NMAI059 Probability and statistics 1 Class 11

Robert Šámal

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Overview

Statistics - modelling

Statistics – point estimation

Random sample

without repetition

 $\Omega = \{ all \ n \text{-tuples of citizens of Czechia} \}$

For $\omega = (\omega_1, \dots, \omega_n)$ we put $X_i = I(\omega_i \text{ is left-handed})$.

with repetition

 $\Omega = \{ all n \text{-tuples of citizens of Czechia, with repetition} \}$ For $\omega = (\omega_1, \dots, \omega_n)$ we put $X_i = I(\omega_i \text{ is left-handed}).$

variants (stratified sample)
We want to proportionally represent various subsets (age, education, home address, etc.).
Not studied further in this course.

Statistika – model

▶ independent measurements – using i.i.d. X₁,..., X_n ~ F random sample from CDF F

► nonparametric models: large class of *F*

• parametric models: $F \in \{F_{\vartheta} : \vartheta \in \Theta\}$

examples

•
$$Pois(\lambda)$$
 (parameter $\vartheta = \lambda, \Theta = \mathbb{R}^+$)

- U(a,b) (parameter $\vartheta = (a,b), \Theta = \mathbb{R}^2$)
- $N(\mu, \sigma^2)$ (parameter $\vartheta = (\mu, \sigma), \Theta = \mathbb{R} \times \mathbb{R}^+$)

"All models are wrong, but some are useful." (George Box)

Confirmatory data analysis

- point estimates
- interval estimates
- hypothesis testing
- (linear) regression
- ► *statistics* any function of a random sample, e.g., arithmetic mean, median, maximum, etc. That is $T = T(X_1, ..., X_n)$.

(ロ) (同) (三) (三) (三) (○) (○)

Overview

Statistics - modelling

Statistics - point estimation

Sample mean and variance

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
$$\bar{S}_n = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$
$$\hat{S}_n = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Estimator

Definition Estimator is an arbitrary statistics.

Properties of estimators

Definition

Estimator $T_n = T_n(X_1, \ldots, X_n)$ of $g(\vartheta)$ je

- unbiased pokud $g(\vartheta) = \mathbb{E}(T_n)$ (for each ϑ)
- asymptotically unbiased $- if g(\vartheta) = \lim_{n \to \infty} \mathbb{E}(T_n)$

• consistent – if
$$T_n \xrightarrow{P} \vartheta$$
.

- bias is defined as $bias_{\vartheta} := \mathbb{E}(T_n) g(\vartheta)$
- mean squared error, MSE is $MSE := \mathbb{E}((T g(\vartheta))^2)$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Theorem

 $MSE = bias_{\vartheta}^2 + var_{\vartheta}(T_n)$

Properties of estimators

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Properties of estimators

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Properties of sample mean and variance

Theorem

Let X_1, \ldots, X_n be a random sample from a distribution with expected value μ and variance σ^2 .

- 1. \bar{X}_n is a consistent unbiased estimator of μ
- 2. \bar{S}_n is a consistent asymptotically unbiased estimator of σ^2

(日) (日) (日) (日) (日) (日) (日)

3. \widehat{S}_n is a consistent unbiased estimator of σ^2

Method of moments

•
$$m_r(\vartheta) := \mathbb{E}(X^r)$$
 for $X \sim F_\vartheta \dots r$ -th moment

• $\overline{m_r(\vartheta)} := \frac{1}{n} \sum_{i=1}^n X_i^r$ for a random sample X_1, \ldots, X_n z F_ϑ ... *r*-th sample moment

 $\underbrace{\widehat{m_r(\vartheta)}}_{r(\vartheta)} \text{ is unbiased consistent estimator of } m_r(\vartheta)$

 Estimator using the method of moments is obtained by solving system of equations (k is the number of parameters)

$$m_r(\vartheta) = \widehat{m_r(\vartheta)}$$
 $r = 1, \dots, k.$

(日) (日) (日) (日) (日) (日) (日)

Method of moments – examples

<ロ> < 団> < 団> < 豆> < 豆> < 豆> < 豆> < 豆</p>

Maximal likelihood, ML

- ▶ random sample $X = (X_1, ..., X_n)$ from a distribution with parameter ϑ
- possible realization $x = (x_1, \ldots, x_n)$
- ... joint $pmfp_X(x; \vartheta)$
- ... joint pdf $f_X(x; \vartheta)$
- likelihood $L(x; \vartheta)$ denotes p_X or f_X
- ▶ before: we have a fixed ϑ , study $L(x; \vartheta)$ as a function of x
- ▶ now: we have a fixed x and study $L(x; \vartheta)$ as a function of ϑ

(日) (日) (日) (日) (日) (日) (日)

Maximal Likelihood principle

choose ϑ that maximizes $L(x; \vartheta)$.

Maximal likelihood

Metoda MV (ML):

choose ϑ that maximizes $L(x; \vartheta)$.

• for convenience we put $\ell(x; \vartheta) = \log(L(x; \vartheta))$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• by independence of X_1 , X_2 , etc. we have

 $L(x;\vartheta) =$

 $\ell(x;\vartheta) =$

ML example – proportion of left-handed

Fraction of LH people in Czechia

・ロト ・聞ト ・ヨト ・ヨト

æ