NMAI059 Probability and statistics 1 Class 12

Robert Šámal

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Overview

Statistics - point estimation

Statistics - interval estimation

Hypothesis testing

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Sample mean & variance

Maximal likelihood method, ML)									
Maximal likelihood method:									
Choose ϑ that maximizes $L(x; \vartheta)$.									
► for convenience we put $\ell(x; \vartheta) = \log(L(x; \vartheta))$									
h_{i} by independence of V_{i} V_{i} oto we have									
• by independence of A_1, A_2 , etc. we have									
	L(x;	ϑ) = L(:	$x_1; \vartheta) \dots$	$L(x_n; t)$	9)	1	<i>Γ</i> /		
	$\ell(x; y)$	$\vartheta) = \ell (x)$	$_{1}:\vartheta)+\cdot$	$\cdots + \ell(x)$	$(n; \vartheta)$, do	not ha	Ber	
1-9			1, , , .	. (n é é				
P 20					>				_
	Bin(20,p) 7	0.0545	0.1643	0.1659	0.1221	0.0739	0.0366	0.0146	
1	8	0.0222	0.1144	0.1797	0.1623	0.1201	0.0727	0.0355	
Kul		0.0074	0.0654	0.1597	0.1771	0.1602	0.1185	0.071)
-	10	0.002	0.0308	0.1171	-0.1593	0.1762	0.1593	0.1171	ł
	11	0.0005	0.012	0.071	0.1180	0.1002	0.1771	0.1597	L .
	12	0.0001	0.0039	0.0335	0.0366	0.1201	0.1023	0.1659	- 🚺
/	14	(0	0.0002	0.0049	0.015	0.037	0.0746	0.1244	- 3. 8
\subseteq									- 0'1'''
		1.	/	n/I	0	0		, ~	1
	20 megser	e ments	, und	. 91	1 re	r 1	P #T	60	1 200
· · · · ·	-		00	ab 41	mai	< · //	plX-k) = (1 P	(p) /
9 5.	I son		$-I \leq c$	J			P	· (k)]	
	Jun					< □ >	• ●● • • ● •	 < ≣ > _ ₹ 	છે ગયલ

ML – further illustration $N(a, c^2)$ $\mathcal{P} = (\mu, c^2)$ $\begin{aligned} \kappa \left(k_{I}, \dots, k_{n} \right) & \text{manbers} - \text{realizations of } X_{I}, \dots, X_{n} \sim \mathcal{N}(2n, 5^{2}) \\ f_{X_{i}}^{(1)} \left(\chi_{i} \right) &= \frac{1}{\sqrt{2\pi} 5} \frac{e^{-\frac{(X_{i} - T_{i})^{2}/2}{\sigma}}}{e^{-\frac{(X_{i} - T_{i})^{2}/2}{\sigma}}} & \text{formula for pdf of } \mathcal{J} \end{aligned}$ $\frac{\partial l}{\partial c} = + \sum_{i=1}^{n} \frac{1}{2} \left(\frac{x_i - c_i}{5} \right) \frac{1}{4} \cdot \frac{1}{6} = \int_{-\infty}^{\infty} \frac{1}{2} \left(\frac{x_i - c_i}{2} \right) \frac{1}{6} \frac{1}{6} \int_{-\infty}^{\infty} \frac{1}{2} \left(\frac{x_i - c_i}{2} \right) \frac{1}{6} \frac{1}{6} \int_{-\infty}^{\infty} \frac{1}{2} \left(\frac{x_i - c_i}{2} \right) \frac{1}{6} \int_{-\infty}^{\infty} \frac{1}{6} \int_{-\infty}^{\infty} \frac{1}{2} \left(\frac{x_i - c_i}{2} \right) \frac{1}{6} \int_{-\infty}^{\infty} \frac{1}{6} \int_{-\infty}^$ $\frac{2l}{2\sigma} = + \sum_{n=1}^{\infty} \frac{(k_n - \sigma)^2}{\sigma^2} \frac{(4\pi)}{2} - \frac{\eta}{\sigma^2} = 0 \qquad \frac{|c^n - n|}{\sigma^2}$ $\frac{2l}{\sigma^2} = \frac{4}{\sigma^2} \sum_{n=1}^{\infty} \frac{(k_n - \bar{k})^2}{\sigma^2}$

Overview

Statistics - point estimation

Statistics - interval estimation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Hypothesis testing

Interval estimation

 Instead of estimating by one number we compute from our data an interval [Θ⁻, Θ⁺]

unknown parameter

Definition

Let $\hat{\Theta}^-$, $\hat{\Theta}^+$ be random variables that depend on the random sample $X = (X_1, \ldots, X_n)$ from distribution F_{ϑ} . These random variables describe a $1 - \alpha$ confidence interval, if

 $P(\hat{\Theta}^{-} \leq \vartheta \leq \hat{\Theta}^{+}) \geq 1 - \alpha.$ $NOT \land PROB.$ STATEMONT $A \qquad B$ $A \qquad B$ A = B A = B A = B A = B A = B A =

• one-sided:
$$[\hat{\Theta}^-,\infty)$$
 or $(-\infty,\hat{\Theta}^-]$

& 15 & FIXER PHATO. THAT WE DON'T KNOW

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Interval estimates of a normal variable in the formation of the matter tape.
Interval estimates of a normal variable instruction to the formation of the matter tape.
Theorem
$$\frac{\alpha_{N}}{\alpha_{N}}$$
 if if it is the formation of the matter tape is the formation of the matter tape.
Theorem $\frac{\alpha_{N}}{\alpha_{N}}$ if if it is the formation of the formation

Interval estimates using CLT

Theorem

not necessed is (2, 52)

 X_1, \ldots, X_n random sample from a distribution with mean ϑ and variance σ^2 .

 σ is known we need to estimate ϑ , we choose $\alpha \in (0,1)$. Let $\Phi(z_{\alpha/2}) = 1 - \alpha/2$. We put $\hat{\Theta}_n := \bar{X}_n$ and

$$C_n := [\hat{\Theta}_n - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \quad \hat{\Theta}_n + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}]$$

$$Then \lim_{n \to \infty} P(C_n \ni \vartheta) = 1 - \alpha.$$

$$P(C_n \ni \vartheta) = 1 - \alpha.$$

$$P(C_n \ni \vartheta) = P(-\lambda_n - \vartheta) = 2\pi \frac{\delta}{\sqrt{2\pi}} \quad \text{Ref } C(T = 2\pi)$$

$$P(-\lambda_n - \vartheta) = P(-\lambda_n - \vartheta) = 2\pi \frac{\delta}{\sqrt{2\pi}} \quad \text{Ref } C(T = 2\pi)$$

$$P(-\lambda_n - \vartheta) = F_2(-\lambda_n) = 2\pi \frac{\delta}{\sqrt{2\pi}} \quad \text{Ref } C(T = 2\pi)$$

Int. estimates of normal variable using Student t

Theorem X_1, \ldots, X_n random sample from $N(\vartheta, \sigma^2)$. σ is not known, we need to estimate ϑ , we choose $\alpha \in (0, 1)$. Let $\Psi_{n-1}(z_{\alpha/2}) = 1 - \alpha/2$.) We put $\hat{\Theta}_n = \bar{X}_n$, $\hat{S}_{n}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X}_{n})^{2}$ and $C_n := [\hat{\Theta}_n - z_{\alpha/2} \frac{\widehat{S}_n}{\sqrt{n}}, \quad \hat{\Theta}_n + z_{\alpha/2} \frac{\widehat{S}_n}{\sqrt{n}}$ Then $P(C_n \ni \vartheta) = 1 - \alpha$. $\frac{P_{n}}{P(|\vec{X}_{n}, \mathcal{D}| = 2a_{\vec{X}} \frac{S_{n}}{T_{n}})} \frac{\bar{X}_{n}}{Z \sim Y_{n}}$ $\frac{\left(\frac{1}{x}-\frac{1}{y}\right)^{-1}}{\left(\frac{1}{x}-\frac{1}{y}\right)^{-1}} = \frac{\psi_{n-1}\left(2x_{n}\right)}{\left(\frac{1}{x}-\frac{1}{y}\right)^{-1}} + \frac{\psi_{n-1}\left(2x_{n}-\frac{1}{y}\right)^{-1}} + \frac{\psi_{n-1}\left(2x_{n}-\frac{1}{y}\right)^{-1}} + \frac{\psi_{$ イロト イポト イヨト イヨト

Overview

Statistics - point estimation

Statistics - interval estimation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Hypothesis testing

Intro to Hypothesis testing

- Ho : 10 Is the modified code faster then original?
- Is the medical treatment X good? (Better than placebo, Ho: no better than Y, ...)
- Are left-handed people better at boxing? Ho : No

- \blacktriangleright two hypothesis: H_0, H_1
- \blacktriangleright $H_0 null hypothesis default, conservative model,$ "unsurprising"
- \blacktriangleright H_1 alternative hypothesis alternative model "remarkable fact", if true

Hypothesis testing - illustration

We want to test, if a coin is fair.

- ▶ We toss it *n*-times, we get head *S*-times.
- If |S n/2| is too large, we declare the coin not to be fair.

Hypothesis testing - illustration

- We want to test, if a coin is fair.
- H_0 : it is fair
- H₁: not fair ("Scientists discovered, that casino XY uses loaded coin.")
- Results: Reject H_0 /don't reject H_0
- ► Type I error: false rejection. We reject *H*₀, even if it is true. Embarassing.
- Type II error: false non-rejection. We don't reject H₀, even if it is false. Unused opportunity.
- ▶ Need to find k such that we will reject H_0 if |S n/2| > k.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Hypothesis testing – general approach

- We choose an appropriate statistical model.
- We choose *significance level* α : prob. of false rejection of H_0 . Typically $\alpha = 0.05$ (medicine/psychology much less in high-energhy physics).
- We determine *test statistics* $S = h(X_1, ..., X_n)$, that we will determine from the measured data.
- ► We determine *rejection region* set *W*.
- We measure x_1, \ldots, x_n so-called realizations of X_1, \ldots, X_n .
- Decision rule: we reject H_0 iff $h(x_1, \ldots, x_n) \in W$.

$$\qquad \qquad \bullet \quad \alpha = P(h(X) \in W; H_0)$$

- ▶ $\beta = P(h(X) \notin W; H_1) \dots$ strength of the test
- often we do not choose α in advance but compute so-called *p-value*: minimal α, for which we would reject H₀.

Hypothesis testing – an example

• X_1, \ldots, X_n random sample from $N(\vartheta, \sigma^2)$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- $\blacktriangleright \sigma^2$ known
- $\blacktriangleright H_0: \vartheta = 0 \qquad H_1: \vartheta \neq 0$

Hypothesis testing – an example

• X_1, \ldots, X_{n_1} random sample from $Ber(\vartheta_X)$

- Y_1, \ldots, Y_{n_2} random sample from $Ber(\vartheta_Y)$
- $\blacktriangleright H_0: \vartheta_X = \vartheta_Y \qquad H_1: \vartheta_X \neq \vartheta_Y$

p-hacking

- we first gain data, then look for interesting stuff
- given enough data, there will be random coincidences
- even worse, we may test, until we get the desired outcome
- reproducibility after exploratory analysis of the data we make an independent measurement and a confirmatory analysis.
- or we split the data in advance to a part for hypothesis formation and part for verification ... simple example of cross validation

Letters in winning word of Scripps National Spelling Bee

Number of people killed by venomous spiders