

>



Linear regression — why sum of squares?

» We assume that z1,..., z, are fixed, y; is a realization of a
r.v.

Y; =99+ dx; + W;
> W; ~ N(0,02) for all i; W1, ..., Wy iid
» maximal likelihood:

n

L(y;9) =[]

=1

> U(y;9) =log L(y;¥) = a+ b 1 (ys — Yo — V11:)?
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Limits of regression
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(data: Francis Anscombe 1973, image: wikieditor Schutz)
» nonlinear regression
» logistic regression



Simpson’s paradox

Treatment

Stone size Treatment A Treatment B

Group 1 Group 2
93% (81/87) | 87% (234/270)

Small stones

Group 3 Group 4

Large stones
73% (192/1263) 69% (55/80)

Both 78% (273/350)  83% (289/350)
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