Analytic combinatorics Lecture 10

May 19, 2021

Not all functions are meromorphic (e.g. $z \mapsto \sqrt{z}$). Today we will look at the coefficient asymptotics of an important class of non-meromorphic functions.

Not all functions are meromorphic (e.g. $z \mapsto \sqrt{z}$). Today we will look at the coefficient asymptotics of an important class of non-meromorphic functions.

Let us consider, for $\alpha \in \mathbb{R}$, the function

$$
f_{\alpha}(z)=\frac{1}{(1-z)^{\alpha}} .
$$

Not all functions are meromorphic (e.g. $z \mapsto \sqrt{z}$). Today we will look at the coefficient asymptotics of an important class of non-meromorphic functions.

Let us consider, for $\alpha \in \mathbb{R}$, the function

$$
f_{\alpha}(z)=\frac{1}{(1-z)^{\alpha}} .
$$

Clearly, it is analytic in 0 , hence it has an expansion $f_{\alpha}(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$. What can we say about the asymptotics of its coefficients a_{n} as $n \rightarrow \infty$?

Not all functions are meromorphic (e.g. $z \mapsto \sqrt{z}$). Today we will look at the coefficient asymptotics of an important class of non-meromorphic functions.

Let us consider, for $\alpha \in \mathbb{R}$, the function

$$
f_{\alpha}(z)=\frac{1}{(1-z)^{\alpha}} .
$$

Clearly, it is analytic in 0 , hence it has an expansion $f_{\alpha}(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$. What can we say about the asymptotics of its coefficients a_{n} as $n \rightarrow \infty$?

For $\alpha \in \mathbb{Z}_{\leq 0}=\{0,-1,-2,-3, \ldots\}, f_{\alpha}$ is a polynomial of degree $-\alpha$, hence its coefficients are eventually 0 . From now on, assume $\alpha \in \mathbb{R} \backslash \mathbb{Z}_{\leq 0}$.

Not all functions are meromorphic (e.g. $z \mapsto \sqrt{z}$). Today we will look at the coefficient asymptotics of an important class of non-meromorphic functions.

Let us consider, for $\alpha \in \mathbb{R}$, the function

$$
f_{\alpha}(z)=\frac{1}{(1-z)^{\alpha}} .
$$

Clearly, it is analytic in 0 , hence it has an expansion $f_{\alpha}(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$. What can we say about the asymptotics of its coefficients a_{n} as $n \rightarrow \infty$?

For $\alpha \in \mathbb{Z}_{\leq 0}=\{0,-1,-2,-3, \ldots\}, f_{\alpha}$ is a polynomial of degree $-\alpha$, hence its coefficients are eventually 0 . From now on, assume $\alpha \in \mathbb{R} \backslash \mathbb{Z}_{\leq 0}$.

Fact (Generalized binomial theorem)

$$
f_{\alpha}(z)=(1-z)^{-\alpha}=\sum_{n=0}^{\infty}\binom{-\alpha}{n}(-1)^{n} z^{n},
$$

where for $x \in \mathbb{R}$ and $n \in \mathbb{N}_{0}$ we define

$$
\binom{x}{n}=\frac{x(x-1)(x-2) \cdots(x-n+1)}{n!} .
$$

Not all functions are meromorphic (e.g. $z \mapsto \sqrt{z}$). Today we will look at the coefficient asymptotics of an important class of non-meromorphic functions.

Let us consider, for $\alpha \in \mathbb{R}$, the function

$$
f_{\alpha}(z)=\frac{1}{(1-z)^{\alpha}} .
$$

Clearly, it is analytic in 0 , hence it has an expansion $f_{\alpha}(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$. What can we say about the asymptotics of its coefficients a_{n} as $n \rightarrow \infty$?

For $\alpha \in \mathbb{Z}_{\leq 0}=\{0,-1,-2,-3, \ldots\}, f_{\alpha}$ is a polynomial of degree $-\alpha$, hence its coefficients are eventually 0 . From now on, assume $\alpha \in \mathbb{R} \backslash \mathbb{Z}_{\leq 0}$.

Fact (Generalized binomial theorem)

$$
f_{\alpha}(z)=(1-z)^{-\alpha}=\sum_{n=0}^{\infty}\binom{-\alpha}{n}(-1)^{n} z^{n}
$$

where for $x \in \mathbb{R}$ and $n \in \mathbb{N}_{0}$ we define

$$
\binom{x}{n}=\frac{x(x-1)(x-2) \cdots(x-n+1)}{n!} .
$$

Goal: Figure out the asymptotics of $\binom{-\alpha}{n}(-1)^{n}$ as $n \rightarrow \infty$.

Recall the goal: Figure out the asymptotics of $\binom{-\alpha}{n}(-1)^{n}$ as $n \rightarrow \infty$.

Recall the goal: Figure out the asymptotics of $\binom{-\alpha}{n}(-1)^{n}$ as $n \rightarrow \infty$.
Note:

$$
\left.\begin{array}{rl}
\binom{-\alpha}{n}(-1)^{n} & =\frac{(-\alpha)(-\alpha-1) \cdots(-\alpha-n+1)}{n!}(-1)^{n} \\
& =\frac{(n-1+\alpha)(n-2+\alpha) \cdots(1+\alpha) \alpha}{n!}
\end{array}\right)
$$

Recall the goal: Figure out the asymptotics of $\binom{-\alpha}{n}(-1)^{n}$ as $n \rightarrow \infty$.
Note:

$$
\begin{aligned}
\binom{-\alpha}{n}(-1)^{n} & =\frac{(-\alpha)(-\alpha-1) \cdots(-\alpha-n+1)}{n!}(-1)^{n} \\
& =\frac{(n-1+\alpha)(n-2+\alpha) \cdots(1+\alpha) \alpha}{n!} \\
& =\binom{n-1+\alpha}{n} .
\end{aligned}
$$

Observe: For $\alpha \in \mathbb{N}, f_{\alpha}(z)=\frac{1}{(1-z)^{\alpha}}$ is actually meromorphic, and we have

$$
\begin{aligned}
\binom{n-1+\alpha}{n} & =\binom{n-1+\alpha}{\alpha-1} \\
& =\frac{(n+\alpha-1)(n+\alpha-2) \cdots(n+1)}{(\alpha-1)!} \\
& =\frac{n^{\alpha-1}}{(\alpha-1)!}\left(1+O\left(\frac{1}{n}\right)\right)
\end{aligned}
$$

Recall the goal: Figure out the asymptotics of $\binom{-\alpha}{n}(-1)^{n}$ as $n \rightarrow \infty$.
Note:

$$
\begin{aligned}
\binom{-\alpha}{n}(-1)^{n} & =\frac{(-\alpha)(-\alpha-1) \cdots(-\alpha-n+1)}{n!}(-1)^{n} \\
& =\frac{(n-1+\alpha)(n-2+\alpha) \cdots(1+\alpha) \alpha}{n!} \\
& =\binom{n-1+\alpha}{n} .
\end{aligned}
$$

Observe: For $\alpha \in \mathbb{N}, f_{\alpha}(z)=\frac{1}{(1-z)^{\alpha}}$ is actually meromorphic, and we have

$$
\begin{aligned}
\binom{n-1+\alpha}{n} & =\binom{n-1+\alpha}{\alpha-1} \\
& =\frac{(n+\alpha-1)(n+\alpha-2) \cdots(n+1)}{(\alpha-1)!} \\
& =\frac{n^{\alpha-1}}{(\alpha-1)!}\left(1+O\left(\frac{1}{n}\right)\right) .
\end{aligned}
$$

Can we say something similar for $\alpha \notin \mathbb{Z}$?

Euler's Gamma function

Definition

For a complex number α with $\Re(\alpha)>0$, define the function

$$
\Gamma(\alpha)=\int_{0}^{+\infty} x^{\alpha-1} e^{-x} d x
$$

Definition

For a complex number α with $\Re(\alpha)>0$, define the function

$$
\Gamma(\alpha)=\int_{0}^{+\infty} x^{\alpha-1} e^{-x} d x
$$

Fact: The above integral converges for any α with $\Re(\alpha)>0$. The function Γ has an analytic continuation into a meromorphic function on \mathbb{C}, with a pole of order 1 in every $m \in \mathbb{Z}_{\leq 0}$ and no other poles.

Euler's Gamma function

Definition
For a complex number α with $\Re(\alpha)>0$, define the function

$$
\Gamma(\alpha)=\int_{0}^{+\infty} x^{\alpha-1} e^{-x} d x
$$

Fact: The above integral converges for any α with $\Re(\alpha)>0$. The function Γ has an analytic continuation into a meromorphic function on \mathbb{C}, with a pole of order 1 in every $m \in \mathbb{Z}_{\leq 0}$ and no other poles.

Proposition
The function Γ has the following properties:
(1) $\Gamma(1)=1$

$$
\Gamma(1)=\int_{0}^{+\infty} e^{-x} d x=\left[-e^{-x}\right]_{0}^{+\infty}=0-(-1)=1
$$

Definition

For a complex number α with $\Re(\alpha)>0$, define the function

$$
\Gamma(\alpha)=\int_{0}^{+\infty} x^{\alpha-1} e^{-x} d x
$$

Fact: The above integral converges for any α with $\Re(\alpha)>0$. The function Γ has an analytic continuation into a meromorphic function on \mathbb{C}, with a pole of order 1 in every $m \in \mathbb{Z}_{\leq 0}$ and no other poles.

Proposition

The function Γ has the following properties:
(1) $\Gamma(1)=1$
(2) For $\alpha \notin \mathbb{Z}_{\leq 0}: \Gamma(\alpha+1)=\alpha \Gamma(\alpha)$

$$
\alpha \in(0,+\infty)
$$

Definition

For a complex number α with $\Re(\alpha)>0$, define the function

$$
\Gamma(\alpha)=\int_{0}^{+\infty} x^{\alpha-1} e^{-x} d x
$$

Fact: The above integral converges for any α with $\Re(\alpha)>0$. The function Γ has an analytic continuation into a meromorphic function on \mathbb{C}, with a pole of order 1 in every $m \in \mathbb{Z}_{\leq 0}$ and no other poles.

Proposition

The function Γ has the following properties:
(1) $\Gamma(1)=1$
(2) For $\left.\alpha \notin \mathbb{Z}_{\leq 0}: \Gamma(\alpha+1)=\alpha \Gamma(\alpha)\right]$
(3) For $n \in \mathbb{N}$: $\Gamma(n)=(n-1)$!

$$
\begin{aligned}
\Gamma(n) & =(n-1) \Gamma(n-1) \\
& =(n-1)(n-2)! \\
& =(n-1)!
\end{aligned}
$$

Definition

For a complex number α with $\Re(\alpha)>0$, define the function

$$
\Gamma(\alpha)=\int_{0}^{+\infty} x^{\alpha-1} e^{-x} d x
$$

Fact: The above integral converges for any α with $\Re(\alpha)>0$. The function Γ has an analytic continuation into a meromorphic function on \mathbb{C}, with a pole of order 1 in every $m \in \mathbb{Z}_{\leq 0}$ and no other poles.

Proposition

The function Γ has the following properties:
(1) $\Gamma(1)=1$
(2) For $\alpha \notin \mathbb{Z}_{\leq 0}: \Gamma(\alpha+1)=\alpha \Gamma(\alpha)$
(3) For $n \in \mathbb{N}$: $\Gamma(n)=(n-1)$!
(- For $n \in \mathbb{N}$ and $\alpha \in \mathbb{R} \backslash \mathbb{Z}_{\leq 0}: \underbrace{\binom{n+\alpha-1}{n}}=\frac{\Gamma(n+\alpha)}{\Gamma(n+1) \Gamma(\alpha)}$

Definition

For a complex number α with $\Re(\alpha)>0$, define the function

$$
\Gamma(\alpha)=\int_{0}^{+\infty} x^{\alpha-1} e^{-x} d x
$$

Fact: The above integral converges for any α with $\Re(\alpha)>0$. The function Γ has an analytic continuation into a meromorphic function on \mathbb{C}, with a pole of order 1 in every $m \in \mathbb{Z}_{\leq 0}$ and no other poles.

Proposition

The function Γ has the following properties:
(1) $\Gamma(1)=1$
(2) For $\alpha \notin \mathbb{Z}_{\leq 0}: \Gamma(\alpha+1)=\alpha \Gamma(\alpha)$
(3) For $n \in \mathbb{N}$: $\Gamma(n)=(n-1)$!

- For $n \in \mathbb{N}$ and $\alpha \in \mathbb{R} \backslash \mathbb{Z}_{\leq 0}:\binom{n+\alpha-1}{n}=\frac{\Gamma(n+\alpha)}{\Gamma(n+1) \Gamma(\alpha)} \leftarrow レ$
- $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi} \quad$ (no proof)

Proof of the proposition

$$
\begin{aligned}
& \left.\alpha \in(0,+\infty): \int^{+}(\alpha+1)=\alpha \Gamma(\alpha)\right] \\
& \left.\Gamma(\alpha+1)=\int_{0}^{+\infty} x^{\alpha} e^{-x} d x \quad \text { per partes }\right) \\
& \left(\left(x^{\alpha}\right)^{\prime}=\alpha x^{\alpha-1} \int_{0} e^{-x} d x=-e^{-x}\right. \\
& \rightarrow\left[x^{\alpha}\left(-e^{-x}\right)\right]_{0}^{+\infty}-\int_{0}^{+\infty} \alpha x^{\alpha-1}\left(-e^{-x}\right) d x= \\
& =0+\alpha \cdot \int_{0}^{+\infty} x^{\alpha-1} e^{-x} d x=\alpha \Gamma(\alpha) \cdot \\
& \binom{n+\alpha-1}{n}=\frac{(n+\alpha-1)(n+\alpha-2) \cdot \ldots!(\alpha+1) \cdot \alpha}{n!}=\frac{\frac{\Gamma(n+\alpha)}{\Gamma(\alpha)}}{\Gamma(n+1)} \\
& \Gamma(n+\alpha)=(n+\alpha-1) \Gamma(n+\alpha-1)=(n+\alpha-1)(n+\alpha-2) \Gamma(n+\alpha-2) \\
& \cdots=(n+\alpha-1)(n+\alpha-2) \cdot \ldots \cdot(\alpha+1) \cdot \alpha \cdot \Gamma(\alpha)
\end{aligned}
$$

More on the Γ function

Fact (Generalized Stirling approximation)

For $x \in \mathbb{R}$, we have
$(x!) \Gamma(x+1)=x \Gamma(x)=\sqrt{2 \pi x}\left(\frac{x}{e}\right)^{x}\left(1+O\left(x^{-1}\right)\right)$ as $x \rightarrow+\infty$.

Fact (Generalized Stirling approximation)

For $x \in \mathbb{R}$, we have

$$
\Gamma(x+1)=x \Gamma(x)=\underbrace{\sqrt{2 \pi x}\left(\frac{x}{e}\right)^{x}}\left(1+O\left(x^{-1}\right)\right) \text { as } x \rightarrow+\infty .
$$

Corollary

Recall that $f_{\alpha}(z)=\frac{1}{(1-z)^{\alpha}}$ and that

$$
\left[z^{n}\right] f_{\alpha}(z)=\binom{n+\alpha-1}{n}=\frac{\Gamma(n+\alpha)}{\Gamma(\alpha) \Gamma(n+1)}
$$

For $\alpha \in \mathbb{R} \backslash \mathbb{Z}_{\leq 0}$, as $n \rightarrow+\infty$, we have

$$
\left.\left[z^{n}\right] f_{\alpha}(z)=\left[z^{n}\right] \frac{1}{(1-z)^{\alpha}}=\binom{n+\alpha-1}{n}=\frac{\Gamma(n+\alpha)}{\Gamma(\alpha) \Gamma(n+1)}=\frac{n^{\alpha-1}}{\Gamma(\alpha)}\right)\left(1+O\left(\frac{1}{n}\right)\right) .
$$

$$
\frac{\sqrt{2 \pi(n+\alpha-1)} \cdot\left(\frac{n+\alpha-1}{e}\right)}{n+\alpha-1}
$$

$$
\sim \underbrace{(n+\alpha-1)^{\alpha-1} \frac{1}{e^{\alpha-1}}}_{n^{\alpha-1}\left(1 \times 0\left(\frac{1}{n}\right)\right)} \underbrace{\left(\frac{n+\alpha-1}{n}\right)^{n}}_{\rightarrow e^{\alpha-1}}
$$

Fact (Generalized Stirling approximation)

For $x \in \mathbb{R}$, we have

$$
\Gamma(x+1)=x \Gamma(x)=\sqrt{2 \pi x}\left(\frac{x}{e}\right)^{x}\left(1+O\left(x^{-1}\right)\right) \text { as } x \rightarrow+\infty
$$

Corollary

Recall that $f_{\alpha}(z)=\frac{1}{(1-z)^{\alpha}}$ and that

$$
\left[z^{n}\right] f_{\alpha}(z)=\binom{n+\alpha-1}{n}=\frac{\Gamma(n+\alpha)}{\Gamma(\alpha) \Gamma(n+1)}
$$

For $\alpha \in \mathbb{R} \backslash \mathbb{Z}_{\leq 0}$, as $n \rightarrow+\infty$, we have

$$
\left[z^{n}\right] f_{\alpha}(z)=\left[z^{n}\right] \frac{1}{(1-z)^{\alpha}}=\binom{n+\alpha-1}{n}=\frac{\Gamma(n+\alpha)}{\Gamma(\alpha) \Gamma(n+1)}=\frac{n^{\alpha-1}}{\Gamma(\alpha)}\left(1+O\left(\frac{1}{n}\right)\right)
$$

Corollary

Let $\gamma \in \mathbb{R} \backslash\{0\}$ and $\alpha \in \mathbb{R}$. Define $g(z)=\frac{1}{(1-\gamma z)^{\alpha}}$. Then

$$
\left[z^{n}\right] g(z)=\gamma^{n}\left[z^{n}\right] f_{\alpha}(z)=\frac{\gamma^{n} n^{\alpha-1}}{\Gamma(\alpha)}\left(1+O\left(\frac{1}{n}\right)\right)
$$

A binary tree is either a single leaf node, or an internal root node together with an ordered pair of subtrees, which are both binary trees. Let t_{n} be the number of binary trees with n internal nodes. What can we say about the asymptotics of t_{n} ?

$$
\begin{aligned}
& T(z)=\sum_{n=0}^{\infty} t_{n} z^{n}, \quad t_{n}=\sum_{k=0}^{n-1} t_{k} t_{n-k-1}
\end{aligned}
$$

$$
\begin{aligned}
& T(z)-1 \sqrt{n=1} \cdot \sum_{h=0}^{\infty} \sum_{k=0}^{n=1} t_{k} z^{k} \cdot t_{h-k} z^{n-k}=z \cdot T^{2}(z) \\
& T(z)-1=z \cdot T^{2}(z) \text { or } T(z)=1+z T^{2}(z) \\
& T=\left\{\begin{array}{l}
\text { size } 0
\end{array}\right\} \cup\left\{\begin{array}{c}
\text { icel } \\
\left.r_{\text {sot }}\right\}
\end{array}\right\} \times \tau \times \tau
\end{aligned}
$$

$$
\begin{aligned}
& T(z)=1+z T^{2}(z) \Leftrightarrow z T^{2}(z)-T(z)+1=0 \\
& \Rightarrow \frac{1 \pm \sqrt{1-4 z}}{2 z}=T_{1,2}(z), \frac{1+\sqrt{1-4 z}}{2 z} \text { is }
\end{aligned}
$$

not analytic in $z=0$, hence $T(z)=\frac{1-\sqrt{1-4 z}}{2 z}$,

$$
\begin{aligned}
& t_{n}=\left[z^{n}\right] T(z)=\left[z^{n+1}\right] \frac{1-\sqrt{1-4 z}}{2}=\left[z^{n+1}\right]\left(\frac{1}{2}-\frac{1}{2} \sqrt{1-4 z}\right) \\
& =-\frac{1}{2}\left[z^{n+\pi}\right] \sqrt{1-4 z}=-\frac{1}{2} \cdot(-4)^{n+1} \cdot\binom{\frac{1}{2}}{n}=\ldots=\frac{1}{n+1}\binom{2 n}{n} \\
& \text { (Catalan } \\
& \Gamma\left(\frac{1}{2}\right)=\sqrt{\pi} \\
& -\frac{1}{2} \cdot 4^{n+1}\left[z^{n+1}\right] \sqrt{1-z}=-\frac{1}{2} \cdot 4^{n+1} \cdot \frac{\left.(n+1)^{-3 / 2} n \text { umber }\right)}{\Gamma\left(-\frac{1}{2}\right)}\left(1+O\left(\frac{1}{2}\right)\right) \\
& \Gamma\left(\frac{1}{2}\right)=\left(-\frac{1}{2}\right) \Gamma\left(-\frac{1}{2}\right) \quad f-\frac{1}{2}(z) \\
& 4^{n} \frac{1^{11}}{\sqrt{\pi} \cdot n^{3 / 2}} \cdot\left(1+O\left(\frac{1}{n}\right)\right)
\end{aligned}
$$

Functions approximating f_{α}

Fact
Let $\rho>1$, let $\alpha \in \mathbb{R} \backslash \mathbb{Z}_{\leq 0}$. Let f be a function defined on $\Omega=\mathcal{N}_{<\rho}(0) \backslash[1,+\infty)$ as

$$
f(z)=\frac{g(z)}{(1-z)^{\alpha}}
$$

where $g(z)$ is analytic on $\mathcal{N}_{<\rho}(0)$ and $g(1) \neq 0$. Then

$$
\left[z^{n}\right] f(z)=g(1)\left(1+O\left(\frac{1}{n}\right)\right)\left[z^{n}\right] \frac{1}{(1-z)^{\alpha}}=\underbrace{\frac{g(1) n^{\alpha-1}}{\Gamma(\alpha)}\left(1+O\left(\frac{1}{n}\right)\right)}
$$

2-regular graphs

Let g_{n} be the number of 2-regular graphs on the vertex set [n]. What can we say about the asymptotics of g_{n} ?

$$
\left.\begin{aligned}
& g_{0}=g_{1}=g_{2}=0 \\
& g_{3}=1
\end{aligned} \sum_{1}^{2} \right\rvert\, G(z)=\sum_{n=0}^{\infty} \frac{g_{n}}{n!} z^{n}
$$

$$
g_{4}=3
$$

$$
\begin{aligned}
& C_{n}:=\text { of cycles on }[n]=\frac{(n-1)!}{2} \text { for } n \geq 3 \\
& C(z)=\sum_{n=3}^{\infty} \frac{C_{n}}{n!} z^{n}=\sum_{n=3}^{\infty} \frac{z^{n}}{2 n}=\frac{1}{2}\left(\sum_{n=1}^{\infty} \frac{z^{n}}{n}-z-\frac{z^{2}}{2}\right) \\
& =\frac{1}{2}\left(\ln \left(\frac{1}{1-z}\right)-z-\frac{z^{2}}{2}\right) ; \begin{array}{l}
C^{k}(z) \ldots E G F \text { ordered } k-\text { tuples } . . . n
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
C(z) & =\frac{1}{2}\left(\ln \left(\frac{1}{1-z}\right)-z-\frac{z^{2}}{2}\right) \\
G(z) & =\sum_{k=0}^{\infty} \frac{c^{k}(z)}{k!}=\exp (c(z))= \\
& =\exp \left(\frac{1}{2} \ln \left(\frac{1}{1-z}\right)\right) \cdot \exp \left(-\frac{z}{2}-\frac{z^{2}}{4}\right) \\
& =\frac{\exp \left(-\frac{z}{2}-\frac{z^{2}}{4}\right)}{\sqrt{1-z}}
\end{aligned}
$$

