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Maximal likelihood method, ML)
I Maximal likelihood method:

choose ϑ that maximizes L(x;ϑ).
I for convenience we put `(x;ϑ) = log(L(x;ϑ))

I by independence of X1, X2, etc. we have

L(x;ϑ) = L(x1;ϑ) . . . L(xn;ϑ)
`(x;ϑ) = `(x1;ϑ) + · · ·+ `(xn;ϑ)





ML – further illustration
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Interval estimation
I Instead of estimating by one number we compute from our

data an interval [Θ̂−, Θ̂+]

Definition
Let Θ̂−, Θ̂+ be random variables that depend on the random
sample X = (X1, . . . , Xn) from distribution Fϑ. These random
variables describe a 1− α confidence interval, if

P (Θ̂− ≤ ϑ ≤ Θ̂+) ≥ 1− α.

I these are two-sided estimates
I one-sided: [Θ̂−,∞) or (−∞, Θ̂−]





Interval estimates of a normal variable

Theorem
X1, . . . , Xn random sample from N(ϑ, σ2).
σ is known, we need to estimate ϑ, we choose α ∈ (0, 1).
Let Φ(zα/2) = 1− α/2. We put Θ̂n := X̄n and

Cn := [Θ̂n − zα/2
σ√
n
, Θ̂n + zα/2

σ√
n

]

Then P (Cn 3 ϑ) = 1− α.

Důkaz.































Interval estimates using CLT

Theorem
X1, . . . , Xn random sample from a distribution with mean ϑ and
variance σ2.
σ is known, we need to estimate ϑ, we choose α ∈ (0, 1).
Let Φ(zα/2) = 1− α/2. We put Θ̂n := X̄n and

Cn := [Θ̂n − zα/2
σ√
n
, Θ̂n + zα/2

σ√
n

]

Then lim
n→∞

P (Cn 3 ϑ) = 1− α.

















Student t-distribution
I X̄n = 1

n

∑n
i=1Xi . . . sample mean

I Ŝ2
n = 1

n−1

∑n
i=1(Xi − X̄n)2 . . . sample variance

I Let X1, . . . , Xn ∼ N(µ, σ2)

I Then we know that X̄n−µ
σ/
√
n
∼ N(0, 1)

I Student t-distribution with n− 1 degrees of freedom is the

distribution of r.v.
X̄n − µ
Ŝn/
√
n

I Its cdf will be denoted Ψn−1

It is tabulated, and implemented
by computer sofware,
in R: pt(x,n−1)
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Int. estimates of normal variable using Student t

Theorem
X1, . . . , Xn random sample from N(ϑ, σ2).
σ is not known, we need to estimate ϑ, we choose α ∈ (0, 1).
Let Ψn−1(zα/2) = 1− α/2. We put Θ̂n = X̄n,
Ŝ2
n = 1

n−1

∑n
i=1(Xi − X̄n)2 and

Cn := [Θ̂n − zα/2
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]

Then P (Cn 3 ϑ) = 1− α.
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Intro to Hypothesis testing
I Is our coin fair?
I Is our die fair?
I Is the modified code faster then original?
I Is the medical treatment X good? (Better than placebo,

better than Y, . . . )
I Are left-handed people better at boxing?

I two hypothesis: H0, H1

I H0 – null hypothesis – default, conservative model,
“unsurprising”

I H1 – alternative hypothesis – alternative model
“remarkable fact”, if true





Hypothesis testing – illustration
I We want to test, if a coin is fair.
I We toss it n-times, we get head S-times.
I If |S − n/2| is too large, we declare the coin not to be fair.











Hypothesis testing – illustration
I We want to test, if a coin is fair.
I H0: it is fair
I H1: not fair (“Scientists discovered, that casino XY uses

loaded coin.”)
I Results: Reject H0/don’t reject H0

I Type I error: false rejection. We reject H0, even if it is true.
Embarassing.

I Type II error: false non-rejection. We don’t reject H0, even
if it is false. Unused opportunity.

I Need to find k such that we will reject H0 if |S − n/2| > k.



Hypothesis testing – general approach
I We choose an appropriate statistical model.
I We choose significance level α: prob. of false rejection

of H0. Typically α = 0.05 (medicine/psychology – much
less in high-energhy physics).

I We determine test statistics S = h(X1, . . . , Xn), that we will
determine from the measured data.

I We determine rejection region – set W .
I We measure x1, . . . , xn – so-called realizations of
X1, . . . , Xn.

I Decision rule: we reject H0 iff h(x1, . . . , xn) ∈W .
I α = P (h(X) ∈W ;H0)

I β = P (h(X) /∈W ;H1) . . . strength of the test

I often we do not choose α in advance but compute
so-called p-value: minimal α, for which we would reject H0.



Hypothesis testing – an example
I X1, . . . , Xn random sample from N(ϑ, σ2)

I σ2 known
I H0 : ϑ = 0 H1 : ϑ 6= 0



Hypothesis testing – an example
I X1, . . . , Xn1 random sample from Ber(ϑX)

I Y1, . . . , Yn2 random sample from Ber(ϑY )

I H0 : ϑX = ϑY H1 : ϑX 6= ϑY



p-hacking
I we first gain data, then look for interesting stuff
I – given enough data, there will be random coincidences
I even worse, we may test, until we get the desired outcome
I reproducibility – after exploratory analysis of the data we

make an independent measurement and a confirmatory
analysis.

I or we split the data in advance to a part for hypothesis
formation and part for verification . . . simple example of
cross validation
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