NMAI059 Probability and statistics 1 Class 13

Robert Šámal

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Statistics - What have we learnt

- ▶ basic setup: we consider random sample X₁,..., X_n from distribution F_ϑ describes the measurement process, all ways how could it go
- we measure data particular numbers x₁,..., x_n, so called realization of random sample, — what did we really measure
- 1. point estimation: determine best possible number, estimate for the parameter ϑ , or some function of it, $g(\vartheta)$.
- 2. interval estimation: determine an interval, that contains the unknown parameter ϑ with a large probability

3. hypothesis testing

Overview

Hypothesis testing

Goodness of fit test

Linear regression

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Hypothesis testing - illustration

- We want to test, if a coin is fair.
- H_0 : it is fair
- H₁: not fair ("Scientists discovered, that casino XY uses loaded coin.")
- Results: Reject H_0 /don't reject H_0
- ► Type I error: false rejection. We reject *H*₀, even if it is true. Embarassing.
- Type II error: false non-rejection. We don't reject H₀, even if it is false. Unused opportunity.
- ▶ Need to find k such that we will reject H_0 if |S n/2| > k.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Hypothesis testing – general approach

- We choose an appropriate statistical model.
- We choose *significance level* α : prob. of false rejection of H_0 . Typically $\alpha = 0.05$ (medicine/psychology much less in high-energhy physics).
- We determine *test statistics* $S = h(X_1, ..., X_n)$, that we will determine from the measured data.
- ► We determine *rejection region* set *W*.
- We measure x_1, \ldots, x_n so-called realizations of X_1, \ldots, X_n .
- Decision rule: we reject H_0 iff $h(x_1, \ldots, x_n) \in W$.

$$\qquad \qquad \bullet \quad \alpha = P(h(X) \in W; H_0)$$

- $\beta = P(h(X) \notin W; H_1) \dots$ strength of the test
- often we do not choose α in advance but compute so-called *p*-value: minimal α, for which we would reject H₀.

Hypothesis testing – an example

• X_1, \ldots, X_n random sample from $N(\vartheta, \sigma^2)$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- $\blacktriangleright \sigma^2$ known
- $\blacktriangleright H_0: \vartheta = 0 \qquad H_1: \vartheta \neq 0$

Hypothesis testing – an example

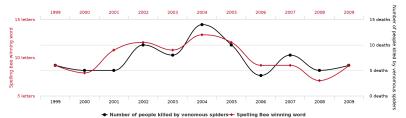
• X_1, \ldots, X_{n_1} random sample from $Ber(\vartheta_X)$

- Y_1, \ldots, Y_{n_2} random sample from $Ber(\vartheta_Y)$
- $\blacktriangleright H_0: \vartheta_X = \vartheta_Y \qquad H_1: \vartheta_X \neq \vartheta_Y$

p-hacking

- we first gain data, then look for interesting stuff
- given enough data, there will be random coincidences
- even worse, we may test, until we get the desired outcome
- reproducibility after exploratory analysis of the data we make an independent measurement and a confirmatory analysis.
- or we split the data in advance to a part for hypothesis formation and part for verification ... simple example of cross validation

Letters in winning word of Scripps National Spelling Bee



Number of people killed by venomous spiders

Overview

Hypothesis testing

Goodness of fit test

Linear regression

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

χ_k^2 – chi-square distribution

Definition $Z_1, \ldots, Z_k \sim N(0, 1)$ *i.i.d.* The distribution of r.v.

$$Q = Z_1^2 + \dots + Z_k^2$$

is called chi-square(d) with k degrees of freedom (really k!), and denoted $\chi^2_k.$

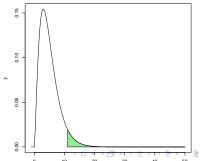
$$\blacktriangleright \mathbb{E}(Q) = k$$
 (easy)

• var(Q) = 2k (fyi, you don't have to remember this)

 density can be written by a reasonable formula

•
$$Q \doteq N(k, 2k)$$

for large k (CLT)



Multinomial and categorical distribution

Definition

Given $p_1, \ldots, p_k \ge 0$ so, that $p_1 + p_2 + \cdots + p_k = 1$. we repeat *n*-times an experiment with *k* possible outcomes, where the *i*th has probability p_i

 $X_i :=$ how many times we got the *i*-th outcome (X_1, \ldots, X_k) has multinomial distribution with parameters $n, (p_1, \ldots, p_k)$.

- trivial example: X_i = number of die rolls that equaled i
- important example: X_i = number of occurences of *i*-th letter,

(ロ) (同) (三) (三) (三) (○) (○)

•
$$P(X_1 = x_1, \dots, X_k = x_k) = \binom{n}{x_1, \dots, x_k} p_1^{x_1} \dots p_k^{x_k}$$

Pearson χ^2 statistics

► (X₁,...,X_k) – multinomial distribution with parameters n, (p₁,...,p_k) as above

$$\triangleright E_i := \mathbb{E}(X_i) = np_i$$

• Pearson χ^2 statistics is the function

$$\chi^2 = T := \sum_{i=1}^k \frac{(X_i - E_i)^2}{E_i}$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

• Theorem $T \xrightarrow{d} \chi^2_{k-1}$

Goodness of fit test

- ► (X₁,...,X_k) multinomial distribution with parameters n, (ϑ₁,...,ϑ_k) as above
- \blacktriangleright *n* known, ϑ unknown
- Null hypothesis $H_0: \vartheta = \vartheta^*$ for some given ϑ^*
- $E_i := n\vartheta_i^*$ for all i
- We use the statistics $\chi^2 = T := \sum_{i=1}^k \frac{(X_i E_i)^2}{E_i}$
- We reject H_0 iff $T > \gamma$
- $\blacktriangleright \ \gamma := F_Q^{-1}(1-\alpha), \text{ where } Q \sim \chi^2_{k-1}$
- $\blacktriangleright \ P(\mathsf{I type error}) = P(T > \gamma; H_0) \rightarrow P(Q > \gamma) = \alpha$

Goodness of fit test - example

We roll a die repeatedly (600 times). The numbers 1 upto 6 came up with frequencies 92, 120, 88, 98, 95, 107.

(ロ) (同) (三) (三) (三) (○) (○)

Is the die fair?

Extensions

- ► To study a distribution of an arbitrary r.v. *Y* we can pick "bins" B_1, \ldots, B_k (a partition of \mathbb{R}) and look how often $Y \in B_i$ (this will be measured by r.v. X_i).
- Similar test for independence of discrete random variables.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Overview

Hypothesis testing

Goodness of fit test

Linear regression

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Linear regression – the problem

• data:
$$(x_i, y_i)$$
 for $i = 1, \ldots, n$

• goal:
$$y = \vartheta_0 + \vartheta_1 x$$

we measure how good fit we have by the quadratic error:

$$\sum_{i=1}^{n} (y_i - (\vartheta_0 + \vartheta_1 x_i))^2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Linear regression – solution

► To minimalize

$$\sum_{i=1}^{n} (y_i - (\vartheta_0 + \vartheta_1 x_i))^2$$

the optimal parameters are

$$\hat{\vartheta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}, \qquad \hat{\vartheta}_0 = \bar{y} - \vartheta_1 \bar{x},$$

where
$$\bar{x} := (x_1 + \dots + x_n)/n$$
, $\bar{y} := (y_1 + \dots + y_n)/n$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Linear regression – why sum of squares?

We assume that x₁,..., x_n are fixed, y_i is a realization of a r.v.

$$Y_i = \vartheta_0 + \vartheta_1 x_i + W_i$$

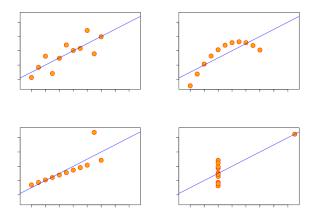
- $W_i \sim N(0, \sigma^2)$ for all $i; W_1, \ldots, W_k$ iid
- maximal likelihood:

$$L(y;\vartheta) = \prod_{i=1}^{n} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(y_i - \vartheta_0 - \vartheta_1 x_i)^2}{2\sigma^2}}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$\blacktriangleright \ \ell(y;\vartheta) = \log L(y;\vartheta) = a + b \sum_{i=1}^{n} (y_i - \vartheta_0 - \vartheta_1 x_i)^2$$

Limits of regression

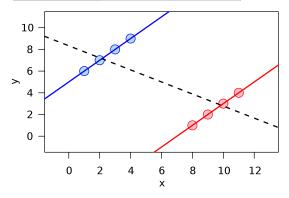


(data: Francis Anscombe 1973, image: wikieditor Schutz)

- nonlinear regression
- logistic regression

Simpson's paradox

Treatment Stone size	Treatment A	Treatment B
Small stones	Group 1 93% (81/87)	Group 2 87% (234/270)
Large stones	Group 3 73% (192/263)	<i>Group 4</i> 69% (55/80)
Both	78% (273/350)	83% (289/350)



◆ロ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●