NMAI059 Probability and statistics 1 Class 12

Robert Šámal

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Overview

Statistics - point estimation

Statistics - interval estimation

Hypothesis testing

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Sample mean & variance

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
$$\bar{S}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$
$$\hat{S}_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Maximal likelihood method, ML)

- Maximal likelihood method: choose θ that maximizes L(x; θ).
- ▶ for convenience we put $\ell(x; \vartheta) = \log(L(x; \vartheta))$

by independence of X_1 , X_2 , etc. we have

$$L(x;\vartheta) = L(x_1;\vartheta)\dots L(x_n;\vartheta)$$

$$\ell(x;\vartheta) = \ell(x_1;\vartheta) + \dots + \ell(x_n;\vartheta)$$

Bin(20,p)	0.2	0.3	0.4	0.45	0.5	0.55	0.6
7	0.0545	0.1643	0.1659	0.1221	0.0739	0.0366	0.0146
8	0.0222	0.1144	0.1797	0.1623	0.1201	0.0727	0.0355
9	0.0074	0.0654	0.1597	0.1771	0.1602	0.1185	0.071
10	0.002	0.0308	0.1171	0.1593	0.1762	0.1593	0.1171
11	0.0005	0.012	0.071	0.1185	0.1602	0.1771	0.1597
12	0.0001	0.0039	0.0355	0.0727	0.1201	0.1623	0.1797
13	0	0.001	0.0146	0.0366	0.0739	0.1221	0.1659
14	0	0.0002	0.0049	0.015	0.037	0.0746	0.1244

ML - further illustration

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Overview

Statistics - point estimation

Statistics - interval estimation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Hypothesis testing

Interval estimation

 Instead of estimating by one number we compute from our data an interval [\u0096⁻, \u0096⁺]

Definition

Let $\hat{\Theta}^-$, $\hat{\Theta}^+$ be random variables that depend on the random sample $X = (X_1, \ldots, X_n)$ from distribution F_{ϑ} . These random variables describe a $1 - \alpha$ confidence interval, if

$$P(\hat{\Theta}^- \le \vartheta \le \hat{\Theta}^+) \ge 1 - \alpha.$$

(日) (日) (日) (日) (日) (日) (日)

these are two-sided estimates
 one-sided: [Ô[−], ∞) or (−∞, Ô[−]]

Interval estimates of a normal variable

Theorem X_1, \ldots, X_n random sample from $N(\vartheta, \sigma^2)$. σ is known, we need to estimate ϑ , we choose $\alpha \in (0, 1)$. Let $\Phi(z_{\alpha/2}) = 1 - \alpha/2$. We put $\hat{\Theta}_n := \bar{X}_n$ and

$$C_n := [\hat{\Theta}_n - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \quad \hat{\Theta}_n + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}]$$

Then $P(C_n \ni \vartheta) = 1 - \alpha$.

Důkaz.

Interval estimates using CLT

Theorem

 X_1, \ldots, X_n random sample from a distribution with mean ϑ and variance σ^2 .

 σ is known, we need to estimate ϑ , we choose $\alpha \in (0,1)$. Let $\Phi(z_{\alpha/2}) = 1 - \alpha/2$. We put $\hat{\Theta}_n := \bar{X}_n$ and

$$C_n := [\hat{\Theta}_n - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \quad \hat{\Theta}_n + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}]$$

(日) (日) (日) (日) (日) (日) (日)

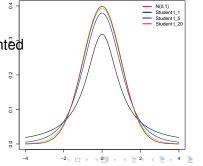
Then $\lim_{n \to \infty} P(C_n \ni \vartheta) = 1 - \alpha$.

Student *t*-distribution

•
$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \dots$$
 sample mean
• $\hat{S}_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2 \dots$ sample variance

• Let
$$X_1, \ldots, X_n \sim N(\mu, \sigma^2)$$

- Then we know that $\frac{X_n \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$
- Student *t*-distribution with n-1 degrees of freedom is the distribution of r.v. $\frac{\bar{X}_n \mu}{\hat{S}_n / \sqrt{n}}$
- Its cdf will be denoted Ψ_{n-1}
 It is tabulated, and implemented by computer sofware, in R: pt(x,n-1)



Int. estimates of normal variable using Student t

Theorem

 X_1, \ldots, X_n random sample from $N(\vartheta, \sigma^2)$. σ is not known, we need to estimate ϑ , we choose $\alpha \in (0, 1)$. Let $\Psi_{n-1}(z_{\alpha/2}) = 1 - \alpha/2$. We put $\hat{\Theta}_n = \bar{X}_n$, $\hat{S}_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$ and

$$C_n := [\hat{\Theta}_n - z_{\alpha/2} \frac{\widehat{S}_n}{\sqrt{n}}, \quad \hat{\Theta}_n + z_{\alpha/2} \frac{\widehat{S}_n}{\sqrt{n}}]$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Then $P(C_n \ni \vartheta) = 1 - \alpha$.

Overview

Statistics - point estimation

Statistics - interval estimation

Hypothesis testing

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Intro to Hypothesis testing

- Is our coin fair?
- Is our die fair?
- Is the modified code faster then original?
- Is the medical treatment X good? (Better than placebo, better than Y, ...)
- Are left-handed people better at boxing?

- two hypothesis: H_0 , H_1
- H₀ null hypothesis default, conservative model, "unsurprising"

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

 H₁ – alternative hypothesis – alternative model "remarkable fact", if true

Hypothesis testing - illustration

- We want to test, if a coin is fair.
- ▶ We toss it *n*-times, we get head *S*-times.
- If |S n/2| is too large, we declare the coin not to be fair.

(ロ) (同) (三) (三) (三) (○) (○)

Hypothesis testing - illustration

- We want to test, if a coin is fair.
- H_0 : it is fair
- H₁: not fair ("Scientists discovered, that casino XY uses loaded coin.")
- Results: Reject H_0 /don't reject H_0
- ► Type I error: false rejection. We reject *H*₀, even if it is true. Embarassing.
- Type II error: false non-rejection. We don't reject H₀, even if it is false. Unused opportunity.
- ▶ Need to find k such that we will reject H_0 if |S n/2| > k.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Hypothesis testing – general approach

- We choose an appropriate statistical model.
- We choose *significance level* α : prob. of false rejection of H_0 . Typically $\alpha = 0.05$ (medicine/psychology much less in high-energhy physics).
- We determine *test statistics* $S = h(X_1, ..., X_n)$, that we will determine from the measured data.
- ► We determine *rejection region* set *W*.
- We measure x_1, \ldots, x_n so-called realizations of X_1, \ldots, X_n .
- Decision rule: we reject H_0 iff $h(x_1, \ldots, x_n) \in W$.

$$\qquad \qquad \bullet \quad \alpha = P(h(X) \in W; H_0)$$

- ▶ $\beta = P(h(X) \notin W; H_1) \dots$ strength of the test
- often we do not choose α in advance but compute so-called *p-value*: minimal α, for which we would reject H₀.

Hypothesis testing – an example

• X_1, \ldots, X_n random sample from $N(\vartheta, \sigma^2)$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- $\blacktriangleright \sigma^2$ known
- $\blacktriangleright H_0: \vartheta = 0 \qquad H_1: \vartheta \neq 0$

Hypothesis testing – an example

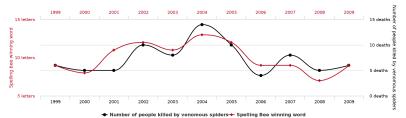
• X_1, \ldots, X_{n_1} random sample from $Ber(\vartheta_X)$

- Y_1, \ldots, Y_{n_2} random sample from $Ber(\vartheta_Y)$
- $\blacktriangleright H_0: \vartheta_X = \vartheta_Y \qquad H_1: \vartheta_X \neq \vartheta_Y$

p-hacking

- we first gain data, then look for interesting stuff
- given enough data, there will be random coincidences
- even worse, we may test, until we get the desired outcome
- reproducibility after exploratory analysis of the data we make an independent measurement and a confirmatory analysis.
- or we split the data in advance to a part for hypothesis formation and part for verification ... simple example of cross validation

Letters in winning word of Scripps National Spelling Bee



Number of people killed by venomous spiders